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Abstract

In 2010, Lewko, Sahai and Waters proposed an efficient revocation system but they ne-

glected the security differences between one-to-one encryption and one-to-many encryption.

In their system, an authority generates all users’ decryption keys once and for all. We remark

that the inherent drawback results in that the system is vulnerable to an attack launched by

some malicious users. These malicious users could exchange their decryption keys after they

receive them from the authority in order to maximize their own interests. Thus, the Lewko-

Sahai-Waters revocation system cannot truly revoke a malicious user. From the practical

point of view, the flaw discounts greatly the importance of the system.

Keywords. Broadcast encryption, revocation system, q-decisional multi-exponent bilin-

ear Diffe-Hellman assumption.

1 Introduction

In 1991, Berkovits [1] introduced the primitive of broadcast encryption which was formalized

by Fiat and Naor [7]. It requires that the broadcaster encrypts a message such that a particular

set of users can decrypt the message sent over a broadcast channel. The Fiat-Naor broadcast

encryption and the following works [8,9,13,18,19] use a combinatorial approach. This approach

has to right the balance between the efficiency and the number of colluders that the system is

resistant to. Recently, Boneh et al [2, 10] have constructed some broadcast encrypt systems. In

these systems, the public parameters must be updated to allow more users.

In a revocation system, a broadcaster encrypts a message such that a particular set of revoked

users cannot decrypt the message sent over a broadcast channel. In 1998, Kurosawa and Desmedt

[14] introduced a method based on polynomial interpolation for constructing revocation systems.

The subsequent revocation systems [17, 20] adopt this technique. In 1999, Canetti et al [3, 4]

developed a different method for multicast encryption. In 2001, Naor, Naor and Lopspeich [16]

proposed a stateless tree-based revocation scheme. Their method was subsequently improved
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by Halevy and Shamir [12], by Goodrich, Sun, and Tamassia [11], and by Dodis and Fazio [6].

In 2007, Delerablée, Paillier and Pointcheval [5] proposed a revocation system which does not

need to modify decryption keys when the public parameters are updated.

In 2010, Lewko, Sahai and Waters [15] proposed a simple revocation system with very small

decryption keys. In the scheme, the size of public and decryption keys is only a constant number

of group elements from an elliptic-curve group of prime order. The authority generates all users’

decryption keys once and for all. In this paper, we remark that the inherent drawback results

in that the system is vulnerable to an obvious attack launched by some malicious users. In

order to maximize their own interests, these malicious users could conduct mutually beneficial

cooperations by exchanging their decryption keys after they receive them from the authority. In

addition, we will show that their security argument for the system is flawed.

2 Preliminaries

Let G and GT be two cyclic groups of prime order p, g be a generator of G. A bilinear map

e : G × G → GT has the following properties: (1) for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) =

e(u, v)ab; (2) e(g, g) 6= 1. We say that G is a bilinear group if the group action in G can be

computed efficiently and there exists a group GT and an efficiently computable bilinear map as

above.

A revocation system is made up of three randomized algorithms [15]. An authority is re-

sponsible for running the setup algorithm which outputs a public key PK and master secret key

MSK.

KeyGen(MSK, ID). The key generation algorithm takes in the master secret key MSK and

an identity, ID. It generates a decryption key SKID for the identity.

Encrypt(S, PK,M). The encryption algorithm takes as input a revocation set S of identities

along with the public key and a message M to encrypt. It outputs a ciphertext CT such that

any user with a key for an identity ID /∈ S can decrypt.

Decrypt(S, CT, ID, DID) The decryption algorithm takes as input a ciphertext CT that

was generated for the revocation set S, as well as an identity ID and a decryption key for it.

If ID /∈ S the algorithm will be able to decrypt and recover the message M encrypted in the

ciphertext.

q-Decisional Multi-Exponent Bilinear Diffe-Hellman Assumption. Let G be a bi-

linear group of prime order p. The q-MEBDH problem in G is stated as follows: A challenger

picks a generator g ∈ G and random exponents s, α, a1, · · · , aq. The attacker is then given −→y =

g, gs, e(g, g)α; ∀1≤i,j≤q, gai , gais, gaiaj , gα/a
2
i ;
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∀1≤i,j,k≤q,i6=j , gaiajs, gαaj/a
2
i , gαaiaj/a

2
k , gαa

2
i /a

2
j .

It must remain hard to distinguish e(g, g)αs ∈ GT from a random element in GT .

3 Lewko-Sahai-Waters revocation system

The construction uses a bilinear group G of prime order p. The identities are taken from the

set Zp.
Setup. The authority picks random generators g, h ∈ G and exponents α, b ∈ Zp and

publishes the public key PK = (g, gb, gb
2
, hb, e(g, g)α). The authority keeps α, b as secrets.

KeyGen(MSK, ID). For an identity ID, the authority picks a random t ∈ Zp and returns

the decryption key:

D0 = gαgb
2t, D1 = (gb·IDh)t, D2 = g−t.

Encrypt(PK, M , S). For a revocation set S of identities, let r = |S| and IDi denote the

i-th identity in S. Pick random s1, · · · , sr and set s = s1 + · · · + sr. Given a message M , it

creates the ciphertext CT as:

C ′ = e(g, g)αsM, C0 = gs

together with, for each i = 1, 2, · · · , r:(
Ci,1 = gb si , Ci,2 =

(
gb

2 IDihb
)si)

.

Decrypt(S, CT, ID, DID). If ID ∈ S, then abort. Otherwise compute

e(C0, D0)

e
(
D1,

∏r
i=1C

1/(ID−IDi)
i,1

)
e
(
D2,

∏r
i=1C

1/(ID−IDi)
i,2

)
which gives e(g, g)αs, this can be used to recover the message M from C ′.

4 Security argument of Lewko-Sahai-Waters revocation system

In the section B.2 of Ref. [15], the authors presented a security argument for their revocation

system. For convenience, we now relate it as follows.

Suppose we have an adversary A with non-negligible advantage ε = AdvA in the selective

security game against our construction. Moreover, suppose attacks our system with a ciphertext

of at most q revoked users. We show how to build a simulator, B, that plays the decisional q-

MEBDH problem.

The simulator begins by receiving a q-MEDDH challenge
−→
X,T . The simulator then proceeds

in the game as follows.
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Initialization The adversary A declares a revocation set S∗ = ID1, · · · , IDr∗ of size r∗ ≤ q
that he gives to the simulator. (If r < q the simulator will just ignore some of the terms given

in
−→
X ).

Setup The simulator now creates the public key PK and gives A the private keys for all

identities in S∗. The simulator first chooses a random y ∈ Zp and sets b = a1 + a2 + · · · + ar.

The public key PK is published as:

(g, gb =
∏

1≤i≤r∗
gai , gb

2
=

∏
1≤i,j≤r

(gaiaj ), h =
∏

1≤i≤r∗
(gai)−IDigy, e(g, g)α)

We observe that the public parameters are distributed identically to the real system and that

the revocation set S∗ is reflected in the simulation’s construction of the parameter h.

Now the simulator must construct all private keys in the revocation set S. For each identity

IDi the simulator will choose a random zi ∈ Zp and will set the randomness ti of the i-th identity

as ti = −α/a2i + zi.

The private key for IDi is generated as follows:

D0 =

 ∏
1≤j,k≤n

s.t. if j=k then j,k 6=i

(g−αajak/a
2
i )

 ∏
1≤j,k≤n

(gajak)zi

D1 =

 ∏
1≤j≤n

j 6=i

(g−αaj/a
2
i )(IDi−IDj)(g(IDi−IDj)aj )zi

 (g−α/a
2
i )ygyzi

D2 = gα/a
2
i g−zi

Challenge The simulator receives M0,M1 and chooses random β ∈ {0, 1}. The simulator

then chooses random s′, s′1, · · · , s′r ∈ Zp such that s′ =
∑

i s
′
i. Let ui = gb

2IDihb. Note that

this is computable from the public parameters, which were already set. The ciphertext will be

encrypted under randomness s̃ = s + s′ and be broken into shares s̃i = ais/b + s′i. Recall that

b =
∑

j aj . Therefore,
∑
s̃i = s̃. The challenge CT is created as

C ′ = Te(g, g)αs
′
Mβ, C0 = gsgs

′
, ci,1 = gsai(

∏
j

gaj )s
′
i , ci,2 =

 ∏
1≤j≤r∗
j 6=i

(gsaiaj )IDi−IDj

 (gais)yu
s′i
i .

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0

to guesses that T = e(g, g)αs if β = β′; otherwise, outputs 1 to indicate that it believes T is a

random group element in GT . When T is a tuple the simulator B gives a perfect simulation so

we have that

Pr[B(
−→
X,T = e(g, g)αs) = 0] =

1

2
+ AdvA.
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When T is a random group element the message Mβ is completely hidden from the adversary

and we have Pr[B(
−→
X,T = R) = 0] = 1

2 . Therefore, B can play the decisional q-MEBDH game

with non-negligible advantage.

5 Different confidentiality levels

Confidentiality is a fundamental information security objective which is a service used to

keep the content of information from all but those authorized to have it. From the sender’s

point of view, in a conventional one-to-one encryption the intended recipient undertakes the

full obligations to keep the privacy of the plaintext. However, each intended recipient in a

one-to-many encryption undertakes partial obligations. Based on this observation, we classify

confidentiality into two kinds, strong confidentiality and weak confidentiality, corresponding to

full obligations and partial obligations, separately. This classification will be helpful to analyze

the behaviors of one intended recipient and revisit the security of different encryption models.

6 The security requirement for one-to-one encryption revisited

It is well known that the conventional one-to-one encryption requires that the adversary

without the valid decryption key cannot recover the plaintext. Note that the adversary here

is an uncharacteristic role. The requirement does not imply that some unintended recipients

cannot recover or obtain the plaintext. In real life, some partners of the intended recipient can

obtain or recover the plaintext by the following two methods.

(1) The intended recipient, Bob, forwards the plaintext to his partner, Cindy. We refer to

the Graph 1 for this case.

Enc( , )c pk m�

Dec( , )m sk c�

Alice

Bob

Cindy

c

forward  tom

Graph 1: Bob forwards the plaintext  to Cindym

(2) The intended recipient, Bob, shares the decryption key with his partner, Cindy. We refer

to the Graph 2 for this case.

In a word, the conventional one-to-one encryption has no intention to exclude some partners

of the intended recipient from obtaining the plaintext. This property is so obvious that it is

often neglected. However, the partnership of recipients must be taken into account when we
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Enc( , )c pk m�

Dec( , )m sk c�

Alice

Bob

Cindy

c

c

Dec( , )m sk c�

share  with Cindysk

Graph 2: Bob shares his secret key with Cindy

design a one-to-many encryption system.

7 An inherent drawback in Lewko-Sahai-Waters system

Unlike a conventional one-to-one encryption, a broadcast encryption is a type of one-to-

many encryption. Since there are many intended recipients, each recipient undertakes partial

obligations to keep the privacy of the plaintext. Thus, an intended recipient possibly forwards

the plaintext to others or shares his decryption key with others.

In a broadcast encryption system, a broadcaster encrypts a message such that a particular

set of users can decrypt the message sent over a broadcast channel. It does not consider whether

a valid user in the set reveals subsequently the message to others. We think, from the practical

point of view, the security of a broadcast encryption consists in that an adversary can not obtain

the message unless any valid user tells him/her.

In a revocation system, a user always expects to be able to decrypt any ciphertext even if

he/she could be revoked in future. Thus, some malicious users could exchange their decryption

keys in order to maximize their own interests. It is reasonable that they conduct mutually

beneficial cooperations. For convenience, we call the attack decryption-key sharing. For example,

Alice and Bob exchange their decryption keys after they receive them from the authority. Once

Alice is revoked and Bob is not revoked, she shall use Bob’s decryption key to decrypt any

broadcasted ciphertext. Taking into account this attack, we remark that the Lewko-Sahai-

Waters revocation system can not truly revoke a malicious user.

The inherent drawback is due to that the authority in the Lewko-Sahai-Waters system gen-

erates all users’ decryption keys once and for all. The authors [15] neglected the partnership

of recipients and paid less attentions to the security difference between a one-to-one encryption

and a one-to-many encryption. By the way, the method to assign a fixed decryption key for

each member is not applicable to revocation systems. Note that the Goodrich-Sun-Tamassia

tree-based revocation system [11] is immune to the decryption-key sharing attack. They have

stressed that keys should be updated after each insertion or deletion (revocation) of a device.

They have also specified the strategy for key update and tree rebalance.
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8 On the flawed security argument

8.1 On the inconsistent public keys

In the section B.2 of Ref. [15], the simulator sets the public key as

(g, gb =
∏

1≤i≤r∗
gai , gb

2
=

∏
1≤i,j≤r

(gaiaj ), h =
∏

1≤i≤r∗
(gai)−IDigy, e(g, g)α).

In view of that gb =
∏

1≤i≤r∗ g
ai and gb

2
=
∏

1≤i,j≤r(g
aiaj ), we find r∗ = r. By the way, the

parameter r is not specified at all. This is a simple typo.

In the section 3.1 of Ref. [15], the authority sets the public key as

(g, gb, gb
2
, hb, e(g, g)α).

Note that the parameter h is not used by Encrypter, instead hb. To keep the consistency of PK,

it is better to set the public key in the simulation phase as

(g, gb =
∏

1≤i≤r∗
gai , gb

2
=

∏
1≤i,j≤r∗

(gaiaj ), hb =

 ∏
1≤i≤r∗

(gai)−IDigy


∑r∗

j=1 aj

, e(g, g)α).

We remark that the authors were not aware of the inconsistency. More worse, we find that

the inconsistent PK is compatible with their subsequent security argument (see the phases of

Challenge and Guess). That is, two different PK’s are compatible with the same security

argument. This seems against common sense.

In fact, the parameter h must be kept in secret. Otherwise, the adversary can launch

the following equivalent-key attack. Concretely, a user with the identity ID can generate any

equivalent keys which can be used for decryption. The user only need to pick a random φ ∈ Zp
and compute

D̂0 = D0g
b2φ = gαgb

2(t+φ),

D̂1 = D1(g
b·IDh)φ = (gb·IDh)t+φ,

D̂2 = D2g
−φ = g−(t+φ).

Clearly, the new key {D̂0, D̂1, D̂2} can be used for decryption. Now the user reveals the

equivalent key {D̂0, D̂1, D̂2} to the adversary without revealing the original decryption key

{D0, D1, D2}.
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8.2 The simulator generates a false decryption key for IDi

We now have a close look at the decryption key for IDi which is generated by the simulator.

Notice that

b = a1 + a2 + · · ·+ ar∗ ,

ti = −α/a2i + zi,

h =
∏

1≤i≤r∗
(gai)−IDigy = gy−

∑
1≤i≤r∗ aiIDi .

Hence,

D2 = gα/a
2
i g−zi = gα/a

2
i−zi = g−ti

D1 =

 ∏
1≤j≤n

j 6=i

(g−αaj/a
2
i )(IDi−IDj)(g(IDi−IDj)aj )zi

 (g−α/a
2
i )ygyzi

=

 ∏
1≤j≤n

j 6=i

gaj(−α/a
2
i+zi)(IDi−IDj)

 (g−α/a
2
i+zi)y

=

(
g

∑
1≤j≤n
j 6=i

ajti(IDi−IDj)
)

(gti)y =

(
g

∑
1≤j≤n
j 6=i

aj(IDi−IDj)

gy

)ti

=

(
g
y−

∑
1≤j≤n
j 6=i

ajIDj+IDi
∑

1≤j≤n
j 6=i

aj
)ti

where n is specified as the quantity of queries to the group oracle made by the adversary (see

the section B.1 in Ref. [15]). But the relation between n and r∗ is not specified.

If n = r∗, then we have

D1 =

(
g
y−

∑
1≤j≤r∗

j 6=i

ajIDj+IDi
∑

1≤j≤r∗
j 6=i

aj
)ti

=
(
gy−

∑
1≤j≤r∗ ajIDj+IDi

∑
1≤j≤r∗ aj

)ti
=

(
gy−

∑
1≤j≤r∗ ajIDjgIDi

∑
1≤j≤r∗ aj

)ti
=
(
hgbIDi

)ti
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D0 =

 ∏
1≤j,k≤r∗

s.t. if j=k then j,k 6=i

(g−αajak/a
2
i )

 ∏
1≤j,k≤r∗

(gajak)zi

=

 ∏
1≤j,k≤r∗

s.t. if j=k then j,k 6=i

gajak


−α/a2i (

g
∑

1≤j,k≤r∗ ajak
)zi

=
(
g
∑

1≤j,k≤r∗ ajak−a2i
)−α/a2i

(gb
2
)zi

=
(
gb

2−a2i
)−α/a2i

(gb
2
)zi

= gα(gb
2
)−α/a

2
i+zi = gαgb

2ti

The above D0, D1, D2 constitute a proper decryption key for the identity IDi.

If n > r∗ and ai = 0 for i = r∗+1, · · · , n, then D0, D1, D2 still constitute a proper decryption

key for the identity IDi.

If n < r∗, it is easy to check that D0, D1, D2 constitute a false decryption key for the identity

IDi.

In sum, the simulation requires that the adversary have to make at lest (not at most) r∗

queries to the group oracle. This restriction is of course against common sense. Usually, a

simulation only specifies the upper bound to the quantity of queries made by the adversary.

One might argue that the number n in the representations of D0 and D1 is just a typo. It

should be r∗. If that, we find the parameter n is not used in the whole simulation (see the

four phases: Initialization, Setup, Challenge and Guess). Therefore, we do not know how n, the

quantity of queries made by the adversary, exercises its influence on the advantage

Pr[B(
−→
X,T = e(g, g)αs) = 0].

In other words, the representation of the advantage has no relation to the true quantity of

queries. Therefore, it leads to a contradiction because the adversary can simply make less than

r∗ queries.

9 Conclusion

In this paper, we remark that the system is vulnerable to the decryption-key sharing attack.

We also show that the security argument of Lewko-Sahai-Waters revocation system is flawed.

From the practical point of view, we think it is unreasonable in a revocation system to ask the

authority to generate all users’ decryption keys once and for all.
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