
Solving Polynomial Systems with Noise over F2: Revisited
I

Zhenyu Huang, Dongdai Lin

SKLOIS, Institute of Information Engineering, CAS, Beijing 100093, China

Abstract

Solving polynomial systems with noise over F2 is a fundamental problem in computer science,
especially in cryptanalysis. ISBS is a new method for solving this problem based on the
idea of incrementally solving the noisy polynomial systems and backtracking all the possible
noises, and it has better performance than other methods in solving the some problems
generated from cryptanalysis. In this paper, some further researches on ISBS are presented.
The structure and size of the search tree of ISBS are theoretically analyzed. Then two major
improvements, artificial noise-bound strategy and s-direction approach, are proposed. Based
on these improvements, a modified ISBS algorithm is implemented, and the experiments of
solving the Cold Boot key recovery problems of block cipher Serpent with symmetric noise,
show that this modified algorithm is more efficient than the original one.

Keywords: Boolean polynomial system with noise, Max-PoSSo, ISBS method, Cold Boot
attack, Serpent.

1. Introduction

Solving polynomial systems with noise over F2, which is called as the Max-PoSSo problem
over F2, is the problem of finding a solution of a given Boolean polynomial system, such
that the solution can satisfy the maximum number of polynomials. It is a fundamental
problem in several areas of cryptography, such as algebraic attacks, side-channel attacks
and the cryptanalysis of LPN/LWE-based schemes. For example, in the Cold Boot attack,
which is a kind of side-channel attack, one can recover the initial key of a block cipher from
noisy round keys by solving a Max-PoSSo problem [1, 11]. In computation complexity field,
this problem is also significant and is known as the maximum equation satisfying problem
[10, 18]. In the general case, this problem is NP-hard even when the polynomials are linear.

In this paper, we focus on the Max-PoSSo problems with all input polynomials being
nonlinear. Obviously, Max-PoSSo problems over F2 are analogous to the well-known Max-
SAT problems, thus a natural way to solve a Max-PoSSo problem is converting it into a

IThis work was in part supported by National 973 Program of China under Grants No. 2013CB834203,
the National Natural Science Foundation of China under Grant No. 61502485, and the “Strategic Priority
Research Program” of the Chinese Academy of Sciences under Grant No. XDA06010701.

Email addresses: huangzhenyu@iie.ac.cn (Zhenyu Huang), ddlin@iie.ac.cn (Dongdai Lin)

Preprint submitted to Elsevier October 21, 2016

Max-SAT problem and then solve it with a Max-SAT solver. However, this method has
a disadvantages that the original algebraic structure is destroyed after the conversion. In
[1], the authors proposed a method to convert Max-PoSSo problems into mixed integer
programming (MIP) problems, and then solved it with a MIP solver SCIP. Essentially,
these two kinds of methods are all based on the idea of searching all the possible values
of variables, and their differences are the techniques of pruning redundant branches of the
search tree.

In [14], a new method called ISBS for solving Max-PoSSo problems over F2 was pro-
posed. The basic idea of ISBS is searching the values of polynomials, which is equivalent
to searching all the possible noises. Precisely speaking, given a noisy polynomial system
{f1, f2, . . . , fm}, one tries to solve polynomial systems {f1 + e2, f2 + e2, . . . , fm + em}, where
(e1, e2, . . . , em) can be equal to (0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1). Then, the solution
of a system {f1 +e2, f2 +e2, . . . , fm +em} with (e1, e2, . . . , em) having the smallest Hamming
weight is the solution of the Max-PoSSo problem. In the ISBS method, the above basic
idea is combined with the ideas of incrementally solving {f1 + e1, f2 + e2, . . . , fm + em} and
searching all possible (e1, e2, . . . , em) with backtracking. By this way, one can prune a lot of
search branches. The experimental results of [14] showed that compared with SCIP, ISBS
has better performances in solving the Max-PoSSo problems generated from the Cold Boot
Key recovery problems of block ciphers AES [15] and Serpent [2].

In ISBS, the incrementally solving process can be executed by running some polynomial
system solving algorithm, such as the Characteristic Set algorithms [4, 9] and the Gröbner
Basis algorithms [7, 8]. We can see this solving process as a black-box process, and in this
case, a major factor that influences the complexity of ISBS is the number of branches in
the search tree with respect to the noises (e1, e2, . . . , em). The motivation of this paper is
to theoretically analyze the number of branches in this tree, then show the relation of the
basic properties of the input system to this number of branches. Furthermore, based on
the theoretical analysis, we want to develop some techniques which can further decrease the
number of branches, hence improve the efficiency of ISBS. The main contributions of this
paper are as follows.

We give some theoretical analysis of the structure of the search trees of ISBS. We prove
that the search tree of ISBS is equivalent to the intersection of two binary tree Tquasi and
Tnw, where the number of branches in Tquasi is determined by the randomness of the input
system, while the number of branches in Tnw is determined by the number of the input
polynomials and the bound of the Hamming weight of the possible noises.

For general polynomial systems, we propose the artificial noise-bound strategy to decrease
the size of Tnw. In this strategy, we artificially bound the Hamming weight of the possible
noises, and gradually increase this bound until we find the optimal solution. Moreover, when
the input polynomial system satisfies m = sn, where m is the number of polynomials, n
is the number of variables and s ≥ 2 is an integer, we propose the s-direction approach,
whose idea is dividing the input polynomials into s parts and searching the possible noises
of different parts with smaller bounds, to decrease the number of branches in the search
tree. We prove that this approach is more efficient than the original ISBS, and show that in
which way of setting the smaller bounds and dividing the polynomial system, this approach

2

can be most efficient.
Finally, we implement a modified ISBS algorithm by applying the above improvements,

and test it by solving some Cold Boot key recovery problems of the block cipher Serpent.
We compare our experimental results with those in [1, 14], and the experimental results
demonstrate that by our modification, the efficiency of ISBS is improved significantly.

The rest of this paper is organized as follows. In Section 2, we introduce the Max-PoSSo
problem and the ISBS method. In Section 3, the number of branches in the search tree
of ISBS is analyzed. In Section 4, the s-direction approach for solving the problems with
m = sn is proposed. In Section 5, we show some experimental results. In Section 6, the
conclusions are presented.

2. Solving Max-PoSSo Problems over F2

Let F2 be the finite field with two elements {0, 1}, and {x1, x2, . . . , xn} be a variable set.
Consider the Boolean polynomial ring R2 = F2[x1, x2, . . . , xn]/〈x21 +x1, x

2
2 +x2, . . . , x

2
n +xn〉.

A element in R2 is called a Boolean polynomial.
Given a Boolean polynomial system P = {f1, . . . , fm} ⊂ R2[x1, . . . , xn]. The polynomial

system solving (PoSSo) problem over F2 is finding a solution (x1, ..., xn) ∈ Fn
2 such that

∀fi ∈ P, we have fi(x1, ..., xn) = 0. The set consists of all the solutions of the PoSSo
problem is called the zero set of P.

The Max-PoSSo problem over F2 is defined as below.

Max-PoSSo: Let P = {f1, . . . , fm} ⊂ R2[x1, . . . , xn] be a Boolean polynomial system.
Find a point (x1, . . . , xn) ∈ Fn

2 such that {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P} has maximal
cardinality.

The name “Max-PoSSo” was first proposed in [1]. In the computational complexity
field, this problem is sometimes called the maximum equation satisfying problem [10, 18].
Obviously, Max-PoSSo is at least as hard as PoSSo. Moreover, whether the polynomials
in P are linear or not, Max-PoSSo is an NP-hard problem. Besides Max-PoSSo, in [1],
the authors introduced another variant problem: Partial Weighted Max-PoSSo, in which
the solution is constrained by another polynomial system and it has to maximize a cost
function. In this paper we focus on the Max-PoSSo problem, since it is a more fundamental
problem and study this problem can help us illustrate the major properties of these similar
problems. Moreover, the techniques used in solving Max-PoSSo can be simply applied into
solving Partial Weighted Max-PoSSo and other similar problems.

In the following paragraphs of this paper, unless otherwise stated, the problems we
discuss are all over F2, and we use n to denote the number of variables and m to denote the
number of input polynomials.

Before introducing ISBS method, we first discuss the problem of recovering the true
solutions of Max-PoSSo problems originated from cryptanalysis in the following subsection.

3

2.1. The Success Rate of Recovering the True Solution

In cryptanalysis, the input polynomial system P of a Max-PoSSo problem is always
originated from another system P0 which always has a solution. Moreover, the difference
between P0 and P is that t polynomials of them have different constant terms. If |P0| =
|P| = m, the ratio r = t/m is called the error rate of P. The solution of P0 is called the
true solution of P.

Actually, in cryptanalysis, the major motivation of solving a Max-PoSSo problem is to
recover the true solution which is the sensitive information in most cases. Sometimes when
the error rate r is big, the solution of the Max-PoSSo problem may not be the true solution
of the input polynomial system. Therefore, we want to know in what cases we have big
probability of recovering the true solution, and how this probability changes when m, n and
r change. Let P be the probability of recovering the true solution by solving a Max-PoSSo
problem, and call it the success rate. Now we present some results about P under the
following assumption.

Given a polynomial system, P = {f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)} with m ≥ n,
we define a map Sm : Fn

2 → Fm
2 , with Sm(x) = (f1(x), f2(x), . . . , fm(x)). Assume for any x,

the probability of Sm(x) being equal to each element in Fm
2 is the same. Moreover, for any

x1 6= x2, Sm(x1) and Sm(x2) have independent distribution. Obviously, this assumption is
reasonable when each fi is random and balanced. Then we have the following proposition
about the success rate.

Proposition 1 Let P be the input system of a Max-PoSSo problem with error rate r. Sup-
pose P has n variables and m polynomials, and the above assumption about the distribution

of Sm(x) is valid. Then the success rate P is equal to (1−
∑rm

i=0 (m
i)−1

2m
)2

n
.

Proof: Suppose P is generated from P0. Then t polynomials of P and P0 have different con-
stant terms. We denote the differences between the elements of P and P0 by e′1, e

′
2, . . . , e

′
m,

then e′i = 0 or 1 for 1 ≤ i ≤ m. The solution of the Max-PoSSo problem about P is the true
solution when the following condition is satisfied:

• For any vector (e1, e2, . . . , em) ∈ Fm
2 such that its Hamming weight w ≤ t = mr and

(e1, e2, . . . , em) 6= (e′1, e
′
2, . . . , e

′
m), polynomials f1 + e1, f2 + e2, . . . , fm + em don’t have

common solutions, which means for any point x0 ∈ Fn
2 , (f1(x0), f2(x0) . . . , fm(x0)) 6=

(e1, e2, . . . , em).

Therefore, the number of vectors that satisfy the above condition, is
∑t

i=0

(
m
i

)
− 1. By

the assumption about the distribution of Sm, we can deduce that for any point x0, the

probability of Sm(x0) being not equal to these vectors is 1−
∑t

i=0 (m
i)−1

2m
. Since there are 2n

points in Fn
2 , then the success rate P , which is equal to the probability of the above condition

being satisfied, is (1−
∑mr

i=0 (m
i)−1

2m
)2

n
. �

4

Proposition 2 Let r ≤ 1/2 be a fixed real number and 1/r be a positive integer. For any
integers m2 > m1, we have ∑m2r

i=0

(
m2

i

)
2m2

≤
∑m1r

i=0

(
m1

i

)
2m1

.

Moreover, the equality holds when r = 1/2.

Proof: The completely strict proof of this proposition is complicated and is given in Ap-
pendix. Here we present an approximate proof by the normal distribution theory.

By the central limit theorem, we know that when m is large enough,
∑mr

i=0 (m
i)

2m
is approx-

imately equal to

1√
mπ/2

∫ mr

−∞
e
− 1

2
(
t−m/2√

m/4
)2

dt =
1√
2π

∫ mr−m/2√
m/4

−∞
e−

1
2
s2ds

Thus, it is sufficient to prove m1r−m1/2√
m1/4

≥ m2r−m2/2√
m2/4

⇔ (
√
m1 −

√
m2)(2r − 1) ≥ 0.

Obviously, when r ≤ 1/2, this inequality holds, and when r = 1/2, the equality holds. �

From the above proposition, we can deduce that when n, r are fixed,
∑mr

i=0 (m
i)−1

2m
decreases

with m increasing, which means P increase with m increasing. Similarly, we can prove that
when n,m are fixed, P decreases with r increasing. Actually, for most problems in crypt-
analysis, r and n are always fixed, such as the Cold Boot key recovery problem introduced
in Section 5, and the probabilistic algebraic attacks on LFSR-based stream ciphers [3]. It
means that by increasing the number of input polynomials, we can increase the success rate
of recovering the true solution.

2.2. The Incremental Solving and Backtracking Search (ISBS) Method

Now we introduce the ISBS method for solving Max-PoSSo problems[14]. As we intro-
duced in Section 1, the principle idea of ISBS is searching the values of polynomials. Let’s
show it more specifically.

Given a noisy polynomial set P = {f1, f2, . . . , fm}, for every vector E = (e1, e2, . . . , em) ∈
Fn
2 , we can solve the polynomial system {f1 + e1, f2 + e2, . . . , fm + em} by some algebraic

method. Hence, we can exhaustively searching all such E in the order of increasing Hamming
weight and solve the PoSSo problem of the corresponding polynomial system for each E.
For some E, if the corresponding PoSSo problem has a solution, then this solution is the
solution of the Max-PoSSo problem.

The above approach uses the most common way to search E, and obviously there are
a lot of redundant computations. For example, if {f1 + e′1, f2 + e′2, . . . , fk + e′k} has no
solution for some fixed (e′1, e

′
2, . . . , e

′
k), we don’t need to solve any system with the form

{f1 +e′1, f2 +e′2, . . . , fk +e′k, fk+1 +ek+1, . . . , fm +em}, since it will always be a contradiction
system. Therefore, in order to avoid this kind of redundant computations, ISBS combines
the incremental solving method and the backtracking search method with the above idea.

First let’s introduce the incremental solving method. Given a polynomial system P, we
can solve it by some algebraic method, such as the Characteristic Set(CS) method [4, 9] and

5

the Gröbner Basis method [7, 8]1. In the following, we see this polynomial system solving
process as a black-box process. If the input of this black-box is a polynomial system P,
we denote its output results as Result(P), which is called the result set of P. When the
polynomial system P has no solution, we set Result(P) to be {1}. According to the theories
of the CS method and the Gröbner Basis, all the solutions of P can be derived easily from
Result(P). We remind the reader that, for different methods, Result(P) can be different.
For example, if we use the CS method to solve P, Result(P) = ∪iAi is the union a group
of triangular sets (A triangular set Ai is a polynomial set whose solutions can be easily
achieved, and its precise definition will be found in [9]). If we use the Gröbner Basis method
to solve P, Result(P) is the Gröbner Basis of idea 〈P〉.

Now we show that given Result(P) and a polynomial g, Result({Result(P), g}) can
be achieved. For example, for the CS method, we need to compute each Result({Ai, g})
and output the union of them. For the Gröbner Basis method, we need to compute the
Gröbner Basis of the idea generated by {Ai, g}. Therefore, given a polynomial system
P = {f1, f2, . . . , fm}, Result(P) can be achieved by incrementally computing

Result({f1}), Result({Result({f1}), f2}), . . . ,

and this is the incremental solving method.

Now let’s present the major processes of ISBS.

(i) We incrementally solve {f1 + e1, f2 + e2, . . . , fi + ei} for i from 1 to m with each ei = 0.
If Result({f1, f2, . . . , fi}) = {1} for some i, we flip ei to 1 and continue solving the
remaining polynomials based on Result({f1, f2, . . . , fi + 1}). At last, we will obtain a
candidate Result({f1 + e1, f2 + e2, . . . , fm + em}) where (e1, . . . , em) is equal to some
fixed (e′1, . . . , e

′
m). We set ubound to be the u0 − 1, where u0 is the Hamming weight of

(e′1, . . . , e
′
m), and set the backtracking index k to be m.

(ii) In order to obtain a better candidate, we search all the possible values of (e1, . . . , em)
with backtracking based on the value (e′1, . . . , e

′
m). That is for i from k to 1 we

find the first e′i such that ei = 0 and the Hamming weight of (e1, . . . , ei−1, 1) is
less than ubound, then similarly as step (i) we try to incrementally solve fi+1, . . . , fm
based on Result({f1 + e′1, . . . , fi + 1}). If we find a better candidate Result({f1 +
e′1, f2 + e′2, . . . , fi + 1, fi+1 + e′′i+1, . . . , fm + e′′m}), such that u, the Hamming weight of
(e′1, e

′
2, . . . , 1, e

′′
i+1, . . . , e

′′
m), is not bigger than ubound, then we set k to be m, replace

(e′1, . . . , e
′
m) with (e′1, . . . , e

′
i−1, 1, e

′′
i+1, . . . , e

′′
m), replace ubound with u, and do step (ii)

again. Otherwise, set k = i− 1 and do step (ii) again if k > 0.

(iii) Finally, we have searched all the possible (e1, . . . , em) and obtain the optimal solution.

1Note that SAT-solvers are not suitable for incremental solving, since it cannot represent a lot of solutions
with a simple form

6

In the Algorithm 1, we present the steps of ISBS method specifically. In this algorithm,
a vector (e1, e2, . . . , es) ∈ Fs

2 with s ≤ m is called a noise vector. Moreover, we call the
Hamming weight of a noise vector a noise weight and a bound of the noise weight a noise-
bound. For the proof of the correctness and termination of ISBS, the reader is referred to
[14].

Algorithm 1: ISBS algorithm

input : A polynomial system P = {f1, f2, . . . , fm}.
output: (x1, . . . , xn) ∈ Fn

2 s.t. {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P} has maximal
cardinality.

1 Compute Candidate(P, ∅,m, 0);
2 Let t, u, {Q0,Q1, . . . ,Qm} and E = (e1, e2, . . . , em) be the corresponding outputs of
Candidate(P, ∅,m, 0) ; /* Here t is always equal to m */

3 ubound ← u− 1, S← Qm;
4 Let S1 be the output of Backtracking(P, E, {Q0,Q1, . . . ,Qm}, ubound, u);
5 if S1 6= ∅ then S← S1;
6 Get (x1, . . . , xn) from S and return (x1, . . . , xn);

Function: Candidate
input : P = {fs+1, fs+2, . . . , fm}: a polynomial set,

Result(R) : the result set of a polynomial set R,
ubound: a noise-bound,
u: the noise weight of (e1, . . . , es).

output: t: an index number,
u: the noise weight of (e1, . . . , es+t),
QS = {Qs,Qs+1, . . . ,Qs+t}: a sequence of result sets,
E = (es+1, es+2, . . . , es+t).

1 Qs ← Result(R), t← m− s;
2 for i from s+ 1 to m do
3 Pi ← {Qi−1, fi}, and compute Result(Pi);
4 if Result(Pi) = {1} then /* In this case,

Result(Qi−1, fi + 1) = Result(Qi−1) */

5 Qi ← Qi−1, ei ← 1, u← u+ 1;
6 if u > ubound then
7 t← i− s, and break;

8 else if Result(Pi) and Qi−1 have the same zero set then
/* Result(Qi−1, fi + 1) = {1} */

9 Qi ← Qi−1, ei ← 0;
10 else
11 Qi ← Result(Pi), ei ← 0;

12 return t, u, {Qs,Qs+1, . . . ,Qs+t}, (es+1, es+2, . . . , es+t);

7

Function: Backtracking

input : P = {f1, f2, . . . , fm}: a polynomial set,
E = (e1, e2, . . . , em): a noise vector,
{Q0,Q1, . . . ,Qm}: a sequence of result sets
ubound: a noise-bound;
u: the noise weight of E;

output: A result set S.

1 k ← m, S← ∅; /* k is the backtracking index */

2 while k ≥ 1 do
3 if ek = 0, Qk 6= Qk−1 and u + 1 ≤ ubound then
4 Pk ← {Qk−1, fk + 1} and compute Result(Pk);
5 ek ← 1, u← u + 1;
6 Qk ← Result(Pk);
7 Set t, u, {Qk,Qk+1, . . . ,Qk+t}, (ek+1, . . . , ek+t) to be the output of

Candidate({fk+1, fk+2, . . . , fm},Qk, ubound, u);
8 k ← k + t;
9 if u ≤ ubound then /* In this case, k = m */

10 S← Qm, ubound ← u− 1;

11 else
12 u← u− ek, k ← k − 1;

13 return S.

Remark 1 This version of ISBS is slightly different with the version in [14]. We add
the comparisons of the zero sets of Result(Pi) and Qi−1 (Step 8) in Candidate. When
this condition is true, we always have Result(Qi−1, fi + 1) = {1}. Thus, in this case we
don’t need to check whether Result(Qi−1, fi + 1) is equal to {1} in Backtracking (That
is what the algorithm in [14] did). Therefore, we add a condition Qk 6= Qk−1 in Step 3 of
Backtracking to verify whether this case happens.

Note that checking whether two result sets Result(Pi) and Qi−1 have the same zero set
is very easy, thus the cost is much less than that of solving {Qi−1, fi+1}. For example, when
we use the characteristic set method as the incremental solving tool, the number of solutions
in the result set can be counted easily, thus we only need to check whether Result(Pi) and
Qi−1 have the same number of solutions.

3. The Search Tree of ISBS

It is easy to see that, ISBS can be efficient only when the cost of computing Result is
small for the input system, which means incremental solving process can be executed fast.
In this case, a major factor that determines the complexity of the algorithm is the size of the
backtracking search tree. In this section, we will present theoretical analysis of the number
of the branches in this tree, and show how the properties of the input systems effect this
number.

8

First of all, we introduce some notations and terminology about binary trees used in
this paper. For a binary tree, when we say a path in this tree, we mean a node sequence
N0, N1, . . . , Nk, where N0 is the root node and Ni is a child node of Ni−1. Moreover, we
denote this path by N0 → N1 → · · · → Nk. A path from the root node to a leaf node is
called a branch of the tree. For a binary tree T, the number of its branches is denoted by
|T|. For two binary trees T1 and T2, their intersection, denoted by T1∩T2, is the tree whose
nodes are the common nodes of these two trees.

Now we strictly define the search tree of ISBS. This binary tree can be generated as
the following procedures. First, let the root node of the tree be the empty set, and use a
pointer M pointing to the root node. Then run the algorithm and generate the new nodes
by the following operations.

• In Candidate, after each time we set the value of some ei, we generate a new node
fi + ei, and draw an edge from the node pointed by M to this new node, then let M
point to this new node.

• In Backtracking, after each time we decrease the backtracking index k by 1, we let
M point to the parent node of the node pointed by M currently. Besides, after we
set the value of some ei, we generate a new node fi + ei, and draw an edge from the
node pointed by M to this new node, then let M point to this new node.

In this way, we can generate a binary tree, denoted by TISBS, with depth m (the depth
of the root node is set to be 0) after running ISBS. Note that, in ISBS, ei is evaluated
if and only if Result has been computed for one time. Therefore, the number of nodes in
TISBS is equal to the number of computing Result. It is easy to see that a path f1 + e1 →
f2 + e2 → · · · → fk + ek with length k in TISBS is one-to-one corresponding to the processes
of incrementally solving the polynomial system {f1 + e1, f2 + e2, . . . , fk + ek} in ISBS.

Since the depth of TISBS is m, |TISBS| is roughly bounded by 2m. However, this search
tree is not a perfect binary tree, since a lot of subtrees are pruned in the following four cases:

(1) Result(Pi) = {1} in Step 4 of Candidate

(2) Result(Pi) and Qi−1 have the same zero set in Step 8 of Candidate.

(3) u > ubound in Step 6 of Candidate

(4) u+ 1 > ubound in Step 3 of Backtracking

From the above four cases, we can conclude two major factors which influence the size of the
search tree. Cases (1) and (2) are corresponding to the first one, which is the randomness
of the input system. Cases (3) and (4) are corresponding to the second one, which is the
value of the noise-bound.

First, we analyze the effect of the first factor. To this end, we will consider a bigger
tree, which is generated from ISBS with the following modifications. That is we don’t

9

compare the noise weight with ubound in Candidate and Backtracking. Instead, we achieve
the solutions of the polynomial systems with all possible noise weight, and finally output
the solution of the system whose noise weight is lowest. We denote this modified algorithm
by ISBS1. We can generate a search tree of ISBS1 similar as TISBS, and we call this tree
the quasi search tree of ISBS, and denote it as Tquasi. It is easy to see that for each path
p in TISBS with length k, we can find a path p′ in T1 with length at least k, such that the
first k nodes of p and p′ are the same. This means TISBS is a truncated subtree of Tquasi.
We have the following proposition about Tquasi.

Proposition 3 Let f1, f2, . . . , fm be the input of ISBS. We denote the number of paths with
length k in Tquasi by Nk, for 1 ≤ k ≤ m. Moreover, we define a map Sk : Fn

2 → Fk
2, with

Sk(x) = (f1(x), f2(x), . . . , fk(x)). Then, we have

(a) All the branches in Tquasi have depth m.

(b) Nk = |Im(Sk)|, for any 1 ≤ k ≤ m.

Proof: (a) Note that a branch ends after Candidate terminated, which is equivalent to the
loop of Step 2 terminated. This loop terminates before i = m, only when u > ubound in Step
6. However, for Tquasi, the noise-bound is not used, hence Candidate terminates after it has
dealt with fm, which implies all branches in Tquasi have length m.

(b) For a path p : f1 + e1 → f2 + e2 → · · · → fk + ek, suppose we have Result({f1 + e1, f2 +
e2, . . . , fk + ek}) = {1}. Then we can find a constant s ≤ k such that Result({f1 + e1, f2 +
e2, . . . , fs + es}) = {1} and Result({f1 + e1, f2 + e2, . . . , fs−1 + es−1}) 6= {1}.

• If es = 0, then the condition in Step 4 of candidate holds, we will set ei to be 1,
which means we will generate the node fs + 1 instead of the node fs, then the path p
is pruned at the node fs, a contradiction.

• If es = 1, then Result({f1 + e1, f2 + e2, . . . , fs−1 + es−1}) = Result({f1 + e1, f2 +
e2, . . . , fs−1 + es−1, fs}). Obviously, node fs + 1 can only be generated in Step 5 of
Backtracking. However, since Result({f1+e1, f2+e2, . . . , fs−1+es−1) = Result({f1+
e1, f2 + e2, . . . , fs−1 + es−1, fs}), the condition in Step 3 of Backtracking doesn’t hold,
which means Step 5 will not be executed, a contradiction.

Therefore, we have Result({f1+e1, f2+e2, . . . , fk+ek}) 6= {1} which means (e1, e2, . . . , ek) ∈
Im(Sk). Then, we can build a map M which maps a path f1 + e1 → f2 + e2 → · · · → fk + ek
to (e1, e2, . . . , ek) ∈ Im(Sk). Obviously, M is an injection. For any (e1, e2, . . . , ek) ∈ Im(Sk),
from the definition of Sk, we know that f1 + e1, f2 + e2, . . . , fk + ek have common solutions,
which means Result({f1 + e1, f2 + e2, . . . , fk + ek}) 6= {1}. It is easy to see that the path
f1 + e1 → f2 + e2 → · · · → fk + ek is in T1, hence M is a surjection. In summary, M is a
bijection, thus Nk = |Im(Sk)|. �

The above proposition shows that |Tquasi| is equal to |Im(Sm)|, which is bounded by 2n.
|Im(Sm)| is an essential property of a polynomial system, and changing the order of fi will

10

not change the value of |Im(Sm)|, hence not change |Tquasi|. The maximal value of |Im(Sm)|
is 2n, which can be reached when the randomness of the input systems is good enough. The
above analysis implies that in ISBS, we can prune all branches which are redundant because
of the bad randomness of the input system.

Remark 2 For ISBS1, from Proposition 3, we can deduce that the number of computing
Result is equal to

∑m
i=1 |Im(Si)|, where |Im(S1)| ≤ |Im(S2)| ≤ · · · ≤ |Im(Sm)|. Obviously,

changing the order of fi will change the value of |Im(Si)|, for 1 ≤ i ≤ m− 1. Unfortunately,
it is too hard to estimate the value of |Im(Si)|, hence we cannot theoretically find a way of
sorting fi such that

∑m
i=1 |Im(Si)| reaches its minimal value. However, the complexity of

incrementally solving a polynomial system is highly relevant to the order of the polynomials,
which means the order of fi can effect the complexity of computing Result, hence we can sort
fi such that the incremental solving processes are more efficient. A natural idea of sorting
fi is putting the “easy” ones before the “hard” ones. Here the “hardness” of a polynomial
can be defined by different indexes for different polynomial system solving methods.

Now we consider the influence of the noise-bound. Given a noise-bound ubound, we con-
struct a binary tree Tnw from a perfect binary tree T with depth m. That is in T we keep
the branches f1 + e1 → f2 + e2 → · · · → fm + em, such that e1 + e2 + · · ·+ em ≤ ubound, and
pruned other branches. Obviously, we have |Tnw| =

∑u
i=0

(
m
i

)
. Then, we have the following

theorem.

Theorem 4 Assume ISBS is executed under noise-bound ubound, and this bound is not
changed after ISBS terminated. Suppose T0 = Tquasi∩Tnw, and T1 is a binary tree generated
from T0 by appending a child node fk+1 + 1 to the end of each branch with depth k < m in
T0. Then we have:

(1) TISBS = T1

(2) |TISBS| = |Tquasi ∩ Tnw|.

Proof: (1) First we prove TISBS ⊂ T1. Note that in Candidate, in any one of the three
cases corresponding to Step 4, Step 8 and Step 10, es+1 will always be evaluated, which
means at least one new node will be generated in TISBS.

• Consider a branch p : f1 + e1 → f2 + e2 → · · · → fk + ek with depth k < m in TISBS.
If ek = 0, the value of ek must be set in Candidate at Step 9 or 11. It means that
Candidate doesn’t end after evaluating ek, and either node fk+1 + 1 or node fk will be
generated in the following steps, which contradicts to the assumption that fk + ek is a
leaf node. Therefore we have ek = 1. There are two cases that ek is set to be 1. The
first case is that in Backtracking we backtrack to index k and flip the value of ek from
0 to 1. In this case, the condition of Step 3 holds, which means e1+e2+· · ·+ek ≤ ubound,
then Candidate will be executed and a child node will be generated, a contradiction.
Hence, ek is set to be 1 in Candidate when Result(f1 + e1, f2 + e2, . . . , fk) is equal to
{1}. Then, we have e1+e2+ · · ·+ek > ubound, otherwise, Candidate will not terminate

11

and a child node will be generated. Obviously, e1 + e2 + · · · + ek−1 ≤ ubound. We can
deduce e1+e2+· · ·+ek−1 = ubound. Hence path p′ : f1+e1 → f2+e2 → · · · → fk−1+ek−1
is in Tquasi ∩Tnw. Note that Result(f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk) = {1}, which
means path f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk is not in Tquasi, and path
f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk + 1 is in Tquasi. Therefore, in Tquasi ∩Tnw

,node fk−1 + ek=1 of p′ is a leaf node is a branch which implies p′ is a branch with
depth less than m. Therefore, p is in T1.

• Consider a branch p : f1+e1 → f2+e2 → . . .→ fm+em in TISBS. If e1+e2+· · ·+em ≤
ubound, then it is obvious that p ∈ Tquasi ∩ Tnw. Since the depth of p is m, we have
p ∈ T1. Note that, there is a case that e1+e2+· · ·+em > ubound. That is em is set to be
1 in Candidate. Similarly as the proof above, we have e1+e2+ · · ·+em−1 = ubound and
Result(f1 + e1, f2 + e2, . . . , fm−1 + em−1, fm) = {1}, which means f1 + e1 → f2 + e2 →
. . .→ fm−1 + em−1 is a branch of Tquasi ∩ Tnw, thus p ∈ T1.

Now we prove T1 ⊂ TISBS. Let p : f1 + e1 → f2 + e2 → · · · → fk + ek be a branch in T1.

• If ek = 0, we have k = m, since the branches in T1 with depth less than m have a leaf
node with the form fk + 1. Then p ∈ Tquasi and e1 + e2 + · · · + ek ≤ ubound, hence
p ∈ TISBS.

• Consider the case of ek = 1. If f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 is not a branch
in Tquasi ∩ Tnw, then p is in Tquasi ∩ Tnw, hence in TISBS. Assume p′ : f1 + e1 →
f2 + e2 → · · · → fk−1 + ek−1 is a branch in Tquasi ∩ Tnw, hence is a path in TISBS.
If e1 + e2 + · · · + ek−1 < ubound, then e1 + e2 + · · · + ek−1 + 1 ≤ ubound. Since either
Result(f1 +e1, f2 +e2, . . . , fk−1 +ek−1, fk) 6= {1} or Result(f1 +e1, f2 +e2, . . . , fk−1 +
ek−1, fk + 1) 6= {1}, we have either path f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk
or path f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk + 1 is in Tquasi ∩ Tnw, which
contradicts to the assumption that fk−1+ek−1 is a leaf node in Tquasi∩Tnw. This implies
e1+e2+· · ·+ek−1 = ubound. Note that path p′ : f1+e1 → f2+e2 → · · · → fk−1+ek → fk
is not in Tquasi ∩ Tnw. From e1 + e2 + · · · + ek + 0 = ubound, we can deduce that p′ is
not in Tquasi, which means Result(f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk) = {1}. Thus,
in Candidate of ISBS, after computing Result(f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk),
ek will be set to be 1, and a leaf node fk + 1 is generated and appended to the end of
p′ in TISBS. Therefore, p is in TISBS.

(2) It is easy to see that |Tquasi ∩ Tnw| = |T1|. Thus, from (1), we have |TISBS| = |T1| =
|Tquasi ∩ Tnw|. �

The above proof can be illustrated by the following figures. We see TISBS as a tree
generated from Tquasi by the following operations. Consider a path p : f1 + e1 → f2 + e2 →
· · · → fk−1 + ek−1 → fk + 1 in Tquasi, such that

∑k−1
i=1 ei = ubound.

(a) If fk−1 + ek−1 has two child nodes in Tquasi, we pruned the subtree with fk + 1 as the
root node. This case can be illustrated in Figure 1, where f̄i means fi + 1.

12

Figure 1: Case (a) of TISBS

· · ·

fk−1

fk f̄k

pruned

Figure 2: Case (b) of TISBS

· · ·

fk−1

f̄k

fk+1

pruned

f̄k+1

pruned

Figure 3: Case (a) of Tquasi ∩ Tnw

· · ·

fk−1

fk f̄k

pruned

Figure 4: Case (b) of Tquasi ∩ Tnw

· · ·

fk−1

f̄k

pruned

(b) If fk−1+ek−1 has a unique child node in Tquasi, we pruned the subtrees whose root nodes
are the child nodes of fk + 1. This case can be illustrated in Figure 2.

In comparison, Tquasi ∩ Tnw can also be seen as a binary tree generated from Tquasi by
the pruning operations when the above cases (a) and (b) occur. For case (a), the pruning
operations are the same as TISBS. For the case (b), we prune the subtree whose root node
is fk + 1. These two kinds of operations can be illustrated in Figure 3 and 4.

From Theorem 4, we can know that since |Tquasi| is fixed for a given input system, a
principle way to decrease |TISBS|, is decreasing |Tnw|. Moreover, when m is fixed, the only
way to decrease |Tnw| is decreasing ubound. If the noise weight of the optimal solution is u0,
then ISBS can obtain this solution under noise-bound u0, and in this case |Tnw| reaches its
minimal value.

Therefore, a natural way to improve ISBS is constructing a small artificial noise-bound
and then executing ISBS under this bound. If there is no solution under this noise-bound, we
can gradually increase the artificial bound by a step size s until we find the optimal solution.
In this way, we can keep the noise-bound and |Tnw| as small as possible. According to this

13

idea, we present a modified algorithm ISBSb.

Algorithm 2: ISBSb algorithm

input : A polynomial system P = {f1, f2, . . . , fm};
A step size s.

output: (x1, . . . , xn) ∈ Fn
2 s.t. {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P} has maximal

cardinality.

1 Compute Candidate(P, ∅,m, 0);
2 Let t, um, {Q0,Q1, . . . ,Qm} and E = (e1, e2, . . . , em) be the corresponding output

of Candidate(P, ∅,m, 0) ; /* Here t is always equal to m */

3 ubound ← 0, S← Qm;
4 while ubound < um − 1 do
5 ubound = min(ubound + s, um − 1);
6 Let S1 be the output of Backtracking(P, E, {Q0,Q1, . . . ,Qm}, ubound, um);
7 if S1 6= ∅ then S← S1 and break;

8 Get (x1, . . . , xn) from S and return (x1, . . . , xn);

4. Solving Max-PoSSo when m = sn

In this section, we will discuss solving Max-PoSSo problems when the input polynomial
systems satisfying m = sn, where s > 1 is an integer. This kind of polynomial systems
frequently occur in cryptanalysis problems. For example, for the Cold Boot key recovery
problem introduced in Section 5, we can generate sn polynomials for any integer s. According
to the results in Section 2.1, in most cases, in order to keep a high success rate we need to
set s > 1.

The original idea of the approach proposed in this section was roughly introduced in [14]
for the case s = 2. However, why it works and how to optimize the idea were not shown.
Thus, in this section we will discuss these problems by comparing the number of branches
in the search trees of different approaches.

From Proposition 3, we know that |Tquasi| = |Im(Sm)|. From our observation, for most
polynomial systems generated from cryptanalysis, we have |Im(Sn)| ≈ |Im(Sm)|. Hence
|Tquasi| ≈ |Im(Sn)|. For a binary tree T, denote its truncated subtree with depth n by T̄.
Then, from |Tquasi| ≈ |Im(Sn)| = |T̄quasi| , we can deduce that |Tquasi∩Tnw| ≈ |T̄quasi∩Tnw|.
Moreover, it is obvious that T̄quasi ∩ Tnw = T̄quasi ∩ T̄nw, thus |TISBS| = |Tquasi ∩ Tnw| ≈
|T̄quasi∩T̄nw|. Consequently, if we can decrease |T̄nw|, |TISBS| will decrease. In the following,
we will discuss how to decrease |T̄nw|.

4.1. Case m = 2n

In this subsection, we suppose the input system is a polynomial system {f1, f2, . . . , fm}
with m = 2n. First we introduce the following lemma.

14

Lemma 5 Let u1, u2, u be three non-negative integers, and u1 + u2 ≤ u. For any non-
negative integers a, b, such that a+ b = u− 1, we have either u1 ≤ a or u2 ≤ b.

Proof: Suppose u1 > a and u2 > b. Since u1, u2 are integers, we have u1 ≥ a + 1 and
u2 ≥ b+ 1. Then u ≥ u1 + u2 ≥ a+ b+ 2 = u+ 1, which is a contradiction. �

This lemma shows the following fact. We can divide a noise vector E = (e1, . . . , em) into
two parts E1 = (e1, . . . , en), E2 = (en+1, . . . , em). Suppose E has a noise-bound u. Let a, b
be two non-negative integers such that a+ b = u− 1, then either E1 has a noise-bound a or
E2 has a noise-bound b.

We call the noise-bound of E1(or E2) a partial noise-bound of E. For a noise vector
(e1, . . . , es), we define its partial noise weight to be the noise weight of (e1, . . . , en) when
s > n, or the noise weight of itself when s ≤ n. Then we can build the following two-
direction approach.

First, we solve the system from the forward direction, which means we find the optimal
solution of the system P1 : {f1, f2, . . . , fn, fn+1, . . . , fm} under the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded by the partial noise-bound a;

• The noise weight of (e1, e2, . . . , em) is bounded by the noise-bound u.

This can be done by a modified ISBS algorithm in which the comparison of the partial
noise-bound and the partial noise-weight is added in Step 6 of Candidate, and Step 3 and
Step 9 of Backtracking,

Then, we solve the system from the backward direction, which means we find the optimal
solution of the system P2 : {fn+1, fn+2, . . . , fm, f1, . . . , fn} under the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded by the partial noise-bound b;

• The noise weight of (e1, e2, . . . , em) is bounded by the noise-bound u.

Then the better one of the solutions of the above two systems is the solution of the
original Max-PoSSo problem.

Similarly as the original ISBS, for P1 or P2, we can generate the search tree TISBS after
the the above solving processes ended. Moreover, Tquasi is the tree generated when the noise-
bound and the partial noise-bound are not used. Tnw is the tree generated from a perfect
binary tree by pruning the branches which don’t satisfy the constraints about the noise-
bound and the partial noise-bound. It is easy to see that when solving from the forward
direction, we have |T̄nw| =

∑a
i=0

(
n
i

)
<
∑u

i=0

(
n
i

)
, while when solving from the backward

direction, we have |T̄nw| =
∑b

i=0

(
n
i

)
<
∑u

i=0

(
n
i

)
. Note that, for the original approach,

we have |T̄nw| =
∑u

i=0

(
n
i

)
. It means that, by the two-direction approach, we convert the

original Max-PoSSo problem into two easier subproblems.
There are two natural questions about the two-direction approach:

i) Whether the total number of branches in the two search trees of the two directions is
always less than the number of branches in the search tree of the original approach.

15

ii) How to choose a and b such that the total number of branches in the two search trees
of the two-direction approach is minimal.

In the following paragraphs of this subsection, we will show that these two questions can
be perfectly answered when the input systems {f1, f2, . . . , fm} satisfying the condition that
|Im(Sn)| = |Im(S ′n)| = 2n, where Sn is the map which maps x ∈ Fn

2 to (f1(x), f2(x), . . . , fn(x))
∈ Fn

2 , and S ′n is the map which maps x ∈ Fn
2 to (fn+1(x), fn+2(x), . . . , fm(x)) ∈ Fn

2 .
When |Im(Sn)| = 2n, for P1, we have |T̄quasi| = 2n, thus T̄quasi is a perfect binary

tree. Therefore, T̄quasi ∩ T̄nw = T̄nw, and |T̄quasi ∩ T̄nw| = |T̄nw| =
∑a

i=0

(
n
i

)
. Moreover,

|T̄quasi| ≤ |Tquasi| ≤ 2n. Thus, for any leaf node N of |T̄quasi|, if it is the root node of a
subtree in Tquasi, then this subtree has a unique branch. Hence, for the nodes in Tquasi with
depth bigger than n, the pruning case (a) in Figure 1 of Section 3 will not occur. This
means |TISBS| = |T̄ISBS| = |T̄quasi ∩ T̄nw| = |T̄nw| =

∑a
i=0

(
n
i

)
. Similarly, for P2, we have

|TISBS| = |T̄nw| =
∑b

i=0

(
n
i

)
.

Proposition 6 Let a, b, u, n be non-negative integers, such that u ≤ n/2 and a+ b = u− 1.
Then we have:

u∑
i=0

(
n

i

)
>

a∑
i=0

(
n

i

)
+

b∑
i=0

(
n

i

)
≥
ba+b

2
c∑

i=0

(
n

i

)
+

da+b
2
e∑

i=0

(
n

i

)
Proof: Without loss of generality, we can assume a ≤ b. First we prove

u∑
i=0

(
n
i

)
>

a∑
i=0

(
n
i

)
+

b∑
i=0

(
n
i

)
. It is equivalent to prove

u∑
i=a+1

(
n
i

)
>

b∑
i=0

(
n
i

)
. Note that the numbers of terms in

two sides of the inequality are both b + 1. Moreover, since n/2 ≥ u ≥ a + 1 > 0, we
have

(
n

a+1

)
>
(
n
0

)
,
(

n
a+2

)
>
(
n
1

)
,
(
n
u

)
>
(
n
b

)
. By summing up all these inequalities, we have

u∑
i=a+1

(
n
i

)
>

b∑
i=0

(
n
i

)
.

Now we prove the second inequality. Obviously, when a = ba+b
2
c, which means that

either u is odd and a = b or u is even and a = b − 1, the equality holds. Without loss
of generality, we can assume a < ba+b

2
c, which implies a < ba+b

2
c ≤ da+b

2
e < b. Then it is

sufficient to show that(
n

a+ 1

)
+

(
n

a+ 2

)
+ · · ·+

(
n

ba+b
2
c

)
<

(
n

da+b
2
e+ 1

)
+

(
n

da+b
2
e+ 2

)
+ · · ·+

(
n

b

)
.

Since n/2 ≥ u ≥ b, we have the numbers of terms in both sides of the above inequality are
same, and

(
n

a+1

)
<
(

n
da+b

2
e+1

)
,
(

n
a+2

)
<
(

n
da+b

2
e+2

)
, . . . ,

(
n

ba+b
2
c

)
<
(
n
b

)
. Therefore, we can deduce

the conclusion by summing up all these inequalities. �

Given a noise-bound u ≤ n/2.2 Proposition 6 shows that if Im(Sn) = Im(S ′n) = 2n,
the branches we need to solve in the two-direction approach is strictly less than those in

2For practical Max-PoSSo problems, u ≤ n/2 always holds.

16

the original approach. Moreover, we can conclude that the optimal strategy of the two-
direction approach is using the partial noise-bound ba+b

2
c for one system and da+b

2
e for

another system. It is easy to see that when n is big, the number of branches solved in the
optimal two-direction approach is much less than that in the original approach. For example,
let n = 128, u = 10. If |Im(Sn)| = |Im(S ′n)| = 2n, for the original approach, we need to
solve

∑10
i=0

(
128
i

)
≈ 247.8 branches. For the optimal two-direction approach, we need to solve∑4

i=0

(
128
i

)
+
∑5

i=0

(
128
i

)
≈ 228.1 branches. Obviously, this is a significant improvement.

By combining the two-direction approach and ISBSb, we propose an improved algorithm
called ISBS2, whose mainly steps are as follows.

1. Given an input system P : {f1, . . . , fn, fn+1, . . . , f2n}.

2. Generate two systems P1 : {f1, . . . , fn, fn+1, . . . , f2n} and P2 : {fn+1, . . . , f2n, f1, . . . , fn}

3. Set a total noise-bound u.

4. Set the partial noise-bound of P1 to be bu−1
2
c and the partial noise-bound of P2 to be

du−1
2
e

5. For i from 1 to 2, solve Pi with ISBS method under noise-bound u and its partial
noise-bound.

• If for some Pi, we achieve a solution x, set x0 to be x and u to be w(x)−1, where
w(x) is the noise weight of the noise vector corresponding to x. If i = 1, update
the partial noise-bounds of P2.

6. If x0 is not empty, then it is the solution of the Max-PoSSo problem. Otherwise,
increase u by a step size, and repeat Step 4-5.

For the practical Max-PoSSo problems, the condition Im(Sn) = Im(S ′n) = 2n may not
hold, and theoretically finding the optimal values of a and b is too hard. From experiments,
we verified that respectively setting a, b to be bu−1

2
c and du−1

2
e is still a good strategy, by

which the timing results are much better than those of other strategies.

4.2. The Optimal Division Strategy

In the above two-direction approach, we divide the input system P with 2n elements
into two sub-systems P1 and P2 with n elements, and then respectively solve {P1,P2} and
{P2,P1}. A natural question is that if we divide the input system into one system with
n − k elements and another system with n + k elements, whether the number of the total
branches will be less. Hence, in this subsection, we will discuss this question.

For convenience, in this subsection, when we say a k-partial noise-bound, we mean the
noise-bound about the noise vector (e1, e2, . . . , ek). Then, the above division strategy is:

17

(A) Given a noise-bound u, we find the optimal solution from P1 = {f1, f2, . . . , fn−k, fn−k+1,
. . . , f2n} under an (n− k)-partial noise-bound a and P2 = {fn−k+1, fn−k+2, . . . , f2n, f1,
f2, . . . , fn−k} under an (n+ k)-partial noise-bound b , where a+ b = u− 1.

The division strategy proposed in last subsection is:

(B) Given a noise-bound u, we find the optimal solution from P1 = {f1, f2, . . . , fn, fn+1, . . . ,
f2n} under an n-partial noise-bound a and P3 = {fn+1, fn+2, . . . , f2n, f1, f2, . . . , fn}
under an n-partial noise-bound b , where a+ b = u− 1.

In the following we will prove that the number of branches solved in Strategy B is always
smaller than that in Strategy A, when k > 0, and |Im(Sn)| = 2n for P1, P2 and P3.

Firstly, let’s consider the forward direction. We will show that the number of branches
in the search tree of Strategy B is less than that of Strategy A. For P1, since |Im(Sn)| = 2n,
as shown in last subsection, we can deduce that |TISBS| = |T̄ISBS| = |T̄quasi ∩ T̄nw| = |T̄nw|
for Strategy A, where TISBS,Tquasi,Tnw are defined as before. Note that, Tnw is generated
from a perfect tree by pruning the branches which don’t satisfy the noise-bound and the
partial noise-bound. Hence, |T̄nw| =

∑a
i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
. We have the following inequality

about this value.

Lemma 7
∑a

i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
≥
∑a

i=0

(
n
i

)
Proof: By Vandermonde’s identity, we have(

n
a

)
=
(
n−k
a

)(
k
0

)
+
(
n−k
a−1

)(
k
1

)
+ · · ·+

(
n−k
0

)(
k
a

)(
n

a−1

)
=
(
n−k
a−1

)(
k
0

)
+
(
n−k
a−2

)(
k
1

)
+ · · ·+

(
n−k
0

)(
k

a−1

)
...(
n
0

)
=
(
n−k
0

)(
k
0

)
.

Since u−i+i = u ≥ a, the terms in the right of the above equalities are all in
∑a

i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
,

and these terms are distinct. Thus, the inequality is valid. �

Note that, for P1 in Strategy B, we have |TISBS| = |T̄nw| =
∑a

i=0

(
n
i

)
. It proves the above

conclusion about the forward direction.
Secondly, let’s consider the backward direction. That is we solve P2 by Strategy A, and

P3 by Strategy B. Similarly as above, we only need to compare the value of |Tnw|. For
Tnw of P2 in Strategy A, the only constraint that the paths with depth n should satisfy is
e1 + e2 + · · ·+ en ≤ b. Hence |T̄nw| =

∑b
i=0

(
n
i

)
. Obviously, for Tnw of P3 in Strategy B, we

also have |T̄nw| =
∑b

i=0

(
n
i

)
. This implies that the number of branches in the search trees of

these two strategies are the same.
By combining the conclusions of the two directions, we can conclude that Strategy B is

always the optimal strategy when the assumption |Im(Sn)| = 2n is valid.

18

4.3. The case m = sn

In this section, we extend the idea of the two-direction approach to the problems with
s > 2, and present the s-direction approach. Similarly as Lemma 5, we have the following
lemma.

Lemma 8 Let u1, u2, . . . , us, u be s + 1 non-negative integers, and u1 + u2 + · · · + us ≤ u.
For any non-negative integers a1, a2, . . . , as, such that a1 + a2 + · · ·+ as = u− s+ 1, at least
one of the following inequalities hold: u1 ≤ a1, u2 ≤ a2,. . ., us ≤ as.

This lemma shows the following fact. We can divide a noise vector E = (e1, . . . , em) into
s parts

E1 = (e1, . . . , en), E2 = (en+1, . . . , e2n), . . .,Es = (e(s−1)n+1, . . . , esn)

If E has a noise-bound u, then Ei has a noise-bound ai, where
∑s

i=1 ai = u − 1. Thus, we
can build the following s-direction approach. That is we generate s polynomial systems:

P1 : {f1, . . . , fn, fn+1, , . . . , f2n, . . . , f(s−1)n+1, . . . , fsn}
P2 : {fn+1, . . . , f2n, f1, . . . , fn, f2n+1, f2n+1, . . . , f3n, . . . , f(s−1)n+1, . . . , fsn}
· · · (1)

Ps : {f(s−1)n+1, . . . , fsn, f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−2)n+1, . . . , f(s−1)n}.

Then, solve each Pi under the partial noise-bound ai and the total noise-bound u.

Similarly as the case of m = 2n, when Im(Sn) = 2n for each Pi, we can derive the best
strategy of setting the values of these ai from the following proposition.

Proposition 9 Let u, n be two non-negative integers with n/2 ≥ u. s ≥ 2 is an integer.
Suppose u − s + 1 ≡ r mod s, and p = (u − s + 1 − r)/s. a1, a2, . . . , as are s non-negative
integers, s.t. a1 + a2 + · · ·+ as = u− s+ 1. We have

u∑
i=0

(
n

i

)
>

s∑
j=1

aj∑
i=0

(
n

i

)
(2)

s∑
j=1

aj∑
i=0

(
n

i

)
≥

s−r∑
j=1

p∑
i=0

(
n

i

)
+

r∑
j=1

p+1∑
i=0

(
n

i

)
(3)

Proof: First, let’s prove inequality (2). Since u + 1 = (a1 + 1) + (a2 + 1) + · · · + (as + 1),
we can divide

∑u
i=0

(
n
i

)
into s parts :(

n
0

)
+ . . .+

(
n
a1

)
,
(

n
a1+1

)
+ . . .+

(
n

a1+a2+1

)
, . . . ,

(
n

u−as

)
+ . . .+

(
n
u

)
.

19

Note that the j-th part is the sum of aj + 1 elements. In the following, when we say a
left-part, we mean one of these parts. We can write

∑s
j=0

∑aj
i=0

(
n
i

)
as the sum of s parts∑a1

i=0

(
n
i

)
, . . . ,

∑as
i=0

(
n
i

)
. In the following, when we say a right-part, we mean one of such

parts. Obviously the first left-part
∑a1

i=0

(
n
i

)
is equal to the first right-part. For the j-th

left-part with j > 1, since n/2 ≥ u, we can check that each element in this left-part is bigger
than the corresponding element in the j-th right-part. Hence the j-th left-part is bigger
than the j-th right-part. Since s ≥ 2, we at least have two parts. Thus, we can derive the
first inequality.

Now, let’s prove inequality (3). Without loss of generality, we can assume a1 ≤ a2 ≤
· · · ≤ as. Note that a1 +a2 + · · ·+as = u−s+ 1 = (s− r)p+ r(p+ 1). Suppose among these
ai, there are s1 elements being smaller than p, b elements being equal to p, c elements being
equal to p+ 1 and s2 elements being bigger than p+ 1. Then a1, a2, . . . , as can be written as

a1, a2, . . . , as1 , p, p, . . . , p︸ ︷︷ ︸
b

, p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
c

, as−s2+1, as−s2+2, . . . , as,

where s1 + b+ c+ s2 = s
Now we consider the following three cases:

1. s1 + b = s− r and c+ s2 = r. In this case, the left side of (3) minus the right side of
(3) is equal to

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
−

s1∑
j=1

p∑
i=aj+1

(
n

i

)
(4)

The first part of (4) has T1 = as−s2+1 +as−s2+2 + · · ·+as−s2(p+1) terms. The second
part of (4) has T2 = s1p−(a1+a2+· · ·+as1) terms. T1−T2 = (u−s+1)−bp−c(p+1)−
s1p−s2(p+1) = (u−s+1)− (s−r)p−r(p+1) = 0, which means the first and second
parts of (4) have the same number of terms. Moreover, as−s2+j ≥ p + 2 > p ≥ ai + 1,
which means every term in the left part of (4) is bigger than that in the right part of
(4). Then we have (4) is not smaller than 0, which implies that the second inequality
of (3) is valid, and the equality holds when b = s− r and c = r.

2. s1 + b > s− r and c+ s2 < r. In this case, the left side of (3) minus the right side of
(3) is equal to

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
− (

b+s1−s+r∑
j=1

(
n

p+ 1

)
+

s1∑
j=1

p∑
i=aj+1

(
n

i

)
) (5)

Similarly as case 1, the first and second parts of (5) have the same number of terms,
and every term in the left is bigger than that in the right, which implies the correctness
of the second inequality of (3).

20

3. s1 + b < s − r and c + s2 > r. In this case, then the left side of (3) minus the right
side of (3) is equal to

(

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
+

c+s2−r∑
j=1

(
n

p+ 1

)
)−

s1∑
j=1

p∑
i=aj+1

(
n

i

)
(6)

Similarly as the above cases, the first and second parts of (6) have the same number
of terms, and every term in the left is bigger than that in the right, which implies the
correctness of the second inequality of (3).

In summary, inequality (2) is valid in any cases. �

This proposition shows that when |Im(Sn)| = 2n for all these Pi, the number of branches
solved in the s-direction approach is always less than that in the original approach, and the
best strategy is setting the partial noise-bounds of s − r systems to be p and those of the
rest r systems to be p+ 1.

Based on the above theoretical results, similarly as algorithm ISBS2, we can implement
an algorithm by using the s-direction approach. The main steps of the algorithm are as
follows:

1. Given an input system P : {f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−1)n+1, . . . , fsn}.

2. Generate s systems P1,P2, . . . ,Ps as (1).

3. Set a noise-bound u. Suppose u− s+ 1 ≡ r mod s, and let p = (u− s+ 1− r)/s.

4. For P1, . . . ,Ps−r, set their partial noise-bounds to be p. For Ps−r+1, . . . ,Ps, set their
partial noise-bounds to be p+ 1.

5. For i from 1 to s, solve Pi with the ISBS method under noise-bound u and its partial
noise-bound.

• If for some Pk, we achieve a solution x, then set x0 to be x and u to be w(x)− 1,
where w(x) is the noise weight of the noise vector corresponding to x. Update
the partial noise-bounds of Pk+1,Pk+2, . . . ,Ps by the strategy used in Step 4.

6. If x0 is not empty, then it is the solution of the Max-PoSSo problem. Otherwise,
increase u by a step size, and repeat Step 4-5.

5. Experimental Results

In order to test the proposed improvements, we generated some benchmarks from the
Cold Boot key recovery problem of Serpent. The Cold Boot key recovery problem is orig-
inated from the Cold Boot attack, which was first proposed and discussed in the seminal

21

work of [11]. The Cold Boot attack relies on the data remanence property of DRAM to
retrieve memory contents after power off. In the Cold Boot attack to a block cipher, the
attacker is able to retrieve the round keys, but some bits of the round keys is flipped since
the decay of the memory data. Thus, the Cold Boot key recovery problem for a block cipher
is to recover the initial key for these decayed round keys.

In [1], Cid and Albrecht proposed a mathematical model, by which one can convert Cold
Boot key recovery problems into Partial Weighted Max-PoSSo problems, then they solved
some Cold Boot key recovery problems of AES and Serpent by mixed integer programming
solver SCIP. In [14], the same problems were solved by the original ISBS algorithm and
some better experimental results were presented.

Note that in this paper we focus on solving the Max-PoSSo problem, hence in our ex-
periments, unlike the general Cold Boot key recovery model, we assume that the bit decay
in DRAM is symmetric: bit flips 0 → 1 and 1 → 0 occur with same probabilities δ. Under
this assumption, the Cold Boot key recovery problem of a block cipher can be described as
follows.

Let KS : Fn
2 → FN

2 be the key schedule function of a block cipher, where N > n. Let GK
be an equation system corresponding to KS such that the only pairs (k,K) that satisfy GK
are any initial key k ∈ Fn

2 and round key K = KS(k). Moreover, each gi ∈ GK has the form
hi + Ki where hi is some polynomial and Ki is the i-th bit of K. Let K ′ be the decayed
round keys, and set fi = hi +K ′i for any 1 ≤ i ≤ N . Then, P = {f1, f2, . . . , fN} is the input
of the Max-PoSSo problem we need to solve.

In [1] and [14], benchmarks with symmetric noise generated from the 128-bit version of
Serpent were tested, and in the experiments of this paper, we solved the same benchmarks.
Since we use 256-bit round keys which means m = 2n, the improved ISBS algorithm which
was implemented and tested in our experiments is ISBS2, and in our implementation the
polynomial system solving process is executed by running the Characteristic Set algorithm
MFCS proposed in [9]. We compared the experimental results of ISBS2 with those of
ISBS0 and SCIP. Here, ISBS0 denotes the ISBS algorithm implemented and tested in
[14], and SCIP denotes the mixed integer programming method used in [1].

Our experimental platform is a PC with i7 2.8Ghz CPU(only one core is used), and 4GB
Memory, which is same as the one used in [14]. In our experiments, for each δ we generated
100 instances with random initial keys and random noises. As in [1, 14], we interrupted the
solver when the running time exceeded the time limit 3600 seconds.

In the following table, the column “r” gives the success rate, which is the percentage of
the instances we recovered the correct initial key, while the values in the brackets are the
percentage of the instances we achieved the optimal solution within the time limit. Note
that, there are two cases in which we cannot recover the correct initial key.

(1) The solver was interrupted after the time limit.

(2) The solution achieved from the Max-PoSSo problem is not the true solution.

The column “avg. time” gives the average running time of the instances which are solved
within the time limit, and the column “max t” gives the maximal running time for the

22

instances which are solved within the time limit.

Table 1: Serpent considering 32 ·N bits of key schedule output (symmetric noise)

δ0 = δ1 Method N limit t r min t avg. t max t
ISBS2 8 3600.0 s 100% 0.60 s 2.46 s 30.62 s

0.01 ISBS0 8 3600.0 s 100% 0.78 s 9.87 s 138.19 s
SCIP 12 3600.0 s 96% 4.60 s 256.46 s -
ISBS2 8 3600.0 s 96(99)% 0.82 s 55.67 s 996.65 s

0.02 ISBS0 8 3600.0 s 96(99)% 0.80 s 163.56 s 2001.59 s
SCIP 12 3600.0 s 79% 8.20 s 1139.72 s -
ISBS2 8 3600.0 s 91(95)% 0.58 s 171.17 s 2138.77 s

0.03 ISBS0 8 3600.0 s 90(92)% 1.74 s 314.78 s 3463.00 s
SCIP 12 7200.0 s 53% 24.57 s 4205.34 s -
ISBS2 8 3600.0 s 40(98)% 3.67 s 382.61 s 1916.91 s

0.05 ISBS0 8 3600.0 s 38(94)% 12.37 s 745.80 s 2993.81 s
SCIP 12 3600.0 s 18% 5.84 s 1921.89 s -

From the experimental results, we can see that when δ = 0.01, ISBS2 is about 4
times faster than ISBS0. When δ = 0.02, 0.03, 0.05, ISBS2 is about 2 times faster than
ISBS0.When δ = 0.05, as in [14], we interrupted the solver after we have searched all the
possible noise vectors under the noise-bound 12, thus although 98 instances ended within
the time limit, only 40 of them returned the true solutions. In summary, these experimental
results show that with our modification we significantly improve the efficiency of ISBS.

6. Conclusions

In this paper, we revisit the Max-PoSSo problem and the ISBS method. For the basic
of Max-PoSSo, we show some results about the behavior of the success rate of recovering the
true solution. For ISBS, we present some theoretical results about the number of branches
in the search tree, and propose some way to decrease the number of branches for general
polynomial systems and overdetermined polynomial systems. We implement a new algorithm
based on these improvements and test it by solving the Cold Boot Key recovery problem of
Serpent with symmetric noise. The experimental results demonstrate that compared with
the ISBS algorithm implemented in [14], the new algorithm is about 2-4 times faster for
different benchmarks.

There is an idea of further improving ISBS which can be applied in the future. In
the improved algorithm, when the artificial noise-bound increases gradually, there are some
repeated computations which can be avoided. We know that Tquasi doesn’t change after
the noise-bound increased. It means that after we increase the artificial noise-bound we
only need to continue searching the paths in Tquasi which are pruned because of the former
noise-bound. Therefore, if we can store the information of all these paths efficiently, a lot of
repeated computations can be avoided.

23

References

[1] Albrecht, M.R. and Cid, C.: Cold Boot Key Recovery by Solving Polynomial Systems with Noise.
ACNS 2011: 57-72

[2] Biham, E., Anderson, R. and Knudsen, L.: Serpent: A new block cipher proposal. In International
Workshop on Fast Software Encryption, pp. 222-238. Springer Berlin Heidelberg, 1998.

[3] Braeken A, Preneel B.: Probabilistic algebraic attacks, Cryptography and Coding. Springer Berlin
Heidelberg, 2005: 290-303.

[4] Chai, F., Gao, X.S. and Yuan, C.: A Characteristic Set Method for Solving Boolean Equations and
Applications in Cryptanalysis of Stream Ciphers, Journal of Systems Science and Complexity, 21(2),
191-208, 2008.

[5] Courtois, N. and Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations,
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267-287. Springer, Heidelberg, 2002.

[6] Cox, David A.: Ideals, varieties, and algorithms: an introduction to computational algebraic geometry
and commutative algebra. Springer, 2007.

[7] Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases (F4), Journal of Pure and
Applied Algebra, 139(1–3), 61–88, 1999.

[8] Faugère, J.C.: A New Efficient Algorithm for Computing Gröner Bases Without Reduction to Zero
(F5). In: Proc. ISSAC 2002. 75-83.

[9] Gao, X.S. and Huang, Z.: Characteristic set algorithms for equation solving in finite fields, Journal of
Symbolic Computation, 47(6), 655-679, 2012.

[10] H̊astad, J.: Satisfying Degree-d Equations over GF[2]n. APPROX-RANDOM 2011: 242-253
[11] Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul W., Calandrino, J. A., Feldman,

A. J., Appelbaum, J. and Felten, E. W.: Lest We Remember: Cold Boot Attacks on Encryption Keys.
IN: USENIX Security Symposium, USENIX Association, pp. 45-60(2009).

[12] Hartley, H. O., and E. R. Fitch.: A chart for the incomplete beta-function and the cumulative binomial
distribution. Biometrika 38.3/4 (1951): 423-426.

[13] Huang, Z.: Parametric Equation Solving and Quantifier Elimination in Finite Fields with the Charac-
teristic Set Method. Journal of Systems Science and Complexity, 25(4), 778-791, 2012.

[14] Huang, Z. and Lin, D.: A New Method for Solving Polynomial Systems with Noise over F2 and Its
Applications in Cold Boot Key Recovery, Selected Areas in Cryptography, pp. 16-33, LNCS 7707,
Windsor, Canada, 2013.

[15] Joan, D. and Rijmen, V: The design of Rijndael: AES-the advanced encryption standard. Springer
Science & Business Media, 2013.

[16] Kamal, A.A., Youssef, A.M.: Applications of SAT Solvers to AES key Recovery from Decayed Key
Schedule Images. In: Proceedings of The Fourth International Conference on Emerging Security Infor-
mation, Systems and Technologies, SECURWARE 2010, Venice/Mestre, Italy, July 18-25 (2010).

[17] Wu, W.T.: Basic Principles of Mechanical Theorem-proving in Elementary Geometries, Journal Auto-
mated Reasoning, 2, 221-252, 1986.

[18] Zhao, S.W. and Gao, X.S.: Minimal Achievable Approximation Ratio for MAX-MQ in Finite Fields,
Theoretical Computer Science, 410(21-23), 2285-2290, 2009.

Appendix: The strict proof of Proposition 2

In the following, we assume 1/r is an integer. First, we need the following two lemmas
by which we can present the binomial cumulative function by the incomplete beta function.
The two lemmas can be easily proved by integration by parts.

24

Lemma 10 [12] Let n,c be positive integer, and 0 ≤ p ≤ 1 is a real number. We have

c∑
k=0

(
n

k

)
pk(1− p)n−k =

∫ 1−p
0

tn−c−1(1− t)2dt
B(n− c, c+ 1)

,

where B(a, b) is the Beta function.

Lemma 11 [12] Let Ix(a, b) =
∫ x
0 ta−1(1−t)b−1dt

B(a,b)
. This Ix(a, b) is called the incomplete beta

function. Then, we have

(1) Ix(a, b) = 1− I1−x(b, a)

(2) Ix(a+ 1, b) = Ix(a, b)− xa(1− x)b

aB(a, b)
.

Proof of Proposition 2:

a∑
i=0

(

(
n− k
i

) a+b−i∑
j=0

(
k

j

)
) +

b∑
i=0

(
n

i

)
≥

a∑
i=0

(
n

i

)
+

b∑
i=0

(
n

i

)
.

Let k = mr, and s = 1/r is an integer. From the above two lemmas, we have f(k) =∑k
i=0 (m

i)
2m

= I1/2(k(s − 1), k + 1). Then, the conclusion is equivalent to f(k + t) ≤ f(k) for
any k, t ∈ N . Thus, it is sufficient to prove f(k + 1) ≤ f(k), ∀k ∈ N .

Note that by Lemma 11, we have

f(k + 1) = I1/2((k + 1)(s− 1), k + 2) = 1− I1/2(k + 2, (k + 1)(s− 1))

= 1− I1/2(k + 1, (k + 1)(s− 1)) +
1

2(k+1)s(k + 1)B(k + 1, (k + 1)(s− 1))

= I1/2((k + 1)(s− 1), k + 1) +
1

2(k+1)s(k + 1)B(k + 1, (k + 1)(s− 1))

For simplicity, we set a = (k + 1)(s− 1), b = k + 1. By applying (2) of Lemma 11 s− 1
times, we have

I1/2(a, b) = I1/2(a− (s− 1), b)−
s−1∑
i=1

1

2a+b−i(a− i)B(a− i, b)
.

Note that I1/2(a− (s− 1), b) = I1/2(k(s− 1), k + 1) = f(k). Thus,

f(k + 1)− f(k) =
1

2a+bbB(b, a)
−

s−1∑
i=1

1

2a+b−i(a− i)B(a− i, b)
(7)

25

Since 1 ≤ i ≤ s, we have

1

(a− i)B(a− i, b)
=

1

(a+ b− i)B(a− i+ 1, b)

=
a− i+ 1

(a+ b− i)(a+ b− i+ 1)B(a− i+ 2, b)

= · · · = (a− i+ 1)(a− i+ 2) · · · (a− 1)

(a+ b− i)(a+ b− i+ 1) · · · (a+ b− 1)B(a, b)

≥ (a− s+ 1)i−1

(a+ b− 1)iB(a, b)

Therefore, by applying the above inequality to (7), we have

f(k + 1)− f(k) ≤ 1

2a+bbB(b, a)
− 1

2a+b(a− s+ 1)B(a, b)

s−1∑
i=1

(
2(a− s+ 1)

a+ b− 1
)i.

Let q = 2(a−s+1)
a+b−1 , then f(k + 1)− f(k) = 1

2a+bB(b,a)
(1
b
− 2

a+b−1(1−q
s−1

1−q)).

Now, it is sufficient to show 1
b
− 2

a+b−1(1−q
s−1

1−q) ≤ 0. If s = 2, the conclusion is correct

obviously. Now we consider the case s ≥ 3. In this case, q− 1 = 2(a−s+1)
a+b−1 = (k−1)(s−2)−1

a+b−1 > 0.

Thus, 1−qs−1

1−q = 1 + q + · · · + qs−2 > s − 1. Then 1
b
− 2

a+b−1(1−q
s−1

1−q) < 1
k+1
− 2(s−1)

(k+1)s−1 <
1

k+1
− 2(s−1)

(k+1)s
< 2−s

(k+1)s
< 0. �

26

	Introduction
	Solving Max-PoSSo Problems over F2
	The Success Rate of Recovering the True Solution
	The Incremental Solving and Backtracking Search (ISBS) Method

	The Search Tree of ISBS
	Solving Max-PoSSo when m=sn
	Case m=2n
	The Optimal Division Strategy
	The case m=sn

	Experimental Results
	Conclusions

