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Abstract

Fuzzy extractors (Dodis et al., SIAM J. Computing 2008) convert repeated noisy readings of a
high-entropy secret into the same uniformly distributed key. A minimum condition for the security of
the key is the hardness of guessing a value that is similar to the secret, because the fuzzy extractor
converts such a guess to the key. We codify this quantify this property in a new notion called fuzzy
min-entropy. We ask: is fuzzy min-entropy sufficient to build fuzzy extractors? We provide two answers
for different settings.

1. If the algorithms have precise knowledge of the probability distribution W that defines the noisy
source is a sufficient condition for information-theoretic key extraction from W .

2. A more ambitious goal is to design a single extractor that works for all possible sources. This
more ambitious goal is impossible: there is a family of sources with high fuzzy min-entropy for
which no single fuzzy extractor is secure. This is true in three settings:

(a) for standard fuzzy extractors,

(b) for fuzzy extractors that are allowed to sometimes be wrong,

(c) and for secure sketches, which are the main ingredient of most fuzzy extractor constructions.

Keywords Fuzzy extractors, secure sketches, authentication, error-tolerance, key derivation, error-
correcting codes, entropy

1 Introduction

Sources of reproducible secret random bits enable cryptographic applications. Often, these bits are
implicit, they are obtained by repeating the same process (such as reading a biometric or a physically
unclonable function [PRTG02]) that generated them the first time. However, bits obtained this way are
noisy [BBR88, BS00, Dau04, EHMS00, GCVDD02, MG09, MRW02, PRTG02, SD07, TSS+06, ZH93].
When a secret is read multiple times readings are close (according to some metric) but not identical. To
utilize such sources, it is often necessary to remove noise, in order to derive the same value in subsequent
readings.
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The same problem occurs in the interactive setting, in which the secret channel used for transmitting
the bits between two users is noisy and/or leaky [Wyn75]. Bennett, Brassard, and Robert [BBR88]
identify two fundamental tasks:

1. Information reconciliation removes the noise with minimal leakage to an eavesdropping adversary.

2. Privacy amplification converts the high entropy secret to a uniform random value.

In this work, we consider the noninteractive version of these problems, in which these tasks are performed
together with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extractor [DORS08], which consists
of two algorithms. The generate algorithm (Gen) takes an initial reading w and produces an output key
along with a nonsecret helper value p. The reproduce (Rep) algorithm takes the subsequent reading w′

along with the helper value p to reproduce key. The correctness guarantee is that the key is reproduced
precisely when the distance between w and w′ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a (computationally un-
bounded) adversary who has observed p. This requirement is harder to satisfy as the allowed error
tolerance t increases, because it becomes easier for the adversary to guess key by guessing a w′ within
distance t of w and running Rep(w′, p). This attack is enabled by the functionality of the fuzzy extractor.

Fuzzy Min-Entropy We introduce a new entropy notion that precisely measures how hard it is for the
adversary to execute this attack. It measures the probability of guessing a value within distance t of the
original reading w. Suppose w is sampled from a distribution W . To have the maximum chance that w′

is within distance t of w, the adversary would choose the point w′ that maximizes the total probability
mass of W within the ball Bt(w

′) of radius t around w′. We therefore define fuzzy min-entropy

Hfuzz
t,∞ (W )

def
= − log max

w′
Pr[W ∈ Bt(w′)].

A fuzzy extractor’s key cannot be longer than the fuzzy min-entropy (Proposition 3.2).
However, existing constructions do not measure their security in terms of fuzzy min-entropy; instead,

their security is shown to be the min-entropy of W , denoted H∞(W ), minus some loss for error-tolerance.
This loss is due to an error-correction component that writes down enough information to determine
which point within distance t was the original point. Since there are as many as |Bt| points within radius
t it takes log |Bt| bits to specify which one.1 This value of log |Bt| is assumed to be the security loss so
the residual security is H∞(W )− log |Bt|. It is easy to show that H∞(W )− log |Bt| ≤ Hfuzz

t,∞ (W ), so it is
natural to ask whether a loss of log |Bt| is necessary. This question is particularly relevant when the gap
between the two sides of the inequality is high.2

As an example, in the biometric regime, entropy is estimated by comparing the distribution of dis-
tances between two different biometrics with a distribution with well understood statistical properties.
For example, Daugman [Dau04] shows that the distance between two irises is distributed similarly to a
binomial distribution with 249 bits of entropy. The iris is then assumed to have the same entropy as
the binomial distribution. The parameter t is determined by the experimental conditions. Daugman
recommends setting t > 205. In the Hamming metric for strings of length 2048 , |B205| ≈ 21024 (see

1We omit w in the notation |Bt| since we study metrics where the volume of the ball Bt(w) does not depend on the center
w.

2For nearly uniform distributions, Hfuzz
t,∞(W ) ≈ H∞(W )− log |Bt|. In this setting, standard coding based constructions of

fuzzy extractors (using almost optimal codes) yield keys of size approximately Hfuzz
t,∞(W ).
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Lemma 2.2). Thus, iris scans have

H∞(W )− log |Bt| ≈ 249− 1024 < 0,

(see discussion in [BH09, Section 5]). However, iris scans for different people appear to be well-spread in
the metric space [Dau06], the closest observed distance between two different irises is 548. This indicates
the distribution of W has Hfuzz

t,∞ (W ).
The current state of fuzzy extractors is unsettling. For many distributions W with min-entropy, we

have no known construction and no known impossibility result. We hope the more precise notion of
fuzzy min-entropy can rectify this situation. Ideally, one could show a fuzzy extractor exists for every
distribution with enough fuzzy min-entropy and that they are impossible with less fuzzy min-entropy. That
is, we ask: is fuzzy min-entropy sufficient for fuzzy extraction? There is evidence that it may be sufficient
when the security requirement is computational rather than information-theoretic—see Section 1.2. We
provide an answer for the case of information-theoretic security in two settings.

Contribution 1: Sufficiency of Hfuzz
t,∞ (W ) for a Precisely Known W We first consider the case

when the fuzzy extractor designer has precise knowledge of the probability distribution function of W . In
this setting, it is possible to construct a fuzzy extractor that extracts a key almost as long as Hfuzz

t,∞ (W )
(Theorem 4.3).3 Our construction crucially utilizes the probability distribution function of W and, in
particular, cannot necessarily be realized in polynomial time (this is similar, for example, to the interactive
information-reconciliation feasibility result of [RW04]). This result shows that Hfuzz

t,∞ (W ) is a necessary
and sufficient condition for building a fuzzy extractor for a given distribution W .

A number of previous works in the precise knowledge setting described tight bounds for specific
distributions (for example, [JW99, LT03, TG04, HAD06, WRDI11, IW12]). These works are summarized
in Table 1. Our characterization unifies previous work, and justifies using Hfuzz

t,∞ (W ) as the measure of the
quality of a noisy distribution, rather than cruder measures such as H∞(W )− log |Bt|. Our construction
can be viewed as a reference to evaluate the quality of efficient constructions in the precise knowledge
setting by seeing how close they get to extracting all of Hfuzz

t,∞ (W ).
Many works consider i.i.d sources, for example [TG04]. These works are able to derive a key qual-

itatively longer than fuzzy min-entropy. This is because one can characterize i.i.d sources in terms of
Shannon entropy, denoted H1(·), instead of min-entropy. Each symbol of W is a separate “draw” from
the distribution enabling average case analysis as the dimension n of the metric space increases. Key
length for i.i.d. sources asymptotically approaches H1(W ) − H1(W |W ′) where W ′ is the distribution
of noisy readings around W [TG04, Theorem 2]. It is difficult to directly compare with these works as
they do not specify concrete losses for a fixed source length and they consider Shannon entropy. Qualita-
tively, Shannon entropy can be arbitrarily higher than min-entropy. Unfortunately, many biometrics and
hardware sources are not i.i.d. (see for example [Dau04]), so this analysis should be used judiciously.

Contribution 2: The Cost of Distributional Uncertainty Assuming precise knowledge of a dis-
tribution W is often unrealistic for high-entropy distributions; they can never be fully observed directly
and must therefore be modeled. It is unrealistic to assume that the designer’s model of a distribution is
as accurate as the adversary’s model. The adversary may have more resources including time to build
a model when the construction is deployed. Existing fuzzy extractors are shown secure for a family of
sources (for example, all sources of min-entropy at least m with at most t errors). The attacker may know
more about the distribution than the designer. We call this the distributional uncertainty setting.

Our second contribution is a set of negative results for the distributional uncertainty setting. We
provide two impossibility results for fuzzy extractors. Both demonstrate families W of distributions over

3Woodage et al. present an improved version of this theorem [WCD+17]. We discuss their work below.
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Work Metric Dist. Residual Entropy

This Work/[WCD+17] Any discrete Generic Hfuzz
t,∞(W ) −2 log 1/ε− log 1/δ + 1

[JW99] Hamming Uniform Hfuzz
t,∞(W ) −2 log 1/ε− 2

[LT03]/[TG04] Any with almost perfect codes i.i.d ≈ H1(W )−H1(W |W ′) −o(n)
[DORS08] Hamming/Set Difference/Edit Generic H∞(W )− log |Bt| −2 log 1/ε− 2

Table 1: Comparison of Fuzzy Extractor Constructions. Here, ε is the statistical distance from the
uniform distribution, δ is the allowed error, and t is the desired error tolerance. Note that Hfuzz

t,∞ (W ) ≥
H∞(W )− log |Bt|. Here n is the dimension of the metric space. H1 represents Shannon entropy and W ′

is the distribution that adds noise to the enrollment value W .

{0, 1}n such that each distribution in the family has Hfuzz
t,∞ linear in n, but no fuzzy extractor can be secure

for most distributions inW. A fuzzy extractor designer who knows only that the distribution comes from
W cannot secure the family, despite the fact that fuzzy extractors can be designed for each distribution
in the family individually.

The first impossibility result (Theorem 5.1) assumes that Rep is perfectly correct and rules our fuzzy
extractors for entropy rates, defined as µ = Hfuzz

t,∞ (W )/n, as high as µ ≈ 0.18. The second impossibility
result (Theorem 6.1), relying on the work of Holenstein and Renner [HR05], also rules out fuzzy extractors
in which Rep is allowed to make a mistake, but applies only to distributions with entropy rates up to
µ ≈ 0.07.

We also provide a third impossibility result (Theorem 7.2), this time for an important building block
called “secure sketch.” A secure sketch is a one-round information-reconciliation component (that recovers
the original w from the input w′). Secure sketches are used in most fuzzy extractor constructions. The
result rules out secure sketches for a family of distributions with entropy rate up to µ = 0.5, even if
the secure sketches are allowed to make mistakes. We define secure sketches formally in Section 7. Most
fuzzy extractor constructions are analyzed for all families with a certain amount of entropy. Thus, showing
impossibility for higher entropy rates raises the lower bound on how much fuzzy min-entropy must be
present in the physical distribution for security to be based on just fuzzy min-entropy. As discussed in
Section 8, another alternative is to assume additional structure about the physical source.

1.1 Our Techniques

Techniques for Positive Results for a Precisely Known Distribution We now provide intuition
for our positive result for a precisely known distribution W with fuzzy min-entropy. We begin with
distributions in which all points in the support have the same probability (so-called “flat” distributions).
Gen extracts a key from the input w using a randomness extractor [NZ93]. Consider some subsequent
reading w′. To achieve correctness, the string p must permit Rep to disambiguate which point w ∈ W
within distance t of w′ was given to Gen. Disambiguating multiple points can be accomplished by universal
hashing, as long as the size of hash output space is slightly greater than the number of possible points.
Thus, Rep includes into the public value p a “sketch” of w computed via a universal hash of w. To
determine the length of that sketch, consider the heaviest (according to W ) ball B∗ of radius t. Because
the distribution is flat, B∗ is also the ball with the most points of nonzero probability. Thus, the length
of the sketch needs to be slightly greater than the logarithm of the number of non-zero probability points
in B∗. Since Hfuzz

t,∞ (W ) is determined by the weight of B∗, the number of points cannot be too high and
there will be entropy left after the sketch is published. This remaining entropy suffices to extract a key.

For an arbitrary distribution, we cannot afford to disambiguate points in the ball with the greatest
number of points, because there could be too many low-probability points in a single ball despite a high
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Hfuzz
t,∞ (W ). We solve this problem by splitting the arbitrary distribution into a number of nearly flat

distributions we call “levels.” We then write down, as part of the sketch, the level of the original reading
w and apply the above construction considering only points in that level. We call this construction leveled
hashing (Construction 4.2).

Techniques for Negative Results for Distributional Uncertainty We construct a family of distri-
butions W and prove impossibility for a uniformly random W ←W. We start by observing the following
asymmetry: Gen sees only the sample w (obtained via W ←W and w ←W ), while the adversary knows
W .

To exploit the asymmetry, in our first impossibility result (Theorem 5.1), we construct W so that
conditioning on the knowledge of W reduces the distribution to a small subspace (namely, all points on
which a given universal hash function produces a given output), but conditioning on only w leaves the
rest of the distribution uniform on a large fraction of the entire space. An adversary can exploit the
knowledge of the hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into regions that produce a consistent value under
Rep (preimages of each key under Rep(·, p)). For each of these regions, the adversary knows that possible
w lie at distance at least t from the boundary of the region (else, the fuzzy extractor would have a nonzero
probability of error). However, in the Hamming space, the vast majority of points lie near the boundary
(this result follows by combining the isoperimetric inequality [Har66], which shows that the ball has the
smallest boundary, with bounds on the volume of the interior of a ball, which show that this boundary
is large). This allows the adversary to rule out so many possible w that, combined with the adversarial
knowledge of the hash value, many regions become empty, leaving key far from uniform.

For the second impossibility result (Theorem 6.1, which rules out even fuzzy extractors that are
allowed a possibility of error), we let the adversary know some fraction of the bits of w. Holenstein and
Renner [HR05] showed that if the adversary knows each bit of w with sufficient probability, and bits of
w′ differ from bits of w with sufficient probability, then so-called information-theoretic key agreement is
impossible. Converting the impossibility of information-theoretic key agreement to impossibility of fuzzy
extractors takes a bit of technical work.

1.2 Related Settings

Other settings with close readings: Hfuzz
t,∞ is sufficient The security definition of fuzzy extractors

can be weakened to protect only against computationally bounded adversaries [FMR13]. In this compu-
tational setting, under the assumption of semantically secure graded encoding, for most distance metrics
a single fuzzy extractor can simultaneously secure all possible distributions [BCKP14, BCKP17]. This
construction is secure when the adversary can rarely learn key with oracle access to the program func-
tionality. The set of distributions with fuzzy min-entropy are exactly those where an adversary learns key
with oracle access to the functionality with negligible probability. Bitansky et al.’s [BCKP17] construction
requires heavy weight and disputed cryptographic tools similar to those used to construct indistinguisha-
bility obfuscation [GGH+13, GGH+16]. Their result implies that extending our negative result to the
computational setting would have negative implications on the existence of certain types of obfuscation.

Furthermore, the functional definition of fuzzy extractors can be weakened to permit interaction
between the party having w and the party having w′. Such a weakening is useful for secure remote
authentication [BDK+05]. When both interaction and computational assumptions are allowed, secure two-
party computation can produce a good key whenever the distribution W has fuzzy min-entropy. The two-
party computation protocol needs to be secure without assuming authenticated channels; it can be built
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under the assumptions of collision-resistant hash functions and enhanced trapdoor permutations [BCL+11]
or oblivious transfer and a variant of the random oracle model [DHP+18].

Correlated rather than close readings A different model for the problem of key derivation from
noisy sources does not explicitly consider the distance between w and w′, but rather views w and w′ as
realizations of a correlated pair of random variables (W,W ′). This model is considered in multiple works,
including [Wyn75, CK78, AC93, Mau93]; recent characterizations of when key derivation is possible in
this model include [RW05] and [TW15].

Much of the work on correlated pairs considers interactive protocols (as opposed to the noninteractive
agreement needed for fuzzy extractors). However, the impossibility results for that setting are directly
relevant to our work, because ruling out interactive protocols also rules out noninteractive ones. Recall
that our starting point is the observation that the fuzzy extractor’s output length (Proposition 3.2) is
at most the fuzzy min-entropy of W . Prior work of Tyagi and Watanabe [TW15], and concurrent (with
ours) work of those authors with Viswanath [TVW18], developed general upper bounds on the achievable
secret key length for correlated readings (via “conditional independence testing”). We can apply these
in our setting by taking W ′ to be a random string within distance t of W to obtain impossiblity results
analogous to Proposition 3.2. Our technique is less general, since it is tailored to the constraint on the
distance between w and w′; however, this specificity allows us to give a simple, direct proof.

The conditional independence testing framework also applies to what we call the “unknown distribu-
tion” case (dubbed “correlated information at the eavesdropper” in the correlated readings literature).
Given a joint distribution on W,W ′, Z, where Z is held by the eavesdropping adversary, the conditional
testing framework gives an upper bound on the achievable key length (and hence an impossibility re-
sult when that bound is small). The framework does not show how one can construct distributions for
which this bound is small. In particular, it is an open question whether one can derive versions of our
impossibility results for unknown distributions (Theorems 5.1 and 6.1) using the framework. Even using
the specific constructions of W,W ′, Z that arise in our proofs, it is open whether the conditional testing
framework provides a good bound on the key length.

1.3 Concurrent and subsequent work

A construction that is very similar to our positive result in the known distribution setting (Construction 4.2)
was used independently in a concurrent work of Hayashi, Tyagi, and Watanabe [HTW14], who used the
term “spectrum slicing” to describe it. They also extended this technique to the case of distributional
uncertainty, using it in an interactive protocol, with one side telling the other to keep increasing the length
of the sketch until Rep could succeed. This interactive approach was used in subsequent works, as well
(e.g., [TW17, TVW18, LA18]).

Li and Anantharam [LA18] consider correlated readings in the known distribution setting. They show
that maximum expected key length for interactive protocols that are allowed to output variable-lengths
keys is closely related to the mutual information between W and W ′.

Woodage et al. [WCD+17] showed a clever extension to our leveled hashing construction (Construction
4.2). They observed the level information does not have to be explicitly included as part of the sketch.
The construction uses leveled hashing but with two important changes:

1. The level is not written. Denote by h` the hash with the greatest number of output bits. If the
used hash, hi, has |hi| < h` then the output is extended with random bits to length |h`|. Instead of
looking for an exact match the Rep algorithm finds the close point that matches the stored string
at the longest prefix. This can be seen as considering all possible levels of the original hash.
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2. In the our construction, the hash output is determined by how many points are in the neighborhood
of points with that probability. This may lead to some levels with short hash outputs. This is a
problem for Woodage et al.’s construction, if there are multiple short levels, the longest prefix may
be the wrong level with noticeable probability. To address this problem, Woodage et al. use the
(negative log of the) probability of a point to compute the length of the hash output. This ensures
that all levels have length of at least the min-entropy of the distribution making collisions unlikely.
Importantly, this change requires a change in the security argument, essentially arguing that all
sketches are equally likely regardless of the starting level. This change requires an augmentation to
the hash function called strong universality [CW79].

Fuller and Peng [FP19] extended our negative results to sources that are drawn from continuous metric
spaces equipped with the Euclidean metric. There are two main differences between the Euclidean space
and our setting:

1. Fewer points lie near the boundary of a ball in Euclidean space.

2. The use of continuous spaces requires volume techniques. So rather than showing that the hash value
leaves few possibilities for w, they show that the “volume” of distributions is larger than the interior
of parts. Thus, any choice for the interior of parts must not contain a fraction of distributions.

These changes necessitate the use of a different family that is derived from all cosets of random lattices
with sufficient minimum distance (known as construction A).

2 Preliminaries

Random Variables We use uppercase letters for random variables and corresponding lowercase letters
for their samples. A repeated occurrence of the same random variable signifies the same value of the
random variable: for example (W, SS(W )) is a pair of random variables obtained by sampling w according
to W and applying the algorithm SS to w. The statistical distance between random variables A and B
with the same domain is

SD(A,B) =
1

2

∑
a

|Pr[A = a]− Pr[B = b]| = max
S

Pr[A ∈ S]− Pr[B ∈ S].

Entropy Let log denote the base 2 logarithm. Let (X,Y ) be a pair of random variables. Define min-
entropy of X as H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) min-entropy [DORS08,
Section 2.4] of X given Y as

H̃∞(X|Y ) = − log

(
E

y←Y
max
x

Pr[X = x|Y = y]

)
.

Define Hartley entropy H0(X) to be the logarithm of the size of the support of X, that is H0(X) =
log |{x|Pr[X = x] > 0}|. Define average-case Hartley entropy by averaging the support size:

H̃0(X|Y ) = log( E
y←Y
|{y|Pr[X = x|Y = y] > 0}|).

For 0 < a < 1, the binary entropy is h2(p) = −p log p − (1 − p) log(1 − p), which corresponds to the
Shannon entropy of any random variable that is 0 with probability p and 1 with probability 1− p.
Randomness Extractors We use randomness extractors [NZ93], as defined for the average case in
[DORS08, Section 2.5].
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Definition 2.1. Let M, χ be finite sets. A function ext : M× {0, 1}d → {0, 1}κ a (m̃, ε)-average case
extractor if for all pairs of random variables X,Y over M, χ such that H̃∞(X|Y ) ≥ m̃, we have

SD((ext(X,Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.

Metric Spaces and Balls Let M be some finite space and let the function dis :M×M→ R+ ∪ {0}
be a distance metric (identity of indiscernibles, symmetric, and triangle inequality). For a metric space
(M, dis), the (closed) ball of radius t around w is the set of all points within radius t, that is, Bt(w) =
{w′|dis(w,w′) ≤ t}. We consider the Hamming metric over vectors in Zn for some finite alphabet Z,
defined via dis(w,w′) = |{i|wi 6= w′i}|. In this space, the size of a ball in a metric space does not depend
on w, so we denote by |Bt| the size of a ball (centered arbitrarily) of radius t. Uκ denotes the uniformly
distributed random variable on {0, 1}κ. We use the bounds on |Bt| in {0, 1}n, see [Ash65, Lemma 4.7.2,
equation 4.7.5, p. 115] for proofs.

Lemma 2.2. Let τ = t/n. The volume |Bt| of the ball of radius in t in the Hamming space {0, 1}n
satisfies

1√
8nτ(1− τ)

· 2nh2(τ) ≤ |Bt| ≤ 2nh2(τ) .

We modify the definition of fuzzy extractors slightly from the work of Dodis et al. [DORS08, Sections
3.2]. First, we allow for error as discussed in [DORS08, Section 8]. Second, in the distributional uncertainty
setting we consider a general family W of distributions instead of families containing all distributions of
a given min-entropy. Let M be a metric space with distance function dis.

Definition 2.3. An (M,W, κ, t, ε)-fuzzy extractor with error δ is a pair of randomized procedures, “gen-
erate” (Gen) and “reproduce” (Rep). Gen on input w ∈ M outputs an extracted string key ∈ {0, 1}κ and
a helper string p ∈ {0, 1}∗. Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following
properties:

1. Correctness: if dis(w,w′) ≤ t and (key, p)← Gen(w), then Pr[Rep(w′, p) = key] ≥ 1− δ.

2. Security: for any distribution W ∈ W, if (Key, P )← Gen(W ), then SD((Key, P ), (Uκ, P )) ≤ ε.

In the above definition, the value of w′ must be chosen before p is known in order for the correctness
guarantee to hold (alternatively, w′ can be sampled from a probability distribution that is independent
of p).

The Case of a Precisely Known Distribution If in the above definition we take W to be a one-
element set containing a single distribution W , then the fuzzy extractor is said to be for a precisely known
distribution. In this case, we need to require correctness only for w that have nonzero probability. We
specify no requirement that the algorithms are compact or efficient, and so the distribution can be fully
known to them.

3 New Notion: Fuzzy Min-Entropy

The fuzzy extractor helper string p allows everyone, including the adversary, to find the output of Rep(·, p)
on any input w′. Ideally, p should not provide any useful information beyond this ability, and the outputs
of Rep on inputs that are too distant from w should provide no useful information, either. In this ideal
scenario, the adversary is limited to trying to guess a w′ that is t-close to w. We measure the quality of
a source by (the negative logarithm of) the success of this attack.
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Definition 3.1. The t-fuzzy min-entropy of a distribution W in a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

max
w′

∑
w∈M|dis(w,w′)≤t

Pr[W = w]


Fuzzy min-entropy measures the functionality provided to the adversary by Rep (since p is public), and
thus is a necessary condition for security. We formalize this statement in the following proposition.

Proposition 3.2. Let W be a distribution over (M, dis) with Hfuzz
t,∞ (W ) = m. Let (Gen,Rep) be a

(M, {W}, κ, t, ε)-fuzzy extractor with error δ. Then

2−κ ≥ 2−m − δ − ε.

If δ = ε = 2−κ, then κ cannot exceed m+ 2.

Proof. Let W be a distribution where Hfuzz
t,∞ (W ) = m. This means that there exists a point w′ ∈M such

that
∑

w∈M|dis(w,w′)≤t Pr[W = w] = 2−m. Consider the following function Dw′ :

• Input (key, p).

• If Rep(w′, p) = key, output 1.

• Else output 0.

Clearly, Pr[Dw′(Key, P ) = 1] ≥ 2−m − δ, while Pr[Dw′(Uκ, P ) = 1] = 1/2κ. Thus,

SD((Key, P ), (Uκ, P )) ≥ Pr[Dw′(Key, P ) = 1]− Pr[Dw′(Uκ, P ) = 1] ≥ 2−m − δ − 2−κ.

Proposition 3.2 extends to the settings of computational security and interactive protocols if the definition
gives the adversary access to the true Key. We explore properties of fuzzy min-entropy below. These
properties are included to demonstrate the utility of fuzzy min-entropy and are not necessary to complete
the proofs in this work. Conditioning on an event p of probability Pr[P = p] decreases fuzzy min-entropy
by a factor of at most log 1/Pr[P = p].

Lemma 3.3. Hfuzz
t,∞ (W |P = p) ≥ Hfuzz

t,∞ (W ) + log Pr[P = p].

Proof.

Hfuzz
t,∞ (W |P = p) = − log

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w|P = p]


= − log

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w ∧ P = p]

Pr[P = p]


≥ − log

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w]

Pr[P = p]


= Hfuzz

t,∞ (W ) + log Pr[P = p].

The second line follows from the first using Bayes rule, the third follows from the second using the
monotonicity of probability. The last line follows by factoring 1/Pr[P = p] from the sum, and noting the
sum then represents Hfuzz

t,∞ (W ).
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Conditional fuzzy min-entropy Properly defined, fuzzy min-entropy obeys a chain rule. We start by
defining a conditional notion of fuzzy min-entropy for a random variable P .

Definition 3.4. For distributions W,P , the t-conditional fuzzy min-entropy of W |P in a metric space
(M, dis) is:

H̃fuzz
t,∞ (W |P ) = − log

 E
p←P

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w|P = p]

 .

Then a chain rule analogous to average min-entropy [DORS08, Lemma 2.2b] applies:

Lemma 3.5. H̃fuzz
t,∞ (W |P ) ≥ Hfuzz

t,∞ (W )−H0(P ).

Proof.

H̃fuzz
t,∞ (W |P ) = − log

 E
p←P

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w|P = p]


= − log

∑
p

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w|P = p] Pr[P = p]


= − log

∑
p

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w ∧ P = p]


≥ − log

∑
p

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w]


≥ − log

2H0(P )

max
w′

∑
w|dis(w,w′)≤t

Pr[W = w]


≥ Hfuzz

t,∞ (W )−H0(P ).

Here the second line follows from the first using the definition of expectation. The third follows using
Bayes rule. The fourth follows using monotonicity of expectation. By definition, there are at 2H0(P )

possibilities for p, yielding the fifth line. The last line results by recognizing Hfuzz
t,∞ (W ) and converting to

entropy.

4 Hfuzz
t,∞ (W ) is Sufficient in the Precise Knowledge Setting

In this section, we build fuzzy extractors that extract almost all of Hfuzz
t,∞ (W ) for any distribution W . These

constructions assume precise knowledge of W and are not efficient. We begin with flat distributions and
then turn to arbitrary distributions.

Let supp(W ) = {w|Pr[W = w] > 0} denote the support of a distribution W . A distribution W is flat
if all elements of supp(W ) have the same probability. Our construction for this case is quite simple: to
produce p, Gen outputs a hash of its input point w and an extractor seed; to produce key, Gen applies

10



the extractor to w. Given w′, Rep looks for w ∈ supp(W ) that is near w′ and has the correct hash value,
and applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that universal hashing has a long history of
use for information reconciliation, for example [BBR88], [RW04], and [ST09]. This construction is not
novel; rather, we present it as a stepping stone for the case of general distributions.)

Definition 4.1 ([CW79]). Let F : K ×M → R be a function. We say that F is universal if for all
distinct x1, x2 ∈M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1

|R|
.

In our case, the hash output length needs to be sufficient to disambiguate elements of supp(W )∩Bt(w′)
with high probability. Observe that there are at most 2H∞(W )−Hfuzz

t,∞(W ) such elements when W is flat, so
output length slightly greater (by log 1/δ) than H∞(W ) − Hfuzz

t,∞ (W ) will suffice. Thus, the output key
length will be Hfuzz

t,∞ (W )− log 1/δ−2 log 1/ε+2 (by using average-case leftover hash lemma, per [DORS08,
Lemma 2.2b, Lemma 2.4]). As this construction is only a warm-up, so we do not state it formally and
proceed to general distributions.

4.1 Fuzzy Extractor for Arbitrary Distributions

The above hashing approach does not work for arbitrary sources. Consider a distribution W consisting
of the following balls: B1

t is a ball with 2H∞(W ) points with total probability Pr[W ∈ B1
t ] = 2−H∞(W ),

B2
t , ..., B

2−H∞(W )

t are balls with one point each with probability Pr[W ∈ Bi
t] = 2−H∞(W ). The above

hashing algorithm writes down H∞(W ) bits to achieve correctness on B1
t . However, with probability

1− 2−H∞(W ) the initial reading is outside of B1
t , and the hash completely reveals the point.

Instead, we use a layered approach: we separate the input distribution W into nearly-flat layers, write
down the layer from which the input w came (i.e., the approximate probability of w) as part of p, and
rely on the construction from the previous part for each layer. In other words, the hash function output
is now variable-length, longer if probability of w is lower. Thus, p now reveals a bit more about w. To
limit this information and the resulting security loss, we limit number of layers. As a result, we lose only
1 + logH0(W ) more bits of security compared to the previous section.

The main idea is that providing the level information makes the distribution look nearly flat (the
probability of points differs by at most a factor of two, which increases the entropy loss as compared to
the flat case by only one bit). The level information itself increases the entropy loss by logH0(W ) bits,
because there are only H0(W ) levels that contain enough weight to matter. In subsequent work, Woodage
et al. show that level information does not have to be leaked [WCD+17, Theorem 3]. We now present a
formal description of our construction.

Construction 4.2. Let W be a distribution over a metric space M with H∞(W ) = m.

• Let δ ≤ 1
2 be the error parameter.

• Let ` = m+H0(W )− 1; round ` down so that `−m is an integer (i.e., set ` = m+ b(`−m)c).

• For each i = m,m + 1, . . . , ` − 1, let Li = (2−(i+1), 2−i] and let Fi : Ki ×M → Ri be a family of
universal hash functions with log |Ri| = i+ 1−Hfuzz

t,∞ (W ) + log 1/δ. Let L` = (0, 2−`].

• Let ext be an (m̃, ε)-average-case extractor for m̃ = Hfuzz
t,∞ (W )− logH0(W )− log 1/δ−1 with output

length κ.
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Define GenW ,RepW as:

GenW

1. Input: w.

2. Find i such that
Pr[W = w] ∈ Li.

3. If i = ` then set ss = (i, w, 0).

4. Else sample K ← Ki
and set ss = (i, Fi(K,w),K)

5. Sample a uniform extractor
seed seed

6. Output key = ext(w, seed),
p = (ss, seed).

RepW

1. Input: (w′, p = (ss, seed))

2. Parse ss as (i, y,K)

3. If i = ` then set w∗ = y.

4. Else

(a) Let W ∗ = {w∗|dis(w∗, w′) ≤ t
∧ Pr[W = w∗] ∈ Li}.

(b) Find any w∗ ∈W ∗ such that
Fi(K,w

∗) = y;
if none exists, set w∗ =⊥.

5. Output ext(w∗, seed).

We instantiate this construction with the extractor parameters given by a universal hash (namely,
κ = m̃− 2 log 1/ε+ 2):

Theorem 4.3. For any metric space M, distribution W over M, distance t, error δ > 0, and security
ε > 0, there exists a (M, {W}, κ, t, ε)-known distribution fuzzy extractor with error δ for κ = Hfuzz

t,∞ (W )−
logH0(W )− log 1/δ − 2 log 1/ε+ 1.

Proof of Theorem 4.3. We first argue correctness. Fix some w,w′ within distance t. When Pr[W = w] ∈
L`, then Rep is always correct, so let’s consider only the case when Pr[W = w] 6∈ L`. The algorithm Rep
will never output ⊥ since at least the correct w will match the hash. Thus, an error happens when another
element w∗ ∈ W ∗ has the same hash value F (Ki, w

∗) as F (Ki, w). Observe that the total probability
mass of W ∗ is greater than |W ∗| · 2−(i+1) but less than or equal to the maximum probability mass in a

ball of radius t, 2−H
fuzz
t,∞(W ). Therefore, |W ∗| ≤ 2i+1−Hfuzz

t,∞(W ). Each element of W ∗ has the same hash as
F (K,w) with probability at most 1/|Ri|, and thus correctness with error |W ∗|/|R| ≤ δ follows by the
union bound.

Security: We now argue security of the construction. Let Wi = {w|Pr[W = w] ∈ Li}. For ease of
notation, let us make the special case of i = ` as part of the general case, as follows: define K` = {0},
F`(0, w) = w, and R` = W`. Also, denote by SS the randomized function that maps w to ss. First, we
set up the analysis by levels:

2−H̃∞(W |SS(W )) = E
ss

max
w

Pr[W = w |SS(W ) = ss]

=
∑
ss

max
w

Pr[W = w ∧ SS(W ) = ss]

=
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w

Pr[W = w ∧ SS(W ) = (i, y,K)]

≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧ Fi(K,w) = y ∧K output by Gen] .
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We now pay the penalty of |Ri| for the presence of y (observe that removing the condition that Fi(K,w) =
y from the conjuction cannot reduce the probability):

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧K is chosen by SS]

=
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w ∧K is chosen by SS] .

We now get rid of the key, because it is independent:

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w] · 1

|Ki|

=
∑̀
i=m

|Ri| · max
w∈Wi

Pr[W = w] ≤ |R`| · 2−` +

`−1∑
i=m

|Ri| · 2−i .

Finally, we add everything up, recalling that |Ri| for i < ` is 2i+1−Hfuzz
t,∞(W )+log 1/δ.

2−H̃∞(W |SS(W )) ≤ 2H0(W ) · 2−` + (`−m) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses ` > m+H0(W )− 2)

< 22−m + (`−m) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses m ≥ Hfuzz
t,∞ (W ) and log 1/δ ≥ 1)

≤ (`−m+ 1) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses ` ≤ m+H0(W )− 1)

≤ H0(W ) · 21−Hfuzz
t,∞(W )+log 1/δ .

Taking the negative logarithm of both sides, we obtain m̃
def
= H̃∞(W |SS(W )) = Hfuzz

t,∞ (W )− logH0(W )−
log 1/δ − 1. Applying the (m̃, ε) randomness extractor gives us the desired result.

5 Impossibility of Fuzzy Extractors for a Family with Hfuzz
t,∞

In the previous section, we showed the sufficiency of Hfuzz
t,∞ (W ) for building fuzzy extractors when the

distribution W is precisely known. However, it is usually infeasible to characterize a high-entropy
distribution W . Traditionally, algorithms deal with this distributional uncertainty by providing security
for a family of distributions W. In this section, we show that distributional uncertainty comes at a real
cost.

We demonstrate an example over the binary Hamming metric in which every W ∈ W has linear
Hfuzz
t,∞ (W ) (which is in fact equal to H∞(W )), and yet there is some W ∈ W where even for 3-bit keys,

the key distribution is far from uniform, ε = 1
4 . In fact, we show that the adversary need not work hard:

even a uniformly random choice of distribution W from W will thwart the security of any (Gen,Rep).
The one caveat is that, for this result, we require Rep to be always correct (i.e., δ = 0). As mentioned in
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the introduction, this perfect correctness requirement is removed in Sections 6 and 7 at a cost of lower
entropy rate and stronger primitive, respectively.

The result is based on the following reasoning: Gen sees only a random sample w from a random
W ∈ W, but not W . The adversary sees W but not w. Because Gen does not know which W the input
w came from, Gen must produce p that works for many distributions W that contain w in their support.
Such p necessarily reveals a lot of information. The adversary can combine information gleaned from
p with information about W to narrow down the possible choices for w and thus distinguish key from
uniform.

Theorem 5.1. There exists a family of distributions W over {0, 1}n equipped with the Hamming metric
such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any ({0, 1}n,W, κ, t, ε)-fuzzy
extractor with error δ = 0 has ε > 1/4.

This holds as long as κ ≥ 3 and under the following conditions on the entropy rate µ = m/n, noise
rate τ = t/n, and n:

• any 0 ≤ τ < 1
2 ,

• any µ > 0 such that µ < 1− h2(τ) and µ < 1− h2
(
1
2 − τ

)
, and

• any n ≥ max

(
2

1−h2(τ)−µ ,
5

1−h2( 1
2
−τ)−µ

)
.

The conditions on µ and τ imply the result applies to any entropy rate µ ≤ .18 as long as τ is set
appropriately and n is sufficiently large (for example, the result applies to n ≥ 1275 and τ = .6

√
µ when

0.08 ≤ µ ≤ .18). The τ vs. µ tradeoff is depicted in Figure 1.
Here we first provide short intuition, followed by the proof. The overall goal of the proof is show a

lower bound on the value of ε which is the quality of the output key.

• One can partition the input metric space according to what value of key is output by Rep(w, p).

• The value of p reduces the set of possible w because, by correctness of Rep, every candidate input
w to Gen must be such that all of its neighbors w′ of distance at most t produce the same output
of Rep(w′, p).

• The isoperimetric inequality then shows for most parts, almost all points are not in the interior
(Lemma 5.2).

• The above gives a bound on the residual entropy of w conditioned on p for most values of key. The
second part of the proof incorporates the adversary’s knowledge of the distribution W ∈ W.

• We show the theorem holds for an average member ofW. Let Z denote a uniform choice of W from
W and denote by Wz the choice specified by a particular value of z.

• Let {Hashk}k∈K be a family of hash functions with domain M = {0, 1}n that is universal (small
collision probability for any two points across the hash key), regular (large preimage size for any
output value), and has preimage sets with high minimum distance. Then define z = (k, h) and
define W(k,h) as the uniform distribution over the set {w|Hash(w, k) = h)(k,h).

• The hash function we use is the output of a parity check matrix for a random code with high
distance. Thus, each distribution Wz is a coset of some randomly chosen code C with good distance
(that is not known by the construction). This family has the required properties (see Lemma 5.4).
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Figure 1: The region of τ (x-axis) and µ (y-axis) pairs for which the three negative results apply (Theo-
rems 5.1, 6.1 and 7.2). The Section 5 and Section 7 curves overlap starting at τ = .25.

• Since z is regular and preimage sets have minimum distance each Wz has high fuzzy min-entropy.

• The hash is universal, so learning the value of z reduces the set of possible values by another factor
(Lemma 5.3).

• With this additional loss, for the average Wz, the interior of many parts contain no points from Wz.
One can now build a distinguisher for a key derived from Wz from a random key. If a key comes
from a part whose interior is empty the distinguisher outputs random, otherwise it outputs real.

We now proceed with the full proof.

Proof of Theorem 5.1. We show the impossibility for an average member of W. We defer describing the
family W until after a new bound on the preimage set size of most keys for a fuzzy extractor. The
following lemma shows that the knowledge of p and key reduces the entropy of w.

Lemma 5.2. Suppose M is {0, 1}n with the Hamming metric, κ ≥ 2, 0 ≤ t ≤ n/2, and ε ≥ 0. Suppose
(Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor with error δ = 0, for some distribution family W over M.
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Let τ = t/n. For any fixed p, there is a set GoodKeyp ⊆ {0, 1}κ of size at least 2κ−1 such that for every
key ∈ GoodKeyp,

log |{v ∈M|(key, p) ∈ supp(Gen(v))}| ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
,

and, therefore, for any distribution DM on M,

H0(DM|Gen(DM) = (key, p)) ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
.

Proof. The set GoodKeyp consists of all keys for which H0(M|Rep(M, p) = key) ≤ 2n−κ+1.
The intuition is as follows. By perfect correctness of Rep, the input w to Gen has the following

property: for all w′ within distance t of w, Rep(w′, p) = Rep(w, p). Thus, if we partition M according to
the output of Rep, the true w is t away from the interior of a part. Interior sets are small, which means
the set of possible of w values is small. (We note that by perfect correctness, Rep has a deterministic
output even if the algorithm is randomized, so this partition is well-defined.)

To formalize this intuition, fix p and partition M according to the output of Rep(·, p) as follows: let
Qp,key = {w′ ∈M|Rep(w′, p) = key}. Note that there are 2κ keys and thus 2κ parts Qp,key. Let GoodKeyp
by the set of keys for which these parts are not too large: key ∈ GoodKeyp ⇔ |Qp,key| ≤ 2·M/2κ = 2n−κ+1.
Observe that GoodKeyp contains at least half the keys: |GoodKeyp| ≥ 2κ−1 (if not, then ∪key|Qp,key| >
|M|). For the remainder of the proof we focus on elements in GoodKeyp.

As explained above, if w is the input to Gen, then every point w′ within distance t of w must be in
the same part Qp,key as w, by correctness of Rep. Thus, w must come from the interior of some Qp,key,
where interior is defined as

Inter(Qp,key) = {w ∈ Qp,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qp,key} .

We now use the isoperimetric inequality to bound the size of Inter(Qp,key). Define a near-ball4 centered
at x to be any set S that is contained in a ball of some radius η and contains the ball of radius η − 1
around x. The inequality of [FF81, Theorem 1] (the original result is due to Harper [Har66]) says that
for any sets A,B ⊂ {0, 1}n, there are near-balls X and Y centered at 0n and 1n, respectively, such that
|A| = |X|, |B| = |Y |, and mina∈A,b∈B dis(a, b) ≤ minx∈X,y∈Y dis(x, y).

Letting A be the Inter(Qp,key) and B be the complement of Qp,key and applying this inequality, we
get a near-ball Sp,key centered at 0n and a near-ball D centered at 1n, such that |Sp,key| = |Inter(Qp,key)|,
|D| = 2n − |Qp,key|, and ∀s ∈ Sp,key, d ∈ D, dis(s, d) > t. Note that since key ∈ GoodKeyp and κ ≥ 2, we
have |Qp,key| ≤ 2n−κ+1, and therefore |D| ≥ 2n−1.

Thus, D includes all the strings of Hamming weight dn/2e (because it is centered at 1n and takes
up at least half the space), which means that the maximum Hamming weight of an element of Sp,key is
dn/2e − t− 1 ≤ n/2− t (because each element of Sp,key is at distance more than t from D). We can now
use binary entropy to bound the size of Sp,key by Lemma 2.2:

|Inter(Qp,key)| = |Sp,key| ≤ |{x|dis(x, 0) ≤ n/2− t}| ≤ 2n·h2(
1
2
− t

n) .

The theorem statement follows by taking the logarithm of both sides and by observing (using Taylor
series expansion at τ = 0 and noting that the third derivative is negative) that h2

(
1
2 − τ

)
≤ 1− 2

ln 2 ·τ
2.

4In most statements of the isoperimetric inequality, this type of set is simply called a ball. We use the term near -ball for
emphasis.
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We now introduce the family W. Let {Hashk}k∈K be a family of hash function with domain M and
the following properties:

• 2−a-universality: for all v1 6= v2 ∈ M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a, where a = n ·
h2
(
1
2 − τ

)
+ 3.

• 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1k (h)| = 2m, where m ≥ µn.

• preimage sets have minimum distance t + 1: for all k ∈ K, if v1 6= v2 but Hashk(v1) = Hashk(v2),
then dis(v1, v2) > t.

We demonstrate the existence of such a hash family in Lemma 5.4. Let Z be the random variable
consisting of pairs (k, h), where k is uniform in K and h is uniform in the range of Hashk. Let Wz

for z = (k, h) be the uniform distribution on Hash−1k (h). By the 2m-regularity and minimum distance
properties of Hash, H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
We now want to show that for a random z ← Z, if (key, p) is the output of Gen(Wz), then key can be

easily distinguished from uniform in the presence of p and z.
First, view the sequence of events that we are trying to analyze as a game. The adversary chooses

a uniform k ∈ K and uniform h in the range of Hashk. A uniform w from M s.t. Hashk(w) = h then
gets chosen, (key, p) = Gen(w) gets computed, and the adversary receives p. The output of this game is
(k, h, w, p, key).

Consider now an alternative game. A uniform w gets chosen from M and uniform key k gets chosen
from K. (key, p) = Gen(w) gets computed. The adversary receives (k, h = Hashk(w), p). The output of
the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs in the two games are identical: indeed, in
both games, three random variable are uniform and independent (i.e., w is uniform inM, k is uniform in
K, and the random coins of Gen are uniform in their domain), and the rest are determined fully by these
three. However, the second game is easier to analyze, which is what we now do.

In this game, the value w is uniform on M (in the absence of knowledge about w). Knowledge of p

reduced the set of possible w from 2n to 2n·h2(
1
2
−τ), (Lemma 5.2). We know show that knowledge of z

reduces the set of possible w by another factor of 2a. Let K denote the uniform distribution on K.

Lemma 5.3. Let L be a distribution. Let {Hashk}k∈K be a family of 2−a-universal hash functions on the
support of L. Assume k is uniform in K and independent of L. Then

H̃0(L|K,HashK(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 +H0(L)− a) .

17



Proof. Let UL denote the uniform distribution on the support of L.

2H̃0(L|K,HashK(L)) = E
k←K,h

|{v ∈ L|Hashk(v) = h}|

= E
k←K

∑
h

Pr[Hashk(L) = h] · |{v ∈ L|Hashk(v) = h}|

= E
k←K

∑
h

|L| · Pr[Hashk(L) = h] · Pr[Hashk(UL) = h]

= | supp(L)| · E
k←K

Pr
v1←L,v2←UL

Pr[Hashk(v1) = Hashk(v2)]

= | supp(L)| · Pr
v1←L,v2←UL,k←K

Pr[Hashk(v1) = Hashk(v2)]

≤ | supp(L)| ·
(

Pr
v1←L,v2←UL

[v1 = v2] + Pr
v1←L,v2←UL

[v1 6= v2] · 2−a
)

< 1 + | supp(L)| · 2−a .

This completes the proof of Lemma 5.3.

Let M denote the uniform distribution on M. By Lemma 5.2, for any p, H0(M|Gen(M) = (key, p)
such that key ∈ GoodKeyp) ≤ n · h2

(
1
2 −

t
n

)
+ κ (because there are most 2κ keys in GoodKeyp). Applying

Lemma 5.3 (and recalling that κ ≥ 3), we get that for any p,

H̃0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M)) < max

(
1, 1 + n · h2

(
1

2
− t

n

)
+ κ− a

)
≤ κ− 2 .

(Note carefully the somewhat confusing conditioning notation above, because we are conditioning on both
events and variables. The event is key ∈ GoodKeyp and the variables are k and Hashk(M).)

By correctness, for a fixed p, Rep(w, p) can produce only one key—the same one that was produces
during Gen(w). Since applying a deterministic function (in this case, Rep) cannot increase H0, we get
that for each p,

H̃0(key|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M)) < κ− 2 .

Thus, on average over z = (k, h), over half the keys in GoodKeyp (i.e., over a quarter of all possible 2κ

keys) cannot be produced. Let Implausible be the set of triples (key, p, z = (k, h)) such that Pr[Gen(Wz) =
(key, p)] = 0. Triples drawn by sampling w from Wz and computing (p, key) = Gen(w) never come from
this set. On other hand, random triples come Implausible at over quarter of the time. Thus, by definition
of statistical distance, ε > 1

4 . It remains to show that the hash family with the desired properties exists.

Lemma 5.4. For any 0 ≤ τ < 1
2 , µ > 0, α, and n such that µ ≤ 1− h2(τ)− 2

n and µ ≤ 1− α− 2
n , there

exists a family of hash functions {Hashk}k∈K on {0, 1}n that is 2−a-universal for a = αn, 2m regular for
m ≥ µn, and whose preimage sets have minimum distance t+ 1 for t = τn.

Proof. Let C be the the set of all binary linear codes of rate µ (to be precise, dimension m = dµne), length
n, and minimum distance t+ 1:

C = {C|C is a linear subspace of {0, 1}n, dim(C) = m, min
c∈C−{0n}

dis(c, 0n) > t} .

For each C ∈ C, fix HC , an (n−m)×n parity check matrix for C, such that C = kerHC . For v ∈ {0, 1}n,
let the syndrome synC(v) = HC · v. Let {Hashk}k∈K = {synC}C∈C .
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2m regularity follows from the fact that for each h ∈ {0, 1}n−µn, Hash−1k (h) is a coset of C, which
has size 2m. The minimum distance property is also easy: if v1 6= v2 but synC(v1) = synC(v2), then
HC(v1 − v2) = 0n, hence v1 − v2 ∈ C − {0n} and hence dis(v1, v2) = dis(v1 − v2, 0) > t.

We show 2−a-universality by first considering a slightly larger hash family. Let K′ be the set of
all m-dimensional subspaces of {0, 1}n; for each C ′ ∈ K′, choose a parity check matrix HC′ such that
C ′ = kerHC′ , and let synC′(v) = HC′ ·v. Let {Hash′k′}k′∈K′ = {synC′}C′∈K′ . This family is 2m−n-universal:
for v1 6= v2, PrC′∈K′ [HC′ · v1 = HC′ · v2] = PrC′∈K′ [v1 − v2 ∈ kerHC′ = C ′] = 2m

2n , because C ′ is a random
m-dimensional subspace. Note that this family is not much bigger than our family {Hashk}k∈K, because,
as long as µ < 1 − h2(τ), almost every subspace of {0, 1}n of dimension m has minimum distance t + 1
for a sufficiently large n. Formally,

Pr
C′∈K′

[C ′ /∈ C] = Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1, v2) ≤ t]

= Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1 − v2, 0n) ≤ t]

= Pr
C′∈K′

[∃v ∈ C ′ − {0n} s. t. dis(v, 0n) ≤ t]

≤
∑

v∈Bt(0n)−{0n}

Pr
C′∈K′

[v ∈ C ′] ≤ 2nh2(τ) · 2m

2n
≤ 1

2

(the penultimate inequality follows by Lemma 2.2 and the last one from m ≤ µn+1 and µ ≤ 1−h2(τ)− 2
n).

Since this larger family is universal and at most factor of two bigger than our family, our family is
also universal:

Pr
C∈C

[synC(v1) = synC(v2)] =
|{C ∈ C|synC(v1) = synC(v2)}|

|C|

≤ |{C ∈ K
′|synC(v1) = synC(v2)}|

|K′|
· |K

′|
|C|
≤ 2m−n+1

Thus, we obtain the desired result as long as m − n + 1 ≤ −a, which is implied by the condition
µ ≤ 1− α− 2

n and the fact that m ≤ µn+ 1. This completes the proof of Lemma 5.4.

Applying Lemma 5.4 with α = h2
(
1
2 − τ

)
+ 3

n , we see that the largest possible µ is

max
τ

min

(
1− h2(τ), 1− h2

(
1

2
− τ
))
≈ 0.1887.

Using the quadratic approximation to h2
(
1
2 − τ

)
(see Lemma 5.2), we can let µ be a free variable and set

τ = .6
√
µ, in which case both constraints will be satisfied for all 0 < µ ≤ .18 and sufficiently large n, as

in the theorem statement. This concludes the proof of Theorem 5.1.

6 Impossibility in the Case of Imperfect Correctness

The impossibility result in the previous section applies only to fuzzy extractors with perfect correctness.
In this section, we build on the work of Holenstein and Renner [HR05] to show the impossibility of
fuzzy extractors even when they are allowed to make mistakes a constant fraction δ (as much as 4%)
of the time. However, the drawback of this result, as compared to the previous section, is that we can
show impossibility only for a relatively low entropy rate of at most 7%. In Section 7, we rule out stronger
primitives called secure sketches with nonzero error (which are used in most fuzzy extractor constructions),
even for entropy rate as high as 50%.
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Theorem 6.1. Let M denote the Hamming space {0, 1}n. There exists a family of distributions W over
M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy

extractor with error δ ≤ 1
25 has ε > 1

25 .
This holds for any κ > 0 under the following conditions on the entropy rate µ = m/n, noise rate

τ = t/n, and n:

• any 0 ≤ τ ≤ 1
2 and µ such that µ < 4τ(1− τ)

(
1− h2

(
1

4−4τ

))
• any sufficiently large n (as a function of τ and µ)

Note that the conditions on µ and τ imply that the result applies to any entropy rate µ ≤ 1
15 as long

as τ is set appropriately and n is sufficiently large. The τ vs. µ tradeoff is depicted in Figure 1.
The core structure of the proof is the same as Theorem 5.1. We construct a family W where knowing

the element z (specifying Wz ∈ W) reveals substantial information. However, this proof uses a different
family and different techniques. The outline proceeds as follows:

1. The Rep algorithm (with p specified) can be used as a decoding algorithm for a binary symmetric
channel (BSC) with error probability (1−α)/2. To show this, we just need to argue that for a BSC
with error probability (1− α)/2, the probability of more than t errors is small.

2. The adversary (in the auxiliary knowledge Z) will receive {⊥, 0, 1} for each position in W . The
value ⊥ indicates an erasure, and 0 or 1 indicates the true bit of W . So the family WZ fixes some
bits of W . These bits are known to the adversary but not the construction. Let 1 − β denote the
probability of receiving a ⊥. The adversary’s view corresponds to a classic erasure channel.

3. As long as β is not too large, one can show that WZ has high fuzzy min-entropy as it corresponds
to the uniform distribution over a restricted set of bits. We need to cap the number of bits received
by the adversary for this to be true for all elements of WZ . However, by standard tail bounds, this
removes very few distributions from the family.

4. We use a result of Holenstein and Renner [HR05, Theorem 4] that says the Shannon capacity of a
β-erasure channel is greater than the capacity of a (1− α)/2-binary symmetric channel.

5. From this theorem we can argue that the key has less Shannon entropy to the adversary than to
Rep with a valid input.

6. The remainder of the proof is technical and converts this gap in Shannon entropy to a deficiency of
the resulting key.

We now proceed with the full proof.

Proof. Similarly to the proof of Theorem 5.1, we will prove that any fuzzy extractor fails for an average
element ofW: letting Z denote a choice of W fromW, we will show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 .
We start by describing the family of distributions. In this case, Z will not be uniform but rather bino-

mial (with tails cut off). Essentially, Z will contain each bit of w with (appropriately chosen) probability
β; given Z = z, the remaining bits of w will be uniform and independent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that are not ⊥: info(z) =
|{i s.t zi 6=⊥}|. Let Wz be the uniform distribution over all strings in {0, 1}n that agree with z in positions
that are not ⊥ in z (i.e., all strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).
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Let 0 ≤ β′ ≤ 1 be a parameter (we will set it at the end of the proof). Let Z ′ denote the distribution
on strings in {0, 1,⊥}n in which each symbol is, independently of other symbols, ⊥ with probability 1−β′,
0 with probability β′/2, and 1 with probability β′/2. Let β = β′+ 1.4√

n
. Consider two distribution families:

W ′ = {Wz}z←Z′ and a smaller family W = {Wz}z←Z , where Z = Z ′|info(Z ′) ≤ βn (the second family is
smaller because, although on average info(Z ′) = β′n, there is a small chance that info(Z ′) is higher than
even βn).

We will use W to prove the theorem statement. First, we will show that every distribution Wz ∈ W
has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z) coordinates out of n and leaves the rest uniform. Thus,

Hfuzz
t,∞ (Wz) is the same as Hfuzz

t,∞ of the uniform distribution on the space {0, 1}n−info(z). Let a = n−info(z).
By Lemma 2.2

Hfuzz
t,∞ (Wz) ≥ a

(
1− h2

(
t

a

))
≥ n(1− β)

(
1− h2

(
t

n(1− β)

))
= n(1− β)

(
1− h2

(
τ

1− β

))
.

and therefore

µ = (1− β)

(
1− h2

(
τ

1− β

))
. (1)

Note that smaller β gives a higher fuzzy entropy rate.
Second, we now want to show, similarly to the proof of Theorem 5.1, that SD((Key, P, Z), (Uκ, P, Z)) >

1
25 . We will do so by considering the family W. Observe that by triangle inequality

SD((Key, P, Z), (Uκ, P, Z)) ≥ SD((Key, P, Z ′), (Uκ, P, Z
′))

− SD((Key, P, Z ′), (Key, P, Z))

− SD((Uκ, P, Z), (Uκ, P, Z
′))

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 2 · SD(Z ′, Z)

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 1

25
.

The last line follows by Hoeffding’s inequality [Hoe63],

SD(Z ′, Z) = Pr[info(Z ′) > βn] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Denote SD((Key, P, Z ′), (Uκ, P, Z
′)) by ε′. To bound ε′, we recall a result of Holenstein and Renner

[HR05, Theorem 4] (we will use the version presented in [Hol06, Lemma 4.4]). For a random variable W
with a values in {0, 1}n, let W noisy denote a noisy copy of W : namely, the random variable obtained by
passing W through a binary symmetric channel with error rate 1−α

2 (that is, W noisy
i = Wi with probability

1+α
2 and W noisy

i = 1−Wi with probability 1−α
2 , independently for each position i). Holenstein and Renner

show that if α2 ≤ β, then Shannon entropy of Key conditioned on P and W noisy is greater than Shannon
entropy of Key conditioned on Z and W noisy . Intuitively, this means that the Rep, when given P and
W noisy , knows less about Key than the adversary (who knows P and Z).

Recall the definitions of Shannon entropy H1(X)
def
= Ex←X − log Pr[X = x] and conditional Shannon

entropy H1(X|Y )
def
= Ey←Y H1(X|Y = y).
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Theorem 6.2 ([HR05, Theorem 4]; [Hol06, Lemma 4.4]). Suppose that (P,Key) is a pair of random
variables derived from W . If α2 ≤ β′, then

H1(Key|P,Z ′) ≤ H1(Key|P,W noisy)

where H1 denotes Shannon entropy, W noisy is W passed through a binary symmetric channel with error
rate 1−α

2 , and Z ′ is W passed through a binary erasure channel with erasure rate 1− β′.

(For a reader interested in how our statement of Lemma 6.2 follows from [Hol06, Lemma 4.4], note
that what we call Key, P,W noisy , and Z ′ are called U, V, Y , and Z, respectively, in [Hol06]. Note also that
we use only the part of the lemma that says that secret key rate S→ = 0 when α2 ≤ β, and the definition
[Hol06, Definition 3.1] of the notion S→ in terms of Shannon entropy.)

We now need to translate this bound on Shannon entropy to the language of statistical distance ε of
the key from uniform, reliability δ of the procedure Rep, and key length κ, as used in the definition of
fuzzy extractors. First, we will do this translation for the case of noisy rather than worst-case input to
Rep.

Lemma 6.3. Let (W,W noisy , Z ′) be a triple of correlated random variables such that

• W and W noisy are uniform over {0, 1}n,

• W noisy is W passed through a binary symmetric channel with error rate 1−α
2 (that is, each bit

position of W agrees with corresponding bit position of W noisy with probability 1+α
2 ), and

• Z ′ is W passed through a binary erasure channel with erasure rate 1−β′ (that is, each bit position of
Z ′ agrees with the corresponding bit position of W with probability β′ and is equal to ⊥ otherwise).

Suppose Gen(W ) produces (Key, P ) with Key of length κ. Suppose Pr[Rep(W noisy , P ) = Key] = 1 − δ′].
Suppose further that SD((Key, P, Z ′), (Uκ, P, Z

′)) = ε′. If α2 ≤ β′, then

κ ≤ h2(ε
′) + h2(δ

′)

1− ε′ − δ′
.

In other words, if α2 ≤ β′, ε′ ≤ 1
12 , and δ′ ≤ 1

12 , then even a 1-bit Key is impossible to obtain.

(We note that a similar result follows from [Hol06, Theorem 3.17] if we set the variables S→, γ, and m
in that theorem to 0, δ, and κ, respectively. However, we could not verify the correctness of that theorem
due to its informal treatment of what “ε-close to uniform” means; it seems that the small correction term
−h2(ε), just like in our result, is needed on the right-hand side to make that theorem correct.)

Proof of Lemma 6.3. Reliability allows us to bound the entropy of the key. By Fano’s inequality [Fan61,
Section 6.2, p. 187],

H1(Key|P,W noisy) ≤ κδ′ + h2(δ
′).

Hence, by Theorem 6.2 (and the assumption that α2 > β′), we have

H1(Key|P,Z ′) ≤ κδ′ + h2(δ
′). (2)

We now need the following lemma, which shows that near-uniformity implies high entropy.

Lemma 6.4. For a pair of random variables (A,B) such that the statistical distance between (A,B) and
Uκ ×B is ε, then H1(A|B) ≥ (1− ε)κ− h2(ε) .
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Proof. Let E denote a binary random variable correlated with (A,B) as follows: when A = a and B = b,
then E = 0 with probability

max(Pr[(A,B) = (a, b)]− Pr[Uκ ×B = (a, b)], 0) .

Similarly, let F denote a binary random variable correlated with Uκ × B as follows: when Uκ = a and
B = b, then F = 0 with probability

max(Pr[Uκ ×B = (a, b)]− Pr[(A,B) = (a, b)], 0) .

Note that Pr[E = 0] = Pr[F = 0] = ε, by definition of statistical distance. Note also that (A,B|E = 1)
is the same distribution as (Uκ × B|F = 1). Since conditioning cannot increase Shannon entropy (by a
simple argument — see, e.g., [Ash65, Theorem 1.4.4]), we get

H1(A|B) ≥ H1(A|B,E)

= Pr[E = 1]H1(A|B,E = 1) + Pr[E = 0]H1(A|B,E = 0)

≥ (1− ε)H1(A|B,E = 1) = (1− ε)H1(Uκ|B,F = 1).

To bound this latter quantity, note that (the first line follows from the chain rule H1(X) ≤ H1(X,Y ) =
H1(X|Y ) +H1(Y ) [Ash65, Theorem 1.4.4])

κ = H1(Uκ|B) ≤ H1(Uκ|B,F ) +H1(F )

= (1− ε)H1(Uκ|B,F = 1) + ε ·H1(Uκ|B,F = 0) + h2(ε)

≤ (1− ε)H1(Uκ|B,F = 1) + ε · κ+ h2(ε)

Rearranging terms, we get H1(Uκ|B,F = 1) ≥ κ− h2(ε)/(1− ε), and thus

H1(A|B) ≥ (1− ε)κ− h2(ε) .

This concludes the proof of Lemma 6.4.

Combining (2) and Lemma 6.4 (applied to A = Key, B = (P,Z ′), and ε = ε′), we get the claimed
bound. This concludes the proof of Lemma 6.3.

Next, we translate this result from the noisy-input-case to the worst-case input case. Set α =
√
β′.

Suppose t ≥ n
(
1−
√
β′

2 + 1.4√
n

)
. By Hoeffding’s inequality [Hoe63],

Pr[dis(W,W noisy) > t] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Thus, a fuzzy extractor that corrects t errors with reliability δ implies that Pr[Rep(W noisy , P ) = Key] ≥
1 − δ′] for δ′ = δ + 1

50 . Since δ ≤ 1/25, we have δ′ < 1/12 and Lemma 6.3 applies to gives us ε′ > 1/12
and ε > 1/12− 1/25 > 1/25 as long as κ > 0.

Finally, we work out the relationship between µ and τ and eliminate β, as follows. Recall that

β = β′ + 1.4√
n

; therefore
√
β ≤

√
β′ + 1.2

n1/4 , and it suffices to take τ ≥ 1−
√
β

2 + 2
4√n . Thus, we can set

any τ > 1−
√
β

2 as long as n is sufficiently large. Solving for β (that is, taking any β > (1 − 2τ)2) and

substituting into Equation 1, we can get any µ < 4τ(1− τ)
(

1− h2
(

1
4−4τ

))
for a sufficiently large n.
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7 Stronger Impossibility Result for Secure Sketches

Most fuzzy extractor constructions share the following feature with our Construction 4.2: p includes
information that is needed to recover w from w′; both Gen and Rep simply apply an extractor to w.
The recovery of w from w′, known as information-reconciliation, forms the core of many fuzzy extractor
constructions. The primitive that performs this information reconciliation is called secure sketch. In this
section we show stronger impossibility results for secure sketches. First, we recall their definition from
[DORS08, Section 3.1] (modified slightly, in the same way as Definition 2.3).

Definition 7.1. An (M,W, m̃, t)-secure sketch with error δ is a pair of randomized procedures, “sketch”
(SS) and “recover” (Rec). SS on input w ∈ M returns a bit string ss ∈ {0, 1}∗. Rec takes an element
w′ ∈M and ss ∈ {0, 1}∗. (SS,Rec) have the following properties:

1. Correctness: ∀w,w′ ∈M if dis(w,w′) ≤ t then Pr[Rec(w′, SS(w)) = w] ≥ 1− δ.

2. Security: for any distribution W ∈ W, H̃∞(W |SS(W )) ≥ m̃.

Secure sketches are more demanding than fuzzy extractors (secure sketches can be converted to fuzzy
extractors by using a randomness extractors like in our Construction 4.2 [DORS08, Lemma 4.1]). We
prove a stronger impossibility result for them. Specifically, in the case of secure sketches, we can extend
the results of Theorems 5.1 and 6.1 to cover imperfect correctness (that is, δ > 0) and entropy rate µ up
to 1

2 . We stress that most fuzzy extractor constructions rely on secure sketches.

Theorem 7.2. Let M denote the Hamming space {0, 1}n. There exists a family of distributions W over
M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any (M,W, m̃, t)-secure sketch
with error δ has m̃ ≤ 2.

This holds under the following conditions on δ, the entropy rate µ = m/n, noise rate τ = t/n, and n:

• any 0 ≤ τ < 1
2 and µ > 0 such that µ < h2(τ) and µ < 1− h2(τ)

• any n ≥ max
(
.5 logn+4δn+4

h2(τ)−µ , 2
1−h2(τ)−µ

)
Note that the result holds for any µ < 0.5 as long as δ < (h2(τ)−µ)/4 and n is sufficiently large. The

τ vs. µ tradeoff is depicted in Figure 1. Any fuzzy extractor that uses secure sketch (part of its output is
SS(w)) is subject to these bounds. In addition, any fuzzy extractor where the true input point w can be
computed from key is subject to this bound as well (called an almost injective invertible fuzzy extractor
by Yasanuga and Yuzawa [YY18]).

Before starting the formal proof we note that the overall strategy is the same as Theorem 5.1. The
only substantive difference is that the functionality of secure sketches allow us to prove a stronger upper
bound on the number of possible w|SS(w) (Lemma 7.3). The core of this proof is arguing that the set of
possible {v|Prv′|dis(v,v′)≤t[Rec(v

′,SS(v)) = v] ≥ 1/2} form a good error correcting code.
The family used is the same as in Theorem 5.1 with more parameter flexibility as more entropy is lost

in Lemma 7.3.

Proof of Theorem 7.2. Similarly to the proof of Theorem 5.1, we will prove that any secure sketch algo-
rithm fails for an average element of W: letting Z denote a uniform choice of W from W, we will show
that H̃∞(WZ |SS(WZ), Z) ≤ 2. The overall proof strategy is the same as for Theorem 5.1. We highlight
only the changes here. Recall that |Bt| denotes the volume of the ball of radius t in the space {0, 1}n.
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The parameters of the hash family are the same, except for universality: we require 2−a-universality for
a = (n− log |Bt|+ h2(2δ))/(1− 2δ) .

We postpone the question of the existence of such a hash family until the end of the proof. We can now
state an analogue of Lemma 5.2. This result is an extension of lower bounds from [DORS08, Appendix
C], which handles only the case of perfect correctness. It shows that the value of the sketch reduces the
entropy of a uniform point by approximately log |Bt|.

Lemma 7.3. Let M denote the Hamming space {0, 1}n and |Bt| denote the volume of a Hamming
ball of radius t in {0, 1}n. Suppose (SS,Rec) is a (M,W, m̃, t) secure sketch with error δ, for some
distribution familyW overM. Then for every v ∈M there exists a set GoodSketchv such that Pr[SS(v) ∈
GoodSketchv] ≥ 1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GoodSketchv}| ≤
n− log |Bt|+ h2(2δ)

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ n− log |Bt|+ h2(2δ)

1− 2δ
.

Proof. For any v ∈M , define Neight(v) be the uniform distribution on the ball of radius t around v and
let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions.

Proposition 7.4. For all v ∈M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

Proof. Let the indicator variable 1v′,ss be 1 if Rec(v′, ss) = v and 0 otherwise. Let qss be the quality of
the sketch on the ball Bt(v):

qss = Pr
v′

$←Neight(v)

[Rec(v′, ss) = v] = E
v′

$←Neight(v)

1v′,ss .

By the definition of correctness for (SS,Rec), for all v′ ∈ Bt(v),

Pr
ss←SS(v)

[Rec(v′, ss) = v] ≥ 1− δ .

Hence, Ess←Gen(v) 1v′,ss ≥ 1− δ. Therefore,

E
ss←Gen(v)

qss = E
ss
E
v′

1v′,ss = E
v′
E
ss

1v′,ss ≥ E
v′

(1− δ) = 1− δ .

Therefore, applying Markov’s inequality to 1− qss, we get Pr[qss ≥ 1− 2δ] = Pr[1− qss ≤ 2δ] ≤ 1/2.

To finish the proof of Lemma 7.3, we will show that the set {v ∈ M|ss ∈ GoodSketchv} forms a kind
of error-correcting code, and then bound the size of the code.

Definition 7.5. We say that a set C is an (t, δ)-Shannon code if there exists a (possibly randomized)
function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.
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The set {v ∈M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set Decode(y) = Rec(y, ss). We now
bound the size of such a code.

Proposition 7.6. If C ⊆ {0, 1}n is a (t, δ)-Shannon code, then

log |C| ≤ n− log |Bt|+ h2(δ)

1− δ
.

Proof. Let the pair of random variables (X,Y ) be obtained as follows: let X be a uniformly chosen
element of C and Y be a uniformly chosen element of the ball of radius t around Y . By the existence of
Decode and Fano’s inequality [Fan61, Section 6.2, p. 187], H1(X|Y ) ≤ h2(δ)+δ log |C|. At the same time,
H1(X|Y ) = H1(X)−H1(Y ) +H1(Y |X) (because H1(X,Y ) = H1(X) +H1(Y |X) = H1(Y ) +H1(X|Y )),
and therefore H1(X|Y ) ≥ log |C| − n+ log |Bt| (because H1(Y ) ≤ n). Therefore, log |C| − n+ log |Bt| ≤
h2(δ) + δ log |C|, and the lemma follows by rearranging terms.

Lemma 7.3 follows from Proposition 7.6.

We now show that entropy drops further when the adversary learns Hashk(w). Let M denote the uni-
form distribution onM and K denote the uniform distribution on K. Applying Lemma 5.3 to Lemma 7.3,
we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,K,HashK(M)) < max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
. (3)

To complete the proof, we will use this bound on H̃0 as a bound on H̃∞, as justified by the following
lemma:

Lemma 7.7. For any random variables X and Y , H̃∞(X|Y ) ≤ H̃0(X|Y ).

Proof. Starting with the definition of H̃∞, recall that − log a = log 1/a, and apply Jensen’s inequality to
get

log
1

Ey←Y maxx Pr[X = x|Y = y])
≤ log E

y←Y

1

maxx Pr[X = x|Y = y])

≤ log E
y←Y
|{x|Pr[X = x|Y = y] > 0}| .

We need just one more lemma before we can complete the result, an analogue of [DORS08, Lemma
2.2b] for conditioning on a single value Z = z rather than with Z on average (we view conditioning on a
single value as equivalent to conditioning on an event).

Lemma 7.8. For any pair of random variables (X,Y ) and event η that is a (possibly randomized) function
of (X,Y ), H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].
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Proof. The intuition is that to guess X given Y , the adversary can guess that η happened and fail if the
guess is wrong. Formally,

H̃∞(X|Y ) =− log E
y←Y

max
x

Pr[X = x|Y = y] = − log E
y←Y

max
x

Pr[X = x ∧ Y = y]

Pr[Y = y]

≤− log E
y←Y

max
x

Pr[X = x ∧ Y = y ∧ η]

Pr[Y = y]

=− log E
y←Y

max
x

Pr[X = x ∧ Y = y|η] Pr[η]

Pr[Y = y]

= log
1

Pr[η]
− log

∑
y←Y

max
x

Pr[X = x ∧ Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max
x

Pr[X = x ∧ Y = y|η]

Pr[Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max
x

Pr[X = x|η ∧ Y = y]

= log
1

Pr[η]
+ H̃∞(X|η, Y ) .

Combining Lemmas 7.8 and 7.7 with Equation 3, we get

H̃∞(WZ |Z, SS(WZ)) = H̃∞(M|SS(M),K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
.

We can have shown that H̃∞(WZ |Z, SS(WZ)) ≤ 2, because the first term of the above sum is at most 1
by Proposition 7.4 and the second term is 1 by our choice of a as a = (n− log |Bt|+ h2(2δ))/(1− 2δ) .

It remains to show that the desired hash family exists. Note in that (because δ < .25) setting any
α ≥ 1 − h2(τ) + .5 logn+4δn+2

n and choosing an αn-universal hash function will be sufficient, because, by
Lemma 2.2, log |Bt| ≥ nh2(τ)− 1

2 log n− 1, and so

a =
n− log |Bt|+ h2(2δ)

1− 2δ
≤n · 1− h2(τ) + (.5 log n+ 1 + h2(2δ))/n

1− 2δ

<n · (1− h2(τ) +
.5 log n+ 1 + h2(2δ)

n
+ 4δ)

≤n ·
(

1− h2(τ) +
.5 log n+ 4δn+ 2

n

)
≤n · α
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(the second inequality is true because for any x < 1 and 0 < y < .5, x/(1 − y) < x + 2y, because
x < (x + 2y)(1 − y), because 0 < y(2 − x − 2y); the third inequality follows from h2(2δ) < 1). Such
a hash family exists by Lemma 5.4 as long as µ ≤ 1 − α − 2/n ≤ h2(τ) − (.5 log n + 4δn + 4)/n and
µ ≤ 1− h2(τ)− 2/n).

8 Conclusion

This work introduces fuzzy min-entropy as a new metric for measuring the suitability of deriving keys
from a noisy probability distribution. This condition is sufficient for security if the distribution is exactly
known. This setting is comparable to the traditional setting when Eve receives no auxiliary information.

Our negative results show that providing security simultaneously for a family of sources is impossible
for all distributions with fuzzy min-entropy. The core of all of these proofs is constructing a family of
distributions W where the description of the element W ∈ W provides the adversary with information
independent of what is (necessarily) leaked by the fuzzy extractor (or secure sketch). Our three results
require a careful tuning between the information leaked by the fuzzy extractor and the independent
information in the description. This state of affairs seems somewhat bleak, however, there are several
ways to avoid these negative results:

1. Focus on providing security for high entropy distributions only. However, many noisy distributions
come from nature and system designers cannot effectively adjust their parameters,

2. Assume some additional structure from the distribution such as independence between dimen-
sions [TG04] or that random subsets of dimensions have high entropy [CFP+16].

3. Restrict the adversary, for example, assuming the adversary runs in polynomial time. Recently,
constructions have shown fuzzy extractors secure against bounded adversaries relying on hardness
of discrete log [WLH18, WL18], decoding random codes [FMR13, HRvD+16], security of hash func-
tions [CFP+16, ABC+18], and general cryptographic primitives [WLG19]. Fuller, Meng, and Reyzin
showed that computationally-secure sketches imply information-theoretic ones, so computationally-
secure sketches are subject to the negative results in this work [FMR13, Theorem 1]. A comparable
theorem is not known for computationally-secure fuzzy extractors.
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