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Abstract Face recognition is one of the most impor-
tant biometrics pattern recognitions, which has been
widely applied in a variety of enterprise, civilian and

law enforcement. The privacy of biometrics data raises
important concerns, in particular if computations over
biometric data is performed at untrusted servers. In

previous work of privacy-preserving face recognition, in
order to protect individuals’ privacy, face recognition is
performed over encrypted face images. However, these

results increase the computation cost of the client and
the face database owners, which may enable face recog-
nition cannot be efficiently executed. Consequently, it

would be desirable to reduce computation over sensi-
tive biometric data in such environments. Currently, no
secure techniques for outsourcing face biometric recog-

nition is readily available. In this paper, we propose a
privacy-preserving face recognition protocol with out-
sourced computation for the first time, which efficiently

protects individuals’ privacy. Our protocol substantially
improves the previous works in terms of the online com-
putation cost by outsourcing large computation task to

a cloud server who has large computing power. In par-
ticular, the overall online computation cost of the client
and the database owner in our protocol is at most 1/2
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of the corresponding protocol in the state of the art al-
gorithms. In addition, the client requires the decryption
operations with only O(1) independent of M , where M

is the size of the face database. Furthermore, the client
can verify the correction of the recognition result.

Keywords Face recognition · Outsourced computa-

tion · Privacy-preserving

1 Introduction

Biometric techniques have advanced over the past years

to a reliable means of authentication, which have been
deployed in various application domains. Many govern-
ments have already rolled out electronic passports [1]

and IDs [2] that contain biometric information (e.g.,face
image, fingerprints, and iris scan) of their legitimate
holders. Unlike other types of data used for authentica-

tion purposes (passwords, key material, secure tokens,
etc.), biometric data cannot be revoked and replaced
with a new value, hence it calls for strict protection

of such biometric data. In particular, face recognition
systems have become more popular due to its unobtru-
siveness and ease of use. Thus, face recognition systems

have been widely applied in a variety of enterprise, civil-
ian and law enforcement, such as surveillance of public
places, access and border control at airports, facebook

in social networking platforms, etc.

The widespread use of face recognition systems, how-
ever, it will bring privacy risks because biometric in-
formation can be collected and misused to profile and

track against their will. These issues raise the desire to
construct privacy-preserving face recognition systems.
In recent years, many methods for protecting biomet-

ric data were proposed, such as methods on fuzzy vault
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[3-5], secure sketches and fuzzy extractors [6-11], shield-

ing functions [12-14], cancelable or revocable biometrics
[15], and so on. These methods stored a function of each
biometric rather than the biometrics data themselves,

but it did not lead to compromise of the biometric data
in the case of server compromise. For face recognition
systems, in order to protect individuals’ privacy, face

recognition was performed over encrypted face images
in previous works [16-17]. However, these results in-
creased the computation cost of clients and database

owners of the face images, which enable face recogni-
tion cannot be efficiently executed. Currently, no ex-
isting tools or techniques are readily available to carry

out the huge computation task of the database owner.
Thus, the problem of secure biometric face identifica-
tion (or matching) with the aid of untrusted servers is

the focus of this work.

In this paper, we concentrate on efficient privacy-
preserving face recognition systems. The typical sce-
nario here is a application which consists of three par-

ties, i.e., a client, a database owner of face images and
a cloud server. Both the client and database owner
have limited (or weak) computing power, but the cloud

server has the ability to process magnanimity data and
perform parallel computation. The client provides a
specific face image and needs to know the image whether

is contained in the database of face images with the fol-
lowing requirements: 1)the client believes the database
owner correctly performs the matching algorithm for

the face recognition but without revealing any useful
information to the database owner about the requested
image as well as about the outcome of the matching

algorithm; 2) the database owner requires privacy of its
database beyond the matching results to the client; 3)
the database owner needs help from the cloud server

which cannot reveal any useful information about real
face images and can greatly reduce the database owner’s
computation cost by using the ability of processing in-

telligent data and performing parallel computation.

1.1 Related Work

Some authors have proposed different complementary
techniques for making surveillance cameras more pri-
vacy friendly, e.g. [18-20]. However, they do not consider

face recognition. For privacy-preserving face recogni-
tion, Erkin et al.[16] proposed for the first time a strongly
privacy-enhanced face recognition system. They used

the standard and popular Eigenface [21-22] recogni-
tion algorithm. The system performs operations on en-
crypted images by means of homomorphic encryption

schemes, more concretely, Pailler [23-24] as well as a

cryptographic protocol for comparing two Pailler en-

crypted values based on DGK (Damgard, Geisler and
Kroigard) cryptosystem [25-27]. They demonstrate that
privacy-preserving face recognition is possible in prin-

ciple and give required choices of parameter sizes to
achieve a good classification rate. However, the pro-
posed protocol requires O(logM) rounds of online com-

munication as well as computationally expensive opera-
tions on homomorphically encrypted data to recognize
a face in the database of M faces. Due to these re-

strictions, the proposed protocol cannot be deployed in
practical large-scale applications. After that, Sadeghi
et al. [17] given two privacy-preserving face recogni-

tion protocols which substantially improved over pre-
vious work [16]. One is based on homomorphic encryp-
tion (see, e.g., [23-24]) and Yao et al.’s Garbled Circuit

(GC)[28-29], the other is based on GC only. Althouth
the protocols allowed to shift most of the computation
and communication into a pre-computation phase, the
computation cost of the client and database owner was

not reduced. This means that efficiently implementing
privacy-preserving face recognition is difficult for the
client and the database owner with weak computing

power. We improves Sadeghi et al. ’s protocol based on
homomorphic encryption and Garbled Circuit in this
paper. In the rest of the paper, the protocol in [17] is

based on homomorphic encryption and Garbled Circuit
unless stated otherwise.

The related problem of privacy-preserving face de-
tection [30] allows a client to detect faces on his image
using a private classifier held by servers without re-

vealing the face or the classifier to the other party. In
order to preserve privacy, faces can be de-identified so
that face recognition software cannot reliably recognize

de-identified faces, even though many facial details are
preserved as described in [31].

Beside privacy - preserving face recognition, there
were a few attempts to make other biometric modal-
ities privacy preserving, such as fingerprints and iris

codes [32-34]. However, these works consider a different
setting, where the biometric measurement is matched
against a hashed template stored on a server. The server

that performs the matching gets to know both the bio-
metric and the detection result (the aim is only to se-
cure storage of templates). Blanton and Aliasgari [35]

proposed a secure outsourced computation scheme of
iris matching. To the best of our knowledge, there is no
prior solution to carry out the huge computation task

of the database owner in the secure privacy-preserving
face recognition system. In order to reduce the com-
putation cost, we present a new protocol for privacy-

preserving face recognition which can outsource lager
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computation task to a third party (e.g., cloud servers)

who has a huge computing power.

1.2 Contribution

We propose an efficient and secure privacy-preserving

face recognition protocol with outsourced computation.
Our protocol is based on the Eigenfaces recognition al-
gorithm [21-22] and a hybrid Encryption based on FHE
[36]. We do not use Garbled Circuits. Our protocol sub-

stantially improves over previous work [16-17] as it has
only one round between the client and the database
owner. Furthermore, the protocol can efficiently out-

source most of the computation to an untrusted cloud
server. The remaining computation cost of the client
and the database owner is small. Beyond the encryption

operations, the online computation cost of the client
and the database owner in our protocol is at most 1/2
of the corresponding protocol in the state of the art al-

gorithms, this is especially important for the client and
the database onwer with weak computing power.

1.3 Organization

The rest of the paper is organized as follows. We sum-
marize our model and security requirements, parame-
ters setting and cryptographic tools used in our con-

structions in Section 2. A summary of the face recogni-
tion algorithm using Eigenfaces is reviewed in Section
3. Section 4 details our secure privacy-preserving face

recognition protocol with outsourced computation. Se-
curity and efficiency analysis of our protocol are given
in section 5. And section 6 concludes the paper.

2 Preliminaries

2.1 Model and security requirements

In this paper, three parties are involved in our schemes,
that is, a client, a database owner of face images and
an untrusted cloud server. Both the client and database

owner have limited (or weak) computing power, but
the cloud server has the ability to process magnanim-
ity data and perform parallel computation. The client

provides a specific face image and needs to know the
image whether is contained in the database of face im-
ages with the following requirements: 1)the client trusts

the database owner to correctly perform the matching
algorithm for the face recognition but without reveal-
ing any useful information to the database owner about

the requested image as well as about the outcome of the

Table 1 Summarize of notations and parameters

Parameter Description

M number of faces in database
N size of a face in pixels
K number of Eigenfaces
Γ face
Ψ average face
u1, u2, · · · , uK Eigenfaces
Ω̄ projected face for Γ
Ω1, · · · , ΩM projected faces in database
D1, · · · , DM squared distances between projected images
l′ the bit length of values D1, · · · , DM

τ threshold value

matching algorithm; 2) the database owner requires pri-

vacy of its database beyond the outcome of the match-
ing algorithm to the client; 3) the database owner needs
help from the cloud server which cannot learn any use-

ful information about real face images and can greatly
reduce the database owner’s computation cost by using
the ability of processing intelligent data and performing

parallel computation.

We work in the semi-honest model where the client

and the database owner are assumed to be honest-but-
curious but the cloud server is untrusted.

Similar to [16,17], we summarize the notations and
the parameters used in this paper in Table 1.

2.2 Cryptographic tools

Hybrid encryption based on FHE. We use a se-

mantically secure hybrid encryption (HS) based on FHE
scheme in [36], which is a combination of an ordinary
(non-FHE) encryption scheme and a FHE scheme. In

[36], the authors given a detailed hybrid encryption
scheme using a symmetric encryption scheme and a
FHE scheme. A public-key encryption schemes (e.g.,
RSA, Paillier) can as well be used as an ordinary en-

cryption scheme. In this paper, we use a semantically
secure hybrid encryption (HS) which is a combination
of a public key encryption scheme and a FHE scheme.

Let M be a plaintext space, (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval) be a FHE scheme, and (PE.KeyGen,
PE.Enc, PE.Dec) be a public-key encryption scheme

(PE). A hybrid encryption scheme HS=(HS.KeyGen,
HS.Enc1,HS.Enc2, HS.Dec, HS.Eval) consists of five PPT
algorithms (PPT is shorthand for probabilistic polyno-

mial time), which are described as follows.

– HS.KeyGen(λ) → (pk, dk, pk′, sk, κ). Takes as in-
put a security parameter λ, runs FHE.KeyGen to
obtain a public encryption key pk and a secret de-

cryption key dk, runs PE.KeyGen to obtain public
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encryption key pk′ and a secret decryption key sk.

Then, encrypts sk under the public key pk to obtain
κ← FHE.Enc(pk, sk), outputs (pk, dk, pk′, sk, κ).

– HS.Enc1(pk
′, x)→ cx. Runs PE.Enc to encrypt mes-

sage x ∈ M under the public key pk′, outputs ci-
phertext c.

– HS.Enc2(pk, κ, c)→ cx. On input (pk, κ, c), outputs

a new ciphertext cx which is equal to FHE.Enc(pk, x).
– HS.Dec(dk, cx) → x. Same as FHE.Dec. Takes as

input dk and cx, and decrypts the ciphertext cx to

a plaintext x ∈M under the secret key dk.
– HS.Eval(pk,C, c1, c2, · · · , cn)→ cy. Same as FHE.Eval.

Given the public key pk, a circuit C and a set of n

ciphertexts c1, c2, · · · , cn deterministically compute
and outputs a new ciphertext cy.

Similar to FHE, A HS scheme should also satisfy

four properties, which is encryption correctness, evalu-
ation correctness, succinctness and semantic security.

As instantiation we use the Paillier public-key en-

cryption scheme [23-24] which has plaintext space ZN

and ciphertext space ZN2 , where N is a T -bit RSA
modulus, while we use the FHE scheme over the in-

tegers [37]. In [16], the privacy-preserving face recog-
nition protocol uses the homomorphic cryptosystem of
Damgard, Geisler and Kroigard (DGK) other than the

Paillier public-key encryption scheme. The DGK homo-
morphic encryption scheme can reduce the ciphertext
space to Z∗

N . In [17], the privacy-preserving face recog-

nition protocol additionally uses Yao’s Garbled Circuit
other than the Paillier public-key encryption scheme.
Both protocols in [16,17] do not use FHE.

In this paper, in an additively homomorphic Pail-

lier encryption scheme, given encryptions [a]PE and
[b]PE , an encryption [a + b]PE can be computed by
[a + b]PE = [a]PE · [b]PE , where all operations are

performed in the algebra of the message or ciphertext
space. Furthermore, in a FHE scheme, given encryp-
tions [a]FHE and [b]FHE , an encryption [a+ b]FHE can

be computed by [a + b]FHE = [a]FHE + [b]FHE and
[ab]FHE can be computed by [ab]FHE = [a]FHE [b]FHE .

3 Face recognition algorithm using Eigenfaces

In the following we briefly summarize the recognition
process of the Eigenfaces algorithmm[16-17,21-22]. The

algorithm obtains as input the query face image Γ rep-
resented as a pixel image with N pixels. Additionally,
the algorithm obtains the parameters determined in the

enrollment phase as inputs: the average face Ψ which is
the mean of all training images, the Eigenfaces u1, · · · , uK

which span the K-dimensional face space, the projected

faces Ω1, · · · , ΩM being the projections of the M faces

in the database into the face space, and the threshold

value τ . The output r of the recognition algorithm is
the index of that face in the database which is closest to
the query face Γ or the special symbol ⊥ if no match

was found, i.e., all faces have a larger distance than
the threshold τ . Specifically, the recognition algorithm
consists of three phases, which are described as follows.

1. Projection: The average face Ψ is subtracted from
the face Γ and the result is projected into the K-
dimensional face space using the Eigenfaces u1, · · · , uK .

The result is the projected K-dimensional face Ω̄.
2. Distance: The square of the Euclidean distance Di

between the projected K-dimensional face Ω̄ and

all projected K-dimensional faces in the database
Ωi(i = 1, 2, · · · ,M), is computed.

3. Minimum: The minimum distanceDmin is selected.

If Dmin is smaller than the threshold τ , the index
of the minimum value, i.e., the identifier imin of
the match found, is returned to the client as result

r = imin. Otherwise, the image was not found and
the special symbol r =⊥ is returned.

4 Privacy-preserving face recognition with

outsourced computation

In this section, we present a privacy - preserving face
recognition protocol with outsourced computation. The

protocol operates on encrypted images. three parties are
involved in our schemes, that is, a client C, a database
owner DB of face images and an untrusted cloud server

CS. We work in the semi-honest attacker model. Infor-
mally, this assumes that the client C and the database
owner DB follow the protocol but try to learn addi-

tional information from them. In addition, any out-
sourcer can verify the correctness of the untrusted cloud
server output. It is also assumed that the parties com-

municate over an authenticated channel (this can be
achieved by standard mechanisms and is thus outside
the scope of this paper). We assume that a database

owner has already set up the face recognition system
by running the enrollment process (in the clear) on
all available training images {θ1, · · · , θM} to obtain the

basis u1, · · · , uK of the face space and feature vectors
Ωi(i = 1, 2, · · · ,M) of faces to be recognized.

Furthermore, we assume that all coordinates of the
eigenfaces and feature vectors are represented as in-
tegers. Each feature vector in the database is further

accompanied by a string idi that contains the identity
of the person the feature vector belongs to; we assume
that the identity is encoded as a non-zero element of

the message space of the chosen encryption scheme.
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Fig. 1 Outline of our protocol

Fig. 1 shows an outline of our protocol, which is de-
scribed as follows.

Projection. The input image Γ has to be projected
onto the low dimensional face space spanned by the
eigenfaces u1, · · · , uK . the client C runs HS.Gen to ob-

tain (pk, dk, pk′, sk, κ), where (pk, dk) is the public/secret
key pair of the FHE and (pk′, sk) is the public/secret
key pair of the Paillier homomorphic encryption scheme.

In addition, κ is the encryption of sk under FHE. Let
κ be [sk]FHE . The client C encrypts the face Γ as
[Γ ]PE = ([Γ1]PE , · · · , [ΓN ]PE). Meanwhile, the client

randomly chooses three elements a,b and c, and en-
crypts them as [a]PE , [b]PE and [c]PE .

The client sends {[Γ ]PE , [a]E , [b]PE , [c]PE , [sk]FHE}
along with (pk, pk′) to the database owner DB. Us-

ing the homomorphic properties and outsourced com-
putation, DB projects the encrypted face into the low-
dimensional face space and obtains the encryption of

the projected face [Ω̄]PE = ([ω̄1]PE , · · · , [ω̄K ]PE) as
follows.

1. For i = 1, · · · ,K, the database owner DB computes

pi = −
∑N

j=1 ui,jΨj , where Ψj is the component of

the vector Ψ = 1
M

∑M
i=1 θi. This step can be com-

pleted in the pre-computation phase (offline phase).
2. The database owner DB encrypts pi under the pub-

lic key pk′ to obtain [pi]PE = [−
∑N

j=1 ui,jΨj ]PE ,

This step is completed in the online phase.
3. DB computes qi =

∏N
j=1[Γj ]

ui,j

PE by using outsourc-
ing exponentiation algorithm (such as [38]) which

can reduce the database owner DB ’s computation
cost.

4. For i = 1, · · · ,K, the database owner computes

[ω̄i]PE = [pi]PE · qi.

Distance. After Projection, the database owner DB

need to compute the Paillier encryption of the Euclidean
distances between the projected face Ω̄ and all pro-
jected faces Ω1, · · · , ΩM in the database held by the

database owner in [16,17]. In addition, DB also needs
interaction with the client. In our protocol, DB does
not need interaction with the client. Because the com-

putation cost is very large for DB, who may no ca-
pacity to complete the computation task by himself.
Thus, the database owner DB requires assistance from

a third party (e.g., cloud server). In this paper, we use
outsourced computation which can enable the database
owner to outsource all or partly computation to the

cloud server who has lager computing powering. For
i = 1, 2, · · · ,M , the encryption of the square Euclidean
distances [Di]PE = [∥Ωi − Ω̄∥2]PE = [S1,i + S2,i +

S3]PE = [S1,i]PE · [S2,i]PE · [S3]PE , where [S1,i]PE =

[
∑K

j=1 ω
2
i,j ]PE , [S2,i]PE = [

∑K
j=1(−2ωi,jω̄j)]PE =

∏K
j=1[ω̄j ]

−2ωi,j

PE

and [S3]PE = [
∑K

j=1 ω̄j
2]PE . We notice that S3 is a

fixed value once the input mage Γ and the face database
are fixed. Hence, DB only need to compute [D′

i]PE =

[S1,i+S2,i]PE = [S1,i]PE · [S2,i]PE . These cannot effect
the next step (See. Match finding). Specifically, [D′

i]PE

can be computed as follows.

1. To obtain [S1,i]PE , the database owner DB needs

to complete two steps below.
– DB computes

∑K
j=1 ω

2
i,j which can be pre - com-

puted in the offline stage.

– DB encrypts
∑K

j=1 ω
2
i,j under the public key pk′

to obtain [S1,i]PE = [
∑K

j=1 ω
2
i,j ]PE . This step

is completed by the database owner DB in the
online phase.

2. For computing [S2,i]PE , the database owner DB

firstly outsources exponentiation [ω̄j ]
−2ωi,j

PE to the
cloud server CS by outsourcing exponentiation al-

gorithm, and then multiply those exponentiation to-
gether to obtain [S2,i]PE .

3. For i = 1, 2, · · · ,M ,DB computes [D′
i]PE = [S1,i]PE ·

[S2,i]PE

Then, DB can finish this phase without interacting
with the client.
Minimum (Match finding). In the last step of the

recognition algorithm, the goal is to find the minimum
value D from {Di}Mi=1 and its index Idmin. If the min-
imum value D is smaller than the threshold value τ

known by the database owner, then a match is reported
and an encryption of the identity Idmin which corre-
sponds to the best matching feature vector is returned

to the client. Because S3 is a fixed value, we only need
to find the minimum value D′ from {D′

i}Mi=1 and its
index Idmin. If the minimum value D′ is smaller than

the value τ ′ = τ − S3, then a match is reported and
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an encryption of the identity Idmin which corresponds

to the best matching feature vector is returned to the
client.

As we need to return the identity of the best match-
ing feature vector, we also have to keep track of the
IDs during the minimum computation. This is done by

working with pairs ([D′
i]PE , [Idi]PE) of distances and

their corresponding identities. To check if the minimum
distance is smaller than τ ′, we can treat the value τ ′ as

one additional distance that has the special identity 0.
Together with the distancesD′

1. · · · , D′
M , the client, the

database owner, and the cloud server jointly carry out

the protocol with verifiable outsourced computation to
find minimum distance and the corresponding identity
([D′]FHE , [Id]FHE), where D′ ∈ {τ ′, D′

1, · · · , D′
M} and

Id ∈ {0, Id1, · · · , IdM}. Thus, if a face image could
be recognized the value Id contains the corresponding
identity. If no match could be found Id is equal to 0.

Some encrypted values are finally sent to the client as
the result of the private face recognition protocol. Then,
the client can obtain the recognition result Id by some

computations and can verify the correctness of the re-
sult. To achieve this, the client C, the database owner
DB, and the cloud server CS jointly run the follow-

ing match finding protocol (MFP) with verifiable out-
sourced computation(VOC).

1. The database ownerDB constructs a circuit Ccircuit

with multi-input, which is shown in Fig.2. This can

be completed by the database owner in the offline
stage.

2. DB sends the circuit Ccircuit, [sk]FHE and σ =

{[τ ]PE , [ω̄1]PE , · · · , [ω̄K ]PE , [D
′
1]PE , · · · , [D′

M ]PE , [a]PE ,
[b]PE , [c]PE} to the cloud server CS.

3. For each element in the set σ, CS runs the algorithm

HS.Enc2 to get σ
′ = {[τ ]FHE , [ω̄1]FHE ,· · · ,[ω̄K ]FHE ,

[D′
1]FHE ,· · · ,[D′

M ]FHE , [a]FHE ,[b]FHE , [c]FHE}.
4. CS computes FHE.Eval(pk, Ccircuit, σ

′) to obtain

[∆1]FHE and [∆2]FHE , then sends them to the client.
5. The client decrypts [∆1]FHE and [∆2]FHE under

the secret key dk to obtain ∆1 and ∆2. If ∆1 − a =

c(∆2 − b), then the client accepts the match result
Id = ∆2 − b, otherwise rejects. If Id = 0, it shows
that no match could be found in the database held

by the database owner.

In our minimum (Match) finding protocol, the on-

line computation and round complexity have been sub-
stantially improved for the client C and the database
owner DO, we have given the comparison of three min-

imum protocols from two aspects, i.e., the online round
complexity and the asymptotic computation complex-
ity (ACC1), which is shown as in Table 2 with param-

eter m ≈ l′M
T−κ′ , where T is the asymmettric security

Fig. 2 Circuit Ccircuit for match finding with VOC

parameter and κ′ is the statistical correctness parame-
ter in [17].

5 Security and efficiency analysis

The security of our protocol is based on the security of

there schemes, i.e. the privacy-preserving face recogni-
tion scheme in [17], HS scheme in [36] and the verifiable
outsourced computation scheme for simultaneous expo-

nentiations in [38]. This three schemes are secure which
has been proved in [17,36,38]. Thus, our protocol is se-
cure.

In order to illustrative the efficiency of our protocol,
we will give detailed analysis from three respects, i.e.,
the round, the communication and computation com-

plexity.

5.1 Round complexity

The round complexity of our protocol is very low. Firstly,
sending the encrypted face image takes one move. Sec-

ondly, for outsourced computation, it needs 5 moves be-
tween the database owner and the cloud server. In the
last step of FMP, sending the result of FMP takes one

move between the client and the cloud server. Hence the
overall round cost is 7 moves. In addition, we note that
it has only 3 moves if the database owner completes ex-

ponentiations by himself rather than the cloud server in
both projection and calculation distance phases. There-
fore, the round complexity of our protocol is O(1). Fur-

thermore, our protocol does not require the database
owner interaction with the client for calculation dis-
tance, but the database owner needs interactions with

the cloud server if partly computation task is outsourced
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Table 2 Comparison of three minimum protocols.

Protocol [16] [17] Ours

Round Complexity [moves] 6⌈logM⌉+ 1 3 2
ACC1 (C online) 2MDecPE + l′MDecDGK mDecPE+3l′M Hash 2 DecFHE

ACC1 (DO online) 2MExpPE + l′MExpDGK mExpPE 1 EncPE

to the cloud server, in which it can reduce the compu-

tation cost of the database owner.

5.2 Online communication complexity

For communication complexity, the communication com-
plexity highly depends on the size of Paillier encryp-
tion, FHE, and outsourcing exponentiation algorithm.

In the offline phase, the circuit Ccircuit with VOC can
be transmitted to the cloud server. In the following, we
only analyze the online communication complexity.

– C → DB . For the client sends some encrypted data
to the database owner, the client requires transmis-

sion of 1 FHE encrypted value [sk]FHE , (N+3) Pail-
lier encrypted values {[Γ1]PE , · · · , [ΓN ]PE , [a]PE , [b]PE , [c]PE}.

– DB ⇀↽ CS . In the distance calculation phase, for

i = 1, · · · ,K, to obtain [ω̄i]PE = [pi]PE · qi, the
database owner outsources the computation qi =∏N

j=1[Γj ]
ui,j

PE to CS by using outsourced computa-

tion algorithm for simultaneous exponentiation (Sexp)
in [38] in the projection stage. Therefore, it needs
K · ⌈N/2⌉ operations of Sexp, which means that
the communication overhead is K · ⌈N/2⌉ · (6logp+
12Len[Γj ]PE

), where p is the bit length of ui,j and
Len[Γj ]PE

is the bit length of [Γj ]PE . In the dis-
tance computation stage, it needs K · ⌈N/2⌉ opera-
tions of Sexp for computing [S2,i]PE , which means
that the communication overhead is K · ⌈N/2⌉ ·
(6logp′+12Len[ω̄j ]PE

) bits, where p′ is the bit length

of −2ωi,j and Len[ω̄j ]PE
is the bit length of [ω̄j ]PE .

– DB → CS . In the minimum (match) finding stage,
the circuit Ccircuit can be transmitted in the offline

stage. It requires transmission of 1 FHE encrypted
value and (K + 2M + 4) PE encrypted values in
the online stage. Similar to [16,17], we only requires

transmission of (K+M +4) PE encrypted values if
we omit the statistic for the transmission of [id]PE .

– CS → C . In the minimum (Match) finding stage,

it requires transmission of 2 FHE encrypted value
[∆1]FHE and [∆2]FHE .

Suppose that the size of FHE-ciphertexts is γ bits.
Similar to [16,17], we omit the statistic for the trans-
mission of [idi]PE . Let k be the number of the packed

ciphertexts in [17]. We now compare our protocol with

the previous works [16,17] as shown in Table 3. Unfor-

tunately, the online communication cost of our protocol
is larger than the precious works because we use out-
sourced computation algorithms which means that the

outsourcer requires some interactions with the cloud
server.

5.3 Online computation complexity

The overall online computation complexity of our pro-
tocol is substantially lower. We denote by EncPE an

invocation of the Paillier homomorphic encryption al-
gorithm, by DecPE an invocation of the Paillier homo-
morphic decryption algorithm, by EncFHE an invoca-

tion of the FHE algorithm, by DecFHE an invocation of
the fully homomorphic decryption algorithm, by MM a
modular multiplication, by MInv a modular inverse, by

Exp a modular exponentiation, by SexpV OC an invoca-
tion of the verifiable outsourced computation algorithm
for simultaneous exponentiation. We omit other oper-

ations such as modular additions. More precisely, the
online computation cost of the client and the database
owner is given as follows.

– In the projection phase, the client needs (N+3)EncPE

and 1 EncFHE , and the database owner requires K
EncPE , K · ⌈N/2⌉ SexpV OC and (K⌈N/2⌉) MM.

– In the distance computation phase, the database
owner needs M EncPE , (M · ⌈K/2⌉)SexpV OC and
(M · ⌈K/2⌉)MM.

– In the minimum distance (or match)finding phase,
the client needs 2DecFHE . Because the database
owner needs to encrypt {τ, id0, id1, · · · , idM} under
PE, the database owner needs (M+2)EncPE in the
online phase.

Compared with the previous algorithms in [16-17],
our protocol is superior in efficiency due to the re-
duction of the computation cost of the client and the

database owner. Similar to [16,17], we omit the statistic
for the computation cost of the encryption {idi}Mi=0 un-
der PE. Table 4 presents the comparison of the online

computation cost of the client and the database owner
in the three algorithms. In particular, beyond the en-
cryption operations, we note that the overall computa-

tion cost of the client and the database owner in our
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Table 3 Comparison of round and asymptotic communication complexity(ACC).

Protocol [16] [17] Ours

Round Complexity O(logM) O(1) O(1)
Moves 6⌈log(M + 1)⌉+ 4 6 3 (or 7)

ACC (online, [bits]) 2T (l′M +K +N + 1 + 8M) 2T (l′M + k +m+N + 1)
6K · ⌈N/2⌉ · (logp′ + 8T + logp)
+2T (K +N +M + 7) + 4γ

Table 4 Comparison of asymptotic computation complexity (online)

Protocol [16] [17] Ours

C
(N + 1)EncPE + (K + 2M)DecPE

+(l′M)DecDGK +KMM
(N + 1)EncPE + (k +m)DecPE

+(3l′M)Hash +KMM
(N + 3)EncPE + 1EncFHE

+2DecFHE

DO
(K +M)EncPE

+((l′ +K + 2)M + (N + 1)K)Exp
+((N +M + 2)K + 1−M)MM

(K +M)EncPE

+(KN +KM + k + 1 +m)Exp
+(KN +M(K − 1) + 1 + ⌈K/k⌉)MM

(M +K + 1)EncPE

+(K⌈N/2⌉+M⌈K/2⌉)SexpVOC

+(K⌈N/2⌉+M⌈K/2⌉)MM

Sum

(K +M +N + 1)EncPE

+(K + 2M)DecPE + (l′M)DecDGK

+((l′ +K + 2)M + (N + 1)K)Exp
+((N +M + 3)K + 1−M)MM

(K +M +N + 1)EncPE

+(k +m)DecPE + (3l′M)Hash
+(KN +KM + k + 1 +m)Exp

+(K(N + 1 +M)−M + 1 + ⌈K/k⌉)MM

(K +M +N + 4)EncPE + 1EncFHE

+2DecFHE

+(K⌈N/2⌉+M⌈K/2⌉)SexpVOC

+(K⌈N/2⌉+M⌈K/2⌉)MM

protocol is at most 1/2 of the corresponding protocol
in the state of the art algorithms [16,17].

6 Conclusion

In this paper, we present a privacy-preserving face recog-

nition scheme with outsourced computation, which al-
lows to match an encrypted image showing a face against
a database of facial templates in such a way that the
biometric itself and the detection result is hidden from

the server that performs the matching. In particular,
our protocol allows the database owner to securely out-
source some computation task to an untrusted cloud

server and detect the dishonest behavior of untrusted
cloud server. Furthermore, the client can verify the cor-
rectness of the recognition result. Compared with the

state-of-the-art algorithms [16-17], beyond the same op-
erations for encryption, the overall online computation
cost of the database owner and the client is greatly

reduced. However, the online communication cost can-
not reduce due to using outsourced computation. Thus,
the key problem of our protocol is that how to further

reduce the online communication cost and the client’s
computation cost on the future work.
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