Improved Differential Analysis of Block Cipher PRIDE

Qianqian Yang ${ }^{1,2,3}$, Lei $\mathrm{Hu}^{1,2}$, Siwei Sun ${ }^{1,2}$, Kexin Qiao ${ }^{1,2}$, Ling Song ${ }^{1,2}$, Jinyong Shan ${ }^{1,2}$, Xiaoshuang $\mathrm{Ma}^{1,2}$
${ }^{1}$ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
${ }^{2}$ Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing 100093, China
${ }^{3}$ University of Chinese Academy of Sciences, Beijing 100049, China
yangqianqian521@126.com

November 25, 2014

Abstract

In CRYPTO 2014 Albrecht et al. brought in a 20-round iterative lightweight block cipher PRIDE which is based on a good linear layer for achieving a tradeoff between security and efficiency. A recent analysis is presented by Zhao et al.. Inspired by their work, we use an automatic search method to find out 56 iterative differential characteristics of PRIDE, containing 24 1-round iterative characteristics, based on three of them we construct a 15 -round differential and perform a differential attack on the 19 -round PRIDE, with data, time and memory complexity of $2^{62}, 2^{63}$ and 2^{71} respectively.

Keywords: Block Cipher, PRIDE, Differential attack, Active S-box, Automatic Method

1 Introduction

PRIDE [1] is a 20-round iterative lightweight block cipher designed by Albrecht et al. in CRYPTO 2014, which is based on a good linear layer for achieving a tradeoff between security and efficiency and going to both software-friendly and hardware-friendly. A recent analysis is presented by Zhao et al. [4]. They utilized the weaknesses of the S-box and the linear layer to find out 16 different 2-round iterative differential characteristics and construct several 15 -round differentials, and based on one of the differential characteristics, they launched a differential attack on the 18-round PRIDE with data, time and memory complexity of $2^{60}, 2^{66}$ and 2^{64}, respectively.

In this paper, using the automatic methods presented in $[2,3]$, we find out 24 1-round iterative differential characteristics and 32 2-round iterative characteristics, including the same 16 characteristics presented in [4]. With one of the 1-round iterative differential characteristics and inspired by the analysis of Zhao et al. [4] we construct a 15 -round differential path of differential probability 2^{-60}, and based on which we perform an improved differential attack on the 19-round PRIDE, with data, time and memory complexity of $2^{62}, 2^{63}$ and 2^{71} respectively.

2 Description of Block Cipher PRIDE

2.1 Notations

The following notations are used in this paper:
$I_{r} \quad$ the input of the r-th round
$X_{r} \quad$ the state after the key addition layer of the r-th round
$Y_{r} \quad$ the state after the Sbox layer of the r-th round input
$Z_{r} \quad$ the state after the P permutation layer of the r-th round
$W_{r} \quad$ the state after the matrix layer of the r-th round
$O_{r} \quad$ the output of the r-th round
C the ciphertext of block cipher PRIDE
$\Delta X \quad$ the XOR difference of X and X^{\prime}
$\oplus \quad$ bitwise exclusive OR (XOR)
$x \| y \quad$ bit string concatenation of x and y
? a bit with uncertain value
$X\left[n_{1}, n_{2}, \ldots\right]$ the n_{1}, n_{2}, \ldots-th nibbles of state $X, 1 \leq n_{1}<n_{2}<\ldots \leq 16$
$X\left\{b_{1}, b_{2}, \ldots\right\}$ the b_{1}, b_{2}, \ldots-th bits of state $X, 1 \leq b_{1}<b_{2}<\ldots \leq 64$, numbered from the left to right

2.2 Description of PRIDE

PRIDE is an FX-structure block cipher with 64 -bit blocks and 128-bit keys. The 128 -bit master key is composed of the subkey k_{1} and the pre-whitening key k_{0} which is equal to the post-whitening k_{2}, i.e.,

$$
k=k_{0} \| k_{1} \text { with } k_{2}=k_{0} .
$$

The cipher has an iterations of 20 rounds, of which the first 19 are identical. The structure of the cipher is depicted in Fig.1, which is redrawn from [1].

Fig. 1: Overall Structure of the PRIDE

The round function R of PRIDE is an SPN structure: The state is XORed with the round key, fed into 16 parallel 4 -bit S-boxes and then permuted and processed by the linear layer, see Fig.2, which is also redrawn from [1].

The S-box of PRIDE is given in Table 1, and the linear layer is defined as

$$
\begin{gathered}
M:=L_{0} \times L_{1} \times L_{2} \times L_{3} \\
L:=P^{-1} \circ M \circ P,
\end{gathered}
$$

where detailed definitions of $L_{i}, i \in\{0,1,2,3\}$ are given in Appendix A. The linear layer of the last round is omitted.

Fig. 2: Round Function R of PRIDE

Table 1: S-box of PRIDE

| x | $0 x 00 x 10 x 20 x 30 x 40 x 50 x 60 x 70 x 80 x 90 x a ~ 0 x b ~ 0 x c ~ 0 x d ~ 0 x e ~ 0 x f ~$ |
| :---: | :---: | :---: | $\mathrm{S}(\mathrm{x})$ 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

3 Differential Attack on 19-Round PRIDE

In this section, we describe our differential attack on the 19-round PRIDE. We first give 241 -round iterative characteristics, and then construct a 15 -round distinguisher by concatenation. Finally we perform a key recovery procedure on the 19-round PRIDE.

3.1 Differential Characteristic of Block Cipher PRIDE

The XOR difference distribution table of the S-box in PRIDE is listed in Table 2. Our attack utilize a table look-up method to recover nibbles of key, thus a concrete difference distribution table with its entries being the specific pairs of input-output values is preferred.

We apply sun et al's automatic search methods $[2,3]$ to the block cipher PRIDE and find out 56 iterative differential characteristics, which includes 24 1-round characteristics with input(output) hamming weight 2,162 -round characteristics with input(output) hamming weight 3 and 16 same 2 -round characteristics with input(output) hamming weight 1 as ones described in [4]. We only show the 24 1-round iterative characteristics in Table 3.

We choose the 4 th differential characteristic in Table 3 to construct a 15round differential characteristic with probability 2^{-60} to launch the differential attack on the 19-round PRIDE.

Table 2: XOR Difference Distribution Table for the S-box of PRIDE

| | 0 x 0 | 0x1 | 0 x 2 | 0 x 3 | 0 x 4 | 0×5 | 0 x 6 | 0 x 7 | 0 x 8 | 0 x 9 | 0xa | 0 xb | 0 xc | 0xd | 0 xe | 0 xf |
| :---: |
| 0x0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0x1 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0x2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0x3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0x4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0x5 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0x6 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0x7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0x8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0x9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| 0xa | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0xb | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| 0xc | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| 0xd | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| 0xe | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| 0xf | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |

3.2 Differential Analysis on Block Cipher PRIDE

In this subsection, we put our 15 -round differential characteristic from the 3rd to the 17 th round of PRIDE, extending 2 rounds backward and forward respectively. The description is given in Table 4 . We find that the hamming weight of ΔY_{2} is one less than that of ΔY_{1} in [4] and the hamming weight of ΔX_{18} is one less than that of ΔX_{17} in [4]. Additionally, we notice that when the input difference of the S-box is 1000, the output difference must be ?0??, and when the output difference is 1000 , the input difference must be ?0??(the authors of [4] seemed to miss this point). Due to the above two rules, we can extend 2 rounds backward and forward respectively to achieve the differential attack on the 19-round PRIDE. Consequently the 1-round iterative characteristics is more appropriate than the 2-round iterative characteristics in [4].
-Data Collection Phase. Choose $2^{25.65}$ structures, in each of which, plaintexts fix in nibbles $4,6,8,11,12,15,16$ and traverse in nibbles $1,2,3,5,7,9,10,13$, 14. There are 2^{36} plaintexts and their corresponding ciphertexts which consist of 2^{71} pairs. There are 16 possible values for ΔX_{2} since only 4 different input differences of S-box can result in output difference 1000 and the probability is 2^{-2}. Thus, the probability that a pair of plaintexts in a structure can result in the expected input difference of the distinguisher is $16 / 2^{36} \times 2^{-4}=2^{-36}$.

Observing from Table 2, we know that the output difference 1000 only has four different input differences. Thus, extending 2 rounds backward has 16 d ifferent cases. Similar to backward extending, the extending 2 rounds forward also has 16 different situations. In order to guarantee the bits of exhaustively searching less than 60 , we choose the situations which the active S -boxes are

Table 3: 1-round iterative characteristics of PRIDE

	10000000000000001000
2	1000000000000000000000000000000010000000000000000000000000000000
3	10001000000000000000
4	000000000000000010000000000000001000000000000000000000000000
5	0000000000000000100000000000000000000000000000001000000000000000
6	00000000000000000000000000000000100000000000000010000000000
7	00001000000000000000
8	000010000000000000000000000000000000100
9	000010001000
10	0000000000000000000010000000000000001000000000000000000000000000
11	00000000000000000000100000000000000000000000000000001000000
12	00000000000000000000000000000000000010000000000000001000000
13	0000000010000000000000001000000000000000
14	0000000010000000000000000000000000000000100000000000000000000000
15	000000001000100
16	000000000000000000000000100000000000000010000000000000000000
17	00000000000000000000000010000000000000000000000000000000
18	0010000000000000001000
19	0000000000001000000000000000100000000000000000000000000000000000
20	0000000000001000000000000000000000000000000010000000000000000000
21	00000000000010001000
22	00000000000000000000000000001000000000000000100000000000
23	0000000000000000000000000000100000000000000000000000000000001000
24	0010000000000000001000

more than 17 except for 21 . There are 109 situations totally. Because of the 5 th and the 6 th differentials in Table 3 forming the same structures, we use the three differentials to recovery the information about the key. The expected number of right pairs is $2^{25.65+71} \times 2^{-36} \times 2^{-60} \times \frac{109}{16^{2}} \times 3=2$. The data complexity is $2^{25.65} \times 2^{36} \approx 2^{61.65}$.

After 19-round encryption, the ciphertext difference should satisfy $\Delta C[3,4,6$, $7,11,12,14,15,16]=0$, which makes only $2^{60.65}$ pairs left.
-Key Recovery Phase. For the appointed differential, we recover these bits of key, which correspond to $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[1,2,3,5,7,9,10,13,14]$ in the 1st round, $k_{0}[1,2,5,8,9,10,13]$ of the post-whitening, 8 bits $(M \circ P)^{-1}\left(f_{19}\left(k_{1}\right)\right)[5,9]$ in the last 2 nd round and 8 bits $P^{-1}\left(f_{2}\left(k_{1}\right)\right)[5,9]$ in the 2 nd round.

We choose one of the 109 situations that $\Delta Y_{1}=1000001000100000000100000$ 010000010110010000000001001001000000000 and $\Delta X_{19}=001000100000000010$ 0000000000001010000010000000000000000000000000 . Since the 13 th nibble of ΔX_{19} is 0000 , there are $2^{60.65} \times 2^{-4}=2^{56.65}$ pairs left. Through looking up the table we sieve the pairs with the probability of $4 / 16,6 / 16,6 / 16,4 / 16,6 / 16$, $6 / 16,6 / 16,8 / 16,6 / 16,6 / 16,6 / 16,6 / 16,4 / 16,4 / 16$, and $6 / 16$. Thus there are

Table 4: Differential Analysis on 19-round PRIDE

	???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 00000000 ???? ?
ΔX_{1}	??
ΔY_{1}	? 00
$\triangle Z_{1}$?000 ?000 ?000 ?000 0000000000000000 0??0 00?0 ??00 0?00 ?000 ?000 ?000 ?000
ΔW_{1}	000
	0000
	0000000000000000 ? 0 ?? 000000000000 ? $0 ? ?$? 0000000000000000000000000000
ΔY_{2}	0000000000000000100000000000000010000000000000000000000000000000
Δ	000010001000
ΔW^{\prime}	000010001000
Δ	0000000000000000100000000000000010000000000000000000000000000000
ΔX_{1}	00
Δ	0000000000000000 ?0?? 000000000000 ?
ΔZ_{18}	00
ΔW_{1}	?000 ?000 ?000 ?000 0000000000000000 ?
ΔI_{19}	?0?? 00?0 00000000 ?00? $0000000000 ? 0$?0?? 0
ΔX	?0?? $00 ? 000000000$?00? 00000000 00?0 ?
ΔY_{19}	???? ???? 00000000 ???? 00000000 ???? ???? ???? 00000000 ???? 000000000000
ΔO_{19}	???? ???? 00000000 ???? 00000000 ???? ???? ???? 00000000 ???? 000000000000

$2^{56.65} \times(4 / 16)^{4} \times(6 / 16)^{10} \times 8 / 16 \approx 2^{33.50}$ pairs left. Next we use the method of table look-up to recovery these bits of key.

- Step 1. Firstly, we recover the values of $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[1]$. For each remaining pair of plaintexts, look up the concrete difference distribution table by its input difference in the first nibble and output difference 1000 , we get 4 candidates for $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[1]$ and then store the values in a table, say Table D. The time complexity is about $2^{33.50} \times \frac{1}{16} \times \frac{1}{19} \approx 2^{25.25}$.
- Step 2. For each pair of plaintexts associated with each of its corresponding candidates for $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[1]$, look up the concrete difference distribution table by its input difference in the 13th nibble and output difference 1001, we get 2 candidates for $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)$ [13]. Again we store the values in Table D. The time complexity is no more than $2^{33.50} \times 4 \times \frac{1}{16} \times \frac{1}{19} \approx$ $2^{27.25}$.
- Step 3. Similar to Step 2, for each pair of texts associated with each of its corresponding candidates for previously recovered key bits, look up the concrete difference table, we get the candidates for $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[2,3,5,7,9,10,14]$ and $k_{0}[1,2,8,9,10,5]$ successively. The time complexity is about $2^{54.65} \times \frac{1}{16} \times$ $\frac{1}{19} \approx 2^{46.40}$.
- Step 4. Because the value of ΔX_{2} and ΔY_{18} are fixed, in order to get the information of $(M \circ P)^{-1}\left(f_{19}\left(k_{1}\right)\right)[5,9]$ and $P^{-1}\left(f_{2}\left(k_{1}\right)\right)[5,9]$ we only need to look up four times for all pairs associated with their corresponding candidates for $\left(k_{0} \oplus P^{-1}\left(f_{1}\left(k_{1}\right)\right)\right)[1,2,3,5,7,9,10,13,14]$ and $k_{0}[1,2,5,8,9,10,13]$.
- Step 5. Repeating the same process 109×3 times for different characteristics, we get Table D containing $2^{56.65} \times 2^{8} \times 27 \times 3 \approx 2^{70.99}$ candidates for at least 68 bits of key. The most frequently appeared candidate serves as the right one and it cost $2^{56.65} \times 2^{8} \times 27 \times 3 \times \frac{1}{16} \times \frac{1}{19} \approx 2^{62.74}$ to find it by common method.
- Step 6. For the rest of the no more than 60 bits, we perform an exhaustive search.

In summary, we achieve that the data, time and memory complexities are $2^{62}, 2^{63}$ and 2^{71}, respectively.

4 Conclusion

In this paper, we proposed an improved differential attack on the 19-round PRIDE by utilizing new 1-round iterative differential characteristics which is found by automatic search methods. The differential characteristics we used are suitable for extending 4 rounds to launch the differential attack. The data, time and memory complexities of our attack are $2^{62}, 2^{63}$ and 2^{71} respectively. Moreover, if more differentials can be used at the same time, it may be possible to lunch an attack on the full-round PRIDE.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalcin, T.: Block Ciphers - Focus On The Linear Layer (feat. PRIDE). Pre-proceeding of CRYPTO (2014)
2. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L.: Automatic Enumeration of (Related-key) Differential and Linear Characteristics with Predefined Properties and Its Applications. Cryptology ePrint Archive (2014), http://eprint.iacr.org/2014/747
3. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-oriented Block Ciphers. In: Advances in Cryptology-ASIACRYPT 2014. pp. 158-178. Springer (2014)
4. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential Analysis on Block Cipher PRIDE. Cryptology ePrint Archive (2014), http://eprint.iacr.org/2014/525

Appendix A

$\mathcal{L}_{0}=\mathcal{L}_{0}^{-1}=\left(\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$

$$
\mathcal{L}_{2}=\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

