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Abstract. The cloud computing infrastructure relies on virtualized servers that provide isolation across
guest OS’s through sandboxing. This isolation was demonstrated to be imperfect in past work which
exploited hardware level information leakages to gain access to sensitive information across co-located
virtual machines (VMs). In response virtualization companies and cloud services providers have disabled
features such as deduplication to prevent such attacks.
In this work, we introduce a fine-grain cross-core cache attack that exploits access time variations on
the last level cache. The attack exploits huge pages to work across VM boundaries without requiring
deduplication. No configuration changes on the victim OS are needed, making the attack quite viable.
Furthermore, only machine co-location is required, while the target and victim OS can still reside on
different cores of the machine. Our new attack is a variation of the prime and probe cache attack whose
applicability at the time is limited to L1 cache. In contrast, our attack works in the spirit of the flush
and reload attack targeting the shared L3 cache instead. Indeed, by adjusting the huge page size our
attack can be customized to work virtually at any cache level/size. We demonstrate the viability of the
attack by targeting an OpenSSL1.0.1f implementation of AES. The attack recovers AES keys in the
cross-VM setting on Xen 4.1 with deduplication disabled, being only slightly less efficient than the flush
and reload attack. Given that huge pages are a standard feature enabled in the memory management
unit of OS’s and that besides co-location no additional assumptions are needed, the attack we present
poses a significant risk to existing cloud servers.
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1 Introduction

The end of exponential growth of single core performance in the past decade has helped creating a new
industry selling computing infrastructure as a service (IaaS) popularly referred to as cloud computing. Instead
of financing and maintaining expensive workstations and servers, companies can rent the resources from
cloud providers just when the needed and only for the duration of the need thereby significantly cutting
IT costs. A number of well-known tech companies such as Google, Amazon AWS, EMC come to mind
when mentioning cloud computing. Popular user-oriented examples include cloud backed storage service
providers like Dropbox in the personal computing space and Box.net in the enterprise. These are just a
couple of examples among numerous businesses enabled by cloud backed compute and storage offerings such
as Amazon’s EC2 compute and S3 storage solutions, respectively. Nevertheless, like any emerging technology,
cloud services have also encountered their unique security challenges. The problem stems from the fact that
most security technologies were developed for a world of isolated servers and were subsequently transferred
to virtualized servers potentially hosting a number of guest OS’s without any adjustments.

A new class of security vulnerabilities arise due to one of the most important principles that cloud systems
are based on: co-residency and multi-tenancy. The benefit of could computing comes from resource sharing,
implying that multiple customers will utilize the same hardware of the same physical machine instead of
assigning a dedicated server per user. Despite the benefits that co-residency bestows, namely maintenance and
electricity cost reduction, it also implies that users run their virtual machines (VM) in the same hardware
only separated by the virtualization layer provided by the Virtual Machine Manager (VMM). In theory



sandboxing techniques should provide the requested isolation between VMs, but of course the devil is in the
details.

A serious threat to VM isolation (and therefore the customer’s privacy) comes from side channel attacks
which exploit subtle information leakage channels at the microarchitectural level. If side channel attacks can
circumvent the logical isolation provided by the hypervisor, critical pieces of information such as crypto-
graphic keys might be stolen. In particular, co-residency creates a scenario where microarchitectural side
channels can potentially be exploited. A large number of microarchitectural attacks targeting cryptographic
keys have already been extensively studied and successfully applied in non-virtualized scenarios. For instance,
cache attacks are based on access time variations when retrieving data from the cache and from the mem-
ory, as proposed by Bernstein [22] or Osvik et al. [34]. Both studies manage to recover AES secret keys by
monitoring the cache utilization. Modern memory saving features like Kernel Samepage Merging (KSM) [18,
13] have also shown to threaten the security of cryptographic processes as proven by Gullasch et.al [26],
recovering AES keys with as little as 100 encryptions. However, despite the successful results obtained by
the aforementioned attacks in non-virtualized scenarios, still very little research has been done aiming at
safe implementation of cryptosystems in the virtualized setting.

It was not until 5 years ago, when motivated by the work done by Ristenpart et al. [36], that the first
successful implementations of side channel attacks inside VMs started to appear in the community. In fact,
Ristenpart et al. were not only able to co-locate two virtual machines hosted by Amazon EC2 on the same
physical hardware, but also managed to recover key strokes used by a victim VM. In consequence, they
showed for the first time that side channel attacks can be implemented in the cloud to break through the
isolation provided by sandboxing techniques.

From that point on, researches have been focusing on recovering fine grain information with new and
known side channel techniques targeting weak cryptographic implementations inside VMs, e.g. El Gamal [45]
or AES [42]. The Flush+Reload technique has been shown to be particularly effective when memory dedupli-
cation features are enabled by the VMM. Indeed, Yarom et al. [43] demonstrated attack that recovered RSA
keys across VMs running in different cores and hosted by KVM and VMware. Later Irazoqui et al. [30] used
the same technique to recover AES keys across VMware VMs. The relevance of these studies is highlighted by
the prompt security update by VMware, making memory deduplication an opt-in feature that was formerly
enabled by default.

Recognizing the potential for a security compromise, deduplication was never enabled in EC2 compute
cloud servers.

Even though mechanisms that hinder previous attacks have been implemented, the discussion still remains
open in the community. Indeed, new side channel attacks (such as the one proposed in this work) compro-
mising the VM isolation techniques may arise, consequently requiring new countermeasures to mitigate the
new introduced leakage.

Our Contribution

In this work, we show a novel cross-core and cross-VM cache-based side-channel attack that exploits the
shared L3 cache. The attack takes advantage of the additional physical address knowledge gained by the
usage of huge size pages. Thus, the attack is not only applicable in non-virtualized environments but also in
the cloud, since the huge size pages usage is enabled by default in all common hypervisors, i.e, Xen, VMware
and KVM. Unlike the popular Flush+Reload attack [43], the new attack does not rely on deduplication
features (no longer enabled by default in VMware and completely disabled on Amazon AWS servers) and
therefore, it can be applied with hypervisors not considered in [43, 30] like Xen. Furthermore, the attack is
hardly detectable by the victim, since only a small number of sets are profiled in the L3 cache.

The viability of the new side channel technique is demonstrated by attacking AES in both non-virtualized
and virtualized cross VM scenarios. The attack is compared to previous attacks performed on AES in the
cloud [29, 30]. The new attack shows to be significantly more efficient than [29] and achieves similar efficiency
as [30]. The attack requires a small amount of time to succeed, i.e, the AES key is recovered in less than 3
minutes in fully virtualized Xen 4.1.
In summary, this work
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– introduces a new side channel technique targeting the L3 cache enabled by the usage of huge size memory
pages.

– Shows that the attack can be applied in the cloud since most of the hypervisors allow the usage of huge
size pages by the guest OSs.

– Presents the viability of the new side channel technique by recovering AES keys when attacker and victim
are located in different cores.

– Demonstrates that the attack is also practical by recovering the AES key in less than 3 minutes in
virtualized settings.

We summarize existing cache-based side-channel attacks as well as virtual address translation and cache
addressing in Section 2. The new side channel attack is introduced in Section 3. Results are presented in
Section 5. Before concluding in Section 7 possible countermeasures are discussed in Section 6.

2 Background

In this section we give a brief overview of the background needed to understand the new attack presented in
this work. After detailing on cache side channel attacks, their history and the improvements that have been
developed over the last 15 years a short explanation of Virtual Address Cache Mapping and the previous
Prime+Probe technique are provided.

2.1 Cache Side Channel Attacks

Cache side channel attacks take advantage of the information leakage coming from microarchitectural time
differences when data is retrieved from the cache rather than the memory. The cache is a small memory
placed between the CPU and the RAM to avoid the big latency added by the retrieval of the data. Modern
processors usually have more than one level of cache to improve the efficiency of memory accesses. Caches
base their functionality on two different principles, i.e, temporal and spatial locality. The first one predicts
that data accessed recently will be accessed soon, whereas the latter one predicts that data in nearby locations
to the accessed data will also be accessed soon. Thus, when a value is fetched from memory by the CPU, a
copy of that value will be placed in the cache, together with nearby memory values to reduce the latency of
future accesses.

Obviously, data in cache can be accessed much faster than data only present in memory. This is also true
for multilevel caches, where data accessed from the L1 cache will experience lower latencies than data accessed
from subsequent cache levels. These time differences are used to decide whether a specific portion of the
memory resides in the cache—implying that the data has been accessed recently. The resulting information
leakage is particularly harmful for cryptographic algorithms, which might compromise the secret keys involved
in their encryption processes. Although many spy processes have been studied targeting the L1 cache,
implying core co-location, lately cross-core spy processes have gained most of the attention. In the latter
case, typically the last level of cache acts as the covert channel, since it is usually shared by all the cores in
most modern processors. Cross-core cache side channel attacks are particularly dangerous in cloud settings,
where more than one user co-reside in the same hardware, and the chance of two users being co-located in
different cores is significantly high.

Previous Cache Attacks The cache was first considered to be a suitable cover channel for the unauthorized
extraction of information in 1992 by Hu [28]. Kesley et al. [31] also mentioned the possibility of cache attacks
based on the cache hit/miss ratio. Later, cache attack examples were studied theoretically by Page [35]
whereas Tsunoo et al. [39] investigated timing leakage due to internal table look up collisions.

However it was not until 2004 when the first practical implementations of cache attacks were studied. For
instance, Bernstein [22] implemented a cache timing attack targeting AES based on the existing microarchi-
tectural leakage when different memory position are loaded in the cache. He used this leakage to recover the
full AES key in some implementations. At the same time Osvik et al. [34] investigated the impact of two
different trace driven attacks on AES: Evict + Time and Prime+Probe. They showed that both methods
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can be applied in spy processes to recover AES keys. One year later Bonneau and Mironov exploited the
cache collisions due to internal table look ups in AES to obtain the secret key [23].

A similar collision timing attack was presented by Acıiçmez et al. [15] targeting the first and second
encryption rounds of AES while Neve and Seifert [33] studied the impact of access driven cache attacks in
the last round of AES. In 2007 Acıiçmez proved that AES and the data cache were not the only possible
target of cache side channel attacks [14]. He discovered leakages in the instruction cache during public key
encryptions and applied cache side channel attacks to recover RSA keys.

However, most of the above mentioned attacks were implemented as spy processes in a native OS en-
vironment, reducing the practical impact of the attacks in realistic scenarios. It was not until 2009 when
Ristenpart et al. proved to be able to co-locate two virtual machines in a public cloud, achieving the usage
of the same CPU [36]. Their experiments in the Amazon EC2 public cloud [2] show that they achieved up to
40% co-residency success rate with the desired target by using different properties like IP range and instance
type. The work also demonstrated that cache usage can be analyzed to deduce secret keystrokes used by
a potential victim. Hence, the attack demonstrated for the first time that microarchitectural side channel
attacks that require co-location are a potential threat in the cloud setting. Further co-residency detection
methods such as traffic analysis later were studied, e.g. by Bates et al. [20].

The research made on detecting co-residency motivated many researchers to apply known side channel
techniques in the cloud. For instance, Zhang et al. [44] used the above mentioned Prime+Probe technique to
detect whether any other tenant was co-located in the same hardware. Shortly later again Zhang et al. [45]
recovered El Gamal encryption keys by monitoring the L1 instruction cache in a virtualized setting, again
with the Prime+Probe spy process. Their experiments were carried out in Xen VMs and they had to apply a
hidden Markov model to reduce the noise present in their measurements. Bernstein’s attack was also tried in
virtualized environments, first by Weiss et al. [42] in ARM processors and then by Irazoqui et al. in VMware
or Xen [29].

At the same time new spy processes and improvements over previous techniques were investigated in
non-virtualized scenarios. Chen et al. presented an improvement over Acıiçmez’s technique to monitor the
instruction cache and recover a RSA key [24], whereas Aly et al. [17] studied an improvement on the detection
method for the Bernstein’s attack. Cache collision attacks on AES and instruction cache attacks on DSA were
also further investigated by Spreitzer and Plos [37] and Acıiçmez et al. [16] respectively. In the other hand
Gullasch et al. [26] studied a new side channel technique that would later acquire the name of Flush+Reload
and that is based on memory saving features like Kernel Samepage Merging (KSM). They were able to
recover a full AES key by monitoring the data cache while getting control of the Control Fair Scheduler
(CFS) [12]. This new method proved that successful cache attacks can still be implemented in modern
processors, contrary to the statement made in [32].

More recently, Yarom et al. used the Flush+Reload technique to attack the RSA implementation of
Libgcrypt [43]. Furthermore, they showed that their attack is applicable in a cross-core and cross-VM
setting. Hence, it could be applied in cloud environments, particularly in the VMMs implementing memory
deduplication features like VMware or KVM. Shortly later, Benger et al. applied the same technique to recover
ECDSA keys [21]. Finally, Irazoqui et al. demonstrated that Flush+Reload can be applied tor recover AES
keys without the need of controlling the CFS, and also proved the viability of their method across VMware
VMs [30].

2.2 Virtual Address Translation and Cache Addressing

In this work we present an attack that takes advantage of some known information in the virtual to physical
address mapping process. Thus, we give a brief overview about the procedure followed by modern processors
to access and address data in the cache [27].

In modern computing, processes use virtual memory to access the different requested memory locations.
Indeed processes do not have direct access to the physical memory, but use virtual addresses that are then
mapped to physical addresses by the Memory Management Unit (MMU). This virtual address space is
managed bv the Operating System. The main benefits of virtual memory are security (processes are isolated
from real memory) and the usage of more memory than physically available due to paging techniques.
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Fig. 1. Cache accesses when it is physically addressed.

In fact, the memory is divided into fixed length continuous blocks called memory pages. The virtual
memory allows the usage of these memory pages even when they are not allocated in the main memory.
When a specific process needs a page not present in the main memory, a page fault occurs and the page has
to be loaded from the auxiliary disk storage. Therefore, a translation stage is needed to map virtual addresses
to physical addresses prior to the memory access. In fact, cloud systems have two translation processes, i.e,
guest OS to VMM virtual address and VMM virtual address to physical address. The first translation is
handled by shadow page tables while the second one is handled by the MMU. This adds an abstraction layer
with the physical memory that is handled by the VMM.

During translation, the virtual address is split into two fields: the offset field and the page field. The
length of both fields depends directly on the page size. Indeed, if the page size is p bytes, the lower log2(p)
bits of the virtual address will be considered as the page offset, while the rest will be considered as the page
number. Only the page number is processed by the MMU and needs to be translated from virtual to physical
page number. The page offset remains untouched and will have the same value for both the physical and
virtual address. Thus, the user still knows some bits of the physical address. Modern processors usually work
with 4 KB pages and 48 bit virtual addresses, yielding a 12 bit offset and the remaining bits as virtual page
number.

In order to avoid the latency of virtual to physical address translation, modern architectures include a
Translation Lookaside Buffer (TLB) that holds the most recently translated addresses. The TLB acts like a
small cache that is first checked prior to the MMU. One way to avoid TLB misses for large data processes is
to increase the page size so that the memory is divided in less pages [25, 4, 41]. Since the possible virtual to
physical translation tags have been significantly reduced, the CPU will observe less TLB misses than with
4 KB pages. This is the reason why most modern processors include the possibility to use huge size pages,
which typically have a size of at least 1 MB. This feature is particularly effective in virtualized settings,
where virtual machines are typically rented to avoid the intensive hardware resource consumption in the
customers private computers. In fact, most well known VMMs support the usage of huge size pages by guest
OSs to improve the performance of those heavy load processes [9, 5, 10].

Cache Addressing: Caches are physically tagged, i.e, the physical address is used to decide the position
that the data is going to occupy in the cache. With b bytes size cache lines and m-way set associative caches
(with n number of sets), the lower log2(b) bits of the physical address are used to index the byte in a cache
line, while the following log2(n) bits select the set that the memory line is mapped to in the cache. A graphical
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example of the procedure carried out to address the data in the cache can be seen in Figure 1. Recall that
if a page size of 4 KB is used, the offset field is 12 bits long. If log2(n) + log2(b) is not bigger than 12, the
set that a cache line is going to occupy can be addressed by the offset. In this case we say that the cache is
virtually addressed, since the position occupied by a cache line can be determined by the virtual address. In
contrast, if more than 12 bits are needed to address the corresponding set, we say that the cache is physically
addressed, since only the physical address can determine the location of a cache line. Note that when huge
size pages are used, the offset field is longer, and therefore bigger caches can be virtually addressed. As we
will see, this information can be used to mount a cross-VM attack in the L3 cache.

2.3 The Prime+Probe Technique

The new attack proposed in this work is based on the methodology of the known Prime+Probe technique.
Prime+Probe is a cache-based side channel attack technique used in [34, 44, 45] that can be classified as an
access driven cache attack. The spy process ascertains which of the sets have been accessed in the cache by
a victim. The attack is carried out in 3 stages:

– Priming stage: In this stage, the attacker fills the monitored cache with own cache lines. This is done
by reading own data.

– Victim accessing stage: In this stage the attacker waits for the victim to access some positions in the
cache, causing the eviction of some of the cache lines that were primed in the first stage.

– Probing stage: In this stage the attacker accesses the priming data again. When the attacker reloads
data from a set that has been used by the victim, some of the primed cache lines have been evicted,
causing a higher probe time. However if the victim did not use any of the cache lines in a monitored set,
all the primed cache lines will still reside in the cache causing a low probe time.

The Prime+Probe side channel attack has some limitations. First, it can only be applied in small caches
(typically the L1 cache), since only a few bits of the virtual address are known. Second, the application
of such a spy process in small caches restricts its application to core co-located processes. Finally, modern
processors haver very similar access times for L1 and L2 caches, only differing in a few cycles, which makes
the detection method noisy and difficult. This difficulty is indicated e.g. in [45], where the authors had to
apply a Hidden Markov Model in addition to the Prime+Probe technique to deal with noisy measurements.

3 The S$A attack

In this section we present the technical details of our S$A attack. Later we demonstrate the viability of
the attack on the OpenSSL1.0.1.f’s C-implementation of AES [1] to achieve a full AES key recovery in a
scenario where attacker and victim are co-located in different cores. Our S$A attack has several advantages
over the previous cache side channel attacks on AES:

– Our S$A attack is the first efficient cross-core cache attack that does not take advantage of deduplication
processes, yet succeeds in retrieving key information across VM boundaries. While some previous attacks
like Flush+Reload rely on deduplication features, other attacks like Prime+Probe were also applied in
the cloud but assumed to be co-located in the same core with the target process. In contrast, the new
S$A attack detects accesses made to the last level cache by using huge size pages to allocate the attackers
data. Since the last level of cache is usually shared among all the cores in modern processors, our spy
process can detect cache accesses even when the victim is co-located in a different core on the same
machine;

– We almost achieve the same efficiency as the Flush+Reload attack with the S$A spy process. Other
attacks like Bernstein’s attack require a much higher number of encryptions to get partial information
of the AES key;

– The S$A can be considered a non-intrusive cache attack. In the case of AES only 4 sets from the last
level cache need to be monitored to recover a full AES encryption key.
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3.1 S$A enabled by Huge Pages

The S$A attack proposed in this work, is enabled by making use of Huge pages and thereby eliminating
a major obstacle that normally restricts the Prime+Probe attack to target the L1 cache. As explained in
Section 2, a user does not use the physical memory directly, but he is assigned a virtual memory so that a
translation stage is performed from virtual to physical memory at the hardware level. The address translation
step creates a additional challenge to the attacker since real addresses of the variables of the target process
are unknown to him. However this translation is only performed in some of the higher order bits of the
virtual address, while a lower portion, named the offset, remains untouched. Since caches are addressed
by the physical address, if we have cache line size of b bytes, the lower log2(b) bits of the address will be
used to resolve the corresponding byte in the cache line. Furthermore if the cache is set-associative and for
instance divided into n sets, then the next log2(n) bits of the address will select the set that each memory
data is going to occupy in the cache. The log2(b)-bits that form the byte address within a cache line, are
contained within the offset field. However, depending on the cache size the following field which contains the
set address may exceed the offset boundary. The offsets allow addressing within a memory page. The OS’s
Memory Management Unit (MMU) keeps track of which page belongs to which process. The page size can
be adjusted to better match the needs of the application. Smaller pages require more time for the MMU to
resolve.

Here we focus on the default 4 KB page size and the larger page sizes provided under the common name
of Huge pages. As we shall see, the choice of page size will make a significant difference in the attackers
ability to carry out a successful attack on a particular cache level:

– 4 KB pages: For 4 KB pages, the lower 12-bit offset of the virtual address is not translated while the
remaining bits are forwarded to the Memory Management Unit. In modern processors the memory line
size is usually set as 64 bytes. This leaves 6 bits untouched by the Memory Management Unit while
translating regular pages. As shown in the top of Figure 2 the page offset is known to the attacker.
Therefore, the attacker knows the 6-bit byte address plus 6 additional bits that can only resolve accesses
to small size caches (64 sets at most). This is the main reason why techniques such as Prime+Probe have
only targeted the L1 cache, since it is the only one permitting the attacker to have full control of the
bits resolving the set. Therefore, the small page size indirectly prevents attacks targeting big size caches
like the L2 and L3 caches.

– Huge pages: The scenario is different if we work with huge size pages. Typical huge page sizes are at
1 MB or even greater. This means that the offset field in the page translation process is bigger, with 20
bits or more remaining untouched during page translation. Observe the example presented in Figure 2.
For instance, assume that our computer has 3 levels of cache, with the last one shared, and that 64, 512
and 4096 are the number of sets the L1, L2 and L3 caches are divided into, respectively. The first lowest
6-bits of the offset are used for addressing the 64 byte long cache lines. The following 6 bits are used
to resolve the set addresses in the L1 cache. For the L2 and L3 caches this field is 9 and 12-bits wide,
respectively. In this case, a huge page size of 256 KB (18 bit offset) or higher will give the attacker full
control of the set occupied by his data in all three levels of cache, i.e. L1, L2 and L3 caches. A 256 KB or
higher page size, will enable an attacker to target individual lines of the entire L3 cache. The significance
of targeting last level cache becomes apparent when one considers the access time gap between the last
level cache and the memory, which is much more pronounced compared to the access time difference
between the L1 and L2 caches. Therefore, using huge pages makes it possible to reach a higher resolution
Prime+Probe style attack.

3.2 The S$A Attack

The S$A technique takes advantage of the control of the lower k bits in the virtual address that we gain
with the huge size pages. These are the main steps that our spy process will follow to detect accesses to the
last level cache:
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Fig. 2. Regular Page (4 KB, top) and Huge Page (256 KB, bottom) virtual to physical address mapping for an Intel
x86 processor. For Huge pages the entire L3 cache sets become transparently accessible even with virtual addressing.

– Step 1 Allocation of huge size pages: The spy process is based on the control that the attacker gains
on the virtual address when using huge size pages. Therefore the spy process has to have access to the
available huge pages, which requires administrator rights. Recall that this is not a problem in the cloud
scenario where the attacker is the owner of the administrator right of his OS.

– Step 2 Prime the desired set in the last level cache: In this step the attacker creates data that
will occupy one of the sets in the last level cache. By controlling the virtual address, the attacker knows
the set that the created data is going to occupy in the last level cache. Once enough lines are created to
occupy the set, the attacker primes it and ensures that the set is filled. Typically the last level caches
are inclusive. Thus we will not only fill the shared last level cache set but also some sets in the upper
level caches.

– Step 3 Reprime to ensure that our data only resides in last level cache: Priming all cache levels
can lead to wrong predictions due to the different access times between the last level of cache and the
upper levels. Since we clearly want to distinguish between accesses from the last level cache and memory,
we reprime our upper level caches. The basic idea is to be sure to evict our data from the upper level
caches, but not from the last level cache. Therefore we ensure that our reprime data goes to a different
set in the last level cache, but to the same set in the upper level caches.

– Step 4: Victim process runs: After the two priming stages, the victim runs the target process. Since
one of the sets in the last level cache is already filled, if the targeted process uses the monitored set, one
of the primed lines is going to be evicted. Remember we are priming the last level cache, so evictions
will cause memory lines to reside in the memory. If the monitored set is not used, all the primed lines
are going to reside in the last level cache after the victim’s process execution.

– Step 5: Probe and measure: Once the victim’s process has finished, the spy process probes the primed
memory lines and measures the time to probe them all. If one or more lines have been evicted by the
targeted process, they will be loaded from the memory and we will see a higher probe time. However if
all the lines still reside in the set, then we will see a shorter probe time.

The last step can be made more concrete with the experiment results summarized in Figure 3. The
experiment was performed in native execution (no VM) in a intel i5-3320M that has a 16-way associative
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Fig. 3. Histograms of 10,000 access times in the probe stage when all the lines are in the L3 cache and when all
except one are in the cache (and the other one in the memory).

last level cache. It can be seen that when all the lines reside in the last level cache we obtain very precise
probe timings with average around 250 cycles and with very little variance. However when one of the lines
is evicted from last level cache and resides in memory, both the access time and the variance are higher. We
conclude that both types of accesses are clearly distinguishable.

For further clarification of the prime and reprime stages we present an example in Figure 4. Assume that
we want to monitor set 0 in the last level cache. The last level cache has 1024 sets, and the upper level caches
have only 64 sets. Assume that the associativity for this cache is 8 and 4 respectively for the last level cache
and the upper level caches, and that the memory line size is 64 bytes. In the example we also assume that all
the caches are inclusive. We know that bits 0 − 5 will select the corresponding byte in the memory line. We
set our data so that the virtual address is 0 from bit 6 to bit 15, in order to ensure that we are filling set 0
in the last level cache. We have to take into account that not only the last level cache will be filled, but also
the upper level caches. The reprime stage evicts the blue lines in the upper level caches and replaces them
with the yellow lines, which will go to a different set in the last level cache. With this technique we ensure
that the lines we are working with only reside in set 0 of the last level cache.

Handling Cache Slices: Typically the last level of cache is divided into slices [46, 7, 25]. This means that
if the specifications say that we have a 4 MB last level cache, this might be divided into two (or more) slices
of 2 MB each. Suppose now that the last level cache is a m-way set associative cache, and that it has n sets.
If the last level cache is divided into two slices, we would be addressing n/2 sets instead of n sets. Depending
on the slice selection method that the architecture implements, our data occupies slice 0 or slice 1. Recall
that the last level of cache is usually shared among all the cores. This means that if the cache is not divided
into slices, two cores will not be able to access data in the same set in the same clock cycle. However if the
cache is divided in two slices, there is a 50% chance that two different cores are accessing different slices and
therefore, can access data in the same set in the same clock cycle.

The division of the last level of cache in slices implies an additional step in the execution of the S$A.
Depending on the algorithm used to select the corresponding slice, the selection of the lines that fill one of
the sets of one of the slices can be difficult. However we can always identify the lines that fill a specific set
in a slice by measuring the reload time of those lines. If we are working with an m-way associative cache, we
need m lines to fill one of the sets in one of the slices. We can verify that we found those specific lines when
priming and probing m + 1 lines gives a significantly higher reload time, since the (m + 1)th line evicts one
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Fig. 4. Prime and reprime stages to ensure we monitor the last level cache.

of the previous ones. Using this method, it is straightforward to try and identify such cache lines for each
slice.

The Intel i5-MM30 processor used in our experiments has a two-sliced last level cache. The slice where
the data is going to be located is selected with (l + 1)th bit, assuming we have l bits to address the set and
cache line byte. If the (l + 1)th bit is 0, the data will be stored in slice number 0, whereas if the bit is a 1,
the data will be stored in the slice number 1.

4 S$A applied to AES

In this section we proceed to explain how the S$A spy process can be applied to attack AES. We use
the C reference implementation of OpenSSL1.0.1f library which uses 4 different T-tables during the AES
execution. The implementation of AES is based on the execution of three main operations, i.e., a Table
lookup operation, a MixColumns operation and a key addition operation. For AES-128 these operations
are repeatedly executed for 9 rounds, whereas the last round only implements the Table look up and key
addition operations. OpenSSL uses 4 different 1 KB size T-tables for the 10 rounds. Recovering one round
key is sufficient for AES-128, as the key scheduling is invertible.

We use the last round as our targeted round for convenience. Since the 10th round does not implement
the MixColumns operation, the ciphertext directly depends on the T-table position accessed and the last
round key. Assume Si to be the value of the ith byte prior to the last round T-table look up operation. Then
the ciphertext byte Ci will be:

Ci = Tj [Si] ⊕K10
i (1)

where Tj is the corresponding T-table applied to the ith byte and K10
i . It can be observed that if the

ciphertext and the T-table positions are known, we can guess the key by a simple xor operation. We assume
the ciphertext to be always known by the attacker. Therefore the attacker will use the S$A spy process to
guess the T-table position that has been used in the encryption and consequently, obtain the key.

Since S$A will decide which table look up position has been used by monitoring memory accesses, we
need to know how the T-tables are handled in memory. With 64 byte memory lines, each T-table occupies
16 cache lines and each cache line holds 16 T-table positions for OpenSSL 1.0.1f. Furthermore the sets that
each of these lines occupy in the cache increase sequentially, i.e, if T [0 − 15] occupies set 0, then T [16 − 31]
occupies set 1..etc. Since each encryption makes 40 accesses to each of the T-tables, the probability of not
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accessing one of the T-tables memory lines is:

Prob[no accessT [i]] = (1 − (15/16))40 ≈ 8%. (2)

Thus, if the attacker knows which set each of the T-table memory lines occupy, S$A will detect that
the set is not accessed 8% of the times. We use the same procedure as in [30] to determine the key used
in the last round operation. Each ciphertext value is going to be assigned a counter that will depend on
the usage of the monitored T-table line. Recall that the usage of the monitored T-table memory line could
have happened in any of the 10 rounds of AES. However, since the accesses are profiled according to the
corresponding ciphertext value, the attacker has two options:

– Assign an access counter : Assign an access counter to each possible ciphertext byte value Ci that
increments each time the monitored T-table line is accessed. In this scenario, once enough measurements
have been taken, the ciphertext values corresponding to the monitored T-table line will present higher
counters than the rest.

– Assign a miss counter : Assign a miss counter to each possible ciphertext byte value Ci that increments
each time the monitored T-table line is not accessed. Thus, once enough measurements have been taken,
the ciphertext values corresponding to the monitored T-table line will present minimum values.

Measuring microarchitectural timings implies dealing with noise that increases the measured time, e.g.,
TLB misses and context switches. Since in our attack scenario this noise is most of the time only biased in
one direction (increasing access times), we decide to use the miss counter, since it is less susceptible to noise.

Thus, once enough measurements have been done by S$A we will see that 16 ciphertext values have
significantly higher access counters than the rest. The key is obtained by solving Equation (1), i.e, xoring
each of the ciphertext values with each of the values in the monitored T-table memory line. This operation
outputs sets of possible keys for each ciphertext value, while the correct key is present in all of them

Locating the Set of the T-Tables: The previous description implicitly assumes the attacker to know the
location, i.e. the sets, that each T-table occupies in the shared level cache. A simple approach to gain this
knowledge is to prime and probe every set in the cache, and analyze the timing behavior for a few random
AES encryptions. The T-table based AES leaves a distinctive fingerprint on the cache, as T-table size as well
as the access frequency (92% per line per execution) are known. Once the T-tables are detected, the attack
can be performed on a single line per table. Nevertheless, this locating process can take a significant amount
of time when the number of sets is sufficiently high in the outermost shared cache.

An alternative, more efficient approach is to take advantage of the shared library page alignment that
some OSs like Linux implement. Assuming that the victim is not using huge size pages for the encryption
process, the shared library is aligned with a 4 KB page boundary. This gives us some information to narrow
down the search space, since the lower 12 bits of the virtual address will not be translated. Thus, we know
the offset fi modulo 64 of each T-table memory line and the T-table location process has been reduced by
a factor of 64. Furthermore, we only have to locate one T-table memory line per memory page, since the
remaining table occupies the consecutive sets in the last level cache.

Attack stages: Putting all together, these are the main stages that the we follow to attack AES with S$A

– Step 1: Last level cache profile stage: The first stage to perform the attack is to gain knowledge
about the structure of the last level cache, the number of slices, and the lines that fill one of the sets in
the last level cache.

– Step 2: T-table set location stage: The attacker has to know which set in the last level cache each
T-table occupies, since these are the sets that need to be primed to obtain the key.

– Step 3: Measurement stage: The attacker primes and reprimes the desired sets, requests encryptions
and probes again to check whether the monitored sets have been used or not.

– Step 4: Key recovery stage: Finally, the attacker utilizes the measurements taken in Step 3 to derive
the last round key used by the AES server.
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Fig. 5. Histograms of 500 access times monitored in the probe stage for a) a set used by a T-table memory line and
b) a set not used by a T-able memory line. Measurements are taken in the Xen 4.1 cross-VM scenario.

5 Experiment Setup and Results

In this section we analyze our experiment setup and the results obtained in native machine, single VM
and in the cross-VM scenarios. We also include a comparison with previous attacks that were performed in
virtualized scenarios targeting AES.

5.1 Testbed Setup

The machine used for all our experiments is a dual core Intel i5-650 [6] clocked at 3.2 GHz. This machine
works with 64 byte cache lines and has private 8-way associative L1 and L2 caches of size 215 and 218 bytes,
respectively. In contrast, the 16-way associative L3 cache is shared among all the cores and has a size of 222

bytes, divided into two slices. Consequently, the L3 cache will have 212 sets in total. Therefore 6 bits are
needed to address the byte address in a cache line and 12 more bits to specify the set in the L3 cache. The
huge page size is set to 2 MB, which ensures a set field length of 21 bits that are untouched in the virtual to
physical address translation stage. All the guest OSs use Ubuntu 12.04, while the VMM used in our cloud
experiments is Xen 4.1 fully virtualized, which allows the usage of huge size pages by guest OSs [19, 10, 11].

The target process is going to use the C reference implementation of OpenSSL1.0.1f, which is the default
if the library is configured with no-asm and no-hw options. We would like to remark that these are not the
default OpenSSL installation options in most of the products.

The attack scenario is going to be the same one as in [22, 30], where one process/VM is handling encryption
requests with an secret key. The attacker’s process/VM is co-located with the encryption server, but in
different cores. We assume synchronization with the server, i.e, the attacker starts the S$A spy process and
then sends random plaintexts to the encryption server. The communication between encryption server and
attacker is carried out via socket connections. Upon the reception of the ciphertext, the attacker measures the
L3 cache usage by the S$A spy process. All measurements are taken by the attackers process/VM with the
rdtscp function, which not only reads the time stamp counters but also ensures that all previous processes
have finished before its execution [3].
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5.2 The Cross-Core Cross-VM Attack

We perform the attack in three different scenarios: native machine, single VM and cross-VM. In the native
and single VM scenarios, we assume that the huge size pages are set to be used by any non-root process
running in the OS. Recall that in the cross-VM scenario, the attacker itself has administrator rights in his
own OS.

The first step is to recognize the access pattern of the L3 cache in our Intel i5-3320M. Using S$A we
detect that the L3 cache is divided in more than one slice, since generating 17 random lines that occupy the
set 0 in the cache does not output higher probe timings. The spy process helps us to understand that the
cache is divided into two slices, and that the slice selection method is based on the parity of the 17th bit,
i.e, the first non set addressing bit. Thus we need 16 odd lines to fill a set in the odd slice, whereas we need
16 even lines to fill a specific set in the even slice.

The second step is to recognize the set that each T-table cache line occupies in the L3 cache. For that
purpose we monitor each of the possible sets according to the offset obtained from the linux shared library
alignment feature. Recall that if the offset modulo 64 f0 of one of the T-tables is known, we only need check
the sets that are 64 positions apart, starting from f0. By sending random plaintexts the set holding a T-table
cache line is used around 90% of the times, while around 10% of the times the set will remain unused. The
difference between a set allocating a T-table cache line and a set not allocating a T-table cache line can
be graphically seen in Figure 5, where 500 random encryptions were monitored with S$A for both cases in
a cross-VM scenario in Xen 4.1. It can be observed that monitoring an unused set results in more stable
timings in the range of 200-300 cycles. However monitoring a set used by the T-tables outputs higher time
values around 90% of the time, whereas we still see some lower time values below 300 around 10% of the
times. Note that the key used by the AES server is irrelevant in this step, since the set used by the T-table
cache lines is going to be independent of the key.

The last step is to run S$A to recover the AES key used by the AES server. We consider as valid
ciphertexts for the key recovery step those that are at least below half the average of the overall timings.
This threshold is based on empirical results that can be seen in Figure 6. The figure presents the miss counter
value for all the possible ciphertext values of C0, when the last line in the corresponding T-table is monitored.
The key in this case is 0xe1 and the measurements are taken in a cross-VM scenario in Xen 4.1. In this case
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Table 1. Comparison of cross-VM cache side-channel attacks on AES

Attack Platform Methodology OpenSSL Traces

Spy-Process based Attacks:
Collision timing [23] Pentium 4E Time measurement 0.9.8a1 300.000
Prime+probe [34] Pentium 4E L1 cache prime-probing 0.9.8a 16.000
Evict+time [34] Athlon 64 L1 cache evicting 0.9.8a 500.000
Flush+Reload (CFS)2[26] Pentium M Flush+reload w/CFS 0.9.8m 100
Flush+Reload [30] i5-3320M L3 cache Flush+reload 0.9.8a 8.000
Bernstein [17] Core2Duo Time measurement 1.0.1c 222

Flush+Reload [30] i5-3320M L3 cache Flush+reload 1.0.1f 100.000
S$A3 i5-650 L3 cache S$A 1.0.1f 150.000

Cross-VM Attacks:
Bernstein [29]4 i5-3320M Time measurement 1.0.1f 230

Flush+Reload (VMware)5[30] i5-3320M L3 cache Flush+Reload 1.0.1f 400.000
S$A (Xen) i5-650 L3 cache S$A 1.0.1f 650.000

1 OpenSSL 0.9.8a uses a less noisier implementation.
2 The attack is performed taking control of the CFS.
3 Huge Pages have to be configured to allow non-root processes to use them.
4 Only parts of the key were recovered, not the whole key.
5 The attack is only possible if deduplication is enabled by the VMM. Transparent

Page Sharing is no longer enabled by default in VMware. Deduplication was never
enabled on AWS servers.

only 8 values take low miss counter values because the T-table finishes in the middle of a cache line. These
values are clearly distinguishable from the rest and appear in opposite sides of the empirical threshold.

Results for the three scenarios are presented in Figure 7, where it can be observed that the noisier the
scenario is, e.g. in the cross-VM scenario, the more number of encryptions are needed to recover the key. The
plot shows the number of correctly guessed key bytes vs. the number of encryptions needed. Recall that the
maximum number of correctly guessed key bytes is 16 for AES-128. The attack only needs 150.000 encryptions
to succeed on recovering the full AES key in the native OS scenario. Due to the higher noise in the cloud
setting, the single VM recovers the full key with 250.000 encryptions whereas cross-VM scenario requires
650.000 encryptions to recover the 16 key bytes. It is important to remark that the attack is completed in
only 9, 30 and 150 seconds respectively in each of the scenarios. A significant portion of these delays stems
from the fact that we are using a fully virtualized hypervisor in the single and cross-VM scenarios. Moreover,
in the cross-VM scenario the external IP communication adds significant latency.

5.3 Comparison with previous attacks

We compare the efficiency of the attack presented in this work with previously proposed attacks that targeted.
The comparison is presented in Table 1. We make the following observations:

– Our attack is close to the efficiency achieved by the Flush+Reload attack in non-virtualized environments,
and improves over previously proposed attacks. However, huge pages are required to be configured so
that their usage by non-root processes is allowed.

– Our new S$A attack is more efficient than Bernstein’s attack in the cloud, which does not recover the
entire key in the cloud even with a significantly higher number of encryptions.

– In the cloud, S$A again requires more encryptions than Flush+Reload but not as much as to become
impractical. The attack can still be realized under 3 minutes. However, it should be noted that S$A does
not take advantage of memory deduplication process which is crucial for the cross-VM Flush+Reload
attack. The deduplication feature (called Transparent Page Sharing in VMware) is now disabled by
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default in VMware [8]. Moreover, Amazon Web Services confirmed that deduplication features have
never been implemented in their public cloud system.

Thus, the S$A attack turns VMMs that are not vulnerable to Flush+Reload due to the lack of memory
deduplication features such as Xen have into a valid target for cross-VM attacks. The only requirement is
that guest OSs are allowed to use huge size pages. This feature is implemented at the OS level, and is not
administered by the VMM.

6 Applicability and Countermeasures

In this section we shortly comment on the applicability of this attack beyond the scope of AES software
implementations and discuss ways how this attack can be prevented.

6.1 Applicability of S$A

As described earlier, the S$A attack is a cross-core cross-VM attack. S$A targets the shared level of cache
(typically L3) in a SMP multiprocessor, hence can be used across cores. That is, the attack works even if
victim and spy are running on different cores in the same CPU. Unlike other cross-VM attacks, S$A does
not require deduplication of the targeted data. Previous attacks use deduplication to solve two independent
problems. The obvious one is the detection of cache accesses to extract secret information of the victim.
However, deduplication also solves the location problem, i.e. automates the detection of where the leaking
data of the target is stored in cache. In S$A, these two problems become independent. Hence, the attack
is more challenging for the adversary, as the location problem needs to be solved before information can
be extracted. However, since the extraction mechanism is the same, the S$A is applicable in all scenarios
where Flush+Reload can be applied. We claim the S$A attack to be a substitute for the Flush+Reload attack
whenever deduplication is not available. The added cost is the location step and a slightly decreased temporal
resolution, since the (re-)priming needs to fill and check an entire set, not just a single line of cache. Hence,
although this work demonstrates the applicability to AES only, the S$A attack is applicable in all cases
where the Flush+Reload can be applied and has been applied. In other words, S$A can be applied to attack
the public key cryptosystems targeted in [45, 43, 21]. This also means that focusing on countermeasures for
AES is not helpful, since those will not prevent attacks on other crypto schemes also vulnerable to this
attack.

6.2 AES-specific Countermeasures

Cache-based side channels are not a new phenomenon, hence numerous countermeasures have been proposed.
The most obvious one is the use of AES-NI or other AES hardware extensions, if available on the processor.
A good discussion of that and several other countermeasures like data independent memory accesses and
smaller T-tables can be found in [38].

6.3 S$A-specific Countermeasures

Next, we discuss countermeasures that hinder the exploitability of the shared level cache and thereby prevent
the S$A attack.

Dedicated servers: A simple solution to avoid cache side channel attacks is to utilize dedicated servers
where the user’s utilized virtual machines reside. Without the co-residency assumption S$A, Flush+Reload
or any other trace driven attacks become unfeasible. Amazon EC2 offers to customers the posibility of using
an isolated dedicated server for their computations.

Disable Huge Size Pages: In the particular case of the S$A cache side channel attack, if huge size pages
are not allowed to be used by the guests the attack is no longer possible. The decision of using the huge size
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pages could still be done only by the VMM, depending on certain parameters based on the length or the
memory resources needed by the code.

Private L3 Cache Slices: One way to avoid the cache leakage that S$A uses is to make the cache slices
private per VM, similar to the countermeasure suggested in [40]. This means that a particular VM is not
allowed to interfere with the cache slice that another co-located VM is using. In this scenario the attacker
does not interfere with the victim’s cache slice and therefore cannot decide whether a specific memory line
was used with S$A. This however, requires modifications to the cache arbitration mechanism and has the
adverse affect of reducing the size of the cache slices made available to a single VM. It also limits the number
of Guest VMs to the number of slices.

Hardware Masking of Addresses: Another possible solution is to apply a mask (implemented at the
hardware level) to the offset field based on some of the non-set addressing bits in the physical address when
huge size pages are used. Since the user no longer has control over the offset field, he cannot prime the
specific set that he wants to target in the L3 cache and cannot decide whether the set was used or not by
the victim.

Shadow Page Tables as Masking Option: In this case the shadow page tables that VMMs use for a
virtual to virtual translation would play a more important role. For instance, the shadow page tables could
not only handle the translation from VM virtual memory to VMM virtual memory, but also apply a mask
based on the non cache-addressing bits. Thereby, the guest user does not know the masking value applied
by the VM, and he cannot control the set that his data will occupy in the L3 cache.

7 Conclusion

S$A: A new deduplication free L3 cache side channel technique: We proposed a new side channel
technique that is applied in the L3 cache and therefore can be applied in cross-core scenarios. The new side
channel technique bases its methodology in the usage of huge size pages, which give extra information about
the position that each memory location occupies in the L3 cache.

Targeting a virtualized environemnt: We demonstrated that the new side channel technique can also
be implemented in virtualized settings, particularly in Xen 4.1, where the usage of huge size pages by the
guest OSs is allowed. Recall that the vast majority of the VMMs allow the usage of huge size pages, making
S$A a suitable target for all of them.

Applying the attack on AES: We demonstrated the viability of the new side channel technique by
recovering AES keys monitoring only 4 sets in the L3 cache in both virtualized and non-virtualized scenarios.
In the noisier scenario the attack succeeds to recover the full AES key in less than 3 minutes. Thus, we
showed that the efficiency of S$A is close to the efficiency achieved by Flush+Reload (which uses memory
deduplication techniques) and is significantly higher than Bernstein’s attack.

8 Disclosure

We have disclosed our attack to the security teams of VMware, Amazon AWS and Citrix.
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