
The Simon and Speck Block Ciphers on AVR
8-bit Microcontrollers?

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers

National Security Agency
9800 Savage Road, Fort Meade, MD, 20755, USA

{rabeaul,djshors,jksmit3,sgtreat,beweeks,lrwinge}@tycho.ncsc.mil

Abstract. The last several years have witnessed a surge of activity in
lightweight cryptographic design. Many lightweight block ciphers have
been proposed, targeted mostly at hardware applications. Typically soft-
ware performance has not been a priority, and consequently software
performance for many of these algorithms is unexceptional. Simon and
Speck are lightweight block cipher families developed by the U.S. Na-
tional Security Agency for high performance in constrained hardware and
software environments. In this paper, we discuss software performance
and demonstrate how to achieve high performance implementations of
Simon and Speck on the AVR family of 8-bit microcontrollers. Both ci-
phers compare favorably to other lightweight block ciphers on this plat-
form. Indeed, Speck seems to have better overall performance than any
existing block cipher — lightweight or not.

Keywords: simon, speck, block cipher, lightweight, cryptography, mi-
crocontroller, wireless sensor, AVR

1 Introduction

The field of lightweight cryptography is evolving rapidly in order to meet future
needs, where interconnected, highly constrained hardware and software devices
are expected to proliferate.

Over the last several years the international cryptographic community has
made significant strides in the development of lightweight block ciphers. There
are now more than a dozen to choose from, including Present [6], Clefia [21],
Twine [22], Hight [15], Klein [13], LBlock [26], Piccolo [20], Prince [7],
LED [14], Katan [9], TEA [24], and ITUbee [17]. Typically, a design will offer
improved performance on some platform (e.g., ASIC, FPGA, microcontroller,
microprocessor) relative to its predecessors. Unfortunately, most have good per-
formance in hardware or software, but not both. This is likely to cause problems
when communication is required across a network consisting of many disparate
(hardware- and software-based) devices, and the highly-connected nature of de-
veloping technologies will likely lead to many applications of this type. Ideally,

? The final publication will be available at Springer via the LightSec 2014 proceedings.

lightweight cryptography should be light on a variety of hardware and software
platforms. Cryptography of this sort is relatively difficult to create and such
general-purpose lightweight designs are rare.

Recently, the U.S. National Security Agency (NSA) introduced two general-
purpose lightweight block cipher families, Simon and Speck [2], each offering
high performance in both hardware and software. In hardware, Simon and Speck
have among the smallest reported implementations of existing block ciphers with
a flexible key.1 Unlike most hardware-oriented lightweight block ciphers, Simon
and Speck also have excellent software performance.

In this paper, we focus on the software performance of Simon and Speck.
Specifically, we show how to create high performance implementations of Simon
and Speck on 8-bit Atmel AVR microcontrollers. This paper should be useful
for developers trying to implement Simon or Speck for their own applications
and interesting for cryptographic designers wishing to see how certain design
decisions affect performance.

2 The Simon and Speck Block Ciphers

Simon and Speck are block cipher families, each comprising ten block ciphers
with differing block and key sizes to closely fit application requirements. Table 1
shows the available block and key sizes for Simon and Speck.

block size key sizes

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

Table 1. Simon and Speck parameters.

The Simon (resp. Speck) block cipher with a 2n-bit block and wn-bit key is
denoted by Simon 2n/wn (resp. Speck 2n/wn). Together, the round functions
of the two algorithms make use of the following operations on n-bit words:

• bitwise XOR, ⊕,
• bitwise AND, &,
• left circular shift, Sj , by j bits,
• right circular shift, S−j , by j bits, and
• modular addition, +.

1 Simon64/96 and Speck64/96, for example, have implementations requiring just 809
and 860 gate equivalents, respectively. Some block ciphers, like KTANTAN [9], have
a fixed key and so do not require flip-flops to store it. Such algorithms can have
smaller hardware implementations than Simon or Speck, but not allowing keys to
change contracts the application space, and can lead to security issues [23].

For k ∈ GF(2)n, the key-dependent Simon2n round function is the two-stage
Feistel map Rk : GF(2)n ×GF(2)n → GF(2)n ×GF(2)n defined by

Rk(x, y) = (y ⊕ f(x)⊕ k, x),

where f(x) = (Sx&S8x) ⊕ S2x and k is the round key. The key-dependent
Speck2n round function is the map Rk : GF(2)n×GF(2)n → GF(2)n×GF(2)n

defined by

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−αx+ y)⊕ k),

with rotation amounts α = 7 and β = 2 if n = 16 (block size = 32) and α = 8
and β = 3, otherwise. A description of the key schedules, not necessary for this
paper, can be found in the Simon and Speck specification paper [2].

3 AVR Implementations of Simon and Speck

We have implemented Simon and Speck on the Atmel ATmega128, a low-power
8-bit microcontroller with 128K bytes of programmable flash memory, 4K bytes
of SRAM, and thirty-two 8-bit general purpose registers. To achieve optimal
performance, we have coded Simon and Speck in assembly. The simplicity of
the algorithms makes this easy to do, with the help of the Atmel AVR 8-bit
instruction set manual [1].

Our assembly code was written and compiled using Atmel Studio 6.0. Cycle
counts, code sizes and RAM usage were also determined using this tool. Our
complete set of performance results is provided in Appendix A.

For Simon and Speck, three implementations were developed, none of which
included the decryption algorithm.2

(1) RAM-minimizing implementations. These implementations avoid the
use of RAM to store round keys by including the pre-expanded round keys
in the flash program memory. No key schedule is included for updating this
expanded key, making these implementations suitable for applications where
the key is static.

(2) High-throughput/low-energy implementations. These implementations
include the key schedule and unroll enough copies of the round function in
the encryption routine to achieve a throughput within about 3% of a fully-
unrolled implementation. The key, stored in flash, is used to generate the
round keys which are subsequently stored in RAM.

(3) Flash-minimizing implementations. The key schedule is included here.
Space limitations mean we can only provide an incomplete description of
these implementations. However, it should be noted that the previous two
types of implementations already have very modest code sizes.

2 This is because one is likely to use encrypt-only modes in lightweight cryptography.
But the techniques discussed here should serve as a starting point for other kinds
of implementations, useful for a broad range of applications. Regarding decryption
functionality, we note that the Simon and Speck encryption and decryption algo-
rithms consume similar resources and are easy to implement. Simon, in particular,
has a decryption algorithm that is closely related to the encryption algorithm, and
so little additional code is necessary to enable decryption.

In almost all cases, the registers hold the intermediate ciphertext, the cur-
rently used round key, and any data needed to carry out the computation of
a round. For the algorithms with the 128-bit block and 192-bit or 256-bit key,
there may not be enough registers to hold all of this information, and so it may
be necessary to store one or two 64-bit words of round key in RAM. Additional
modifications were necessary for the 128-bit Simon block ciphers.

We describe our various assembly implementations of Simon 64/128 and
Speck 64/128 on an AVR 8-bit microcontroller using pseudo assembly code.
When it is not obvious, we show how to translate the pseudocode into ac-
tual assembly instructions. Although our implementations were aimed at the
ATmega128 microcontroller, the same techniques are applicable to other AVR
microcontrollers, e.g., the ATtiny line (except when noted).

4 Simon AVR Implementations

We describe various implementations of Simon 64/128 on the ATmega128 mi-
crocontroller. Implementations of the other algorithms in the family are similar.

The ATmega128 has thirty-two 8-bit registers. For the purpose of exposition,
we regard a sequence of four such registers as a 32-bit register, denoted by a
capital letter such as X, Y , K, etc. For instance, X = (X3, X2, X1, X0) identifies
the 32-bit register X as a sequence of four 8-bit registers. We denote the contents
of these 32-bit registers by lower case letters x, y, k, etc.

At the start of the encryption process, we assume a 64-bit plaintext pair
(x, y) resides in RAM, and is immediately loaded into an (X,Y) register pair
for processing. After 44 encryption rounds, the resulting ciphertext is stored
in RAM. The encryption cost is the number of cycles needed to transform the
plaintext into the ciphertext, including any loading of plaintext/ciphertext into
or out of RAM.3 Our performance numbers do not count the cost of RAM used
to hold the plaintext, ciphertext, or key but do include RAM used for temporary
storage (e.g., stack memory) and RAM to hold the round keys.

Except for the small code size implementations of Simon, developers should
avoid the use of any loops or branching within a round, since this can significantly
degrade overall performance and does not greatly reduce code size.

4.1 A Minimal RAM Implementation of Simon

Here we assume the round keys have been pre-expanded (by an external device)
and stored in flash. When a round key is required, it is loaded from flash directly
into a register. Loading a byte from flash consumes three cycles.

We begin by describing the Rotate operation, which performs a left circular
shift by one. Let X = (X3, X2, X1, X0) and let Z0 = 0. The 8-bit register Z0

3 The Simon and Speck specification paper [2] did not count these cycles required
for loading, although it seems proper to do so. The current performance numbers
include these costs.

should be cleared and reserved at the start of encryption. The 1-bit rotation of
the 32-bit register X is carried out using AVR’s logical shift left (LSL), rotate
left through carry (ROL), and add with carry (ADC) instructions, as follows.

(1) X0 ← LSL(X0) (logical shift left)
(2) X1 ← ROL(X1) (rotate left through carry)
(3) X2 ← ROL(X2) (rotate left through carry)
(4) X3 ← ROL(X3) (rotate left through carry)
(5) X0 ← ADC(X0, Z0) (add with carry)

In general, this standard approach to performing a rotation requires n + 1
cycles on an n byte word. Rotations by more than one bit can be achieved by
repeated one-bit rotations, though this is not always the most efficient approach.

Note that the rotation by 8 is free, because it’s just a byte permutation.4

The rotations by 1 and 2 are also inexpensive. Our pseudo instruction Move

is shorthand for two AVR MOVW instructions, each of which copies two 8-bit
words from one register to another in a single cycle. In order to use the MOVW

instruction, the 8-bit registers must be properly aligned [1]. Our other mnemonics
are also shorthand for readily apparent AVR instructions. Table 2 describes how
to implement a round of Simon.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12
XOR K ← K ⊕ Y K = y ⊕ k 4
Move Y ← X Y = x 2
Rotate X ← S1(X) X = S1(x) 5
Move T ← X T = S1(x) 2
And T ← T &S8(Y) T = S1(x) &S8(x) 4
Rotate X ← S1(X) X = S2(x) 5
XOR X ← X ⊕ T X = S2(x)⊕ S1(x) &S8(x) 4
XOR X ← X ⊕K X = y ⊕ S2(x)⊕ S1(x) &S8(x)⊕ k 4

Table 2. Low-RAM software implementation of the Simon round function.

The basic code for a round executes in 42 cycles. For the minimal RAM
implementation, this code is put in a loop which has a 3 cycle per round over-
head. Since Simon 64/128 requires 44 rounds, an encryption will take about
44 · (42 + 3) = 1980 cycles. There are ten cycles needed for setup, a subroutine
call, and a return plus an additional 32 cycles to load the plaintext into registers
(2 cycles/byte) and load the resulting ciphertext back into RAM (2 cycles/byte).
Altogether, Simon64/128 has an encryption cost of 253 cycles/byte.

4 This rotation is also easily implemented (but not for free) on some common 16-bit
microcontrollers, like the MSP430, and using x86 SSE instructions (where no rotate
is available but a byte permutation operation is).

In terms of code size, each instruction, with the exception of the Load instruc-
tion, takes twice as many bytes to store in flash as the number of cycles it takes
to execute. The four byte Load instruction, in Table 2, consumes 8 bytes of flash.
The expanded key is stored in 44 · 4 = 176 bytes of flash. So the total amount
of flash used is around 68 + 44 · 4 = 244 bytes. More bytes are required for the
counter, loading plaintext, storing ciphertext and other miscellaneous overhead
so the actual value is 290 bytes. No RAM was used for this implementation.

4.2 A High-Throughput/Low-Energy Implementation of Simon

High-throughput implementations are useful when encrypting multiple blocks
of data. The round keys for such an implementation can initially be stored in
flash, as with our low-RAM implementations, or they can be generated using the
key schedule. In either case, the encryption process begins by placing all of the
round keys into RAM, where they are held until all of the blocks in a stream of
data have been encrypted. For our implementations, we used the key schedule
to generate the round keys, but for our timings we have not included the time to
generate and store these since this setup time is assumed to be small compared
to the time required to encrypt the data stream.

For Simon 64/128, we unrolled four rounds of the code and iterated this 11
times to carry out the 44 round encryption. Because the key is now loaded from
RAM, the Load requires only 8 cycles instead of the 12 which were needed when
loading from flash. Due to the larger code size, a four cycle overhead for each
update of the loop counter (as opposed to three cycles) is required, together
with an additional ten cycles as described earlier and 32 more cycles for loading
plaintext in registers and storing the ciphertext in RAM. The amount of unrolling
was calibrated to achieve throughput to within 3% of the fastest (fully unrolled)
implementation, avoiding large increases in code size with minor improvements
in throughput. The cost of this implementation is 221 cycles/byte.

The code size for the encryption algorithm is about 68 · 4 = 272 bytes. To-
gether with the key schedule and other overhead, this implementation of Simon
64/128 uses 436 bytes of flash. Because all of the round keys are placed in RAM,
44 · 4 = 176 bytes of RAM are also required.

4.3 A Minimal Flash Implementation of Simon

To reduce the already small size of Simon, we implemented several frequently
used operations as subroutines. These included the XOR, the 1-bit Rotate and
the Move instructions. Doing this, we saved a dozen bytes for Simon 64, and
more than 50 bytes for Simon128. For Simon32, these techniques ended up not
saving any space and degraded throughput, so we did not use them.

Simon64/128, in particular, can be implemented using 240 bytes of flash and
with 4 · 44 = 176 bytes of RAM to store the round keys. We note that for an
additional 28 bytes of flash, decrytpion capability can be added: To decrypt, one
uses the round keys in reverse order, loads the swapped ciphertext words into
the encryption round function, and reads out the plaintext words with a similar

swap. The swapped loading and output (together with the regular loading and
output) can be done with 8 additional bytes of code each, and the round keys
can be generated and stored in normal or reverse order with 12 additional bytes
of code, for a total of 8 + 8 + 12 = 28 bytes.

5 Speck AVR Implementations

In this section, we describe the same types of implementations that we previously
developed for the Simon64/128 block cipher. We stress that most of the imple-
mentation techniques described here apply immediately to the other members
of the Speck family.

Using the same notation as in Simon, we assume a 64-bit plaintext pair
(x, y) resides in RAM. This is immediately loaded into the 64-bit register pair
(X,Y). After 27 encryption rounds, the resulting ciphertext is loaded into RAM.
The encryption cost is the number of cycles required to load the plaintext into
registers, transform the plaintext into the ciphertext, and store the ciphertext
in RAM.

For all of our implementations, we avoid the use of any loops or branch-
ing within a round. This has the effect of making our code slightly larger but
significantly improves the overall performance.

For Simon, our main tool for trading off code size for throughput was to
partially unroll loops. It turns out that for Speck, there is more opportunity to
tune the implementation (for example using multiply instructions to accomplish
the rotation by 3 or by allowing a round to end with plaintext and key words
in the wrong places) to make it smaller or faster. Consequently, we will spend a
little more time describing Speck implementations.

5.1 A Low-RAM Speck Implementation

Here we assume the round keys have been pre-expanded and stored in flash.
When a round key k is required, it is loaded from flash directly into a register
with a cost of 12 cycles. Table 3 describes how to implement the Speck round.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12
Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4
XOR K ← K ⊕ S−8(X) K = (S−8(x) + y)⊕ k 4
Rotate Y ← S3(Y) Y = S3(y) 15
XOR Y ← Y ⊕K Y = S3(y)⊕ (S−8(x) + y)⊕ k 4
Move X ← K X = (S−8(x) + y)⊕ k 2

Table 3. Low-RAM software implementation of the Speck round function.

Note that the rotation by 8 is free, as we noted in the Simon discussion. The
Rotate and Move instructions were described earlier for Simon. To be clear,
we describe the Add operation in greater detail. If X = (X3, X2, X1, X0) and
Y = (Y3, Y2, Y1, Y0), then addition, Add, is carried out using the following AVR
instructions in the given order.

(1) X1 ← X1 + Y0 (add without carry, ADD)
(2) X2 ← X2 + Y1 (add with carry, ADC)
(3) X3 ← X3 + Y2 (add with carry, ADC)
(4) X0 ← X0 + Y3 (add with carry, ADC)

Our basic code for a round executes in 41 cycles, and this code is iterated 27
times in a loop to produce the ciphertext. The loop has an overhead of 3 cycles
per round, and since Speck 64/128 requires 27 rounds, an encryption takes
about 27 · (41 + 3) = 1188 cycles. An additional 10 more cycles for overhead (3
cycles for setup, 3 for a subroutine call, and 4 for a return) plus 32 cycles for
loading plaintext from RAM into registers and storing ciphertext back into RAM,
brings the total number of cycles for an encryption to 1230, which translates to
1230/8 ≈ 154 cycles/byte.

As we noted in the Simon discussion, each instruction, with the exception of
the Load instruction, takes twice as many bytes to store in flash as the number
of cycles it takes to execute. The Load instruction requires 8 bytes of flash.

The Speck round keys consume 27 ·4 = 108 bytes of flash. The total amount
of flash required for the round and expanded key is 66 + 108 = 174 bytes.
Additional bytes, required for the counter, loading and storing plaintext and
ciphertext and other overhead, brings the total to 218 bytes. No RAM was
required for this implementation.

5.2 A Faster Low-RAM Speck Implementation

If a higher-throughput/lower-energy implementation is required, we can easily
modify the implementation that we just described to obtain one which encrypts
at a rate of 142 cycles/byte using around 342 bytes of flash and no RAM.

This is done by iterating two rounds multiple times. Two rounds can be
implemented without the use of the Move that appeared in Table 3, thereby
saving two cycles per round. The two rounds are iterated in a loop 13 times (for
a total of 26 rounds) and a final single round of code as described in Table 3 is
used for the 27th round. For members of the family requiring an even number
of rounds (like Speck64/96) this extra code for the final round is not required.
For Speck 64/128, the number of cycles for a complete encryption is around
2 · 39 · 13 + 41 + 13 · 3 + 10 + 32 = 1136, or about 142 cycles/byte. About 342
bytes of flash are required.

The pseudocode for the two rounds is shown in Table 4. There, x1 and y1
are the values of the input to the second round, stored in the K and Y registers
and l is a new round key which is loaded into the X register. The output to the
second round is again stored in the proper registers, i.e., the X and Y registers.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12
Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4
XOR K ← K ⊕ S−8(X) K = (S−8(x) + y)⊕ k = x1 4
Rotate Y ← S3(Y) Y = S3(y) 15
XOR Y ← Y ⊕K Y = S3(y)⊕ (S−8(x) + y)⊕ k = y1 4

Load X ← l X = l 12
Add K ← S8(S−8(K) + Y) K = S8(S−8(x1) + y1) 4
XOR X ← X ⊕ S−8(K) X = (S−8(x1) + y1)⊕ l 4
Rotate Y ← S3(Y) Y = S3(y1) 15
XOR Y ← Y ⊕X Y = S3(y1)⊕ (S−8(x1) + y1)⊕ l 4

Table 4. A faster, low-RAM software implementation of two rounds of Speck.

5.3 A High-Throughput/Low-Energy Speck Implementation

As in the corresponding Simon implementations, the Speck encryption process
begins by placing all of the round keys into RAM and holding them there until
the data stream has been encrypted. Although we used the key schedule to
generate the round keys, the round keys could also be pre-computed and stored
in flash before loading them into RAM. For our timings, we have not included
the time to generate the round keys and store them in RAM.

The easiest way to obtain a fast encryption algorithm is just to modify the
fast, low-RAM implementation described previously using the code found in
Table 4, but now loading the round keys from RAM instead of from flash. The
cost of loading four bytes from RAM is 8 cycles, as opposed to 12 if we load from
flash. So the total cost to encrypt a block of data is 2·35·13+37+13·4+10+32 =
1041 cycles, or about 130 cycles/byte. Not including the key schedule, the code
will occupy about 232 bytes. Taking into account the key schedule, the code size
is about 352 bytes and the implementation uses 108 bytes of RAM.

We could speed this up even more, at the expense of using more flash, by
unrolling four rounds of code instead of just two. If we unroll all of the rounds
we get a heavy implementation, in terms of flash, that encrypts a block in just
123 cycles/byte. If this sort of implementation is appealing but the flash usage
is not, there is another way to get the same throughput using significantly less
flash. However, the technique only works on those AVR microcontrollers, such
as the ATmega128, which include the AVR unsigned multiplication instruction
MUL. The ATtiny line does not have the MUL instruction.

We now describe how to do the 3-bit rotation operation Rotate in 14 cycles
using 20 bytes of flash with the AVR MUL instruction. This should be compared
to the in-place rotation used earlier, which required 15 cycles and 30 bytes.

The MUL instruction operates on two 8-bit registers containing unsigned num-
bers and produces the 16-bit unsigned product in 2 cycles. The result is always
placed in the AVR register pair (R1, R0), the low bits in R0 and the high bits
in R1. Letting Y = (Y3, Y2, Y1, Y0) and X = (X3, X2, X1, X0), the Rotate oper-
ation, X ← S3(Y), is implemented as follows:

(1) (R1, R0) ← MUL(Y0, 8)
(2) (X1, X0) ← (R1, R0)
(3) (R1, R0) ← MUL(Y2, 8)
(4) (X3, X2) ← (R1, R0)
(5) (R1, R0) ← MUL(Y1, 8)
(6) X1 ← X1 ⊕R0

(7) X2 ← X2 ⊕R1

(8) (R1, R0) ← MUL(Y3, 8)
(9) X3 ← X3 ⊕R0

(10) X0 ← X0 ⊕R1

Here, 8 represents an 8-bit register with the value 8 stored in it. This register
should be initialized and reserved at the start of the encryption process. It should
be noted that this rotate algorithm is not in-place. Additionally, for a w-byte
word, the performance can be worse than for the standard approach: Forw = 2j,
the running time is 7j cycles for this technique versus 3 · (2j+ 1) = 6j+ 3 cycles
for the standard approach. Thus, for the highest speed implementations, the
technique is advantageous for Speck48 and Speck64. For Speck96 it doesn’t
increase throughput, but it can still significantly decrease the flash usage, and
so we adopt it. For Speck 128, the method will actually decrease throughput.
The code for a round of Speck is provided in Table 5.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 8
Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4
XOR K ← S−8(X)⊕K K = (S−8(x) + y)⊕ k 4
Rotate X ← S3(Y) X = S3(y) 14
XOR X ← X ⊕K X = (S−8(x) + y)⊕ k ⊕ S3(y) 4

Table 5. A high-throughput/low-power round implementation of Speck

The output of the first round is stored in the (K,X) register pair. In order to
get the output in the proper, X and Y registers, we need to move X into Y and
K into X. However, if we don’t want to incur additional cycles by doing this,
then we can proceed in a manner similar to the fast, low-RAM implementation
by iterating three consecutive rounds, all identical up to a relabeling of registers.
The final output after the third round will be back in the (X,Y) register pair.
The code for doing this is shown in Table 6.

If we iterate three rounds in a loop nine times as just described, Speck64/128
performs a full encryption in around 34 ·27+4 ·9+10+32 = 996 cycles, or about
125 cycles/byte and, including the key schedule, uses 316 bytes of flash. The high-
throughput data for Speck64/128, found in Table 7 of Appendix A, was obtained
by unrolling 6 rounds instead of 3 in order to get within 3% of the fastest, fully

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 8
Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4
XOR K ← S−8(X)⊕K K = (S−8(x) + y)⊕ k = x1 4
Rotate X ← S3(Y) X = S3(y) 14
XOR X ← X ⊕K X = S3(y)⊕ (S−8(x) + y)⊕ k = y1 4

Load Y ← l Y = l 8
Add K ← S8(S−8(K) + X) K = S8(S−8(x1) + y1) 4
XOR Y ← S−8(K)⊕ Y Y = (S−8(x1) + y1)⊕ l = x2 4
Rotate K ← S3(X) K = S3(y1) 14
XOR K ← K ⊕ Y K = S3(y1)⊕ (S−8(x1) + y1)⊕ l = y2 4

Load X ← m X = m 8
Add Y ← S8(S−8(Y) + K) Y = S8(S−8(x2) + y2) 4
XOR X ← S−8(Y)⊕X X = (S−8(x2) + y2)⊕m = x3 4
Rotate Y ← S3(K) Y = S3(y2) 14
XOR Y ← Y ⊕X Y = S3(y2)⊕ (S−8(x2) + y2)⊕m = y3 4

Table 6. A high-throughput/low-energy three round implementation of Speck

unrolled, implementation. That gave us a 122 cycles/byte implementation but
required about twice the flash.

5.4 A Small Flash Speck Implementation

Speck can be implemented to have small code size. We have not attempted to
minimize the code size without regard to the throughput, so smaller implemen-
tations are possible. The primary savings in space was achieved by implementing
the Speck round function as a subroutine. In this way, both the key schedule
and encryption function could use it without having to duplicate code.

6 Cipher Comparisons

Although it is not the primary purpose of this paper, we shall compare the per-
formance of Simon and Speck with several other block ciphers, and with a few
stream ciphers. Comparisons along these lines can already be found in the Simon
and Speck specification paper [2]. We have not endeavored to implement all of
the discussed ciphers from scratch since this was outside the scope of our paper.
Instead, when possible, we (or others) modified the best implementations avail-
able from existing sources so that they fit within our framework. Our comparison
data and a further discussion of our methodology can be found in Appendix B.

For brevity, we only included algorithms with an encryption cost of 1000
cycles/byte or less. For this reason, or because the data was unavailable, well-
known lightweight block ciphers such as Present, Clefia, Katan, etc., are
not listed. We use a performance efficiency measure, rank, that is similar to

a commonly used metric (see [17], [19], and [22]), proportional to throughput
divided by memory usage.

Among all block ciphers, Speck ranks in the top spot for every block and
key size which it supports. Except for the 128-bit block size, Simon ranks sec-
ond for all block and key sizes. Among the 64-bit block ciphers, Hight has
respectable performance on this platform, ranking higher than AES. Although
Twine ranks lower than AES, its performance is reasonable and, additionally, it
has very good hardware performance, making it one of the better lightweight de-
signs. Some software-based designs, like ITUbee, IDEA and TEA have poorer
performance than AES and are not compensated by particularly lightweight
hardware implementations. Klein, a hardware-based design, is slow and has
the least competitive overall performance among the 64-bit block ciphers in our
comparison.

Not surprisingly, AES-128 has very good performance on this platform, al-
though for the same block and key size, Speck has about twice the performance.
For the same key size but with a 64-bit block size, Simon and Speck achieve
two and four times better overall performance, respectively, than AES. A few
of the block ciphers in our comparison could not outperform AES, even though
they had smaller block and key sizes.

If an application requires high speed, and memory usage is not a priority,
AES has the fastest implementation (using 1912 bytes of flash, 432 bytes RAM)
among all block ciphers with a 128-bit block and key that we are aware of,
with a cost of just 125 cycles/byte [8]. The closest AES competitor is Speck
128/128, with a cost of 138 cycles/byte for a fully unrolled implementation. Since
speed is correlated with energy consumption, AES-128 may be a better choice
in energy critical applications than Speck128/128 on this platform.5 However,
if a 128-bit block is not required, as we might expect for many applications on
an 8-bit microcontroller, then a more energy efficient solution (using 628 bytes
of flash, 108 bytes RAM) is Speck 64/128 with the same key size as AES-128
and an encryption cost of just 122 cycles/byte, or Speck 64/96 with a cost of
118 cycles/byte.

We have also compared three of the four Profile I (software) eSTREAM com-
petition finalists, Salsa 20/12 [4], Sosemanuk [3], and HC-128 [25] since there is
a general perception that well-designed stream ciphers must have better perfor-
mance than block ciphers.6 Interestingly, all of the stream ciphers are less effi-
cient than the majority of the block ciphers listed. For high-speed/low-energy
applications, if memory is not a concern, only Sosemanuk can beat the fastest
implementations of AES and Speck.

5 We do not know, for a fact, that the high-speed AES implementations, which re-
quire frequent calls to RAM, are more energy efficient than the high-speed Speck
implementations which use mostly register-to-register operations.

6 No data for the other finalist, Rabbit [5], was available.

References

1. Atmel Corporation. 8-bit AVR Instruction Set, Rev. 0856I-AVR-07/10.
http://www.atmel.com/images/doc0856.pdf.

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers,
L. The Simon and Speck Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/.

3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., and Sibert, H. SOSE-
MANUK, a fast software-oriented stream cipher. In CoRR, abs/0810.1858 (2008).

4. Bernstein, D. The Salsa20 Family of Stream Ciphers. In Robshaw, M. and Billet,
O. (eds.) New Stream Cipher Designs — The eSTREAM Finalists, LNCS vol. 4986,
pp. 84–97. Springer, Heidelberg (2008).

5. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., and Scavenius, O.:
Rabbit: A new high-performance stream cipher. In T. Johansson, editor, Proc. Fast
Software Encryption 2003, vol. 2887 of LNCS, 307-329. Springer-Verlag (2003).

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C. PRESENT: An Ultra-Lightweight Block Cipher.
In Paillier, P., Verbauwhede, I. (eds.) CHES 2007, LNCS vol. 4727, pp. 450–466.
Springer, Heidelberg (2007).

7. Borghoff, J., Canteaut, A., Güneysu T., Kavun, E.B., Knežević M., Knudsen, L.R.,
Leander, G, Nikov, V., Parr, C., Rechberger, C., Rombouts, P., Thomsen, S.S., and
Yalçın, T. PRINCE – A Low-Latency Block Cipher for Pervasive Computing Ap-
plications. In Wang, X. and Sako, K. (eds.) ASIACRYPT 2012, LNCS vol. 7658,
208–225, Springer, Heidelberg (2012).

8. Bos, J., Osvik, D., and Stefan, D. Fast Implementations of AES on Various Plat-
forms. Cryptology ePrint Archive, Report 2009/501 (2009). http://eprint.iacr.org/.

9. de Cannière, C., Dunkelman, O., and Knežević, M. KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In CHES 2009,
Lecture Notes in Computer Science, No. 5747, 272-288. Springer-Verlag (2009).

10. Eisenbarth, T., Gong Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koe-
une, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F., van Oldeneel tot Oldenzeel,
L. Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny
Devices. In Africacrypt 2012, Lecture Notes in Computer Science, vol. 7374, 172-187.
Springer-Verlag (2012).

11. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L. A Survey of
Lightweight Cryptography Implementations. In IEEE Design & Test of Computers,
volume 24, Issue 6, 522-533, (2007).

12. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel.: A Survey of
Lightweight Cryptography Implementations. In IEEE Design & Test of Computers,
volume 24, Issue 6, 522-533, (2007)

13. Gong, Z., Nikova, S., Law, Y.W. KLEIN: A New Family of Lightweight Block
Ciphers. In RFIDsec’11 Workshop Proceedings, Cryptology and Information Security
Series, No. 6, 1-18. IOS Press (2011).

14. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. The LED Block Cipher. In
Preneel, B. and Takagi, T. (eds.) CHES 2011, LNCS vol. 6917, pp. 326–341, Springer,
Heidelberg (2011).

15. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S. HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
45-59. Springer-Verlag (2006).

16. Hutter, M., Schwabe, P. NaCl on 8-Bit AVR Microcontrollers. In Africacrypt 2013.
Lecture Notes in Computer Science, vol 7918, 156-172. Springer-Verlag (2013).

17. Karakoç, F., Demirci, H., Emre Harmancı, A. ITUbee: A Software Oriented
Lightweight Block Cipher. In Lightweight Cryptography for Security and Privacy,
Lecture Notes in Computer Science, vol. 8162, 16-27, 2013. Springer-Verlag (2013).

18. Meiser, G. Efficient Implementation of Stream Ciphers on Embedded Processors.
Masters Thesis, Ruhr-University Bochum, 2007.

19. Rinne, S., Eisenbarth, T., Paar, C. Performance Analysis of Contemporary
Lightweight Block Ciphers on 8-bit Microcontrollers. In SPEED – Software Per-
formance Enhancement for Encryption and Decryption, 2007.

20. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T. Pic-
colo: An Ultra-Lightweight Blockcipher. In CHES 2011, Lecture Notes in Computer
Science, No. 6917, 342-357. Springer-Verlag (2011).

21. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T. The 128-bit blockcipher
CLEFIA (Extended Abstract). In A. Biryukov, editor, FSE, volume 4593 of Lecture
Notes in Computer Science, 181-195. Springer (2007).

22. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E. TWINE: A Lightweight,
Versatile Block Cipher.
www.nec.co.jp/rd/media/code/research/images/twine LC11.pdf.

23. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S. Improved Meet-in-the-
Middle Cryptanalysis of KTANTAN. In Information Security and Privacy, ACISP
2011, pp. 433-438, (2011).

24. Wheeler, D., Needham, R. TEA, a Tiny Encryption Algorithm. In Preneel, B. (ed.)
FSE 1994, LNCS vol. 1008, pp. 363–366, Springer, Heidelberg (1995).

25. Wu, H. The Stream Cipher HC-128.
www.ecrypt.eu.org/stream/p3ciphers/hc/hc128 p3.pdf.

26. Wu, W., Zhang, L. LBlock: A Lightweight Block Cipher. In ACNS 2011, Lecture
Notes in Compute Science, No. 6715, 327-344. Springer-Verlag (2011).

A Simon and Speck AVR Performance

In this section we present the results of our three AVR implementations of Simon
and Speck. The headings of each column indicate the block size/key size in bits.
The first three rows of data correspond to the low flash implementation, the next
three rows to the low RAM implementation and the last three rows are for the low
cost (i.e., high-speed/low-energy) implementation. RAM and flash are measured
in bytes and cost is measured in cycles/byte. For none of the algorithms is any
sort of functionality for the decryption operator included, although for Simon
decryption is essentially the same as encryption, and Speck decryption uses
about the same amount of resources as Speck encryption.

Speck AVR Implementation Data

32/64 48/72 48/96 64/96 64/128 96/96 96/144 128/128 128/192 128/256

flash 118 150 156 184 192 218 254 278 330 348
RAM 44 69 72 108 112 174 180 264 272 280
cost 171 149 155 158 164 154 159 169 174 179

flash 108 154 158 214 218 324 330 460 468 476
RAM 0 0 0 0 0 0 0 0 0 0
cost 144 134 140 148 154 152 157 171 176 181

flash 440 556 586 588 628 502 624 452 632 522
RAM 44 66 69 104 108 168 174 256 272 288
cost 114 104 108 118 122 127 131 143 147 151

Table 7. Speck AVR implementation data.

Simon AVR Implementation Data

32/64 48/72 48/96 64/96 64/128 96/96 96/144 128/128 128/192 128/256

flash 152 190 202 230 240 304 304 392 392 404
RAM 64 108 108 168 176 312 324 544 552 576
cost 193 206 206 222 232 262 272 346 351 366

flash 130 190 190 282 290 474 486 760 768 792
RAM 0 0 0 0 0 0 0 0 0 0
cost 207 222 222 242 253 287 297 379 384 401

flash 400 454 466 562 436 592 492 510 646 522
RAM 64 108 108 168 176 312 324 544 552 576
cost 172 191 191 209 221 253 264 337 339 357

Table 8. Simon AVR implementation data.

B Comparison Data and Methodology

Fair comparisons adhere to a common framework. The framework provides
three important pieces of information. First, it provides a high-level, device-
independent description of what the cipher is expected to do. At a lower level,
device-dependent implementation details are provided. Finally, a performance
metric is chosen to make the comparisons meaningful. Needless to say, any rank-
ing depends on the framework used, especially the performance metric. The
following application types are especially relevant to lightweight cryptography.

– Fixed Key/Small Data. Fixed key applications assume the key will never
(or rarely) be changed. In hardware, area requirements can be reduced (de-
pending on the design and the implementation) because state for a key sched-
ule may not be required. In software, the key, or better yet the expanded
key, can be stored in long-term memory and the key schedule can be relin-
quished. For small data size comparisons, we may assume we are encrypting
just a single block and so incur the full cost of any setup. This application
type may be appropriate for simple authentication applications.

– Fixed Key/Large Data. This is the same as the previous type except that
the data stream is assumed to be large. For comparison purposes, we may
assume the amount of encrypted data approaches infinity, amortizing away
the setup costs. This may be appropriate for various sensor applications.

– Flexible Key/Small Data. Here, we assume the key is changed often.
In hardware or software, this necessitates the inclusion of the key schedule.
For comparison purposes, we may assume that we are encrypting a single
block of data with a never-before-seen key. This type of application may be
appropriate when the block cipher is contained in a general purpose crypto
module and the key enters the device from outside of the module.

– Flexible Key/Large Data. Similar to the preceeding except the data
stream is large. For comparison purposes, we may again assume the data
stream is (effectively) infinite, amortizing away all setup costs.

It is generally recognized in lightweight cryptography that use of the decryp-
tion operator should be avoided, if possible, in order to conserve resources. If
resources are not a big concern, one should use AES. For software applications
on a microcontroller, implementations should be assembly coded in order to re-
duce compiler vagaries and to provide for maximal performance (i.e., to reduce
code size and memory usage and to increase throughput).

For our comparisons, shown in Table 9, we (mostly) used the Fixed Key/Small
Data framework. For our implementations, expanded key is stored in flash and
only encryption functionality is provided. Key schedules are also absent. The
encryption procedure begins by loading the plaintext from RAM into registers.
The plaintext is then transformed into the ciphertext using the encryption op-
erator. The resulting ciphertext is then loaded in RAM. This completes the

encryption process. RAM for holding the plaintext and ciphertext is not costed
but RAM used for temporary storage (e.g., on the stack) is. Our low-RAM im-
plementations of Simon and Speck were appropriate for this comparison. For
the other ciphers, implementations fitting the framework were based on the best
existing code (or performance data) we could find which maximized the overall
performance metric, rank, which is defined to be

(106/cost)/(flash + 2 · RAM);

higher values of rank correspond to better performance.7 In some cases, this just
amounted to stripping out the code for the decryption and key schedule algo-
rithms in existing implementations. In other cases, we wrote the code ourselves.

Note that our performance metric is an overall measure of performance and
takes into account flash, RAM and throughput. However, depending on priorities,
this metric may be irrelevant. If the main concern is energy efficiency, then a
more appropriate metric is just throughput and a fair comparison will require
implementations optimized for this purpose, resulting in altered rankings. We
have already alluded to this in our discussion in §6.

Referring to Table 9, all implementations, except for HC-128, were assembly
coded. Size is block size/key size for block ciphers and state size/key size for
stream ciphers. The cost is the number of cycles per byte to transform a block
of plaintext into a block of ciphertext.

The ITUbee data is taken directly from its specification paper [17]. Data
for SEA, IDEA and Klein are taken from [19], [12] and [10], respectively. In
some cases, code size estimates had to be made to fit our framework. The TEA
and Hight implementations are our own. For AES, our numbers were kindly
provided by Dag Arne Osvik, one of the authors of [8], who made suitable code
modifications to fit our framework. The Twine data, fitting our framework, was
provided by two of the Twine designers, Kazuhiko Minematsu and Tomoyasu
Suzaki. Our numbers for Salsa 20/12 were obtained by scaling down the cost of
the Salsa 20/20 implementation provided in [16]. Data for Sosemanuk and HC-
128 was obtained from [18]. We did not include the considerable setup time for
HC-128 and the moderate setup time for Sosemanuk, and of course this setup
time should be considered in the Fixed Key/Small Data framework.8

7 The rank is similar to the metric found in [22] except we have imposed a penalty for
using too much RAM — hence the factor of 2. Without the factor of 2, flash and
RAM have the same cost, which seems unjustifiable.

8 The HC-128 stream cipher implementation does not actually fit on the ATmega128
due to its excessive use of RAM. The C implementation of HC-128 described in [18]
has a setup cost of over 2,000,000 cycles.

Comparisons with Block Ciphers

size name flash RAM cost rank
(bytes) (bytes) (cyc/byte)

48/96 Speck 158 0 140 45.2
Simon 190 0 222 23.7

64/80 Twine 1208 23 326 2.4
Klein 766 18 762 1.6

80/80 ITUbee 586 0 294 5.8
64/96 Speck 214 0 148 31.6

Simon 282 0 242 14.7
Klein [766] [18] [955] [1.3]

64/128 Speck 218 0 154 29.8
Simon 290 0 253 13.6
Hight 336 0 311 9.6
IDEA [397] 0 338 [7.5]
Twine 1208 23 326 2.4
TEA 350 12 638 4.2

96/96 Speck 324 0 152 20.3
Simon 474 0 287 7.4
SEA [1066] 0 805 [1.2]

128/128 Speck 460 0 171 12.7
AES 970 18 146 6.8
Simon 760 0 379 3.5

Comparisons with Stream Ciphers

128/256 Speck 476 0 181 11.6
AES 1034 18 204 4.7
Simon 792 0 401 3.1

512/256 Salsa 20/12 1092 275 177 3.4
384/128 Sosemanuk 11140 712 118 0.7
32768/128 HC-128 23100 4556 169 0.2

Table 9. Comparisons of Simon and Speck with some other block and stream ciphers
on the ATmega128, 8-bit microcontroller in the Fixed Key/Small Data framework.
Values in square brackets, [], are our best estimates based on the existing literature.
The higher the rank, the better the overall performance. Since our goal was to optimize
the rank, these implementations are not necessarily the fastest possible.

