
Immunizing Multilinear Maps Against Zeroizing Attacks

Dan Boneh
Stanford University

David J. Wu
Stanford University

Joe Zimmerman
Stanford University

Abstract

In recent work Cheon, Han, Lee, Ryu, and Stehlé presented an attack on the multilinear
map of Coron, Lepoint, and Tibouchi (CLT). They show that given many low-level encodings
of zero, the CLT multilinear map can be completely broken, recovering the secret factorization
of the CLT modulus. The attack is a generalization of the “zeroizing” attack of Garg, Gentry,
and Halevi.

We first strengthen the attack of Cheon, Han, Lee, Ryu, and Stehlé by showing that CLT
can be broken even without low-level encodings of zero. This strengthening is sufficient to show
that the subgroup elimination assumption does not hold for the CLT multilinear map.

We then present a generic defense against this type of “zeroizing” attack. For an arbitrary
asymmetric composite-order multilinear map (including CLT), we give a functionality-preserving
transformation that ensures that no sequence of map operations will produce valid encodings
(below the zero-testing level) whose product is zero. We prove security of our transformation
in a generic model of composite-order multilinear maps. Our new transformation rules out
“zeroizing” leaving no currently known attacks on the decision linear assumption, subgroup
elimination assumption, and other related problems for the CLT multilinear map. Of course, in
time, it is possible that different attacks on CLT will emerge.

Update: Since the publication of this work, Coron, Lepoint, and Tibouchi [CLT14] have
further strengthened the original attacks of Cheon et al. With the stregthened attack, the mit-
igations we describe in this work no longer suffice to secure the original CLT multilinear map.
However, we have preserved the original exposition of our zero-immunizing transformation (Sec-
tion 3), since this transformation is of independent interest. Notably, our transformation still
rules out low-level zero encodings (Theorem 3.14), and thus provides robustness in the setting
of deterministic encodings.

1 Introduction

Multilinear maps [BS03] have found numerous applications in cryptography. Most notably they
give the first viable approach to code obfuscation [GGH+13b].

The first candidate construction for multilinear maps (or more precisely, for graded encoding
schemes) is due to Garg, Gentry, and Halevi (GGH) [GGH13a] and makes use of ideal lattices. Garg,
Gentry, and Halevi observed that their construction does not satisfy some useful assumptions in
cryptography such as decision linear (DLIN) and subgroup membership [GGH13a, §4.4]. They
presented a specific attack on instances of these problems that is now called a zeroizing attack.

Another multilinear map was presented by Coron, Lepoint, and Tibouchi (CLT) [CLT13] and
works over the integers. The CLT multilinear map uses the same general paradigm as GGH, but ap-
peared to satisfy the decision linear (DLIN) and subgroup membership assumptions. Consequently
CLT has been used in several cryptographic applications of multilinear maps (see [CHL+14] for a
brief survey) and in some early implementations [AHKM14]. Recently, a third candidate construc-
tion of multilinear maps was proposed by Gentry, Gorbunov, and Halevi [GGH14], making use of
integer lattices.

1

Both the GGH and CLT multilinear maps provide the following abstract operations (see the
next section for a complete definition). Let N be a positive integer and we refer to ZN as the
domain of the multilinear map. For a finite set U (called the top-level index set), we use [x]S to
denote an encoding of an element x ∈ ZN at some index set S ⊆ U . From two encodings [x]S and
[y]S we can obtain an encoding [x+y]S . Similarly, from two encodings [x]S1 and [y]S2 we can obtain
an encoding [x · y]S1∪S2 (for now we assume that S1 and S2 are disjoint). We say that an encoding
[x]S is at level |S| where |S| is the cardinality of S. An encoding [x]U at the top level U can be
efficiently tested to determine if x = 0. We say that the map is a κ-way multilinear map where
κ = |U|. Every encoding of 0 ∈ ZN at any level is called a 0-encoding. We say that a 0-encoding
is non-trivial if it is not the result of computing x̂− x̂ for some given encoding x̂, or some similar
such tautological expression (see Remark 3.10 for a precise definition).

The security of CLT. In important recent work, Cheon, Han, Lee, Ryu, and Stehlé [CHL+14]
presented an attack on the CLT multilinear map. The attack generalizes the zeroizing attack of
Garg, Gentry, and Halevi and obtains the following result: consider an application of CLT where
the attacker can obtain sufficiently many fresh non-trivial 0-encodings at index set S $ U and
arbitrary encodings at index set U \ S. Cheon et al. show that in this case the attacker can
recover all parameters of CLT that are intended to be secret (e.g. the secret factors of the CLT
modulus). In applications of CLT where anyone should be able to create encodings of elements
in ZN (e.g. as in the n-way Diffie-Hellman protocol where n parties generate a shared key non-
interactively [BS03, GGH13a, CLT13]) the public parameters of the scheme include sufficiently
many 0-encodings to mount the attack. Therefore all these applications cannot be instantiated
with CLT. We note that the attack of [CHL+14] requires many 0-encodings at some level below
the zero-testing level, and so applications where the attacker cannot create such encodings are not
directly impacted by the attack of [CHL+14].

Our contribution. Let MM be a multilinear map. We construct a new multilinear map ZMM
whose operations are defined in terms of the original multilinear map MM. This transformation
has the following property: given the public parameters of ZMM along with ZMM encodings of the
attacker’s choice, the attacker cannot construct a non-trivial 0-encoding for MM at any index set
below the zero-testing level of MM. We refer to a transformation from MM to ZMM that has this
property as a zero-immunizing transformation.

We emphasize that the map ZMM provides almost the same functionality as the underlying
MM and can be used as a drop-in replacement for MM (one minor difference in functionality is
explained in Remark 2.8). Applying our ZMM transformation to the CLT construction immunizes
it against zeroizing attacks and restores it as a candidate construction for which assumptions like
DLIN, subgroup membership, and subgroup elimination may hold.

Strengthening the [CHL+14] attack on CLT. To further illustrate the importance of the
new defense, we also strengthen the [CHL+14] attack on the basic CLT scheme. The resulting
attack has implications for other cryptographic assumptions such as the subgroup elimination
assumption [GLW14, GLSW14].

Recall that the [CHL+14] attack requires 0-encodings at some level t < κ. We show that a
similar attack is possible even if one is given appropriate non-zero encodings at levels less than κ,
as long as the product of these encodings encodes 0 at the top level. We refer to a collection of
encodings that multiply to 0 at level U as a set of orthogonal encodings. We show that sufficiently
many fresh orthogonal encodings suffice to factor the CLT modulus.

2

Because our strengthened version of the [CHL+14] attack does not require low-level 0-encodings,
we are able to apply it even in “secret-key” settings such as in [GLSW14], in which low-level 0-
encodings are not made public. In particular, the attack can now be used to break the subgroup
elimination problem when instantiated using the basic CLT construction. The reason is that many
orthogonal sets can be generated from an instance of subgroup elimination.

Of course, when the CLT construction is augmented with our new defense, this attack is no
longer possible. In fact, no attack is currently known on the subgroup elimination problem when
instantiated using our proposed augmentation to CLT.

1.1 Overview of the Transformation

We briefly describe the structure of our zero-immunizing transformation. In what follows let ZN
be the desired domain of the multilinear map where N = N1 · · ·Nk for some positive integers
N1, . . . , Nk (in the notation of CLT this N = g1 · · · gk). It will be convenient to denote an encoding
of an element x ∈ ZN by [x1, . . . , xk]S where x = xi mod Ni for all i = 1, . . . , k. Recall that U is
the top index set where zero-testing is possible and the degree of multilinearity is κ = |U|.

Our zero-immunizing transformation creates a new multilinear map ZMM with a desired domain
ZN and top index set U . To do so, the transformation instantiates MM with a domain ZN ′ and
top index set U ′. The domain ZN ′ satisfies N ′ = N · Nk+1 · Nk+2 for some secret integers Nk+1

and Nk+2. The top index set U ′ for MM becomes about twice as big as U : if U = {A1, . . . , Aκ}
then

U ′ = {A(l)
1 , . . . , A(l)

κ } ∪ {A
(r)
1 , . . . , A(r)

κ } ∪ {T}

so that the degree of multilinearity of MM is 2κ+ 1. We use Ul to denote the κ indexes in U ′ with
superscript (l) and use Ur to denote the κ indexes with superscript (r). We now use MM to setup
a multilinear map for domain ZN ′ and top index set U ′.

In the new multilinear map ZMM, an encoding [x1, . . . , xk]S of an element x ∈ ZN at index set
S ⊆ U is the following pair of MM encodings:(

[x1, . . . , xk, ζ, νl]Sl , [η1, . . . , ηk, ζ, νr]Sr
)

where Sl is the copy of S in Ul and Sr is the copy of S in Ur. The scalars ζ, νl, νr and η1, . . . , ηk
are chosen at random in the appropriate rings ZNi for some i ∈ {1, . . . , k + 2}. Given two such
encodings we can add and multiply them component-wise using the multilinear operations of MM.
Now, to zero-test a ZMM top-level encoding [x]U we make public two additional MM encodings:

t̂l = [1, . . . , 1, 1, 0]Ur∪{T} and t̂r = [0, . . . , 0, 1, 0]Ul∪{T} .

Then to zero-test [x]U = (x̂l, x̂r) we use the zero-test procedure of MM to zero-test the encoding:

ŷ = x̂l · t̂l − x̂r · t̂r .

Clearly ŷ is an encoding at index set U ′ and can therefore be zero-tested. Moreover, by construction,
ŷ is a 0-encoding if and only if x = 0, as required.

It remains to argue that the transformation is zero-immunizing. We show that if MM is modeled
as a generic multilinear map for domain ZN ′ and top index set U ′ then using the public parameters
of ZMM and any ZMM encodings of the attacker’s choice, the attacker cannot produce a non-trivial
0-encoding for MM at any level below U ′. The proof makes use of the two additional components
Nk+1 and Nk+2 and argues, using the Schwartz-Zippel lemma, that an attacker cannot w.h.p. cause
these components to become zero below the zero-testing level U ′. To apply the Schwartz-Zippel

3

lemma we require that multilinearity degree κ is such that κ/Nk+1 and κ/Nk+2 are negligible.
Moreover, we show that the attacker cannot even produce a pair of MM encodings [x1]S1 and
[x2]S2 , where x1, x2 ∈ ZN ′ , such that both encodings are below U ′ and x1 · x2 = 0 in ZN ′ . This
proves that ZMM is also immunized against our strengthening of the zeroizing attack of [CHL+14].

Immunized CLT. When applying this transformation to the CLT construction we must first
suppress the publication of the CLT 0-encodings used for re-randomization as well as the level-0
CLT encodings, since those can be used to break the scheme. Obfuscation constructions that
use CLT already suppress these values [GGH13a, GLSW14, Zim14] since re-randomization is not
needed for obfuscation. This is also the case for some obfuscation-like constructions, such as the
witness encryption scheme of [GLW14]. In particular, the constructions of [GLW14, GLSW14]
whose security depends on the subgroup elimination assumption can use the basic immunized CLT
scheme without re-randomization.

The CLT 0-encodings needed for re-randomization are required for several other applications of
multilinear maps such as multi-user Diffie-Hellman. In Section 4.3 we use our approach to adapt
the CLT re-randomization algorithm to obtain a candidate re-randomization algorithm that does
not expose the scheme to the zeroizing attacks of [CHL+14]. Moreover, in Remark 2.8 we explain
that level-0 CLT encodings can be easily replaced by immunized level-1 encodings.

2 Preliminaries

2.1 Conventions

For integers n, a, b, we denote by [n] the set {1, . . . , n}, and by [a, b] the set {a, . . . , b}. We also denote
by (a, b) the set {a+ 1, . . . , b− 1}. For a finite set S, we write Uniform(S) to mean the probability
distribution that is uniform over the elements of S. For integers a, b, we write Primes[a, b] to mean
the set of all prime numbers in [a, b], and we overload this notation to refer to the distribution
Uniform(Primes[a, b]).

Fix a ring R and an integer n. For a vector c ∈ Rn we write diag(c) to denote the matrix
whose diagonal entries are the elements of c and whose off-diagonal entries are all 0. For a matrix
M ∈ Rn×n we write Mi,j to denote the (i, j) minor of M, i.e., the matrix M with the ith row and
jth column removed.

We also assume standard conventions of cryptography. Specifically, we define a variable λ,
called the security parameter. We define a negligible function to be a function ε(λ) that is o(1/λc)
for every c > 0, and we write negl(λ) to denote a negligible function of λ. We define an efficient
algorithm to be a probabilistic polynomial-time Turing machine. We say that an event occurs with
negligible probability if the probability of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

2.2 Multilinear Maps

Multilinear maps [BS03], also known as graded multilinear maps or graded encodings [GGH13a,
CLT13, GGH14], are a generalization of bilinear maps such as pairings over elliptic curves [Mil04,
MOV93]. Intuitively, a multilinear map lets us take scalars x, y and produce corresponding en-
codings x̂, ŷ at any level of a given hierarchy, so that we can still perform arithmetic operations
(e.g., x + y, xy) on the encoded representations, and yet it is hard to recover the original scalars
x, y from encodings x̂, ŷ. For example, in a symmetric bilinear map e : G × G → GT (where g
generates G, and e(g, g) generates GT), a scalar x ∈ Z can be encoded in G as gx, or encoded

4

in GT as e(g, g)x. The levels of the hierarchy here are G and GT , and the hierarchy’s structure
enforces constraints on the arithmetic operations that we can perform. For instance, via the group
operation we can compute gx+y (an encoding of x + y) from gx and gy (encodings of x and y),
but to obtain an encoding of xy, we must increase the level in the hierarchy from G to GT , by
computing the pairing e(gx, gy) = e(g, g)xy.

In the case of symmetric bilinear maps, this hierarchical structure can be identified with the
integers 0, 1, 2 as indices, where the index 0 represents scalars, 1 represents elements of G, and 2
represents elements of GT . Elements at the same index can be added together, while elements at
arbitrary indices can be multiplied, but their indices add. For asymmetric bilinear maps, the more
natural analogy is that of a subset lattice: specifically, a map e : G1 ×G2 → GT is identified with
the subset lattice ∅ ⊆ {A},{B} ⊆ {A,B}, where ∅ corresponds to scalars, {A} to G1, {B} to G2,
and {A,B} to GT .

More generally, in the case of asymmetric multilinear maps (which permit more than two
sequential multiplications of encoded elements), it is standard to work with general subset lattices,
where the sets may contain elements with multiplicity. By convention, we will say that these sets
are made up of formal symbols, denoted by capital letters (A,B,C), which serve the same role as
formal variables in polynomials. Formally, we state the following definitions.

Definition 2.1 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗, and distinct variables
denote distinct bit strings. A fresh formal symbol is any bit string in {0, 1}∗ that has not already
been assigned to another formal symbol.

Definition 2.2 (Index Sets). An index set is a multi-set of formal symbols called indices. The
multiplicity of each index is written in binary, and so the degree of an index set may be exponential in
the size of its representation. By convention, for index sets we use set notation and product notation
interchangeably, so that A3BC2 represents the multi-set {A,A,A,B,C,C}, and A3BC2 · ABC =
A4B2C3. We further generalize this notation for quotients of formal symbols as appropriate, so
that A4B2C3/(ABC) = A3BC2.

Definition 2.3 (Composite-Order Multilinear Map ([BS03, GGH13a, CLT13, GLW14, Zim14])).
A composite-order multilinear map supports the following operations. Each operation (MM.Setup,
MM.Add, MM.Mult, MM.ZeroTest, MM.Encode) is implemented by an efficient randomized algo-
rithm.

• The setup procedure receives as input an index set U (Definition 2.2), which we refer to as
the “top-level index set”, as well as the security parameter λ (in unary), and an integer k
indicating the number of factors to generate for the modulus. It produces public parameters
pp, secret parameters sp, and integers N1, . . . , Nk as follows:

MM.Setup(U , 1λ, k) → (pp, sp, N1, . . . , Nk)

Each integer N1, . . . , Nk is a product of poly(λ) primes, and each of these k · poly(λ) primes
is drawn independently from Primes[2s(λ), 2s(λ)+1] for some s(λ) = poly(λ). We also define
N =

∏
i∈[k]Ni, the overall modulus.1

• For each index set S ⊆ U , and each scalar x ∈ ZN , there is a set of strings [x]S ⊆ {0, 1}∗, i.e.,
the set of all valid encodings of x at index set S.2 From here on, we will abuse notation to

1We remark here that our construction does not rely on the individual moduli N1, . . . , Nk being composite, but
we present the model in this full generality since it may be required in the chosen concrete instantiation, such as in
the CLT multilinear map [CLT13].

2To be precise, we define [x]S = {χ ∈ {0, 1}∗ : MM.IsEncoding(pp, χ, x,S)}, where the predicate MM.IsEncoding is
specified by the concrete instantiation of the multilinear map. The predicate MM.IsEncoding need not be efficiently
decidable—and indeed, for the security of the multilinear map, it should not be.

5

write [x]S to stand for any element of [x]S (i.e., any valid encoding of x at the index set S).

• Elements at the same index set S ⊆ U can be added,3 with the result also encoded at S:

MM.Add(pp, [x]S , [y]S) → [x+ y]S

• Elements at two index sets S1,S2 can be multiplied, with the result encoded at the union of
the two sets, as long as their union is still contained in U :

MM.Mult(pp, [x]S1 , [y]S2) →

{
[xy]S1S2 if S1S2 ⊆ U
⊥ otherwise

• Elements at the top level U can be zero-tested:

MM.ZeroTest(pp, [x]S) →

{
“zero” if S = U and x = 0 ∈ ZN
“nonzero” otherwise

• Using the secret parameters, one can generate a representation of a given scalar x ∈ Z at any
index set S ⊆ U :

MM.Encode(sp, x, S) → [x]S

• For the trivial index set S = ∅, we specify that the valid encodings [x]∅ are just the integers
congruent to x modulo N . (So, for instance, we can perform subtraction via MM.Add, by
scalar multiplication with −1.)

When the context is clear, we also abuse notation to write, for encodings â, b̂, the expression
â+ b̂ to mean MM.Add(MM.pp, â, b̂); the expression âb̂ to mean MM.Mult(MM.pp, â, b̂); and likewise
for other arithmetic expressions.

Definition 2.4 (Degree of Multilinearity). Let MM be a multilinear map (Definition 2.3). When
MM.Setup is instantiated with a top-level index set U , we refer to the total degree of U as the degree
of multilinearity of the map (denoted by κ).

We note that in all known multilinear map constructions (including CLT), the maximum degree
of multilinearity is polynomial in λ, due to the noise growth. We formalize this distinction as follows
(rephrasing the definition of “noisy” multilinear maps in [Zim14]):

Definition 2.5 (Poly-Degree Multilinear Map). We define a poly-degree multilinear map as in
Definition 2.3, except that the top-level index set U has its multiplicities represented in unary.

Remark 2.6 (Notation for Encodings of Direct Products [Zim14]). We write [x1, x2, . . . , xk]S to
refer to an encoding, at index set S, of the value x ∈ ZN such that x ≡ xi (mod Ni) for each
i ∈ [k] (as determined by the Chinese Remainder Theorem). When the context is clear, we also
generalize this notation to (non-encoded) scalars, writing [x1, x2, . . . , xk] for the value x ∈ ZN such
that x ≡ xi (mod Ni) for each i ∈ [k].

3Strictly speaking, in known multilinear maps such as the CLT scheme, we also require that not too many additions
take place, so that repeated-doubling cannot increase the noise and destroy the encodings. We similarly require that
integer constants remain small in scalar multiplication, i.e., of bit length r(λ) for some fixed polynomial r determined
by the multilinear map construction. Since these constraints do not affect our results here, we omit the formalization
from the abstract model.

6

Remark 2.7 (Public Encoding via Re-randomization). The abstract operations of Definition 2.3
suffice for “secret-key” multilinear maps, as in obfuscation constructions [GGH13a, BR14, BGK+14,
GLSW14, Zim14], in which the parameters required to encode elements need not be public. In
general, however, multilinear maps such as GGH and CLT support additional extended operations
for public encoding. These schemes publish encodings of 0 and 1, which can be added and scaled
to encode other scalars, and provide an additional “re-randomization” operation which takes an
encoded scalar and “washes it out” into some canonical distribution to hide its provenance. Indeed,
the encodings of 0 and 1 required for public encoding are part of the reason that CLT is vulnerable
to the [CHL+14] attack (though, as we will see in Section 5, they are not the only reason).

The CLT re-randomization procedure requires many CLT 0-encodings. Since these 0-encodings
by themselves enable a total break of CLT via the [CHL+14] attack, it is not clear how to define a
zero-immunizing transformation “ZMM.ReRand” in terms of the underlying MM operation, as we do
for the basic operations MM.Setup,MM.Encode,MM.Add,MM.Mult, MM.ZeroTest (Definition 2.3).
We cannot simply use zero-immunized versions of these 0-encodings for re-randomization, since CLT
requires some of the encodings to have their randomizers ri,j drawn from a custom distribution (as
the columns of a certain matrix Π). Rather, in Section 4.3 we will describe candidate procedures,
beyond the basic abstract operations of Definition 2.3, that implement re-randomization and public
encoding specifically for our zero-immunized version of the CLT multilinear map.

Remark 2.8 (Sampling and Level-0 Encodings). The CLT multilinear map also provides a way
to generate “level-0” encodings, i.e., other values, besides scalars in Z, that are valid encodings
at the “level-0” index set, ∅. Concretely, this is done by constructing terms with no z values in
the denominator (see Section 4.1). It is not clear how to zero-immunize level-0 encodings at all,
since any level-0 encoding will yield the analog of a zero-product (Definition 3.11): assuming the
multilinear map is nontrivial, the adversary must be able to produce some 0-encoding at the top
level U , which can then be multiplied by any level-0 encoding to form a zero-product at U .

Instead, our zero-immunizing transformation omits these CLT level-0 encodings. To replace
them, in applications that require level-0 encodings, we propose introducing additional formal
indices in the top-level index set as needed (Definition 2.2). Thus, for example, in n-way Diffie-
Hellman key agreement based on CLT [CLT13], we would replace the level-0 encodings of random
scalars with the same values encoded at some fresh singleton index set C, that would become part
of the new top level U ′ = U · C. Sampling of random encoded scalars would work just as in CLT,
with the subset sum over level-0 encodings replaced by an analogous subset sum of these new public
encodings at index set C. Moreover, we can even enable public encoding of arbitrary scalars, by
publishing the appropriate encodings of powers of two at index set C, as described in Section 4.3.3.

Strictly speaking, this is a slight departure from the operations as defined in [CLT13], since it
requires more multilinearity for each given application: namely, a new index set whose multiplicity
corresponds to the maximum number of multiplications that the original application required for
level-0 encodings. However, we do not foresee any difficulties in applications arising from this small
change.

3 The Zero-Immunizing Transformation

We now present our main zero-immunizing transformation for the case where re-randomization of
encodings is not necessary. We show how to address re-randomization in the next section.

Construction 3.1 (Zero-Immunizing Multilinear Map Transformation). Let MM = (MM.Setup,
MM.Add, MM.Mult, MM.ZeroTest, MM.Encode) be a composite-order multilinear map. We define

7

the transformed composite-order multilinear map, ZMM, in terms of MM as follows.

ZMM.Setup(U , 1λ, k):

1. Let the index set U be written as Ad11 · · ·Adss for some formal symbols A1, . . . , As and integers
d1, . . . , ds. For each formal symbolAi for i ∈ [s], define a pair of fresh formal symbolsAi,l, Ai,r.
For an index set S = Ae11 · · ·Aess ⊆ U , we define two derived index sets Sl = Ae11,l · · ·A

es
s,l and

Sr = Ae11,r · · ·A
es
s,r.

2. Construct a new top-level index set UZ = UlUrT , for a fresh formal symbol T .

3. Run (MM.pp,MM.sp, N1, . . . , Nk+2)← MM.Setup(UZ , 1λ, k + 2).

4. Generate encodings as follows:

t̂l ← MM.Encode(MM.pp, [1, . . . , 1, 1, 0], UrT)

t̂r ← MM.Encode(MM.pp, [0, . . . , 0, 1, 0], UlT)

5. Output (pp, sp, N1, . . . , Nk), where sp = (MM.sp, Nk+1, Nk+2) and pp = (MM.pp, t̂l, t̂r).

ZMM.Encode(sp, [x1, . . . , xk], S):

1. Parse sp as (MM.sp, Nk+1, Nk+2).

2. Choose ηx = [ηx,1, . . . , ηx,k] ← Uniform(Z∗N1···Nk), ζx ← Uniform(Z∗Nk+1
), and νx,l, νx,r ←

Uniform(Z∗Nk+2
).

3. Generate encodings as follows:

x̂l ← MM.Encode(MM.sp, [x1, . . . , xk, ζx, νx,l], Sl)

x̂r ← MM.Encode(MM.sp, [ηx,1, . . . , ηx,k, ζx, νx,r], Sr)

4. Output x̂ := (x̂l, x̂r).

ZMM.Add(MM.sp, x̂, ŷ):

1. Parse x̂ as a pair of encodings (x̂l, x̂r), and parse ŷ as a pair of encodings (ŷl, ŷr).

2. Using the procedure MM.Add, compute the encodings ŵl = x̂l + ŷl and ŵr = x̂r + ŷr. (If
any of these operations outputs ⊥, then immediately output ⊥.)

3. Output the result ŵ := (ŵl, ŵr).

ZMM.Mult(pp, x̂, ŷ):

1. Parse x̂ as a pair of encodings (x̂l, x̂r), and parse ŷ as a pair of encodings (ŷl, ŷr).

2. Using the procedure MM.Mult, compute the encodings ŵl = x̂l · ŷl and ŵr = x̂r · ŷr. (If any
of these operations outputs ⊥, then immediately output ⊥.)

3. Output the result ŵ := (ŵl, ŵr).

ZMM.ZeroTest(pp, x̂):

8

1. Parse pp as (MM.pp, t̂l, t̂r), and parse x̂ as a pair of encodings (x̂l, x̂r).

2. Using the procedures MM.Add, MM.Mult, compute the encoding ẑ = x̂l · t̂l − x̂r · t̂r. (If any
of these operations outputs ⊥, then immediately output ⊥.)

3. Output the result of MM.ZeroTest(MM.pp, ẑ).

We first show functional correctness of the zero-immunizing transformation (Construction 3.1),
which is fairly straightforward from the definitions.

Theorem 3.2 (Functional Correctness of ZMM Transformation). Let MM be a multilinear map
implementing the operations described in Definition 2.3. Then the transformed version ZMM (Con-
struction 3.1) also implements the operations described in Definition 2.3.

Proof. It suffices to show correctness for the ZMM.ZeroTest operation. Let m be the number of
invocations of ZMM.Encode, and for each j ∈ [m] let x̂j := (x̂j,l, x̂j,r) be the output of the jth

invocation, on input xj = [xj,1, . . . , xj,k]. Fix a multivariate polynomial f , and suppose we evaluate
f(x̂1, . . . , x̂m) using the operations ZMM.Add,ZMM.Mult, then run ZMM.ZeroTest on the result-
ing element f̂ = (f̂l, f̂r). By definition, the output will be the result of MM.ZeroTest(MM.pp, ẑ),
where ẑ = f̂l · t̂l − f̂r · t̂r. The value of this encoding ẑ in the ith component, for i ≤ k, will
be f(x1,i, . . . , xm,i) · 1 − f(η1,i, . . . , ηm,i) · 0 = f(x1,i, . . . , xm,i) (for randomizers ηj,i chosen by
ZMM.Encode); while in component (k + 1), it will be f(ζx1 , . . . , ζxm) − f(ζx1 , . . . , ζxm) = 0 (for
randomizers ζxj chosen by ZMM.Encode); and in component (k+ 2), it will be zero since t̂l, t̂r take
the value zero there. Thus, the zero-test will output “zero” precisely when f(x1,i, . . . , xm,i) = 0
(mod Ni) for all i ∈ [k], as desired.

Remark 3.3 (Additional Components). Our zero-immunizing transformation uses two additional
components (Nk+1, Nk+2). In fact, the first component alone, using the random ζ values, suffices
to rule out the [CHL+14] attack (even our strengthened version). The second component, using
the random ν values, is only needed for an additional attractive property: the adversary cannot
produce any low-level 0-encodings (even ones that cannot be completed to the top level U), as
described in Theorem 3.14, below.

Remark 3.4 (Blinding Factors). To simplify the presentation, we set all nonzero components to
1 in the encodings t̂l, t̂r in our transformation (Construction 3.1). As shown below, this suffices
to rule out the [CHL+14] attack (even our strengthened version). We know of no attacks on this
version, and indeed we will prove that no attack “similar” to [CHL+14] can succeed, by formalizing
such attacks in a generic model. However, it still seems safer to set each nonzero component of t̂l to
an independently uniform unit (and set the corresponding component of t̂r accordingly). This does
not impact correctness, and so we recommend that any application of our transformation should
use these additional blinding factors.

3.1 The Generic Multilinear Map Model

To define security, we will use the formulation of the generic group model of composite-order
multilinear maps as described by Zimmerman [Zim14]. This model is based on other generic
multilinear map models for the prime-order case [GGH+13b, BR14, BGK+14] and builds on the
generic group model of Shoup [Sho97]. Intuitively, in the generic model, the only thing an adversary
can do with encoded ring elements is arithmetic (addition, subtraction, multiplication) and apply
the operations of the multilinear map.

9

More precisely, we say a scheme that uses multilinear maps is “secure in the generic model”
if, for any concrete adversary breaking the real scheme, there is a generic adversary breaking a
modified scheme in which the encoded ring elements are replaced by “handles” (concretely, fresh
nonces), which the generic-model adversary can supply to a stateful oracleM (which performs the
corresponding ring operations internally). We define the oracle M formally as follows.

Definition 3.5 (Generic Multilinear Map Oracle ([GGH+13b, BR14, BGK+14, Zim14])). A generic
multilinear map oracle is a stateful oracle M that responds to queries as follows.

• On a query MM.Setup(U , 1λ, k), the oracle will generate integersN1, . . . , Nk as in the real setup
procedure (Definition 2.3), generate pp, sp as fresh nonces (i.e., distinct from any previous
choices) uniformly at random from {0, 1}λ, and return (pp, sp, N1, . . . , Nk). It will also store
the inputs and the values generated, initialize an internal table T ← {} (to store “handles”,
as described below), and set internal state so that subsequent MM.Setup queries fail.

• On a query MM.Encode(k, x, S), where k ∈ {0, 1}λ and x ∈ Z, the oracle will check that
k = sp and S ⊆ U (returning ⊥ if the check fails). If the check passes, the oracle will generate
a fresh nonce (“handle”) h← Uniform({0, 1}λ), add the entry h 7→ (x,S) to the table T , and
return h.

• On a query MM.Add(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values,
resp., (x1,S1) and (x2,S2) such that S1 = S2 = S ⊆ U (returning ⊥ if the check fails). If
the check passes, the oracle will generate a fresh handle h← Uniform({0, 1}λ), add the entry
h 7→ (x1 + x2,S) to the table T , and return h.

• On a query MM.Mult(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values, resp.,
(x1,S1) and (x2,S2) such that S1S2 ⊆ U (returning ⊥ if the check fails). If the check passes,
the oracle will generate a fresh handle h← Uniform({0, 1}λ), add the entry h 7→ (x1x2,S1S2)
to the table T , and return h.

• On a query MM.ZeroTest(k, h), where k, h ∈ {0, 1}λ, the oracle will check that k = pp, and
that the table T contains an entry h 7→ (x,U) (immediately returning ⊥ if the check fails). If
the check passes, the oracle will return “zero” if x ≡ 0 (mod N = N1 · · ·Nk), and “nonzero”
otherwise.

3.2 The Transformed Generic Model

We now adapt the generic model of Definition 3.5 to address the security of our zero-immunizing
transformation ZMM (Construction 3.1). Intuitively, the transformation should be used as follows.
Suppose we have some system that currently uses a composite-order multilinear map MM (such as
CLT). Then we replace that system’s invocations of the map operations (MM.Setup, MM.Encode,
etc.) with the transformed versions (ZMM.Setup, ZMM.Encode, etc.). Now, we aim to show that
an adversary A, given the encodings produced by the ZMM-transformed system, cannot produce
any set of encodings that multiply to 0 at the top level (or trigger some other specified failure
event)—even when the adversary A is allowed to perform the operations of the original map MM,
evaluated on any MM encodings that the transformation ZMM exposes. The following generic-
model definitions capture this interaction.

10

Definition 3.6 (ZMM-Transformed Generic Multilinear Map Oracle). A ZMM-transformed generic
multilinear map oracle is a stateful oracle MZ that operates as follows. The oracle maintains an
internal (stateful) copy of a generic multilinear map oracle MC , and answers queries as follows.

• On a query ZMM.Setup(U , 1λ, k), the oracle constructs a new top-level index set UZ = UlUrT
as in the real scheme. The oracle issues the query MM.Setup(UZ , 1λ, k+2) toMC and obtains
(MM.pp,MM.sp, N1, . . . , Nk+2). It issues queries MM.Encode(MM.pp, [1, . . . , 1, 1, 0],UrT) and
MM.Encode(MM.pp, [0, . . . , 0, 1, 0],UlT) to MC to obtain t̂l, t̂r, respectively. The oracle sets
pp ← (MM.pp, t̂l, t̂r) and generates sp as a fresh nonce uniformly at random from {0, 1}λ.
The oracle returns (pp, sp, N1, . . . , Nk+2). It also stores the inputs and all values generated,
and sets its internal state so that subsequent ZMM.Setup queries fail.

• On a query ZMM.Encode(k, x, S), where x ∈ Z, the oracle first checks that k = sp and S ⊆ U .
If either check fails, then the oracle returns ⊥. Otherwise, the oracle chooses values ηx =
[ηx,1, . . . , ηx,k] ← Uniform(Z∗N1···Nk), ζx ← Uniform(Z∗Nk+1

), and νx,l, νx,r ← Uniform(Z∗Nk+2
),

and issues queries MM.Encode(MM.sp, [x1, . . . , xk, ζx, νx,l], Sl) and MM.Encode(MM.sp, [ηx,1,
. . . , ηx,k, ζx, νx,r], Sr) to MC , obtaining handles x̂l and x̂r, respectively. The oracle returns
h := (x̂l, x̂r).

• The oracle also answers MM.Add,MM.Mult,MM.ZeroTest queries, by forwarding each such
query to its internal copy of MC and answering with the value that MC outputs.

When we refer to MZ ’s internal table, we implicitly refer to that of its internal copy of MC .

Definition 3.7 (ZMM-Transformed Generic Model). Let MM be a composite-order multilinear map
(Definition 2.3), and let ZMM be the corresponding transformed construction (Construction 3.1).
Fix an adversary (a stateful oracle machine) A, and a security parameter λ ∈ N. A security game
in the ZMM-transformed generic model takes the following form:

1. The adversary sends a description of a top-level index set U , and an integer k ∈ N.

2. Let M be the stateful oracle implementing the transformed multilinear map operations of
ZMM (Definition 3.6). The oracleM is initialized by running (ZMM.pp,ZMM.sp, N1, . . . , Nk)←
ZMM.Setup(U , 1λ, k), and the adversary receives the public parameters ZMM.pp.

3. The adversary interacts with M via the operations MM.Add,MM.Mult,MM.ZeroTest. In
addition, the adversary is given oracle access to the operation ZMM.Encode(ZMM.sp, ·, ·).

4. Finally, the adversary outputs a string v̂ ∈ {0, 1}∗.

Remark 3.8 (Oracle Queries Referring to Formal Polynomials). Although the generic multilinear
map oracle is defined formally in terms of “handles” (Definition 3.5), it is usually more intuitive
to regard each oracle query as referring to a formal query polynomial. The formal variables are
specified by the expressions initially supplied to the MM.Encode procedure (as determined by the
details of the construction), and the adversary can construct terms that refer to new polynomials
by making oracle queries for the generic-model ring operations MM.Add, MM.Mult. Rather than
operating on a “handle”, then, each valid MM.ZeroTest query refers to a formal query polynomial4

encoded at the top-level index set U . The result of the query is “zero” precisely if the polynomial
evaluates to zero, when its variables are instantiated with the joint distribution over their values
in ZN , generated as in the real security game. For the full formal description, we refer the reader
to [Zim14, Appendix B].

4To represent a query polynomial concretely, we can use an arithmetic circuit—and thus, for instance, we can still
perform efficient manipulations on query polynomials that have been subjected to repeated squaring.

11

Definition 3.9 (Formal Variables in the ZMM-Transformed Generic Model). Fix an adversary A
in the ZMM-transformed generic model (Definition 3.7), and let Q be the number of ZMM.Encode
queries made by A to the oracle MZ . We say the formal variables of the model for this adversary
are the variables t̂l, t̂r (referring to the values generated by MM.Encode during ZMM.Setup), and,
for each query index i ∈ [Q], the variables x̂i,l, x̂i,r (referring to the pair of values generated by
MM.Encode during the adversary’s ith query to ZMM.Encode).

Remark 3.10 (Nontrivial Encodings). In general, our security theorems below are only concerned
with nontrivial 0-encodings, i.e., encodings whose real values are 0 but whose formal polynomials
are not identically zero. We cannot rule out trivial 0-encodings, since the adversary can always
compute the encoding v̂ − v̂ for any encoding v̂, obtaining a (trivial) 0-encoding. Concretely,
these trivial 0-encodings are useless to the adversary, since an encoding whose formal polynomial
is identically zero will be the integer 0 ∈ ZNouter in the CLT construction (and will be similarly
useless in other known multilinear maps).

3.3 Main Security Theorems

We now present our two main security theorems, capturing the desired properties of our zero-
immunizing transformation (Construction 3.1). The first theorem says that in our transformed
scheme, the adversary cannot construct a pair of orthogonal encodings below the top level.

Definition 3.11 (Zero Product Security Game). Let MM be a poly-degree multilinear map (Defi-
nition 2.5), and let ZMM be the corresponding zero-immunized map (Construction 3.1). Let λ ∈ N
be a security parameter, and fix an adversary A in the transformed generic model for ZMM with
oracle M. Let v̂ be the adversary’s output at the end of the security game. We say that A wins
the zero product security game for (MM,ZMM) if v̂ is a pair (h1, h2) such that h1, h2 refer to formal
polynomials in M’s table, resp., v1, v2, each not identically zero, at index sets S1, S2 (UZ , resp.;
the real value of v1 · v2 is 0; and S1S2 = UZ .

Theorem 3.12 (Zero Product Security). Let MM be a poly-degree multilinear map (Definition 2.5),
and let ZMM be the corresponding zero-immunized map (Construction 3.1). For all adversaries A,
the probability that A wins the zero product security game for (MM,ZMM) (Definition 3.11) with
security parameter λ ∈ N is negl(λ).

Proof. Deferred to Section 3.5.

Since even our strengthened version of the [CHL+14] attack (Section 5.1) requires orthogonal
encodings, Theorem 3.12 implies that the attack does not apply to CLT if it is augmented with our
new zero-immunizing transformation (assuming the public 0-encodings of CLT are suppressed).

Our second security theorem says that the adversary cannot construct a 0-encoding at any index
set that is a proper subset of the top-level index set.5

Definition 3.13 (Low-Level Zero Encoding Security Game). Let MM be a poly-degree multilinear
map (Definition 2.5), and let ZMM be the corresponding zero-immunized map (Construction 3.1).
Let λ ∈ N be a security parameter and fix an adversary A in the transformed generic model with
oracle M. Let h be A’s output at the end of the experiment. We say that A wins the low level
zero encoding security game for (MM,ZMM) if h is a handle that refers to a formal polynomial v
at index set S (UZ in M’s table, such that v is not identically zero but its real value is 0.

5We also note that Definition 3.13 is incomparable to Definition 3.11, since an adversary might be able to produce
an encoding of zero at an index set S (U , yet still be unable to construct an encoding at U/S in order to complete
that encoding to U . Conversely, even if the adversary cannot construct 0-encodings below U , it might be able to
construct orthogonal encodings below the top-level whose product yields a 0-encoding at the top level.

12

Theorem 3.14 (Low-Level Zero Encoding Security). Let MM be a poly-degree multilinear map (Def-
inition 2.5), and let ZMM be the corresponding zero-immunized map (Construction 3.1). For all
adversaries A, the probability that A wins the low level zero encoding security game for (MM,ZMM)
(Definition 3.13) with security parameter λ ∈ N is negl(λ).

Proof. Deferred to Section 3.6.

While we do not know of an attack that uses low-level encodings of zero without also needing a
zero-product (Definition 3.11), in establishing Theorem 3.14 we err on the side of caution. Moreover,
if new multilinear maps are discovered in which encodings are deterministic—for example, as in the
setting of bilinear groups—then Theorem 3.14 shows that with our transformation, the adversary
gains no benefit from the ability to equality-test at arbitrary index sets below the top level U , since
he cannot produce any encodings for which such a test would pass.

Remark 3.15 (Security for Maps with Arbitrary Degree). The two main security theorems above
pertain only to poly-degree multilinear maps (Definition 2.5), in which the maximum degree of the
top-level index set U is poly(λ). This is the case for all known multilinear map constructions,
including CLT, due to the noise growth. However, if in the future new multilinear maps are
discovered that are “clean”, i.e., permit operations of arbitrary degree (even exponential), then we
would need to modify these results slightly. Zimmerman [Zim14] explores this extension in a similar
context, and shows that many generic-model results extend to the setting of “clean” multilinear
maps if we also assume the hardness of factoring, by means of a computational variant of the
Schwartz-Zippel lemma [BL97, Zim14]. Applying the techniques of [Zim14] it is straightforward to
generalize the results of this section to the “clean” setting as well.

3.4 Structure Lemmas

Before presenting the proofs of Theorems 3.12 and 3.14, we require a few basic “structure lemmas”,
showing how our design of the index sets in the ZMM-transformation has restricted the formal
polynomials that an adversary can produce in the transformed generic model.

Lemma 3.16 (Characterization of Low-Level Formal Polynomials). Fix an adversary A in the
transformed generic model, and consider a formal polynomial w, not identically zero, produced by
A at some index set S (UZ over the formal variables t̂l, t̂r, x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r (Defini-
tion 3.9). Here, Q ∈ N is the number of ZMM.Encode queries made by A. Then one of the following
conditions holds:

1. We have S ⊆ Ul, and for some multivariate polynomial function pl, the following holds:

w ≡ pl(x̂1,l, . . . , x̂Q,l)

2. We have S ⊆ Ur, and for some multivariate polynomial function pr, the following holds:

w ≡ pr(x̂1,r, . . . , x̂Q,r)

3. We have S ⊇ UrT , and for some multivariate polynomial function pl, the following holds:

w ≡ t̂l · pl(x̂1,l, . . . , x̂Q,l)

4. We have S ⊇ UlT , and for some multivariate polynomial function pr, the following holds:

w ≡ t̂r · pr(x̂1,r, . . . , x̂Q,r)

13

5. We have S ⊆ UlUr, S 6⊆ Ul, and S 6⊆ Ur; and for some multivariate polynomial function p,
the following holds:

w ≡ p(x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r)

Proof. We first show the analogous claim for formal monomials v; the claim will then follow by
considering all monomials v in the expansion of w.

Let v be a formal monomial at some index set S (UZ over the formal variables t̂l, t̂r, x̂1,l, . . . , x̂Q,l,
x̂1,r, . . . , x̂Q,r. We proceed by case analysis:

• Suppose v contains the variable t̂l. Since the index set of t̂l is UrT , we have S ⊇ UrT . We
note that v cannot contain the variable t̂r, since the top level UZ contains only one copy
of T . So the only remaining formal variables are x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r. Since each of
the variables x̂1,r, . . . , x̂Q,r has an index set that is a nonempty subset of Ur, it follows that
none of these variables can appear in v either, since U contains Ur only once (and the index
set of t̂l already contains Ur). So v satisfies case 3 of the lemma.

• Suppose v contains the variable t̂r. Then by the same argument as in the first case, v satisfies
case 4 of the lemma.

• Suppose v contains neither of the variables t̂l, t̂r. Then the only remaining formal variables
are x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r, and by definition v satisfies either case 1, case 2, or case 5 of
the lemma.

Now, to complete the proof, we consider monomials v in the expansion of w, using the fact that
only terms at the same index set can be added. We again proceed by case analysis:

• Suppose some monomial in the expansion of w is of the form v = h(x̂1,l, . . . , x̂Q,l), at an
index set S ⊆ Ul (case 1). Then all monomials in the expansion of w must have this form
(no other monomials are encoded at a subset of Ul), and we conclude that w satisfies case 1
of the lemma.

• Suppose some monomial in the expansion of w is of the form v = h(x̂1,r, . . . , x̂Q,r) (case 2).
Then by the same argument as in the previous case, w satisfies case 2 of the lemma.

• Suppose some monomial in the expansion of w is of the form v = t̂l ·h(x̂1,l, . . . , x̂Q,l), so that
S ⊇ UlT (case 3). The only other monomials encoded at a superset of UlT satisfy either case
3 or case 4 of the lemma; it suffices to rule out case 4. We note that the only index set that
is a superset of both UlT and UrT is UZ , the top level. By assumption, S 6= UZ (since w
is assumed to be a low-level formal polynomial), so it follows that w satisfies case 3 of the
lemma.

• Suppose some monomial in the expansion of w is of the form v = t̂r · h(x̂1,r, . . . , x̂Q,r) (case
4). Then by the same argument as in the previous case, w satisfies case 4 of the lemma.

• Suppose some monomial in the expansion of w is of the form h(x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r).
By the index set constraint, all monomials in the expansion of w must have this form, and so
w satisfies case 5 of the lemma.

Corollary 3.17 (Characterization of Completable Formal Polynomials). Fix an adversary A in the
transformed generic model, and let w,w′ be formal polynomials produced by A, each not identically
zero, at nonempty index sets S, S′ ⊂ UZ , resp., over the formal variables t̂l, t̂r, x̂1,l, . . . , x̂Q,l, x̂1,r, . . . ,
x̂Q,r (Definition 3.9). As above, let Q ∈ N denote the number of MM.Encode queries made by A. If
SS′ = UZ , then the formal polynomial w and its index set S satisfy one of cases 1-4 of Lemma 3.16.

14

Proof. Since S, S′ are proper subsets of UZ , each of w,w′ is a low-level encoding, satisfying the
conditions of Lemma 3.16. Thus w must satisfy one of the cases 1-5 of Lemma 3.16, and it suffices
to rule out case 5. Suppose that w satisfies case 5 of Lemma 3.16, so that S ⊆ UlUr, but S 6⊆ Ul
and S 6⊆ Ur. Now, since SS′ = UZ = UlUrT and T /∈ S, it follows that w′ satisfies either case 3
or case 4 of Lemma 3.16. Without loss of generality suppose w′ satisfies case 3, so that S′ ⊇ UrT .
Then S ⊆ UZ/(UrT) = Ul, contradicting the assumption that S 6⊆ Ul. We conclude that w cannot
satisfy case 5 of Lemma 3.16, as desired.

We are now equipped to prove the main security theorems.

3.5 Proof of Theorem 3.12

Suppose A wins the zero-product game with non-negligible probability. Then, by definition, at the
end of the game A outputs a value h of the form (h1, h2), where h1 refers to a formal polynomial
v1 at an index set S1 (UZ and h2 refers to a formal polynomial v2 at an index set S2, satisfying
S1S2 = UZ (and each of v1, v2 is not identically zero). Furthermore, letting x1 (resp., x2) be the
real value of v1 (resp., v2), we are given x1 · x2 = 0, and thus v := v1 · v2 is a formal polynomial
whose real value is 0 and whose index set is UZ . We proceed by case analysis on the form of v1, as
determined by Corollary 3.17:

1. Suppose v1 = pl,1(x̂1,l, . . . , x̂Q,l) for some polynomial pl,1. Then S1 ⊆ Ul, so S2 ⊇ UrT ,
and thus Corollary 3.17 gives v2 = t̂l · pl,2(x̂1,l, . . . , x̂Q,l) for some polynomial pl,2. Defining
pl = pl,1pl,2, we conclude that v = t̂l ·pl(x̂1,l, . . . , x̂Q,l). The real value of v in the component
moduloNk+1 is thus 1·pl(ζx1 , . . . , ζxQ), and by the Schwartz-Zippel lemma, its value is nonzero
with overwhelming probability (since v1, v2, and hence pl,1, pl,2, are not identically zero; and
the total degree of each is at most deg(U) = poly(λ)). This contradicts our assumption that
the real value of v is 0.

2. Suppose v1 = pr,1(x̂1,r, . . . , x̂Q,r) for some polynomial pr,1. Then S1 ⊆ Ur, so S2 ⊇ UlT , and
the claim follows by the argument of the first case.

3. Suppose v1 = t̂l · pl,1(x̂1,l, . . . , x̂Q,l) for some polynomial pl,1. Then S1 ⊇ UrT , so S2 ⊆ Ul,
and the claim follows by the argument of the first case.

4. Suppose v1 = t̂r · pr,1(x̂1,r, . . . , x̂Q,r) for some polynomial pr,1. Then S1 ⊇ UlT , so S2 ⊆ Ur,
and the claim follows by the argument of the first case.

3.6 Proof of Theorem 3.14

Suppose A wins the low-level zero game with non-negligible probability. Then, by definition, at the
end of the game, A outputs a value h, where h is a handle referring to a formal polynomial v at an
index set S (UZ , such that the real value of v is 0 (and v is not identically zero). We proceed by
case analysis on the form of v, as determined by Lemma 3.16:

1. Suppose v = pl(x̂1,l, . . . , x̂Q,l) for some polynomial pl. The real value of v̂ in the component
modulo Nk+1 is thus pl(ζx1 , . . . , ζxQ), and by the Schwartz-Zippel lemma, its value is nonzero
with overwhelming probability (since v, and hence pl, is not identically zero; and its total
degree is at most deg(U) = poly(λ)). This contradicts our assumption that the real value of
v is 0.

15

2. Suppose v = pr(x̂1,r, . . . , x̂Q,r) for some polynomial pr. The claim follows by the Schwartz-
Zippel lemma as in the first case.

3. Suppose v = t̂l ·pl(x̂1,l, . . . , x̂Q,l) for some polynomial pl. The claim follows by the Schwartz-
Zippel lemma as in the first case.

4. Suppose v = t̂r ·pr(x̂1,r, . . . , x̂Q,r) for some polynomial pr. The claim follows by the Schwartz-
Zippel lemma as in the first case.

5. Suppose v = p(x̂1,l, . . . , x̂Q,l, x̂1,r, . . . , x̂Q,r) for some polynomial p. The real value of v̂ in
the component modulo Nk+2 is then p(νx1,l, . . . , νxQ,l, νx1,r, . . . , νxQ,r), and the claim again
follows by the Schwartz-Zippel lemma.

4 Zero-Immunizing CLT

In this section, we describe how to apply our zero-immunizing transformation to the CLT multilinear
map [CLT13], first implementing the basic abstract operations (Definition 2.3), then presenting
candidate constructions for extending our zero-immunized version to recover re-randomization and
public-encoding functionality.

4.1 The CLT Multilinear Map

We now briefly describe the operation of the CLT multilinear map [CLT13]. Our presentation is
similar to that of [CHL+14], except that in order to use CLT as a composite-order multilinear map
(making full use of the message space ZN as a direct product ZN1 × · · · × ZNk , as in [GLW14,
GLSW14, GGHZ14, Zim14]), we require some additional modifications. Specifically, we use the
modification described by Gentry et al. [GLW14, Appendix B], in which each modulus N1, . . . , Nk

itself is a product of Θ primes g1, . . . , gΘ for some Θ = poly(λ), in order to rule out certain lattice
reduction attacks based on encodings within subrings. For simplicity, we will also describe the CLT
multilinear map only in the symmetric setting, in which the top-level index set U is just Zκ for a
fresh formal symbol Z. Our description generalizes immediately to the asymmetric case with many
distinct indices (Definition 2.3), as detailed in [GLW14, Appendix B].

The CLT multilinear map operates as follows. First, we introduce the following integer param-
eters (our notation here largely follows that of [CLT13, CHL+14]):

− λ: the security parameter

− κ: the degree of multilinearity (for a instantiation with top-level index set Zκ)

− k: the number of components in the message space (the message space is a direct product
ZN = ZN1 × · · · × ZNk)

− Θ: the number of primes that comprise each of the moduli N1, . . . , Nk [GLW14]

− n: the number of primes that comprise the modulus for the message space (n = kΘ)

− α: the bit-length of the message slots

− ρ: the bit-length of each prime gi

− η: the bit-length of each prime pi

− τ : the number of level-1 encodings of zero in the public parameters

− t: the number of level-0 encodings in the public parameters

− δ: the bit-length of the entries in the zero-test matrix H

− µ: the bit-length of the coefficients in the subset sum for the re-randomization procedure

16

− ξ: the number of bits to use for the extract operation

Coron et al. [CLT13] (and Gentry et al. [GLW14], in the case of Θ) suggest setting the above
parameters as follows:

− Θ = (ρ · η)1+ε for constant ε > 0.

− n = ω(η log λ) to prevent lattice-based attacks on the encodings. (Since we already require
n = kΘ = Ω(η1+ε), this constraint is satisfied by default.)

− α = λ so the order of the ring ZN1 × · · · × ZNk does not contain small prime factors.

− ρ = Ω(λ) to prevent brute force attacks.

− η ≥ ρκ +α+ 2δ+ λ+ 8, where ρκ is the maximum bit size of the randomizers ri in a level-κ
encoding.

− τ ≥ n · (ρ + log(2n)) + 2λ in order to apply the lattice leftover hash lemma from [CLT13,
§4].

− t ≥ n · α+ 2λ in order to apply the lattice leftover hash lemma from [CLT13, Lemma 1].

− δ = Ω(λ) to avoid the GCD attack of [CLT13, §5.2]

− µ ≥ α+ ρ+ λ to apply the lattice leftover hash lemma from [CLT13, §4]

− ξ = η − δ − ρκ − λ− 3 to ensure correctness of the zero-test.

Instance generation. The instance generation algorithm CLT.InstGen(λ, κ, k) takes as argu-
ments a security parameter λ, the multilinearity degree κ, and the number of components in the
message space k. For each i ∈ [n], it generates an α-bit prime gi, and an η-bit prime pi. For i ∈ [k],
it sets

Ni =
kΘ∏

i=(k−1)Θ+1

gi.

Finally, it sets N =
∏
i∈[k]Ni and Nouter =

∏
i∈[n] pi. CLT also generates a single value z ∈ ZNouter

as well as an n-dimensional vector of zero test elements pzt where the jth zero test element [pzt]j
is given by

[pzt]j =
∑
i∈[n]

hij ·
(
zκ · g−1

i mod pi
)
·
∏
i′ 6=i

pi (mod Nouter),

and the matrix H = (hij) is as defined in [CLT13, §3].
Next, CLT generates a set of t level-0 encodings, x′1, . . . , x

′
t, of random values ai ← Uniform(ZN)

where
x′ij ≡ (ai mod gj) + r′ij · gj (mod pj),

and each r′ij ← Uniform([−2ρ + 1, 2ρ − 1]). In addition, CLT generates a level-1 encoding y of 1,
where for all i ∈ [n], it is the case that

y ≡ (ri · gi + 1)/z (mod pi)

and ri ← Uniform([−2ρ + 1, 2ρ − 1]).
The CLT scheme then generates additional encodings needed for re-randomization that are

also included in the public parameters. These additional elements are described later in this sec-
tion. Finally, CLT.InstGen outputs the public parameters CLT.pp ← (params,pzt), where params
includes the level-0 encodings x′1, . . . , x

′
t, the level-1 encoding y of 1, the encodings necessary for re-

randomization, and the parameters λ, κ, k,Θ, n, ρ, η, τ, t, δ, µ, ξ, and Nouter. The secret parameters
CLT.sp consist of the value z and the prime factors of N and Nouter. Note that CLT only need to

17

publish the level-0 encodings x′1, . . . , x
′
t, the level-1 encoding y, and the re-randomization encodings

if the instance of CLT is required to support public encoding (see Remark 2.7). For constructions
based on “secret-key” multilinear maps, these elements do not need to be included in the public
parameters.

Encodings in CLT. In the CLT scheme, an integer c ∈ Z is a valid encoding of a message
a ∈ ZN at level d if c satisfies the following condition for all i ∈ [n]:

c ≡ rigi + (a mod gi)

zd
(mod pi),

where the ri are integers bounded in a specified range. We refer the reader to [CLT13, GLW14] for
further details.

Adding and multiplying encodings. The CLT.Add(CLT.pp, c1, c2) function takes as input two
encodings c1 and c2 at the same index set S and outputs an encoding c′ ← c1 + c2 (mod ZNouter) at
index set S. The CLT.Mult(CLT.pp, c1, c2) takes as input two encodings c1, c2 at index sets S1 and
S2, respectively, such that S1S2 ⊆ U and outputs an encoding c′ ← c1c2 (mod ZNouter) at index set
S1S2.

Zero-testing. The CLT.ZeroTest(CLT.pp, [c]U) takes as input an encoding c at the top-level set
U and outputs 1 if for all j ∈ [n], c · [pzt]j (mod Nouter) < Nouter · 2−ξ. Otherwise, it outputs 0.

Extraction. The CLT.Extract(CLT.pp, c) extract a random function of the value m ∈ ZN from a
top-level encoding c of m. The algorithm first collects the ξ most significant bits of c · [pzt]j for
each j ∈ [n], and then applies a strong randomness extractor to the resulting bits.

Re-randomization in CLT and the canonical noise distribution. The re-randomization
algorithm CLT.ReRand(CLT.pp, c) takes an encoding c of a value x at level d and produces a new
encoding c′ of the same value x at level d. The requirement is that for any two encodings c1, c2

of the same value x, the output distributions of CLT.ReRand(CLT.pp, c1) is statistically close to
the output distribution of CLT.ReRand(CLT.pp, c2). For simplicity, we just describe the case where
d = 1; the same principles generalize naturally to higher-level encodings.

A level-1 encoding c of x in the CLT scheme satisfies the following relation: for all i ∈ [n],
c ≡ (rigi + x)/z (mod pi), where ri is an integer drawn from some specified range. Furthermore,
when CLT encodings are given to the adversary in constructions or assumptions, they are typically
first run through CLT’s re-randomization procedure, which takes an encoded scalar and “washes
it out”, so that the randomizers ri are (statistically close to) some canonical noise distribution,
independent of how the encoding originated.

Before describing the canonical distribution of the ri’s in the CLT scheme, we present some
definitions similar to those given in [CLT13, §4]. Let L be a lattice of rank n with basis B =
(b1, . . . ,bn). Then, every vector x ∈ Zn can be written as a linear combination

∑
i∈[n] αibi for

some αi ∈ R. Moreover, for every x ∈ Zn, there exists a unique vector a ∈ L such that y = x−a =∑
i∈[n] α

′
ibi, where 0 ≤ α′i < 1. In this case, we say y = x mod L. Thus, every element in Zn/L

has a unique representative in the half-open parallelepiped spanned by b1, . . . ,bn. We write DB

to denote the distribution obtained by sampling a uniformly random element in Zn/L and taking
its unique representative in the half-open parallelepiped generated by the basis B. Lastly, given a
basis B = (b1, . . . ,bn), we write µB to denote the basis (µb1, . . . , µbn).

18

In the CLT scheme, the canonical noise distribution for encodings is D2µΠ, where Π ∈ Zn×n is
a matrix constructed as follows. The diagonal entries Πii are drawn from Uniform([n · 2ρ + 1, (n+
1) · 2ρ− 1]) while the off-diagonal entries Πij (j 6= i) are drawn from Uniform([−2ρ + 1, 2ρ− 1]). We
note that Π is a diagonally-dominant matrix, according the following definition:

Definition 4.1 (Diagonally-Dominant Matrices). Let M ∈ Rn×n be a matrix, and write Λi(M)
to denote the sum

∑
j 6=i |Mij |. We say that M is diagonally dominant if |Mii| > Λi(M) for all

i ∈ [n].

In the following exposition, we will make use of the following two properties on diagonally
dominant matrices. These are taken from [CLT13, Var75, Pri51]:

Fact 4.2. Let M ∈ Rn×n be a diagonally dominant matrix. Then M is invertible and
∥∥M−1

∥∥
∞ ≤

maxi∈[n](|Mii| −Λi(M))−1. Here, ‖ · ‖∞ denotes the operator norm on n× n matrices with respect
to the `∞ norm in Rn, that is, for all M ∈ Rn×n, ‖M‖∞ = maxi

∑
j∈[n] |Mij |.

Fact 4.3. Let M ∈ Rn×n be a diagonally dominant matrix. Then,

n∏
i=1

(|Mii| − Λi(M)) ≤ |det M| ≤
n∏
i=1

(|Mii|+ Λi(M)).

To allow public re-randomization of encodings in the CLT scheme, CLT augments the public
parameters CLT.pp with n level-1 encodings Π1, . . . ,Πn of 0 where for all i, j ∈ [n], Πj ≡ (Πij ·gi)/z
(mod pi). In addition, the public parameters contain a set of τ encodings x1, . . . , xτ of zero, where
for all i ∈ [n], j ∈ [τ], xj ≡ (rij · gi)/z (mod pi), and each vector rj = (r1j , . . . , rnj)← DΠ.

We can now describe the operation of the CLT.ReRand(CLT.pp, c) algorithm. To re-randomize
an encoding c, CLT computes the following subset-sum of the xj and linear combination of the Πj :

c′ = c+
∑
j∈[τ]

(bj · xj) +
∑
j∈[n]

(b′j ·Πj) (mod Nouter),

where bj ← Uniform({0, 1}), b′j ← Uniform([0, 2µ−1]) for all i. Coron et al. show that this procedure
induces the correct distribution on the re-randomized encodings by appealing to a variant of the
leftover hash lemma over lattices [CLT13, §4].

4.2 Implementing the Basic Operations using Zero-Immunized CLT

We now show how the CLT multilinear map can be used to implement the basic abstract operations
of Definition 2.3. We proceed in two steps.

• First, we show how to implement the abstract operations of Definition 2.3 via the CLT
multilinear map. The adaptation is standard and is roughly the same as in [GLW14]. (We
note that this step, by itself, does not produce a secure multilinear map MM, since the CLT
scheme as-is permits the [CHL+14] attack on 0-encodings.)

– MM.Setup(U = Zκ, λ, k): Run the procedure CLT.InstGen(λ, κ, k) to obtain the public
parameters CLT.pp and the secret parameters CLT.sp. To implement the basic function-
ality of Definition 2.3, it is unnecessary to include the level-0 encodings, or the level-1 en-
codings of 0 and 1. Thus, let CLT.pp′ be the version of CLT.pp where we have suppressed
these additional encodings. Set MM.pp← CLT.pp′ and MM.sp← (CLT.pp,CLT.sp). Note

19

that the secret parameters MM.sp includes the non-suppressed CLT parameters, which
in particular, contain the encodings necessary for re-randomization. Finally, output the
tuple (MM.pp,MM.sp, N1, . . . , Nk) (note that the individual ring moduli N1, . . . , Nk are
included as part of the CLT secret parameters CLT.sp).

– MM.Encode(MM.sp, x, S): To encode an element x ∈ ZN at an index set S = Zk for
some integer k < κ, we use the CLT secret parameters CLT.sp to compute an encoding x̂
such that for all i ∈ [n], x̂ = (rigi + (x mod gi))/z

k (mod pi), and ri ← Uniform([−2ρ +
1, 2ρ − 1]). Then, we output CLT.ReRand(CLT.pp, x̂). Note that MM.sp contains a copy
of CLT.pp.

– MM.Add(MM.pp, [x]S , [y]S): Output CLT.Add(MM.pp, [x]S , [y]S).

– MM.Mult(MM.pp, [x]S1 , [y]S2): Output CLT.Mult(MM.pp, [x]S1 , [x]S2).

– MM.ZeroTest(MM.pp, [x]S): Output CLT.ZeroTest(MM.pp, [x]S).

• Second, we apply our new zero-immunizing transformation (Construction 3.1) to the map
MM we have just defined. This yields a modified multilinear map (ZMM.Setup,ZMM.Add,
ZMM.Mult, ZMM.Encode, ZMM.ZeroTest) based on CLT that is robust to zeroizing attacks
and implements the basic abstract operations of Definition 2.3.

4.3 Extending Zero-Immunized CLT: Re-randomization and Public Encoding

While the basic abstract operations of Definition 2.3 suffice for “secret-key” multilinear maps, as
in obfuscation constructions [GGH13a, BR14, BGK+14, GLSW14, Zim14], in general we would
like to support the extended set of operations needed for public encoding via re-randomization
(Remark 2.7).

More precisely, let ZCLT(sk) = (ZMM.Setup,ZMM.Add,ZMM.Mult,ZMM.Encode,ZMM.ZeroTest)
be the result of applying our zero-immunizing transformation to the abstract multilinear map based
on CLT (Section 4.2). For clarity, we will define ZCLT.PublicEncode(ZCLT.pp, ·, ·) to be the public
analog of the ZMM.Encode function in ZCLT(sk). In this section, we will describe the new candidate
procedures ZCLT.ReRand, ZCLT.PublicEncode, and ZCLT.Extract, along with the modifications to
ZCLT.Setup required to support these extended operations.

4.3.1 ZCLT.Setup: extended setup operations.

In this section, we will show the modifications we must make to the ZMM.Setup function in ZCLT(sk)

in order to support ZCLT.PublicEncode, ZCLT.ReRand, and ZCLT.Extract. To support these opera-
tions, we need to publish additional public parameters beyond what is included in the basic scheme
ZCLT(sk). As noted in Remark 2.8, it is not secure to include level-0 encodings in the public param-
eters. In lieu of these level-0 elements, we instead provide encodings of elements at a fresh singleton
index set C. We can support sampling encodings of uniformly random values by including encod-
ings of random values at index set C in the public parameters and taking subset-sums, exactly as
CLT does with the level-0 encodings. Here, however, we will describe an even more general method
that allows public encoding of arbitrary scalars in ZN ; instead of providing encodings of random
values at index set C, we include encodings of the powers of two: 20, 21, . . . , 2blogNc at index set
C. This way, by taking sums of the appropriate encodings, it is possible to construct encodings of
arbitrary values in ZN .

To simplify the presentation in this section, we will describe the ZCLT.Setup procedure when
applied to a symmetric CLT map with top-level set U = Zκ and a k-dimensional message space.

20

We will specify the additional public parameters needed to publically encode elements at the index
set Z. We note, however, that these results naturally generalize to the case of asymmetric maps
where we have a separate index set C for the scalars (the case described above and in Remark 2.8).

We now describe the modified ZCLT.Setup procedure that includes the generation of the addi-
tional public parameters necessary for the extended functionality. First, ZCLT.Setup will instantiate
a CLT map with a (k + 2)-dimensional message space and new top-level index set UZ = ZκlZ

κ
rT ,

for some fresh formal symbol T . Let nz = Θ · (k + 2) be the number of primes that comprise the
modulus for the message space in the underlying CLT map for the ZCLT scheme. We say that c is an
encoding of a at the index set Zdll for some dl < κ if for all i ∈ [nz], we have that c ≡ (rigi+a)/(zdll)
(mod pi). Here, zl is a (secret) parameter of the underlying CLT scheme. Respectively, c is an
encoding of a at the index set Zdrr for dr < κ if for all i ∈ [nz], we hat c ≡ (rigi+a)/(zdrr) (mod pi).
Again, zr is a secret parameter for the underlying CLT scheme.

We now describe the additional encodings that are included in ZCLT.pp to support the public
encode operation ZCLT.PublicEncode(ZCLT.pp, ·, Z). As noted above, we publish ZCLT encodings
of 20, 21, . . . , 2blogNc, where N = N1 · · ·Nk is the modulus for the message space. More specifically,
for each j = 0, . . . , blogNc, we apply the following procedure during ZCLT.Setup (we note that
these operations are just the result of applying Construction 3.1 to CLT):

1. Choose ζj ← Uniform(Z∗Nk+1
) and νj,l, νj,r ← Uniform(Z∗Nk+2

). Additionally, choose ηj =

[ηj,1, . . . , ηj,k]← Uniform(Z∗N1···Nk) Then, define yj,l = [(2j mod N1), . . . , (2j mod Nk), ζj , νj,l]
and yj,r = [ηj,1, . . . , ηj,k, ζj , νj,r].

2. For i ∈ [nz], choose ri,j,l, ri,j,r ← Uniform([−2ρ + 1, 2ρ − 1]). Then, construct ŷj,l and yj,r
where for all i ∈ [nz],

ŷj,l ≡
(ri,j,lgi + (yj,l mod gi))

zl
(mod pi) ŷj,r ≡

(ri,j,rgi + (yj,r mod gi))

zr
(mod pi)

3. Included the values ŷj = (ŷj,l, ŷj,r) with ZCLT.pp.

Thus, to support public encoding of arbitrary ring elements, we augment the public parame-
ters ZCLT.pp with 1 + blogNc encodings of the powers of two. In addition, our candidate re-
randomization procedure (described in Section 4.3.2) also requires additional encodings to be in-
cluded in ZCLT.pp. Here, we just present the additional steps in ZCLT.Setup that are needed to
support ZCLT.ReRand; we defer the full discussion of the candidate re-randomization procedure to
Section 4.3.2.

1. Construct two matrices Πl,Πr ∈ Znz×nz , where the diagonal entries (Πl)ii and (Πr)ii are
drawn independently from Uniform([nz ·2ρ+1, (nz +1) ·2ρ−1)]), and the off-diagonal compo-
nents, (Πl)ij and (Πr)ij for j 6= i, are drawn independently from Uniform([−2ρ + 1, 2ρ − 1]).

2. For each j ∈ [nz], β ∈ [µ], choose ζ
(β)
πj ← Uniform(Z∗Nk+1

) and ν
(β)
πj ,l, ν

(β)
πj ,r ← Uniform(Z∗Nk+2

).
Define the quantities

π
(β)
j,l =

[
0, . . . , 0, ζ(β)

πj , ν
(β)
πj ,l

]
π

(β)
j,r =

[
0, . . . , 0, ζ(β)

πj , ν
(β)
πj ,r

]
.

21

3. For each i, j ∈ [nz], and β ∈ [µ], choose χ
(β)
i,j,l and χ

(β)
i,j,r from Uniform([−2ρ+ 1, 2ρ−1]). Then,

for each j ∈ [nz], β ∈ [µ], construct Π
(β)
j,l and Π

(β)
j,r , such that for all i ∈ [nz],

Π
(β)
j,l ≡

(
2β · (Πl)ij + χ

(β)
i,j,l

)
· gi +

(
π

(β)
j,l mod gi

)
zl

(mod pi)

Π
(β)
j,r ≡

(
2β · (Πr)ij + χ

(β)
i,j,r

)
· gi +

(
π

(β)
j,r mod gi

)
zr

(mod pi).

4. For j ∈ [τ], choose ζγj ← Uniform(Z∗Nk+1
) and νγj ,l, νγj ,r ← Uniform(Z∗Nk+2

). Define the
quantities

γj,l =
[
0, . . . , 0, ζγj , νγj ,l

]
γj,r =

[
0, . . . , 0, ζγj , νγj ,r

]
,

5. Let DΠl (resp., DΠr) denote the uniform distribution over Znz/Πl (resp., Znz/Πr), as de-
scribed in Section 4.1. For j ∈ [τ], sample a vector sj,l = (s1,j,l, . . . , snz ,j,l) from DΠl and
a vector sj,r = (s1,j,r, . . . , snz ,j,r) from DΠr . Then, for each j ∈ [τ], construct the encodings
xj,l, xj,r, such that for all i ∈ [nz],

xj,l ≡
si,j,l · gi + (γj,l mod gi)

zl
(mod pi) xj,r ≡

si,j,r · gi + (γj,r mod gi)

zr
(mod pi),

6. Include the encodings Π
(β)
j,l and Π

(β)
j,r for all j ∈ [nz] and β ∈ [µ] as well as the encodings

xj,l, xj,r for all j ∈ [τ] in ZCLT.pp.

Thus, to support public encoding of values at index set Z, we must publish 1+blogNc additional
encodings to allow encoding of arbitrary scalars in ZN and another µ · nz + τ encodings for the
candidate re-randomization procedure.

4.3.2 ZCLT.ReRand: candidate re-randomization procedure.

We now describe our candidate procedure for implementing the ZCLT.ReRand functionality. For
simplicity, we again only describe our methods for the case of re-randomizing level-1 encodings, but
the procedure naturally generalizes to arbitrary index sets.

We begin by giving some intuition for our candidate re-randomization procedure. First, we
observe that it almost suffices to use the ordinary CLT re-randomization procedure, with ZCLT en-
codings of 0 in lieu of the ordinary CLT encodings of 0. The problem is that since our zero-immunized
0-encodings include nonzero components (the ζ, ν values), we cannot scale these encodings by the
desired random factors in [0, 2µ − 1] without blowing up the noise by the product of ζ or ν with
2µ: this is much greater than the primes gi, and would destroy the randomizer distribution r needed
for the “leftover hash lemma over lattices” [CLT13].

To avoid this problem, we will instead give out a list of µ “pre-multiplied” re-randomization en-
codings, with randomizers roughly equal to the columns of Π scaled up by each of the powers of two,
2β for each β ∈ [µ]. To re-randomize, then, instead of multiplying these re-randomization encod-
ings by the desired random factors in [0, 2µ − 1], we add together the corresponding subset-sum
of the “pre-multiplied” encodings, corresponding to the bit-decomposition of the random factor in
[0, 2µ− 1]. This application of bit-decomposition is similar to its application in fully-homomorphic

22

encryption (e.g. [BV11]). We note that each randomizer in our procedure is only roughly equal

to a scaled column of Π (deviating by additional noise terms χ
(β)
i,j,l, χ

(β)
i,j,r), so that the adver-

sary cannot trivially cancel out gi terms by forming linear combinations of our re-randomization
encodings, thereby obtaining values ≡ mi/z (mod pi) for mi ≈ gi. Heuristically, these “noisy bit-
decompositions” seem to improve the security of the candidate procedure, since now such linear
combinations produce values that resemble ordinary encodings (including the noise induced by the
gi terms). We will also show that noisy bit-decomposition does not impact correctness, since the
noise from the public re-randomization encodings simply adds with the noise from the encoding
being re-randomized, which had noisy randomizers r to begin with.

We now give a concrete algorithm for ZCLT.ReRand(ZCLT.pp, â, Z). Then, in Theorem 4.4, we
precisely characterize the noise distribution of the re-randomized encodings in the ZCLT scheme.

1. For j ∈ [τ], choose b′j ← Uniform({0, 1}). Next, for β ∈ [µ], j ∈ [nz], choose b
(β)
j ←

Uniform({0, 1}).

2. Compute â′l and â′r as follows:

â′l = âl +
∑
j∈[τ]

(b′j · xj,l) +
∑
j∈[nz]

∑
β∈[µ]

(
b
(β)
j ·Π

(β)
j,l

)
(mod Nouter)

â′r = âr +
∑
j∈[τ]

(b′j · xj,r) +
∑
j∈[nz]

∑
β∈[µ]

(
b
(β)
j ·Π

(β)
j,r

)
(mod Nouter),

Note that xj,l and xj,r for all j ∈ [τ] as well as Π
(β)
j,l and Π

(β)
j,r for all j ∈ [nz] and β ∈ [µ] are

included as part of ZCLT.pp (Section 4.3.1).

3. Output the re-randomized encoding â′ ← (â′l, â
′
r).

We now show that this procedure induces the correct distribution on the re-randomized encod-
ings.

Theorem 4.4 (ZCLT.ReRand Induces the Correct Distribution). Let λ,Θ, ρ, α, τ, µ, n, as well as,
gi, pi for all i ∈ [(k + 2)Θ], be parameters generated by the ZCLT.Setup procedure. Set nz =
(k + 2)Θ. Let â = (âl, âr) be a ZCLT encoding with noise at most 2ρ+log(nα)+2, that is, for all
i ∈ [nz], âl = (ri,lgi +mi,l)/zl (mod pi) and âr = (ri,rgi +mi,r)/zr (mod pi) for some ri,l, ri,r ∈
(−2α+ρ+1, 2α+ρ+1). Let (â′l, â

′
r) ← ZCLT.ReRand(ZCLT.pp, Z, â). For all i ∈ [nz], write â′i,l as

(r′i,lgi + m′i,l)/zl (mod pi) and a′i,r as (r′i,rgi + m′i,r)/zr (mod pi). Suppose τ ≥ max{α, nz · (ρ +
log nz + 1)}+ 2λ and µ ≥ λ. Then, the following holds:

1. Let r′l = (r′1,l, . . . , r
′
nz ,l) and r′r = (r′1,r, . . . , r

′
nz ,r). The distribution of (ZCLT.pp, r′l) is statis-

tically close to that of (ZCLT.pp, r′′l) where r′′l is drawn from D2µΠl (as defined in Section 4.1).
Similarly, the distribution of (ZCLT.pp, r′r) is statistically close to that of (ZCLT.pp, r′′r) where
r′r is drawn from D2µΠr (as defined in Section 4.1).

2. Let al be the message encoded by âl and let a′l be the message encoded by â′l. Define ar and a′r
analogously. Then, a′l and a′r are each individually uniform, but not necessarily independently
uniform, over ZNk+1

. Moreover, if al = ar (mod Nk+1), then a′l = a′r (mod Nk+1).

3. Let a′l be the message encoded by â′l and let a′r be the message encoded by â′r. Then, (a′l mod
Nk+2) and (a′r mod Nk+2) are independently uniform over ZNk+2

.

23

Proof. To prove claim 1, we follow the proof of [CLT13, Lemma 2]. We demonstrate the claim for
r′l; the claim for r′r follows by symmetry. First, define a vector r̃l ∈ Znz , where the ith component
r̃i,l is given by

r̃i,l = ri,l +
∑
j∈[nz]

∑
β∈[µ]

χ
(β)
i,j,l +

∑j∈[τ] b
′
j · (γj,l mod gi) +

∑
j∈[nz]

∑
β∈[µ] b

(β)
j ·

(
π

(β)
j,l mod gi

)
gi


In addition, define the matrix (Xl)ij = (si,j,l) ∈ Znz×τ . Then, the re-randomization relation can
be stated as

r′l = r̃l + Xl · b′ +
∑
β∈[µ]

(2β ·Πl) · b(β)

= r̃l + Xl · b′ + Πl ·
∑
β∈[µ]

2βb(β)

where b′ ← Uniform({0, 1}τ) and b(β) ← Uniform({0, 1}nz). Since b(β) is uniform over {0, 1}nz , it
follows that ∑

β∈[µ]

2βb(β) ∼ Uniform ([0, 2µ − 1]nz)

Thus, we can invoke the leftover hash lemma for lattices [CLT13, Lemma 6] to conclude that the
distribution of (ZCLT.pp, r′l) is ε1-close to the distribution (ZCLT.pp, r̃l +D2µΠl), where

ε1 = τ · nz · 2−µ +
1

2

√
|det Πl| /2τ .

Since Πl is diagonally dominant, we have from Fact 4.3 that

|det Πl| ≤
nz∏
i=1

(|(Πl)ii|+ Λi(Πl)) ≤ (2 · nz · 2ρ)nz ≤ 2nz(ρ+log(nz)+1).

Thus, ε1 ≤ τ · nz · 2−µ + (1/2) · 2(nz(ρ+lognz+1)−τ)/2. Since τ ≥ nz · (ρ+ log nz + 1) + 2λ and µ ≥ λ,
we have that ε1 = negl(λ).

To complete the proof, we show that the distribution of (ZCLT.pp, r′l) is (ε1 + ε2)-close to
(ZCLT.pp,D2µΠl). From [CLT13, Lemma 7], we have that this claim holds for

ε2 = 2−µ
(
‖r̃l‖∞ ·

∥∥Π−1
l

∥∥
∞ + 1

)
.

Thus, we bound ‖r̃l‖∞. We do so by bounding each component |r̃i,l| for all i ∈ [nz]:

• Suppose i ≤ nΘ. We use the bound that |ri,l| ≤ 2ρ+log(nα)+2, and γi,l = 0 = π
(β)
i,l for all

β ∈ [µ] to conclude that

|r̃i,l| ≤ |ri,l|+
∑
j∈[nz]

∑
β∈[µ]

∣∣∣χ(β)
i,j,l

∣∣∣ ≤ 2ρ+log(nα)+2 + nzµ · 2ρ.

• Suppose nΘ < i ≤ (n + 1)Θ. These indices correspond to the message in the (k + 1)st

component (the ζ component). Then, we have

|r̃i,l| ≤ |ri,l|+
∑
j∈[nz]

∑
β∈[µ]

∣∣∣χ(β)
i,j,l

∣∣∣+

∑j∈[τ] b
′
j(ζγj mod gi) +

∑
j∈[nz],β∈[µ] b

(β)
j

(
ζ

(β)
πj mod gi

)
gi


≤ 2ρ+log(nα)+2 + nzµ · 2ρ + τ + nzµ

24

• Suppose (n+ 1)Θ < i ≤ (n+ 2)Θ. An analogous calculation as the one for the previous case
shows that

|r̃i,l| ≤ 2ρ+log(nα)+2 + nzµ · 2ρ + τ + nzµ.

Thus, we conclude that

‖r̃l‖∞ ≤ 2ρ+log(nα)+2 + nzµ · 2ρ + τ + nzµ.

Next, using Fact 4.2, we have that∥∥Π−1
l

∥∥
∞ ≤

1

mini∈[nz]((Πl)ii − Λi(Πl))
≤ 1

(nz)2ρ − (nz − 1)2ρ
≤ 2−ρ.

This gives

ε2 ≤ 2−µ + (2ρ+log(nα)+2 + nzµ · 2ρ + τ + nzµ) · 2−ρ · 2−µ

≤ 2−µ + (4nα+ nzµ+ (τ + nzµ) · 2−ρ) · 2−µ.

Since µ ≥ λ, and τ, µ, n, nz, α are poly(λ), we have ε2 = negl(λ), the claim follows.
It remains to show that claims 2 and 3 hold regarding the re-randomization. For claim 2, we

use the fact that Nk+1 = gnΘ+1 · · · g(n+1)Θ, and demonstrate that for each i = nΘ+1, . . . , (n+1)Θ,
the claim holds with gi in place of Nk+1; the overall claim then follows by CRT. First, we have

a′l = al +
∑
j∈[τ]

b′j(ζγj mod gi) +
∑
j∈[nz]

∑
β∈[µ]

b
(β)
j

(
ζ(β)
πj mod gi

)
(mod gi).

To show that a′l is uniform random over Zgi , we appeal to the leftover hash lemma applied to subset
sums of abelian group elements [CLT13, Lemma 5]. First, we have that for all j ∈ [τ], ζγj is chosen
uniformly and independently from ZNk+1

, so each (ζγj mod gi) is independently uniform in Zgi . In
addition, the b′j are chosen uniformly and independently from {0, 1}. By [CLT13, Lemma 5], we

have that the statistical distance ε between
(

(ζγ1 mod gi), . . . , (ζγτ mod gi),
∑

j∈[τ] b
′
j(ζγj mod gj)

)
and Uniform(Zτ+1

gi) is bounded as follows:

ε ≤ 1

2

√
|Zgi | /2τ ≤ 2(α−τ)/2+1.

Since τ ≥ α + 2λ, ε = negl(λ). Because
∑

j∈[τ] b
′
j(ζγj mod gi) is statistically close to uniform over

Zgi , and independent of the values ζ
(β)
πj , we conclude that (a′l mod gi) is statistically close to uniform

in Zgi . The same argument shows that the analogous expression holds for a′r, so we conclude that
a′r is statistically close to uniform over Zgi , and furthermore, when al = ar (mod gi), then we have
a′l = a′r (mod gi), as required.

To prove claim 3, we use the same argument as in claim 2, except we substitute νγj ,l (resp.,

νγj ,r) and ν
(β)
πj ,l (resp., ν

(β)
πj ,r) for the ζγj and ζ

(β)
πj . Since νγj ,l and νγj ,r are independently uniform,

we additionally conclude that (a′l mod Nk+2) and (a′r mod Nk+2), are independently uniform in
ZNk+2

, as required.

25

4.3.3 ZCLT.PublicEncode: public encoding via re-randomization.

We now describe how to implement the public variant of the encode operation (ZCLT.PublicEncode)
in our zero-immunized CLT scheme. As before, we will only describe the procedure for encoding
values at level 1 (i.e., at some singleton index set Z). Our method naturally generalizes to higher-
level encodings.

For an integer a < blgNc, the public encoding procedure ZCLT.PublicEncode(ZCLT.pp, a, Z)
operates as follows:

1. Let ablogNc · · · a1a0 be the binary representation of a over the integers. Then, compute the
following:

âl =

blogNc∑
j=0

aj ŷj,l âr =

blogNc∑
j=0

aj ŷj,r

where ŷj,l and ŷj,r are the ZCLT encodings of 2j included in ZCLT.pp. Set â = (âl, âr).

2. Output ZCLT.ReRand(ZCLT.pp, â)

We now bound the noise in the encodings â formed in step 1 of the above procedure. This is
necessary to satisfy the hypothesis in Theorem 4.4, and show that the re-randomization procedure
induces the correct distribution on the noise in the re-randomized encodings.

Lemma 4.5 (Noise in Level-1 Encodings before Re-randomization). Let k,Θ, n,N, ρ, α, as well as
gi, pi for all i ∈ [(k + 2)Θ] be parameters output by ZCLT.Setup. Set nz = (k + 2)Θ. Fix a value
a ∈ ZN , and let ablogNc · · · a1a0 be its binary representation over the integers. Let ŷ0, . . . , ŷblogNc
be the ZCLT encodings of the powers of two in ZCLT.pp. Let

âl =

blogNc∑
j=0

aj ŷj,l âr =

blogNc∑
j=0

aj ŷj,r

and write âl ≡ (ri,lgi+mi,l)/z (mod pi) and âr ≡ (ri,rgi+mi,r)/z (mod pi) for all i ∈ [nz]. Then,
for all i ∈ [nz], the noise |ri,l| , |ri,r| ≤ 2ρ+log(nα)+2.

Proof. For each i ∈ [nz], we can write ŷj,l as
(
r

(yj)
i,l gi +m

(yj)
i,l

)
/z (mod pi), where r

(yj)
i,l ∈ (−2ρ, 2ρ)

and m
(yj)
i,l ∈ Zgi . Then, we can write ri,l as

ri,l =

blogNc∑
j=0

aj ŷj,l =

blogNc∑
j=0

ajr
(yj)
i,l

+

∑blogNc
j=0 ajm

(yj)
i,l

gi


Since aj ∈ {0, 1}, we can bound |ri,l| as follows:

|ri,l| ≤ (blogNc+ 1) ·
∣∣∣r(yj)
i,l

∣∣∣+

(blogNc+ 1) ·m(yj)
i,l

gi

 ≤ (blogNc+ 1) · (2ρ + 1).

Finally, N = N1 · · ·Nk and each Ni is a product of Θ α-bit primes. Thus, logN ≤ kΘα = nα. We
conclude that

|ri,l| ≤ (nα+ 1) · (2ρ + 1) ≤ 2ρ+log(nα)+2.

An analogous argument shows the claim for |ri,r|.

26

Remark 4.6 (Updating the Secret-Encoding Operation). Technically, the public-encoding exten-
sion we have just described also requires a minor change to the original secret-encoding procedure,
for the following reason. The new re-randomization procedure invoked by ZCLT.PublicEncode in-
duces a slightly different distribution from the procedure ZCLT.Encode specified in Section 4.2, just
because in the new setup procedure for public-encoding (Section 4.3.1), we choose new randomizer
lattices Π. Thus, to match the original intended functionality of CLT precisely, in our extended
version with public-encoding we would also update the secret-encoding operation to use our new
re-randomization procedure ZCLT.ReRand, instead of the original CLT.ReRand. Of course, this
modification is not required if we are only implementing the basic multilinear map operations (Def-
inition 2.3, Section 4.2).

4.3.4 ZCLT.Extract: extraction for top-level encodings.

The zero-immunized extraction operation ZCLT.Extract is an immediate generalization of the cor-
responding operation CLT.Extract in the CLT scheme. Specifically, given an encoding â = (âl, âr)
at the top level set (âl is encoded at Zκl and âr is encoded at Zκr), the ZCLT.Extract(ZCLT.pp, â)
function works as follows:

1. First, form the encoding ẑ = t̂l · âl − t̂r · ar. Note that t̂l and t̂r are both included in the
public parameters ZCLT.pp.

2. Output the result of CLT.Extract(CLT.pp, ẑ). Note that the necessary parameters in CLT.pp
needed for zero-testing are included in ZCLT.pp.

The correctness of the zero-immunized extraction operation is immediate by the same arguments
as in [CLT13].

5 Attacks

In this section we strengthen the attack of [CHL+14], so that the attack does not require low-
level 0-encodings, but rather applies whenever the adversary can produce many encodings that
multiply to 0 at the zero-testing index set U . We call such encodings orthogonal encodings. Using
the techniques of [CHL+14] we show that orthogonal encodings lead to a total break of the CLT
multilinear map.

Definition 5.1 (Orthogonal Encodings). Consider a composite-order multilinear map whose or-
der is a product of n primes p1, . . . , pn. For sets Ix, Ix′ , Ic ⊆ [n] we say that the encodings
(x1, . . . , xn, x

′
1, . . . , x

′
n, c, c

′) form a tuple of orthogonal encodings if:

• All the encodings x1, . . . , xn are at some index set Sx ⊂ U . Their values m
(x)
1 , . . . ,m

(x)
n are

congruent to 0 modulo pr for all r ∈ Ix.

• All the encodings x′1, . . . , x
′
n are at some index set Sx′ ⊂ U . Their values m

(x′)
1 , . . . ,m

(x′)
n are

congruent to 0 modulo pr for all r ∈ Ix′ .

• The encodings c, c′ are at the index set Sc = U/(SxSx′) where Sc 6= 1. Their values m(c),m(c′)

are congruent to 0 modulo pr for all r ∈ Ic.

Furthermore, we require that Ix ∪ Ix′ ∪ Ic = [n] (i.e., every orthogonal component is zeroed out by
some encoding).

27

5.1 Description of the Attack

We next describe the attack on CLT given a set of orthogonal encodings. The attack follows the
“zeroizing” attack of [CHL+14]. We form the n× n matrix Wc:

(Wc)jk = c · x′j · xk · (pzt)1 (mod Nouter)

=
∑
i∈[n]

cix
′
jixki · (g−1

i mod pi) · hi ·
Nouter

pi
(mod Nouter)

=
∑
i∈Ic

r
(c)
i x′jixkihi

Nouter

pi
+
∑
i∈Ix′

cir
(x′)
ji xkihi

Nouter

pi
+
∑
i∈Ix

cix
′
jir

(x)
ki hi

Nouter

pi
(mod Nouter)

Now, just as in [CHL+14], we note that since each c · x′j · xk is an encoding of zero, all of the terms
in the sum for each (Wc)jk must be so small that no reduction modulo Nouter takes place. Thus
the equation above also holds over Z. Re-expressing the equation as a matrix product, we have:

Wc = X′ · diag(c̃) · diag(h′1, . . . , h
′
n) ·X

where we define h′i = hiNouter/pi, and:

X′ji =

{
r

(x′)
ji if i ∈ Ix′
x′ji otherwise

c̃i =

{
r

(c)
i if i ∈ Ic
ci if i /∈ Ic

Xik =

{
r

(x)
ki if i ∈ Ix
xki otherwise

We also compute the analogous relation, with c′ in place of c:

Wc′ = X′ · diag(c̃′) · diag(h′1, . . . , h
′
n) ·X

(where c̃′ is defined exactly as c̃, with c′ in place of c), and we note that the other matrix factors
X′,diag(h′1, . . . , h

′
n),X do not change between the cases of c and c′.

Suppose that X,X′ are nonsingular, and hence so is Wc′ (we will show below that this holds
with overwhelming probability). Then we compute the following matrix over Q:

Wc ·W−1
c′ = X′ · diag

(
c̃1

c̃′1
, . . . ,

c̃n
c̃′n

)
· (X′)−1

Finally, again following [CHL+14], we compute the eigenvalues of this matrix (e.g. by factoring the
characteristic polynomial); these are precisely the values c̃1/c̃

′
1, . . . , c̃n/c̃

′
n ∈ Q. We reduce these

fractions to lowest terms, s1/s
′
1, . . . , sn/s

′
n, and compute the following quantity for each i ∈ [n]:

gcd(si · c′ − s′i · c,Nouter)

We will show below that with overwhelming probability this common factor is pi, which yields a
total break of CLT as described in [CHL+14].

5.2 Correctness of the Attack

Procedurally, the attack described in Section 5.1 is very similar to that of [CHL+14]. However,
there are two crucial differences. First, we do not need 0-encodings, but only orthogonal encodings.
Second, we do not need the encodings to be fresh (i.e., the output of MM.Encode). Instead,
the encodings can be the result of a series of arithmetic operations satisfying some independence

28

conditions. Showing that the attack works in these more general settings requires some work. The
difficulty is in showing that the matrices X and X′ are nonsingular with high probability.

To ensure that the matrices X,X′ are nonsingular in the attack, we will require the encodings
x′j , xk to be linearly independent polynomials over fresh encodings. We require a similar condition
over the encodings c, c′. These conditions are much weaker than requiring all encodings to be fresh
and this makes the attack work with far fewer encodings than needed in [CHL+14].

Correctness of the attack algorithm is captured in the following theorem.

Theorem 5.2 (Correctness of the Attack). Suppose that the attack of Section 5.1 is carried out
on orthogonal encodings (x1, . . . , xn, x

′
1, . . . , x

′
n, c, c

′) where:

• The encodings x1, . . . , xn are computed by linearly independent polynomials evaluated on fresh
encodings (i.e., are each output by MM.Encode).

• The encodings x′1, . . . , x
′
n are computed by linearly independent polynomials evaluated on fresh

encodings (i.e., are each output by MM.Encode).

• The encodings c, c′ are computed by linearly independent polynomials evaluated on fresh en-
codings (i.e., are each output by MM.Encode).

Then the attack recovers the secret primes pi with overwhelming probability.

Before we can prove Theorem 5.2, we will need to introduce a number of definitions and lemmas.
To begin with, we will describe the matrices X,X′ in terms of the corresponding formal polynomials
over encodings.

Definition 5.3 (Matrix Expansion). Fix integers m,n, formal variables t̂1, . . . , t̂m, and a tuple of
n formal polynomials f1, . . . , fn ∈ Z[t̂1, . . . , t̂m]. We define the matrix expansion of (f1, . . . , fn) to
be the following matrix in Z[t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n]n×n: f1(t1,1, . . . , tm,1) · · · f1(t1,n, . . . , tm,n)

...
. . .

...
fn(t1,1, . . . , tm,1) · · · fn(t1,n, . . . , tm,n)


Lemma 5.4 (Expansions of Independent Polynomials are Nonsingular). Fix integers m,n and
formal variables t̂1, . . . , t̂m. Let f1, . . . , fn ∈ Z[t̂1, . . . , t̂m] be linearly independent polynomials (re-
garding Z[t̂1, . . . , t̂m] as a module over the base ring Z). Then the matrix expansion M of (f1, . . . , fn)
is nonsingular.

Proof. By induction on n. The claim holds by definition for n = 1, so suppose n > 1, and consider
the determinant det M ∈ Z[t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n]. We write:

det M =
∑
i∈[n]

(−1)i+1fi(t1,1, . . . , tm,1) · det Mi,1

(recall that Mi,1 denotes the (i, 1) minor of M, i.e., the matrix M with the first column and the
ith row removed). We now claim that det M is not identically zero. Suppose otherwise: then for
all integers (vi,j)i∈[n],j∈[2,n], when we substitute every vi,j for the corresponding variable ti,j in
det M, the result must be identically zero in Z[t1,1, . . . , tm,1]. On the other hand, by the inductive
hypothesis, for each i ∈ [n] we have det Mi,1 6≡ 0 ∈ Z[t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n], and thus
there exist integers (vi,j)i∈[n],j∈[2,n] which, when substituted for the corresponding ti,j in det M1,1,

29

produce a nonzero value in Z. For each i ∈ [n], let ai be the result of substituting these (vi,j) for
the corresponding variables ti,j in det Mi,1, so that in particular, we have a1 6= 0 ∈ Z. Then we
have:

0 =
∑
i∈[n]

(−1)i+1fi(t1,1, . . . , tm,1) · ai ∈ Z[t1,1, . . . , tm,1]

and, renaming variables, we find

0 =
∑
i∈[n]

(−1)i+1fi(t̂1, . . . , t̂m) · ai ∈ Z[t̂1, . . . , t̂m]

which is a nontrivial linear combination of f1, . . . , fn, contradicting our assumption.

We also require the following technical lemmas. The first lemma, due to Ostrowski [Ost52],
states that for diagonally dominant matrices Π (such as the randomization matrices in CLT),
removing a dimension to form a minor Πi,i decreases the determinant by an appropriate factor.

Lemma 5.5 (Determinants of Diagonally Dominant Matrices [Ost52]). Let M ∈ Zn×n be diagonally
dominant (Definition 4.1), and define:

Λi(M) =
∑
j 6=i
|Mij | , σi(M) =

Λi(M)

|Mii|
, ti(M) = max

j 6=i
(σj(M)) .

Suppose that for all i ∈ [n], we have ti(M) ≤ 1 and ti(M)σi(M) < 1. Then for all i ∈ [n], we have
|det M| ≥ (|Mi,i| − ti(M)Λi(M)) · | det Mi,i|.

Corollary 5.6 (Determinants of Randomization Matrices). Let n, q, ρ, r be integers such that 1 <
n ≤ r and r > 2. Let Π ∈ Zn×n be a matrix such that for i ∈ [n] we have r · 2ρ ≤ Πi,i ≤ (r+ 1) · 2ρ
and for i 6= j ∈ [n] we have |Πi,j | ≤ 2ρ. Then for all i ∈ [n], we have | det Π| ≥ 2ρ · | det Πi,i|.

Proof. Since Π is diagonally dominant, we can invoke Lemma 5.5. By definition, we have Λi(Π) ≤
2ρ(n− 1), and hence σi(Π) ≤ (n− 1)/r < 1 and ti(Π) ≤ (n− 1)/r < 1. Lemma 5.5 now implies

| det Π| ≥
(

2ρr − 2ρ(n− 1) · n− 1

r

)
· | det Πi,i| ≥ 2ρ · | det Πi,i|

as desired.

Our next technical lemma concerns the distribution D of CLT randomizers rj,i. Intuitively, the
lemma shows that since D is uniform over Zn/L, where L is the lattice spanned by the columns
of the (well-conditioned) CLT re-randomizing matrix Π, we can conclude that D is nearly uniform
when regarded over Znq for a somewhat smaller prime q.

Lemma 5.7. Let n, q, ρ, r be integers such that 1 < n ≤ r, r > 2, and 16qr < 2ρ, and let Π ∈ Zn×n
be a matrix such that for i ∈ [n] we have r · 2ρ ≤ Πi,i ≤ (r + 1) · 2ρ and for i 6= j ∈ [n] we have
|Πi,j | ≤ 2ρ. Let v1, . . . ,vn ∈ Zn be the columns of Π, and let L be the integer lattice spanned
by v1, . . . ,vn. Let D = Uniform(Zn/L), where each element of Zn/L is canonically identified with
its representative in the parallelepiped spanned by v1, . . . ,vn. Let Dq be the distribution over Znq
defined by reducing D modulo q. Then the statistical distance between Dq and Uniform(Znq) is at
most 16qr/2ρ.

30

Proof. The volume of the parallelepiped Rn/L is bounded as follows:

2ρn = (r · 2ρ − (n− 1) · 2ρ)n ≤ |det Π| ≤ ((r + 1) · 2ρ + (n− 1) · 2ρ)n ≤ (2r)n · 2ρn

since Π is diagonally dominant (Fact 4.3). We consider the tiling of Rn by n-dimensional (axis-
aligned) boxes of side length q, and we say that a box [x1q, (x1 + 1)q] × . . . × [xn, (xn + 1)q] is
a boundary box if it intersects, but is not contained in, Rn/L. Denoting by bd(n) the number of
boundary boxes, we will first show the following bound:

bd(n) ≤ 8qr

2ρ
· | det Π|

qn
(1)

Fix an axis i ∈ [n] (without loss of generality i = n), and consider the plane Rn−1 × {0}. Every
boundary box, when projected to this plane, must intersect the projection of Rn/L to the plane,
and thus the number of boxes in Rn−1 that can be the projection of a boundary box is bounded
above as follows. For n = 2, it is at most ((r + 1) · 2ρ + (n − 1) · 2ρ)/q, which satisfies the bound
of equation (1). For n > 2, we reason as follows. For n > 2, we note that the projection of Rn/L
is itself an (n− 1)-dimensional parallelepiped, defined by the (n, n) minor Πn,n. Thus the number
of possible projected boundary boxes is at most | det Πn,n|/qn−1 + bd(n− 1) (accounting for both
the projected boundary and the volume of the projected interior).

Now, every boundary box must intersect some face of Rn/L. The two faces of Rn/L not
parallel to vn are Fn,0 = span(v1, . . . ,vn−1) and Fn,1 = vn + span(v1, . . . ,vn−1). Without loss of
generality, we consider the face Fn,0, and fix integers x1, . . . , xn−1 that define the projection of a
possible boundary box, Bn−1 = [x1q, (x1 + 1)q] × . . . × [xn−1, (xn−1 + 1)q]. Fix two points in the
face Fn,0, given by a = (a1, . . . , an) and b = (b1, . . . , bn) = a + δ1v1 + . . . + δn−1vn−1, such that
(a1, . . . , an−1), (b1, . . . , bn−1) ∈ Bn−1. Then for each i ∈ [n− 1] we have:

q ≥ |bi − ai| ≥ δi · 2ρr −
∑

i′ 6=i∈[n]

(δi · 2ρ) ≥ δi · 2ρ(r − (n− 1)) ≥ δi · 2ρ

and thus:
|bn − an| ≤

∑
i∈[n−1]

|δiΠi,n| ≤ 2−ρ(n− 1)q

Since 2ρ > 16qr > (n − 1), we conclude that |bn − an| < q, and hence at most two integer values
of xn can make Bn−1 × [xn, (xn + 1)q] a boundary box. Taking the union over all 2n faces, we
conclude that the number of boundary boxes is bounded as follows:

bd(n) ≤ 4n

(
|det Πn,n|
qn−1

+ bd(n− 1)

)
Now we note that the minor Πn,n also satisfies the hypothesis, and thus inductively we conclude:

bd(n) ≤ 4n

(
| det Πn,n|
qn−1

+
8qr

2ρ
· | det Πn,n|

qn−1

)
= 4n · | det Πn,n|

qn−1

(
1 +

8qr

2ρ

)
≤ 8n · | det Πn,n|

qn−1

≤ 8qr

2ρ
· |det Π|

qn
· 2ρ · | det Πn,n|

det Π

31

at which point the bound of equation (1) follows from Corollary 5.6.
Finally, since the number of interior (non-boundary) boxes is at least | det Π|/qn − bd(n), the

probability that a random sample from Zn/L falls in a boundary box is at most:

bd(n)

|det Π|/qn − bd(n)
=

(
| det Π|

bd(n) · qn
− 1

)−1

≤
(

2ρ

8qr
− 1

)−1

≤
(

2ρ

8qr
− 2ρ

16qr

)−1

= 16qr/2ρ

as desired.

We are now equipped to prove the main correctness properties of the attack of Section 5.1: specif-
ically, given appropriate conditions on the input encodings, the matrices X,X′ are nonsingular, and
the final gcd operations succeed in factoring the modulus.

Lemma 5.8 (Nonsingular Matrices in the Attack). Suppose that the attack of Section 5.1 is car-
ried out on orthogonal encodings (x1, . . . , xn, x

′
1, . . . , x

′
n, c, c

′) such that for some fresh encodings
t̂1, . . . , t̂m (i.e., each output by MM.Encode), the following conditions are satisfied:

• The encodings x1, . . . , xn are computed by linearly independent polynomials, resp., f1, . . . , fn ∈
Z[t̂1, . . . , t̂m], evaluated on the encodings t̂1, . . . , t̂m.

• The encodings x′1, . . . , x
′
n are computed by linearly independent polynomials, resp., f ′1, . . . , f

′
n ∈

Z[t̂1, . . . , t̂m], evaluated on the encodings t̂1, . . . , t̂m.

Then the matrices X,X′ defined in the attack are nonsingular with overwhelming probability.

Proof. Without loss of generality it suffices to establish the claim for the matrix X′. We will show
that det X′ is nonzero in Q. For each j ∈ [m], i ∈ [n], define t̂j ≡ tj,i (mod pi). Now by definition,
we have:

X′ji =

{
r

(x′)
ji if i ∈ Ix′
x′ji otherwise

Defining the modified matrix X′′ji = x′ji, we note that X′′ differs from X′ only by a factor of gi for
columns i ∈ Ix′ . Since gi is nonzero in Q with overwhelming probability, X′ will be nonsingular if
X′′ is, and so it suffices to show that det X′′ 6= 0 ∈ Q.

We now observe that for each j ∈ [n] we have x′ji = fj(t1,i, . . . , tm,i), and by Lemma 5.4 we
conclude that det X′′ 6≡ 0 ∈ Z[t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n]. Each value tj,i in the CLT scheme
satisfies tj,i = rj,igi+mj,i, where the values (rj,1, . . . , rj,n) are statistically close to uniform over the
parallelepiped spanned by the columns of Π, where Π is some re-randomizing matrix corresponding
to the index set of the fresh encoding t̂j . Letting q be a (ρ/2)-bit prime, we regard the equation
tj,i = rj,igi + mj,i over Zq. By Lemma 5.7, the distribution of each tj,i is statistically close to
independently uniform over Zq. Further, each polynomial fj has degree at most κ = poly(λ) in the
CLT scheme, and thus the determinant det X′′ has degree at most n · κ = poly(λ). The Schwartz-
Zippel lemma now implies that det X′′ 6= 0 ∈ Zq, and hence also over Q, with overwhelming
probability.

32

Lemma 5.9 (Nontrivial Divisors in the Attack). Suppose that the attack of Section 5.1 is carried
out on orthogonal encodings (x1, . . . , xn, x

′
1, . . . , x

′
n, c, c

′), where the encodings c, c′ are computed
by linearly independent polynomials, resp., f, f ′ ∈ Z[t̂1, . . . , t̂m], evaluated on encodings t̂1, . . . , t̂m
that are fresh (i.e., are each output by MM.Encode). Then in the final step, letting di = si ·c′−s′i ·c,
with overwhelming probability we have gcd(di, Nouter) = pi for all i ∈ [n].

Proof. First we note that si/si′ = c̃i/c̃
′
i = ci/c

′
i over Q, and hence also over Zpi , so we have

di = si · c′ − s′i · c = si · c′i − s′i · ci = 0 (mod pi)

Thus it suffices to show that for all i1 6= i2 ∈ [n], with overwhelming probability the prime pi2 does
not divide di1 . In this case, we have:

si1 · c′ − s′i1 · c = si1 · c′i2 − s
′
i1 · ci2 (mod pi2)

Now if this quantity is zero modulo pi2 , then pi2 also divides the following quantity:

∆
def
= gcd(c̃i1 , c̃

′
i1) · (si1 · c′i2 − s

′
i1 · ci2) = ci1 · c′i2 − c

′
i1 · ci2 = det

(
ci1 ci2
c′i1 c′i2

)
It now follows that ∆ 6= 0 ∈ Z with overwhelming probability, by the same argument as in the proof
of Lemma 5.8. Finally, since the matrix entries ci1 , ci2 , c

′
i1
, c′i2 are the numerators of encodings that

multiply to reach the top level, they are each so small that ∆ < pi2 , by correctness of the CLT
scheme. Thus with overwhelming probability, pi2 does not divide si1 · c′i2 − s

′
i1
· ci2 , as desired.

We are now equipped to prove the main theorem stated above, which shows that our strength-
ened version of the [CHL+14] attack succeeds with overwhelming probability (given appropriate
conditions).

Theorem 5.2 (Correctness of the Attack). Suppose that the attack of Section 5.1 is carried out
on orthogonal encodings (x1, . . . , xn, x

′
1, . . . , x

′
n, c, c

′) where:

• The encodings x1, . . . , xn are computed by linearly independent polynomials evaluated on fresh
encodings (i.e., are each output by MM.Encode).

• The encodings x′1, . . . , x
′
n are computed by linearly independent polynomials evaluated on fresh

encodings (i.e., are each output by MM.Encode).

• The encodings c, c′ are computed by linearly independent polynomials evaluated on fresh en-
codings (i.e., are each output by MM.Encode).

Then the attack recovers the secret primes pi with overwhelming probability.

Proof. Immediate from Lemmas 5.8 and 5.9.

5.3 Attacking Subgroup Elimination

We now present an explicit attack on the subgroup elimination assumption [GLW14, GLSW14],
based on our strengthened version of the [CHL+14] attack (Section 5.1). Because our strengthened
version does not require low-level encodings of zero, but rather only requires orthogonal encodings,
we are able to apply it even in “secret-key” settings such as in [GLSW14] in which 0-encodings for
re-randomization are not made public.

We emphasize that the attack here applies only to the original version of the CLT multilinear
map [CLT13, GLW14], without our new zero-immunizing transformation. (With our new transfor-
mation, we do not know of any attacks on subgroup elimination or other related problems.)

33

Assumption 5.10 (Multilinear Subgroup Elimination Assumption ([GLW14, GLSW14], adapted)).
Let MM be a composite-order multilinear map. For a security parameter λ, integer parameters
κ, τ = poly(λ), an adversary A, and a bit b ∈ {0, 1}, the security game proceeds as follows.

1. The top-level index set U is defined as Zκ for a fresh formal symbol Z.

2. The multilinear map instance is initialized by running

(pp, sp, N1, . . . , Nκ+τ+1)← MM.Setup(U , 1λ, κ+ τ + 1) .

3. Using the operation MM.Encode(sp, ·, ·), encodings of the following form are generated:

e1 = [$, 0, . . . , 0, 0, . . . , 0, 0]Z

e2 = [0, $, . . . , 0, 0, . . . , 0, 0]Z
...

eκ = [0, 0, . . . , $, 0, . . . , 0, 0]Z

eκ+1 = [0, 0, . . . , 0, $, . . . , 0, 0]Z
...

eκ+τ = [0, 0, . . . , 0, 0, . . . , $, 0]Z

f1 = [0, $, $, . . . , $, 0, . . . , 0, $]Z

f2 = [$, 0, $, . . . , $, 0, . . . , 0, $]Z
...

fκ = [$, $, $, . . . , 0, 0, . . . , 0, $]Z

Here we use the notation “$” to denote a unit selected uniformly at random from the corre-
sponding subring.6

4. Using the operation MM.Encode(sp, ·, ·), the following challenge encodings are generated:

y0 = [$, $, $, . . . , $, 0, . . . , 0, 0]Z

y1 = [$, $, $, . . . , $, 0, . . . , 0, $]Z

5. The adversary is given the encodings (e1, e2, . . . , eκ+τ , f1, f2, . . . , fκ, yb) along with the public
parameters pp.

6. The adversary outputs a bit b′ ∈ {0, 1}.

For an adversary A, let W0(A, λ) be the probability that A outputs 1 when b = 0 (with security
parameter λ ∈ N), and W1(A, λ) be the probability that A outputs 1 when b = 1. We say the
multilinear subgroup elimination assumption holds for MM if for all efficient adversaries A, we have
|W0(A, λ)−W1(A, λ)| < negl(λ).

Theorem 5.11. For some constant s > 0, the multilinear subgroup elimination assumption is false
for the CLT multilinear map with κ > s log λ and any integer τ .

Proof. We first recall that in the CLT construction (as modified for composite order in [GLW14]),
the number of primes n is given by n = kΘ = (κ + τ + 1)Θ, where Θ > (ρ · η)1+ε determines the
number of primes in g1, . . . , gn that compose each of the inner moduli N1, . . . , Nk.

6In [GLW14, GLSW14], it is not specified whether the generators selected for the encodings e1, e2, . . . , eκ+τ are
encodings of 1 or are encodings of random units. We assume what seems to be the harder case to attack; our attack
also applies for arbitrary choices of the generators.

34

Now, to attack the assumption, the adversary will first form n linearly independent encodings
as follows. Assume without loss of generality that κ is even, and let ω = (κ − 2)/2. Starting
with the encodings e1, . . . , eω, for every tuple (a1, . . . , aω−1) ∈ {0, 1}ω−1, we consider the product

encoding ea11 · · · e
aω−1

ω−1 e
ω−

∑
i ai

ω . Since n = poly(λ), we know that for large enough constant s, there
are at least n such tuples; let the adversary compute the n first lexicographically, and call the
corresponding product encodings h1, . . . , hn. The adversary now executes the attack described in
Section 5.1, with the following parameter settings:

(x1, . . . , xn) = (h1, . . . , hn)

(x′1, . . . , x
′
n) = (h1, . . . , hn)

c = eκeκ−1

c′ = eκeκ−2

Ic = [κ+ τ + 1]

Ix = ∅
Ix′ = ∅

By Theorem 5.2, the attack succeeds with overwhelming probability, recovering the secret primes
p1, . . . , pkΘ (and hence all secret quantities, including z and the primes g1, . . . , gkΘ, as described
in [CHL+14]). The adversary can then compute the term yb ·z modulo p(k−1)Θ+1, · · · , pkΘ, and test
whether it is a multiple of Nk = g(k−1)Θ+1 · · · gkΘ, thereby achieving advantage 1− negl(λ).

6 Acknowledgments

This work was supported by an NSF Graduate Research Fellowship and the DARPA PROCEED
program. Opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of DARPA.

References

[AHKM14] Daniel Apon, Yan Huang, Jonathan Katz, and Alex J. Malozemoff. Implementing
cryptographic program obfuscation. Cryptology ePrint Archive, Report 2014/779,
2014. http://eprint.iacr.org/.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EUROCRYPT, 2014.

[BL97] D. Boneh and R. J. Lipton. Effect of operators on straight line complexity. In ISTCS,
1997.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, 2014.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1), 2003.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, 2011.

35

http://eprint.iacr.org/

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive,
Report 2014/906, 2014. http://eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO, 2013.

[CLT14] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of two
candidate fixes of multilinear maps over the integers. Cryptology ePrint Archive,
Report 2014/975, 2014. http://eprint.iacr.org/.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGH14] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graded multilinear maps from
lattices. Cryptology ePrint Archive, Report 2014/645, 2014. http://eprint.iacr.

org/.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure attribute
based encryption from multilinear maps. Cryptology ePrint Archive, Report 2014/622,
2014. http://eprint.iacr.org/.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint
Archive, Report 2014/309, 2014. http://eprint.iacr.org/.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In CRYPTO, 2014.

[Mil04] Victor S Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4), 2004.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Transactions on Information Theory,
39(5), 1993.

[Ost52] A. M. Ostrowski. Note on bounds for determinants with dominant principal diagonal.
Proceedings of the American Mathematical Society, 3(1):pp. 26–30, 1952.

[Pri51] G. Baley Price. Bounds for determinants with dominant principal diagonal. Proceed-
ings of the American Mathematical Society, 2(3):pp. 497–502, 1951.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, 1997.

[Var75] J.M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra
and its Applications, 11(1):3 – 5, 1975.

[Zim14] Joe Zimmerman. How to obfuscate programs directly. Cryptology ePrint Archive,
Report 2014/776, 2014. http://eprint.iacr.org/.

36

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Overview of the Transformation

	Preliminaries
	Conventions
	Multilinear Maps

	The Zero-Immunizing Transformation
	The Generic Multilinear Map Model
	The Transformed Generic Model
	Main Security Theorems
	Structure Lemmas
	Proof of Theorem 3.12
	Proof of Theorem 3.14

	Zero-Immunizing CLT
	The CLT Multilinear Map
	Implementing the Basic Operations using Zero-Immunized CLT
	Extending Zero-Immunized CLT: Re-randomization and Public Encoding
	ZCLT.Setup: extended setup operations.
	ZCLT.ReRand: candidate re-randomization procedure.
	ZCLT.PublicEncode: public encoding via re-randomization.
	ZCLT.Extract: extraction for top-level encodings.

	Attacks
	Description of the Attack
	Correctness of the Attack
	Attacking Subgroup Elimination

	Acknowledgments

