
Noname manuscript No.
(will be inserted by the editor)

How to Generate Repeatable Keys Using Physical Unclonable
Functions
Correcting PUF Errors with Iteratively Broadening and Prioritized Search

Nathan E. Price · Alan T. Sherman

Received: date / Accepted: date

Abstract We present an algorithm for repeatably gen-

erating keys using entropy from a Physical Unclonable

Function (PUF). PUFs are logically identical physi-

cal constructs with Challenge-Response Pairs (CRPs)

unique to each device. Applications include initializa-

tion of server keys and encryption of FPGA configu-

ration bitstreams. One problem with PUFs is response

errors. Our algorithm corrects PUF errors that inhibit

key repeatability.

Our approach uses a PUF to generate an error-free

PUF value in three steps. First, we repeatedly sample

the PUF to determine the most likely value. Second, we

apply an iteratively-broadening search to search up to

some number of bit errors (in our experiments we use

two). Third, we apply exhaustive search until the cor-

rect value is found or failure is declared. The searches

are prioritized by the known bit error rates in decreas-

ing magnitude. We assume the application includes a

test for the correct value (e.g., some matching plaintext-

ciphertext pairs).

Previous algorithms often omit noisy PUF bits or

use error-correcting codes and helper data. Our algo-

rithm can use all PUF bits regardless of noise. Our ap-

proach is simple, and for appropriate parameter choices,

fast. Unlike previous approaches using error-correcting

codes, when used for public-key cryptography our method

requires storing only the public key and no other helper

N. Price
E-mail: np1@umbc.edu

A.T. Sherman
E-mail: sherman@umbc.edu

Cyber Defense Lab
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21784

data in non-volatile storage.

We implemented a latch-based PUF on FPGAs and

measured PUF characteristics to analyze the effective-

ness of the algorithm. Tests for a 1024-bit PUF show

351 samples reduce the probability of errors to less than

10−6. The iterative broadening and exhaustive searches

further reduce failure rates.

Keywords Cryptography · cryptographic key gener-

ation · physical unclonable function (PUF) · entropy ·
error correction · FPGA

1 Introduction

In 2012, Heninger et al. [1] showed substantial opera-

tional flaws resulting from weak keys generated with
poor entropy. Hardware devices used insufficient en-

tropy and generated the same keys. Even worse, some

devices start with low but increasing entropy such that

the first prime number (P) used for RSA key generation

is shared and the second (Q) is not, exposing both P

and Q.

Physical Unclonable Functions (PUFs) provide a

convenient mitigation to some of the vulnerabilities de-

scribed by Heninger. When used to key devices that re-

quire repeatable keys, however, PUFs must overcome

the difficulty that sometimes their outputs are non-

deterministic. This paper presents a new approach for

correcting such PUF errors. We present a simple algo-

rithm with low runtime and minimal additional costs

external to the IC containing a cryptographic module

that implements the algorithm. Our approach is an al-

ternative to well-known algorithms such as excluding

noisy bits or correcting their errors with BCH codes.

Our approach works for any application of PUFs that

requires repeatable outputs, including repeatable key

2 Price et al.

generation and device identification.

PUFs implement a set of challenge-response pairs

(CRPs) such that separate logically-identical devices

produce different CRPs, unpredictable even to the de-

signer before sampling the PUFs [2][3][4][5]. When used

for repeatable key generation, one would typically take

the PUF response from a particular challenge to seed

a deterministic cryptographic pseudorandom number

generator to produce a sequence of cryptographic keys.

Our focus is reliably producing this PUF response.

PUF value generation begins with repeated cycling,

generating the most likely value of bits based on av-

erage bit values. Repeated sampling creates the PUF

value for the initial key generation and the starting can-

didate PUF value for subsequent PUF value reproduc-

tions. We call this starting value the “correct” value. A

test determines if the correct PUF value is reproduced.

If the most likely PUF value has errors, they are cor-

rected using an iterative broadening search.

For one choice of parameters, the algorithm first as-

sumes a single error and tests possible single bit cor-

rections in order based on bit noise. If the single er-

ror assumption fails, the search expands by assuming

two errors. If these steps fail, a prioritized exhaustive

search corrects the initial PUF value errors. Bit noise

prioritizes the exhaustive search by testing corrections

to noisiest bits first. After finding the correct value or

reaching a predefined point of failure, the prioritized

exhaustive search stops.

Contributions of this work include:

– Applying iteratively broadening and exhaustive search

to correct PUF errors while prioritizing the search

by bit noise, and

– Demonstrating and quantifying PUF error rates us-

ing latch-based PUFs implemented on FPGAs.

In comparison with existing approaches based on error-

correcting codes and excluding noisy bits, our approach

for correcting PUF errors is simple, fast, robust, storage-

space efficient, and does not require excluding noisy

bits. Our approach is more robust by not restricting er-

ror correction to some fixed maximum number of errors

specified at initialization. In our approach, the helper

data stored in non-volatile memory can be simply a

public key, which for many public-key applications re-

quires no extra storage, reducing costs. By contrast,

approaches based on error correcting codes require ad-

ditional specialized helper data. The running times of

both approaches depend on implementation parame-

ters; for our FPGA implementation, our approach achieves

excellent error rates very quickly (with 351 samples, the

probability of error is less than 10−6).

2 Physical Unclonable Functions (PUFs)

Physical Unclonable Functions (PUFs) use uncontrol-

lable variations in the fabrication process to provide

unclonable challenge-response functionality [2]. A PUF

accepts a challenge (a bit sequence) and produces a re-

sponse (another bit sequence) unique to that PUF. Two

logically identical PUFs possess, with high probability,

different Challenge-Response Pairs (CRPs). Applica-

tions of PUFs include unique identification and crypto-

graphic key generation (repeatable and non-repeatable).

A PUF is a physical device providing functional-

ity physically infeasible to duplicate by the original

manufacturer or by others with or without design se-

crecy [6]. Such circuits produce responses dependent on

physical characteristics and uncontrollable variations in

the manufacturing process of integrated circuits. A spe-

cific example is doping variations of transistors in in-

tegrated circuits [2]. PUFs include delay-based ring os-

cillators, arbiter PUFs and memory-based SRAM and

Latch PUFs [4]. Latch circuits with cross-coupled NAND

or NOR gates form the PUFs examined here.

Two PUFs of the same design will, with high prob-

ability, produce different CRPs. For a given challenge,

each PUF produces a response that is unpredictable be-

fore querying the PUF. Two basic properties desired in

CRPs of PUFs used for identification are robustness

and unpredictability [4]. A robust PUF requires un-

changing CRPs over time, producing the same response

every time the corresponding challenge is queried. This

repeatability enables repeatable cryptographic key gen-

eration with the PUF. However, noise often causes un-

stable responses causing erroneous bit values within the

response. Fuzzy extractors overcome the noise to repro-
duce values [2]. Noise causes a repeatedly queried chal-

lenge to produce different responses [7]. Robustness is

not desired for random number generation.

Beyond response robustness, Guajardo [3] specifies

three assumptions regarding PUF behavior:

1. The response to a challenge reveals no significant

information about a response to any other challenge.

2. Without control of the PUF, a response to a chal-

lenge can only be guessed (with negligible probabil-

ity).

3. PUFs are tamper evident. Attempts to analyze a

PUF’s unique characteristics are assumed to alter

the PUF’s functionality (CRPs).

3 Problem Statement

We present error correction for PUF noise to enable us-

ing PUF values for repeatable cryptographic key gen-

eration.

How to Generate Repeatable Keys Using Physical Unclonable Functions 3

3.1 Test for Valid Key

Testing a PUF value for correctness varies by applica-

tion. Options include plaintext-ciphertext samples stored

in non-volatile memory (locally or remotely) to test the

key generated by a PUF value. For public-key cryptog-

raphy, assuming the public key is published or saved

locally, the local system generates private and public

key pairs with the PUF and compares the public keys.

If a trusted public repository for public keys is avail-

able, additional stored data are not required for key

reproduction.

3.2 PUF-Based Repeatable Key Applications

An example application for repeatable PUF generated

keys is encryption of FPGA bitstreams (see Figure 1).

FPGAs are often implemented with SRAM for config-

uration storage. When turned off, the volatile SRAM

will lose the FPGA’s configuration. Every power-up

requires a configuration bitstream transfer from non-

volatile memory to the FPGA. Since the configura-

tion bitstream defines the device’s functionality, copy-

ing the bitstream enables device cloning using another

FPGA [2][8].

Encrypting the configuration protects against cloning.

The FPGA internally decrypts the bitstream and uses

it for configuration. The FPGA must have a key to

decrypt the bitstream. Options for FPGA designers in-

clude non-volatile memory, battery backed volatile mem-

ory and intrinsic PUFs [2][8]. Developers using produc-

tion FPGAs must use resources selected by FPGA de-

signers, which may exclude non-volatile memory. With-

out internal non-volatile memory, an FPGA is unable

to store the key if powered off, regardless of how the

key was originally created or supplied. Example appli-

cations include devices with SRAM-based FPGAs, such

as routers, televisions and set top boxes [8].

3.3 Advantages Over Externally Supplied Keys

Keys generated outside the FPGA have numerous vul-

nerabilities. The entity that generates the key must be

trusted. Externally generated keys introduce risks, such

as stored, shared or stolen keys.

The proposed PUF-based key generation occurs in-

side the FPGA and, if the FPGA is properly designed,

never leaves the FPGA [9][2]. A module inside the FPGA

performs decryption without revealing the key as shown

in Figure 1.

Fig. 1 The PROM stores the encrypted configuration bit-
stream. The FPGA decrypts the bitstream and uses the un-
encrypted bitstream to configure the SRAM-Based FPGA.

3.4 Adversarial Model and Trust Assumptions

The adversary is attempting to acquire the cryptographic

key. An attacker can access hardware designs, transmis-

sion lines and component I/O pins. This includes ability

to read memory devices through I/O pins. We assume

the attacker is unable to observe internal component

data and signals not supplied to I/O pins. We assume

invasive attempts to characterize PUFs modify PUF

functionality [2][3].

If the FPGA allows loading new configurations [2][8],

the attacker can take over control of the FPGA by re-

configuring it. In practice, one must also consider the

integrity of FPGA configuration bitstreams and helper

data. We focus on protecting the secrecy of the key.

We assume proper design and fabrication of the

FPGA, which includes a dedicated cryptographic mod-

ule. The module acts as a black box capable of accept-

ing commands and data for encryption or decryption

and outputting the processed data. The cryptographic

module contains the PUF and never outputs the secret

key.

Trust assumptions include absence of trojan, back-

door or other malicious hardware in the FPGA. Adver-

saries can read helper data. We do not consider side

channel attacks, such as monitoring power usage, or at-

tacks that modify helper data.

4 Previous Work

We now discuss selected prior work on bit errors and

previous algorithms to correct these errors for repeat-

able key generation. This paper is based on Price’s Mas-

ter’s Thesis [10].

4 Price et al.

4.1 Previous Work by Others

Böhm [9] describes techniques proposed by Microvision

and LSI to detect noisy bits with repeated sampling.

Omitting these noisy bits from key generation enables

repeatability. LSI further uses fuses to identify the noisy

bits. However, excluding some bits reduces the number

of PUF bits supplying entropy.

Böhm [9] describes stabilizing PUF bits with special

circuit design features.

Böhm [9] and Guajardo [2] describe advantages of

internally held keys (e.g., a key created and contained

in an FPGA).

Much work applies fuzzy extractors and error cor-

recting code to correct errors. For example, binary BCH

code requires extra PUF bits and non-volatile storage

of helper data specific to PUF response error correc-

tion, increasing costs [9][2][3].

Published test results show PUFs provide strong

sources of device uniqueness and entropy for crypto-

graphic key generation [9][2][11].

4.2 Previous Key Generation Algorithms

Numerous algorithms exist to correct PUF response er-

rors and enable cryptographic key generation. Fuzzy

extractors perform both error correction and privacy

amplification (applying a hash function) [2]. Generally

called fuzzy extractors, the algorithms produce the cor-

rect value from a noisy starting value. We present two

examples below.

Error Correction with BCH Code. During initial gen-

eration, binary BCH code generates and stores helper

data in non-volatile memory [2]. The helper data do not

reveal sufficient information for practical PUF value re-

production without the PUF. The fuzzy extractor cor-

rects errors by applying the BCH code and helper data

to the noisy PUF response [2]. Implementation specific

details determine the maximum number of correctable

errors.

Multiple Sampling and Noisy Bit Omission. Böhm [9]

describes PUF-based identification by repeatedly sam-

pling a PUF. ID reproductions detect and omit unsta-

ble PUF bits. Omitting some bits requires the PUF to

consist of more bits than the reproduced ID. Propos-

als for identifying unstable bits over time include fuses

marking unstable bits. As discussed later, a limitation

to this approach is that PUFs often exhibit aging effects

that alter PUF bit characteristics causing bit stability

changes over time [2].

5 PUF-Based Repeatable Key Generation

We propose repeatable key generation by correcting

PUF errors using repeated sampling, iteratively broad-

ening search and prioritized search. Individual samples

require cycling the PUF. Repeated sampling determines

the initial PUF value for both initial key creation and

subsequent key recreations.

Repeated sampling during initialization determines

the value treated as the PUF’s correct value. Errors

during the initialization stage must be minimized and

warrant using more samples than subsequent PUF value

recreations [11]. The initial key generation creates and

stores required helper data externally in non-volatile

memory.

Recreating the key begins by producing the most

probable PUF value. Repeated PUF sampling is the

primary strategy for error correction. If errors exist, we

apply two additional error correction stages:

1. Iteratively broadening search (for up to a limited

number (e.g., two) errors)

2. Prioritized exhaustive search.

Each search prioritizes by decreasing bit error rates.

Section 8 presents motivation for these two stages,

and specifically, for separating single and double bit er-

rors from the prioritized exhaustive search. Using bit

noise rankings improves the search stages. For N sam-

ples, we count the number of times a bit is one. Bits

with counts near 0 or N are the most stable. Bits with

counts near N/2 are the noisiest. We try correcting the

noisiest bits first.

Algorithm 1 implements prioritized exhaustive search.

The counter bits indicate which PUF bits change dur-

ing the exhaustive search. Without prioritization, a sim-

ple bitwise XOR flips the bits. To prioritize the search,

noiseRank[i] selects the noisiest bit in the PUF, which

is XORed with counter bit i.

How to Generate Repeatable Keys Using Physical Unclonable Functions 5

Fig. 2 Schematics for NAND and NOR latch-based PUFs.
Q is the output value of the PUF bit.

Algorithm 1 Pseudocode for prioritized exhaustive

search algorithm (not optimized to exclude previously

tested candidates).

Inputs: (most likely PUF value), noiseRank[], itera-
tionLimit
Output: candidatePUFvalue

for count = 1 to iterationLimit do
candidatePUFvalue = (most likely PUF value)
for i = 0 to (PUFsize - 1) do

candidatePUFvalue[noiseRank[i]] =
mostLikely[noiseRank[i]] xor count[i]

end for
if candidatePUFvalue passes test then

return candidatePUFvalue
end if

end for

return candidatePUFvalue

6 Latch PUF Implementation

We now describe the PUFs we implemented and char-

acterize them in terms of bit distribution, stability and

uniqueness.

6.1 Technical Details of the Latch PUFs

Our PUFs consist of two NAND gates (or two NOR

gates) shown in Figure 2 and explained by Su [11]. Con-

necting one input from each gate provides a control line

to cycle the PUF. Cycling the PUF (CYP) is the act

of forcing the circuit into a stable state with an ap-

plied input, removing the input such that the circuit is

in an unstable state, the PUF transitioning to an un-

predictable stable state. The unpredictable stable state

exhibits the unique PUF characteristics.

We implemented both NAND and NOR latch PUFs

with 1024 bits per PUF. Implementation used Verilog

with the Xilinx ISE Design Suite and four Avnet Xilinx

Spartan-6 LX9 microboards. An advantage of PUFs is

their simplicity, and as such, our designs are straight-

forward. We chose to implement PUFs with FPGAs

(versus ASICs) for simplicity.

Fig. 3 Average bit values for the implemented NAND latch
PUF.

6.2 PUF Characterization

The PUF bit distribution test performed 1000 CYPs,

recording the value of each bit for each CYP.

Twenty tests over approximately 2.5 weeks tracked

short term changes in PUF bit stability and distribu-

tion. Four FPGAs configured with the same PUF de-

signs tested device uniqueness. Two tests of each device,

with each test performing 100 CYPs, demonstrated de-

vice uniqueness and stability. Hamming distances quan-

tify device uniqueness.

Bit value distribution varied for different PUF im-

plementations. The NAND PUF is nearly equally dis-

tributed between 0 and 1 bits (see Figure 3). The NOR

PUF (not shown) is biased towards 0 with roughly a

3:1 ratio. We do not know why this bias exists, but

we suspect underlying circuitry implementing the logic

causes the bias. Approximately 80% of PUF bits in both

PUFs produced the same value over 1000 CYPs (i.e.,

no noise).

The stability experiment consisted of 20 runs of

1000 CYPs over roughly 2.5 weeks. PUF bit stabilities

showed little change. The majority of bits were consis-

tent over all CYPs. Unstable bits are bits not observed

as always 0 or always 1. As seen in Figure 4, standard

deviations for non-constant bits are relatively low.

Configuring four FPGAs with identical PUF bit-

streams tested device uniqueness. Determining unique-

ness and stability of each implementation consisted of

two tests with 100 CYPs per test. Hamming distances

between tests quantify device uniqueness. The NAND

PUF exhibited a Hamming Distance of approximately

11% – 12% between devices and less than 3.5% between

tests of the same device. Table 1 provides the exact val-

ues. As with PUF bit distribution, different PUF imple-

mentations produced different results not detailed here.

When using a PUF for random number or crypto-

graphic key generation it would be useful to know the

entropy of its responses. Unfortunately, there is no at-

tractive way for us to do so for our PUFs. It is possible,

6 Price et al.

Fig. 4 The NAND PUF stability test performed 100 CYPs
on 20 occasions. For each test, we calculated the average value
and, for clarity, adjusted the average as (0.5−|Average−0.5|).
This figure displays results for the first 100 PUF bits.

Table 1 Hamming Distances between four FPGAs config-
ured with the same NAND PUF bitstream. The Test numbers
indicate the device number and the Test letter distinguishes
between the two tests of each device.

Test 1a 1b 2a 2b 3a 3b 4a 4b
1a 0 13 125 118 116 119 114 113
1b 13 0 132 121 121 124 117 116
2a 125 132 0 33 119 118 109 114
2b 118 121 33 0 112 113 114 113
3a 116 121 119 112 0 5 112 121
3b 119 124 118 113 5 0 109 116
4a 114 117 109 114 112 109 0 13
4b 113 116 114 113 121 116 13 0

however, to calculate for each PUF the entropy of the

noise in its responses. For one challenge, we did so us-

ing 200 samples for each bit in each PUF. We found

that the single-PUF noise entropy for each of our four

PUFs was 113, 116, 117, and 112 bits, respectively. By

contrast, an ideal PUF would have zero noise entropy.

In principle one could estimate response entropy for

a PUF in two ways. First, one could build many iden-

tical PUFs and, for a given challenge, sample the bit

responses across the many PUFs. We did so across our

four PUFs using 200 samples per bit per PUF. We

found that the resulting response entropy across our

four PUFs was approximately 239 bits (by contrast, an

ideal PUF would have 1024 bits of entropy). Second,

although we did not do so, one could consider many

possible PUF instantiations of a given PUF circuit, us-

ing many different circuit layout locations within an

FPGA.

7 Analysis of PUF and Algorithm

Sampled values indicate probabilities of bit errors. For

example, a bit producing 1 for 80% of samples has a

value of 1 and a 20% error rate. Similarly, a bit pro-

Fig. 5 Probabilities of various numbers of errors as functions
of the number of samples.

ducing 0 for 80% of samples has a correct value of 0

and a 20% chance of an erroneous 1. Error probabilities

greater than 50% are not possible unless performance

characteristics of the PUF change (see Section 8.3).

Sampling the 1024-bit PUF 20,000 times and calcu-

lating average values for each bit computed error prob-

abilities for individual bits. Figure 5 shows the proba-

bilities of 0, 1, 2 and more than 2 errors in the 1024-bit

PUF response calculated as functions of the number of

CYP samples.

Figure 5 shows the probability of 0 errors approach-

ing 100% as the number of CYP samples increases.

With 325 CYP samples, the probability of even a sin-

gle error is very small. The finite number of samples

and numerical precision of the calculations result in ap-

proximately 0% probability of any errors with at least

353 samples used to regenerate the PUF response. Er-

rors are still possible, but improbable. If repeated sam-

pling does not reduce error rates to acceptable levels,

the number of samples and the operation of the PUF

should be scrutinized, as external factors can induce

PUF noise [2][4][11]. Section 8 provides more explana-

tion.

PUF value validation tests candidate values using

saved helper data. If the initial PUF value is wrong,

the single error correction step proceeds. For an N -bit

PUF, N possible values exist with a single error. PUF

bit noise prioritizes the single bit correction tests. For

the two-bit error assumption, N(N − 1)/2 possible val-

ues exist. Noise rank prioritizes the search order. Be-

yond two errors, a predefined limit bounds the number

of tested values.

To demonstrate the algorithm’s limits, let the most

stable error bit be the nth noisiest bit. For simplicity,

Algorithm 1 makes no attempt to avoid retesting values

with one or two errors. Therefore, the upper bounds for

Algorithm 1 is 2n − 1. Testing all 21024 − 1 possibilities

is not practical, so a point of failure is defined by the

number of values tested or a predefined timeout.

How to Generate Repeatable Keys Using Physical Unclonable Functions 7

For the tested PUF, most bits of the PUF exhibited

complete stability. For analysis purposes, we assume

these bits are correct. The one- and two-error correc-

tion algorithms presented above do not make this as-

sumption, which may be included as an optimization.

Only 202 possible one-bit errors remain for this PUF

instance. For two-bit errors, 202(201)/2 = 20301 pos-

sibilities exist. If these algorithms fail, Algorithm 1 is

required. Practical computation limits the number of

iterations.

Even if only 202 bits exhibit noise, an exhaustive

search of 2202 − 1 values is still not practical. A better

option may be reducing errors by taking more samples.

Sampling a CYP is fast. Even 1000 CYPs are practi-

cal and can reduce error correction work. As discussed,

Figure 5 indicates the probability of at least one error

approaches 0 with at least 353 CYP samples for our

PUF. Our data are for our FPGA-based PUFs and are

not necessarily representative of other PUFs.

8 Discussion

We now discuss our algorithms and experiments.

8.1 Algorithm Performance

The experiments and analysis in Sections 6 and 7 show

repeated sampling prevents most errors. The exact num-

ber of samples depends on PUF characteristics.

The choice of how many errors to search for depends

on the PUF. For our PUFs, we chose up to two. For the

1024-bit example, exhaustively testing all one and two

error possibilities is practical.

The assumptions of one or two errors, made based

on Figure 5, address scenarios with an error bit that

appears relatively stable. If one of these assumptions

is correct, at most N(N + 1)/2 iterations are required

instead of the worst case scenario of 2N−1 +2N−2 itera-

tions when exactly two errors exist and have the lowest

priority in the exhaustive search. The prioritized ex-

haustive search provides a limited safety net.

To compare with other techniques, Guajardo [2] uses

BCH code to generate a 128-bit key with approximately

a 10−6 failure rate. The test results in Figure 5 show 351

samples lower the failure rate to less than 10−6 for the

1024-bit PUF. Accordingly, repeated sampling prevents

most errors, and the iteratively broadening and exhaus-

tive searches function as backups to repeated sampling.

The algorithm can perform the sampling fast. We

did not optimize the PUF, but an optimized PUF can

be sampled once every clock cycle. Therefore, an op-

timized PUF with performance characteristics similar

to the implemented PUF can perform the 351 samples

with 351 clock cycles. At 100 Mhz, sampling takes 3.51

microseconds to produce a PUF value with a failure rate

less than 10−6. Heninger [1] reports flawed attempts for

seed generation occurring approximately 4 seconds after

boot. Accordingly, the proposed algorithm reproduces

the seed much earlier with a failure rate less than 10−6.

Prioritized exhaustive searching lacks a guarantee of

absolute error correction due to practical limitations.

Failure to recreate a key is similar to failure of non-

volatile memory storing a key and can be handled sim-

ilarly.

Though absent from the presented design, exclud-

ing especially noisy bits [9] can further reduce failure

rates. Including extra PUF bits prevent a bit shortage

if several bits exhibit unacceptable noise [9][2]. Tracking

which bits to exclude, and handling bit aging, must be

considered. If a simple threshold during sampling iden-

tifies noisy bits, changes in bit noise must be consid-

ered. Causes of noise change include temperature and

aging [2][11].

8.2 PUF Implementation

For our implementations, PUF bits are more evenly dis-

tributed for the NAND design than for the NOR design

(see Section 6.2). Most bits showed complete stability

over the test period. Unstable bits showed relatively low

standard deviations, indicating the rate that a particu-

lar value is produced remained consistent. For example,

if a bit produces 1 for 75% of all CYPs on one test, the

results of other tests also produced a 1 for approxi-

mately 75% of CYPs.

One challenge we faced was the FPGA-based PUFs

implemented for this project exhibit non-ideal unique-

ness characteristics: The fractional Hamming Distances1

between two of our devices was approximately 0.11 to

0.12, while 0.5 is ideal [2][11]. Multiple PUF implemen-

tations using the same basic latch-based PUF bits ex-

hibited different characteristics. Without detailed knowl-

edge of individual latch implementations, an explana-

tion can only be guessed based on levels of implemen-

tation detail and corresponding PUF characteristics re-

ported by others [4][11].

Other reported fractional Hamming Distances for

latch-based PUFs vary from being notably biased [4] to

near the ideal 0.5 [11]. The PUFs implemented for this

project use FPGAs with IC details not known to us.

We do not know if the FPGA circuitry maximizes PUF

functionality. For comparison, Katzenbeisser [4] imple-

1 Fractional Hamming Distance is the Hamming Distance
divided by the length of the compared bit strings.

8 Price et al.

mented latch PUFs with ASICs using standard cells

and states that IC details were not available. However,

Su [11] created ASICs with knowledge of the IC lay-

outs and reported more ideal results (e.g., a near 0.5

fractional Hamming Distance between devices). Latch-

based PUF characteristics vary significantly between

implementations. The FPGA implementations created

here provide demonstrations but are not necessarily

representative of other FPGA implementations.

8.3 Environment and Aging

Two significant concerns outside the scope of this project

are environmental and long-term aging effects on PUFs

[2][4][11]. Such effects increase error rates that may re-

quire additional error correction activity. Both remain

as open problems that must be investigated before adopt-

ing the presented design and algorithm.

8.4 Key Replacement

A variety of situations require key replacement. Mul-

tiple options exist for key replacement. Implementing

multiple sets of PUF bits and progressing through the

sets as needed generates new keys.

If aging causes the PUF bit stabilities to change, re-

freshing the PUF value by repeating the initialization

process deals with changing bits, but generating a new

key with a seed varying only slightly from the previous

seed (perhaps 10 of 1024 bits are flipped) may introduce

cryptographic vulnerabilities.

8.5 Open Problems

A well-known optimization for FPGAs is to examine

many possible layout locations of the circuit [12][13].

It would be interesting to determine how such layout

positions affect bit error rates and device uniqueness.

It would also be interesting to compare the perfor-

mance of FPGA and ASIC PUFs.

9 Conclusion

We presented and experimentally analyzed a new, sim-

ple and low-cost approach for recreating PUF generated

keys that does not require exclusion of noisy bits. We

tested the algorithm’s effectiveness using latch-based

PUFs. Repeated sampling reduces error probabilities

significantly. Any existing errors can eventually be cor-

rected by the prioritized search methods given enough

time. Practical limits prompt specification of a point

of failure with a low probability of being reached. For

public-key cryptography, helper data for our algorithm

consists of only the public key, which is likely already

stored and will not add to device cost.

PUFs offer a simple and fast approach to generating

entropy. Our work helps engineers to generate repeat-

able cryptographic keys.

Acknowledgements We thank Dhananjay Phatak, Chin-
tan Patel, Russell Fink and Christopher Nguyen for helpful
comments. Price and Sherman were supported in part by the
National Science Foundation under SFS grant 1241576.

References

1. Heninger, Nadia, Zakir Durumeric, Eric Wustrow and J.
Alex Halderman. “Mining your Ps and Qs: Detection of
widespread weak keys in network devices.” Proceedings of
the 21st USENIX Security Symposium. Vol. 2. 2012.

2. Guajardo, Jorge, Sandeep S. Kumar, Geert Jan Schrijen
and Pim Tuyls. FPGA Intrinsic PUFs and Their Use for
IP Protection. In CHES (Cryptographic Hardware and Em-
bedded Systems), 2007 pages 63–80.

3. Guajardo, Jorge, Sandeep S. Kumar, Geert Jan Schrijen
and Pim Tuyls. Physical Unclonable Functions and Public-
Key Crypto for FPGA IP Protection. Field Programmable
Logic and Applications, 2007. FPL 2007 pages 189–195.

4. Katzenbeisser, Stefan, Ünal Kocabaş, Vladimir Rožić,
Ahmed-Reza Sadeghi, Ingrid Verbauwhede and Chris-
tian Wachsmann. “PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Func-
tions (PUFs) Cast in Silicon.” Extended version of
paper originally published at CHES 2012. Online
http://eprint.iacr.org/2012/557.pdf.

5. Suh, G. Edward and Srinivas Devadas. Physical Unclon-
able Functions for Device Authentication and Secret Key
Generation. In Design Automation Conference 2007, ACM
978-1-59593-627-1/07/0006. 2007.

6. van Dijk, Marten and Ulrich Ruhrmair. Physical Unclon-
able Functions in Cryptographic Protocols: Security Proofs
and Impossibility Results. Cryptology ePrint Archive, Re-
port 2012/228.

7. O’Donnell, Charles W., G. Edward Suh and Srinivas De-
vadas. PUF-Based Random Number Generation. In MIT
CSAIL CSG Technical Memo 481, 2004.

8. Maxfield, Clive. The Design Warrior’s Guide to FPGAs:
Devices, Tools and Flows. Burlington, Massachusetts: Else-
vier, 2004.

9. Böhm, Christopher and Maximilian Hofer, Physical Un-
clonable Functions in Theory and Practice. Springer, 2013.

10. Price, Nathan. “How to Generate Repeatable Keys Us-
ing Physical Unclonable Functions: Correcting PUF Errors
With Iteratively Broadening and Prioritized Search.” Mas-
ter’s Thesis. Department of Computer Science and Electri-
cal Engineering. University of Maryland, Baltimore County.
April 2014.

11. Su, Ying, Jeremy Holleman, and Brian P. Otis. “A digi-
tal 1.6 pJ/bit chip identification circuit using process vari-
ations.” Solid-State Circuits, IEEE Journal of Volume 43
Issue 1 (2008): 69–77.

How to Generate Repeatable Keys Using Physical Unclonable Functions 9

12. Maes, Roel, Pim Tuyls, and Ingrid Verbauwhede. “In-
trinsic PUFs from flip-flops on reconfigurable devices.”
3rd Benelux workshop on information and system security
(WISSec 2008). Vol. 17. 2008.

13. Maiti, Abhranil, et al. “Physical unclonable function and
true random number generator: a compact and scalable im-
plementation.” Proceedings of the 19th ACM Great Lakes
symposium on VLSI. ACM, 2009.

