
Sorting and Searching Behind the Curtain
Private Outsourced Sort and Frequency-Based Ranking of Search Results Over Encrypted Data*

Foteini Baldimtsi1 and Olga Ohrimenko2

1 Boston University & University of Athens, 2Microsoft Research
foteini@bu.edu, oohrim@microsoft.com

Abstract. We study the problem of private outsourced sorting of encrypted data. We start by proposing
a novel sorting protocol that allows a user to outsource his data to a cloud server in an encrypted form and
then request the server to perform computations on this data and sort the result. To perform the sorting the
server is assisted by a secure coprocessor with minimal computational and memory resources. The server
and the coprocessor are assumed to be honest but curious, i.e., they honestly follow the protocol but are
interested in learning more about the user data. We refer to the new protocol as private outsourced sorting
since it guarantees that neither the server nor the coprocessor learn anything about user data as long as
they are non-colluding. We formally define private outsourced sorting and provide an efficient construction
that is based on semi-homomorphic encryption.
As an application of our private sort, we present MRSE: the first scheme for outsourced search over
encrypted data that efficiently answers multi-term queries with the result ranked using frequency of query
terms in the data, while maintaining data privacy. To construct MRSE we use searchable encryption
techniques combined with our new private sort framework. Finally, although not discussed in this work, we
believe that our private sort framework can turn out to be an important tool for more applications that
require outsourced sorting while maintaining data privacy, e.g., database queries.

1 Introduction

Consider the following scenario: Mr. Smith owns an array of data elements A that he outsources to an honest-but-
curious untrusted party, Brad. Mr. Smith then asks Brad to perform various linear operations on the elements
of A resulting in an array B and then, sort B and return the sorted result, Bsorted, back to him. However,
Mr. Smith does not trust Brad and wishes to keep A, B and Bsorted secret. Thus, he decides to encrypt every
element of A using a public key semantically secure cryptosystem. To let Brad perform computations on the
encrypted array A, Mr. Smith can simply use a semi-homomorphic cryptosystem that supports addition of
ciphertexts. Hence, the remaining question is: how is Brad going to sort the encrypted B?

If the array A was encrypted under a fully homomorphic encryption scheme (FHE) [19, 44], then Brad could
perform sorting himself. FHE allows one to perform both homomorphic addition and multiplication, thus,
Brad could simply translate a sorting network into a circuit and apply it to B. Unfortunately, all known FHE
schemes are still too far away from being practical for real life applications and cannot be implemented by
Brad. Hence, Brad suggests to Mr. Smith to use order preserving encryption (OPE) [8] for A since this makes
sorting a trivial task for him. Mr. Smith gets excited but soon realizes that an encryption scheme that supports
homomorphic addition and comparison of ciphertexts is not secure even against a ciphertext attack (as shown
by Rivest et al. [41]). If Mr. Smith just wanted Brad to sort A, then OPE would be sufficient but it is crucial to
Mr. Smith that Brad can also perform certain operations on A. Moreover, allowing Brad to learn the relative
order of elements in A violates owner’s privacy requirements.

Mr. Smith is determined to design a protocol for private outsourced sorting that will be efficient, preserve his
data privacy and allow Brad to perform certain computations on his data. Thus he decides to encrypt his data
with a semi-homomorphic cryptosystem and add another party to the model: Angelina. Angelina is given the
decryption key and her sole role is to help Brad with sorting. Mr. Smith assumes that Brad and Angelina are not
colluding with each other but both are interested in learning more about his data. Hence, he extends his privacy
requirements as follows: after Brad’s and Angelina’s interaction Brad receives Bsorted which is the sorting of an
encrypted B, while neither of them learns anything about the plaintext values of B nor Bsorted. It follows from
the privacy requirement that Angelina never sees an encryption of neither B nor Bsorted, otherwise she could
trivially decrypt them.

* Full version of [4].

The Brad and Angelina model is often encountered in reality. We can see Brad as the provider of cloud
storage and computation who is trusted to perform operations on clients’ data but at the same time may be
curious to learn something about them. Angelina models a secure coprocessor (e.g., the IBM PCIe1 or the
Freescale C29x2) that resides in the cloud server and is invoked only to perform relatively small computations.
Secure coprocessors provide isolated execution environments, which is important for our model since it ensures
that the two parties are separated. We note that the assumption of non-colluding is justified since the cloud
provider and secure co-processor usually are supplied by different companies and, hence, have also commercial
interests not to collude.

In this paper, we present private outsourced sort executed by two parties such that neither of
them learns anything about the data involved. This setting is perfect for letting one use not only storage
but also computing services of the cloud environment without sacrificing privacy. We give the formal definition
and present an efficient construction that implements private outsourced sort by relying only on additively
homomorhic properties of an encryption scheme. Sorting is, arguably, one of the most common and well studied
computations [30] over data in the “before cloud era” which indicates that it will be of interest as an outsourced
computation to the cloud. Our model is of particular interest since it does not only allow the cloud to privately
and efficiently sort encrypted data but at the same time allows for certain computations on the data. Hence, it
can be a useful tool for answering sophisticated queries on databases of encrypted data and, for example, return
top results satisfying the query. To give a concrete application of our new sorting framework, we consider the
problem of outsourcing search over encrypted data to the cloud where the result has to be ranked according to
its relevance to the query.
Outsourced Ranked Text Search. Imagine a client who outsources a collection of documents to an honest-
but-curious server and then asks the server to return a subset of the document collection satisfying a search
query. Our goal is to return search results sorted using the tf-idf method that is based on term (or keyword)
frequency (tf) and inverse document frequency (idf) [48]. This basic ranking method uses the frequency of
keywords in each document and whole collection in order to decide how important a word is to the collection
and the query3. Moreover, this ranking fits well free text search queries [35] that are, arguably, the most common
and intuitive queries to online search engines. In order to perform a ranked search of this type efficiently, a search
index is created in advance where an idf of every term in every document in the collection is stored.

In the cloud based information retrieval setting, where the cloud server is not trusted, the client outsources
the search index to the server in an encrypted format and then submits keyword search queries to the server. If
we only allow single term queries then a solution is relative easy: the client creates the search index where each
term is stored with a list of documents sorted by relevance. Then, he encrypts the index using some symmetric
searchable encryption scheme (SSE) and outsources it to the server. When the client wants to search for a term,
he submits a trapdoor to the server, who using the trapdoor can locate the term in the index and return the
encrypted list of documents to the user.

However, precomputing sorted results becomes infeasible and not scalable when the system is required to
handle multi-term queries, since the result depends on all the keywords in the query which is not known in
advance. Hence, the client has to upload the search index where frequencies (idfs) for every term are ordered
according to document identifiers. When querying the system, the client creates a trapdoor for every term in
the query and submits them to the server. The server then locates the corresponding rows in the SSE encrypted
search index and is left with two tasks. First, he has to add the located rows of encrypted frequencies together
in order to compute the score of every document w.r.t. the query. Second, he has to sort the resulting list of
encrypted scores to be able to return the most relevant document identifiers (ids) to the client.

It is easy to see that our private outsourced sorting is the perfect tool for the scenario described above. The
client can encrypt the keyword frequencies using a semi-homomorphic encryption scheme (e.g., Paillier [39])
and then outsource them to the cloud server, S1. S1 is equipped with a secure co-processor, S2, who stores the
decryption key. Our mechanism allows the cloud server to first add the encrypted frequencies of the keywords in
the query and then sort them with the help of the secure co-processor. Similar to the model of private outsourced
sorting, S1 and S2 are non-colluding and behave according to the protocol when interacting with each other.
However, both of them would like to learn about client’s document collection.

1 http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
2 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=C29x
3 For example, a short document is ranked higher than a long document when a keyword appears the same number of

times in both of them. It would also give higher preference to keywords in the query that appear less frequently in the
collection.

2

S1

Queries	

S2 Private	
 sort	

Homomorphic	

addi3on	

Knows	
 	

decryp3on	
 key	

Encrypted	
 keyword	

&	
 frequency	
 index	

Ranked	
 encrypted	

document	
 ids	

Client

Fig. 1: Ranked Multi-keyword Searchable Encryption (MRSE) Model.

Our resulting system allows the client to perform multi-keyword search over outsourced encrypted data and
maintain privacy against both S1 and S2: S1 only learns the search pattern4 during the query phase and nothing
about the collection besides the number of documents and unique words it contains. S2, on the other hand,
learns nothing but the number of documents in the collection, N , and that the client has queried the system.
Data owner, user and client are used interchangeably, although our system can support the data owner sharing
search access to his cloud stored data with other users. We refer to our proposed construction as Multi-keyword
Ranked Searchable Encryption (MRSE) and give its overview in Figure 1. We note that in MRSE, and previous
work, S1 returns only document ids, e.g., document titles or URLs to public locations, but not the actual
documents which S1 also does not have to store. In Section 6 we argue why it is the case and why a secure
system that also returns the actual documents is likely to be very expensive.

Our contributions are summarized below:

– Formally define private outsourced sorting (Definition 4) and present a simulation based privacy definition
(Definition 5) that guarantees that neither the cloud server nor the secure coprocessor learn anything about
the user data as long as they are not colluding.

– We present an efficient implementation of private outsourced sorting in Section 3.2 that requiresO(N(logN)2)
time for sorting, where N is the total number of elements to be sorted.

– We apply our sorting tool in a three party model (client-S1-S2) for ranked multi-keyword search over
encrypted data, MRSE. This is the first system that can efficiently support multi-keyword search and
compute a ranked result based on word frequencies in a secure and private way. We give privacy definitions
for MRSE in Section 4.1 and present an efficient construction in Section 4.2. Finally, in Section 5, we present
an extension of MRSE that offers better efficiency but weaker privacy guarantees.

2 Building Blocks for Private Sort and MRSE

In Table 1 we summarize the notation and in Table 2 the protocols used throughout the paper. Then, we present
the building blocks used in our construction.

2.1 Homomorphic encryption

Homomorphic encryption allows one to perform computations directly on ciphertexts without first decrypting
them. For example, it allows to add two ciphertexts c1, c2 to a new ciphertext c′ such that when c′ is de-
crypted, the result corresponds to the addition of plain values of c1 and c2, m1 +m2. A variety of homomorphic
cryptosystems have been proposed in the literature. Some schemes are “partially homomorphic” and support
only a specific type of computation (addition or a single multiplication) [39, 40]. Fully homomorphic encryption
schemes [20], on the other hand, support arbitrary number of additions and multiplications which means that
any circuit can be homomorphically evaluated. Although being so powerful, those schemes are computationally
expensive to be used in practice. However, “partially homomorphic” schemes are efficient and as we show are
sufficient for our purposes.

4 The search pattern includes the number of terms in each query as well as if some of the terms were already requested
and in which queries. Note that this is also leaked in most of the known SSE schemes.

3

Table 1: Notation.

Symbol Meaning

k security parameter
GenSS, ESS , (PK, SK) semantically secure (SS) keygen, encr. and keys
KP = (PKP,SKP) Paillier public/secret keys

KQR = (PKQR, SKQR) QR public/secret keys
[m], [[m]] m encrypted using first and second layers of Paillier

[[[m]]] m encrypted using both layers of Paillier
‖m‖ m encrypted using QR

GenSSE, ESSE, SKSSE SSE keygen, encr. and secret key
D = {D1, . . . , DN} document collection of size N

t, T term/keyword and its SSE trapdoor
M number of unique terms in D

q = (t1, . . . , tlq) query of lq terms
I secure search index

F , EF frequency table and encryption of it
ScT secure score data structure

Table 2: Summary of interactive cryptographic protocols run between two parties, S1 and S2, where EncSelect2 is run
only by S1. As denoted below, some of these protocols are extensions of existing protocols, while others were developed
in this work.

Protocol S1 Input S2 Input S1 Output Functionality

StripEnc PKP, [[[x]]] KP [x] Strips one layer of encryption
EncSelect [2]∗ PKP, [a], [b], [[v]] KP [(1− v)a+ vb] EncSelect2 w/ different encryption
ReEncryptBit PKP,PKQR, ‖v‖ KP,KQR [[v]] Re-encrypts v using Paillier

EncCompare [10]∗ PKP, [a], [b] KP [[v]] v is result of comparison of a, b

EncPairSort PKP, [a], [b] KP [c], [d] Sorts encrypted a, b
EncSort PKP, A KP B Sorts encrypted array A

∗ The protocols have been extended to fit our purposes.

Paillier Cryptosystem The Paillier cryptosystem [39] is a semantically secure public key encryption scheme
based on the Decisional Composite Residuosity assumption. We use [m] to denote an encryption of a message
under Paillier cryptosystem with a public, secret key pair KP = (PKP,SKP). Paillier cryptosystem is homo-
morphically additive, that is, [m1] · [m2] = [m1 +m2]. More specifically, the Paillier cryptosystem is defined as
follows:

Key Generation. To construct the public key, set an RSA modulus n = pq of k bits where p and q large primes
such that gcd(pq, (p− 1)(q − 1)) = 1. Let K = lcm((p− 1)(q − 1)) and pick g ∈ Z∗n. The public key is the pair
PKP = (n, g) and the secret is SKP = K.

Encryption. To encrypt a message m ∈ Zn: choose r ∈ Z∗n and compute [m] = gmrn mod n2.

Decryption. To decrypt a ciphertext c = [m] compute:

m =
L(cSKP) mod n2

L(gSKP) mod n2
mod n, where L(u) =

u− 1

n
.

We can easily see that the Paillier cryptosystem is homomorphically additive.

[m1] = gm1rn1 mod n2

[m2] = gm2rn2 mod n2

[m1] · [m2] = gm1+m2(r1r2)n mod n2 = [m1 +m2]

4

Table 3: [x]← StripEnc(PKP,SKP, [[[x]]]): Interactive
protocol between S1 and S2 for stripping off one
layer of Paillier encryption.

S1(PKP, [[[x]]]) S2(PKP, SKP)

pick r ∈ {0, 1}`+1

[[[x+ r]]] := [[[x]]][r] [[[x+ r]]]
−−−−−→

decrypt [[[x+ r]]]

[x] := [x+ r][r]−1 [x+ r]
←−−−−

encrypt [x+ r]

Table 4: [x] ← EncSelect(PKP,SKP, [a], [b], [[v]]): In-
teractive protocol between S1 and S2 for selecting
one ciphertext.

S1(PKP, [a], [b], [[v]]) S2(PKP, SKP)

[[[c]]] = EncSelect2(PKP, [a], [b], [[v]])

[c]← StripEnc(PKP, SKP, [[[c]]])−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−

Generalized Paillier Our construction relies on a generalization of the Paillier cryptosystem introduced by
Damg̊ard and Jurik [18]. For the generalization mod n2 is replaced with mod ns+1 and the plaintext space
of Zn is replaced with Zns where s ≥ 1 is a layer of Paillier encryption. Note that the generalized version of
Paillier uses g ∈ Z∗ns+1 as a public key while the secret is K ′ such that K ′ mod n ∈ Z∗n and K ′ ≡ 0 mod K,
where K = lcm((p− 1)(q − 1)) is the secret key of the original Paillier.

As observed by Lipmaa [34] and Adida and Wikström [2] the Paillier generalization has the special property
that allows to doubly encrypt messages and use the additive homomorphism of the inner encryption layer
under the same secret key. By [m], as before, we denote an encryption of m using the first layer (basic Paillier
encryption) and by [[m]] we denote encryption of m using the second layer.

This extension allows a ciphertext of the first layer to be treated as a plaintext at the second layer. Moreover,
the nested encryption preserves the structure over inner ciphertexts and allows one to manipulate it as follows [2]:

[[[m1]]][m2] = [[[m1][m2]]] = [[[m1 +m2]]].

We note that this is the only homomorphic property that our protocols rely on (i.e., we do not require support
for ciphertext multiplication).

2.2 Private Selection of Encrypted Data

Additive homomorphism and generalized Paillier encryption can be used to select one of two plaintexts without
revealing which one was picked (we adopt this operation from [2]). In particular we define EncSelect2(PKP, [a],
[b], [[v]] 5) where a and b are the two plaintext values and v is a bit that indicates whether a or b should be
returned. If v is 0, EncSelect2 returns a re-encryption of a, otherwise it returns a re-encryption of b. EncSelect2
imitates the computation c = (1− v)× a+ v × b but over ciphertexts as follows:

EncSelect2 (PKP, [a], [b], [[v]]) = ([[1]][[v]]−1)[a][[v]][b] = [[(1− v)[a] + v[b]]] = [[[c]]]

Note that the result c is doubly encrypted.
For our setting of private sort we need a modified version of EncSelect that runs between S1 and S2 where S1

has as input (PKP, [a], [b], [[v]]) and using S2, that knows SKP, outputs c encrypted using the first layer of Paillier
encryption only. Thus, we propose a protocol StripEnc, where S1 randomizes the encryption of the value x he
wants S2 to re-encrypt, receives the re-encryption and removes the randomization. Hence, when S2 decrypts the
element he receives a random value and learns nothing about x. The complete protocol StripEnc is presented in
Table 3 where we rely on the homomorphic properties of layered Paillier encryption.

Combining EncSelect2 and StripEnc, we can define [c] ← EncSelect(PKP,SKP, [a], [b], [[v]]) that has the same
functionality as EncSelect2 but returns [c] instead of [[[c]]]. We instantiate it by first calling EncSelect2 to compute
[[[c]]] and then StripEnc to securely remove one layer of encryption. Hence, S1’s private inputs are [a], [b], [[v]],
S2’s private input is SKP and S1’s output is [c]. Our EncSelect protocol is described in Table 4. We capture the
privacy guarantees of EncSelect in the following definition and theorem.

Definition 1. Let ΠEncSelect be a two party protocol for computing EncSelect functionality. S1 takes as in-
put (PKP, [a], [b], [[v]]) and S2 takes as input (PKP,SKP). When ΠEncSelect terminates S1 receives the output [c]

5 We note that v has to be encrypted using the second layer of Paillier in order to use the homomorphic properties of
the cryptosystem.

5

of EncSelect. Let VIEWΠEncSelect

Si
(PKP,SKP, [a], [b], [[v]]) be all the messages that Si receives while running the

protocol on inputs (PKP,SKP, [a], [b], [[v]]) and OUTPUTΠEncSelect be the output of the protocol received by S1.
We say that ΠEncSelect privately computes EncSelect if there exists a pair of probabilistic polynomial time

(PPT) simulators (SimS1
,SimS2

) such that

(1) (SimS2(PKP, [a], [b], [[v]]),EncSelect(KP, [a], [b], [[v]])) u

(VIEWΠEncSelect

S1
(KP, [a], [b], [[v]]),OUTPUTΠEncSelect(KP, [a], [b], [[v]]));

(2) SimS1
(KP) u VIEWΠEncSelect

S2
(KP, [a], [b], [[v]]),

where KP denotes the key pair (PKP,SKP).

Theorem 1. The protocol in Table 4 privately computes EncSelect functionality according to Definition 1.

Proof. (Sketch) EncSelect consists of S1 running EncSelect2 and then invoking an interactive protocol StripEnc
between S1 and S2.

We build SimS2
to show that S1 learns nothing from his interactions with S2 as follows. SimS2

has access to
PKP, [a], [b] and [[v]]. Hence, SimS2

can run EncSelect2 himself. EncSelect2 uses homomorphic properties of the
underlying semantically secure encryption and, hence, reveals nothing more than what can be already computed
from the inputs. Now consider the messages S1 receives during StripEnc protocol: [x+r]. Since x+r is encrypted
and SimS2 does not know the secret key, he picks a random value r′ and substitutes [x+ r] with [r′]. Since the
encryption scheme is semantically secure, S1 cannot distinguish [x+ r] from [r′].

Consider the following simulator SimS1
who has access to the public, secret key pair PKP and SKP. When

participating in EncSelect, VIEW of S2 consists of [[[x+ r]]] messages in StripEnc. SimS1
can decrypt and obtain

x+ r. However, x+ r is distributed independently of x. Hence, SimS1
simply sends [[[r′]]] where r′ is a uniform

random element in {0, 1}l+1of his choice. Values x + r and r′ come from the same distribution and hence are
indistinguishable for S2.

2.3 Private Comparison of Encrypted Data

Imagine the problem of having two millionaires who would like to learn which of them is richer without revealing
their actual wealth. Secure multiparty computation was first proposed by Yao [47] who presented a protocol
based on garbled circuits that was exponential in time and space. Following Yao’s paradigm many other solutions,
either based on garbled circuits or on homomorphic encryption, have been proposed [7, 16, 17]. In this setting
each party S1 and S2 owns a number, say a and b, and their goal is to solve the equation a ≤ b without revealing
the actual numbers a and b to each other.

In this work however, we are interested in the following private comparison setting: the first server S1 owns
two encrypted numbers [a] and [b] and the second server S2 owns the secret key SKP. The goal of the protocol
is for S1 to obtain the encryption of the relation between a and b without learning neither the actual numbers
nor the comparison result v, where v = 1 if a ≥ b and v = 0, otherwise. We also require S2 to learn nothing
about the relation between a and b but just help S1 to obtain an encryption of the comparison result. A private
comparison protocol was given by Veugen [45], however in his construction S1 finally learns the comparison
result. Bost et al. [10] recently presented a protocol based on [45] that suits our setting perfectly: S1 only learns
the encryption of the comparison result. The basic observation for private comparison is that for any two `
bit numbers a and b, the most significant bit of z = 2` + a − b (` + 1 bits) reveals the relation between a and
b. Specifically, z` = 1 ⇔ a ≥ b. The protocol makes use of two semantically secure homomorphic encryption
schemes: Paillier [39] and the QR (Quadratic Residuosity) cryptosystem due to Goldwasser and Micali [23]
which allows single bit encryption. As noted in Table 1 we refer to encryption of message m using Paillier and
QR as [m] and ‖m‖, correspondingly.

We now give an overview of this protocol: S2 knows the encryption and decryption keys for both Paillier and
QR, (PKP,SKP,PKQR,SKQR), while S1 knows the corresponding public keys (PKP,PKQR) and two values a and
b encrypted under Paillier’s scheme. S1 first computes [z] = [a] · [b]−1 · [2`] mod n2 and blinds it with a random
value r before sending it to S2 (or else S2 would learn the comparison result). S2 computes d̃ = d mod 2`, S1

similarly computes r̃ = r mod 2` and they engage in a private input comparison protocol (we can use the DGK
protocol [17] as suggested by Bost et al. [10]) that compares d̃ and r̃. At the end of this protocol, S1 receives an
encrypted bit λ that shows the relation between d̃ and r̃ (λ = 1⇔ d̃ < r̃). The output λ from the private input

6

Table 5: [[v]]← EncCompare(PKP, SKP,PKQR,SKQR, [a], [b]): Interactive Private Comparison between two parties S1 and S2

such that only S1 learns an encryption of the comparison bit [[v]]. For simplicity, QR keys are omitted when EncCompare
is called from private sort protocol in Table 8. This protocol is an adaptation of the comparison protocol from [10].

S1(PKP,PKQR, [a], [b]) S2(PKP, SKP,PKQR,SKQR)

[z] := [2`] · [a] · [b]−1 mod n2

pick r ∈ {0, 1}`+k.
[d] := [z] · [r] mod n2 [d]

−→
decrypt [d]

r̃ := r mod 2` d̃ := d mod 2`

‖λ‖ ← Compare r̃, d̃
−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−

‖d`‖←−−
encrypt d`

encrypt r`
‖v‖ := ‖d`‖ · ‖r`‖ · ‖λ‖

[[v]]← ReEncryptBit(PKP,SKP,PKQR,SKQR, ‖v‖)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

comparison protocol is encrypted using QR scheme. Finally, S1 computes the most significant bit of z, denoted
by v, by computing ‖v‖ = ‖d`‖ · ‖r`‖ · ‖λ‖. The important security property of this protocol is that S1 never
sees the comparison result in the clear and S2 never receives an encryption of it.

The above protocol returns as a result bit v encrypted using QR cryptosystem, ‖v‖, for which only S2 knows
the secret key SKQR. However, for the purpose of our sorting task (where we require private comparison and a
call to EncSelect) S1 needs to know this bit encrypted using second layer of generalized Paillier cryptosystem,
that is, [[v]]. To remedy this we introduce ReEncryptBit protocol to securely re-encrypt the bit v such that neither
the S1 nor S2 learns its value. We describe the ReEncryptBit protocol in the paragraph below and present the
final comparison protocol EncCompare which is defined as [[v]]← EncCompare(PKP, SKP, [a], [b]) in Table 5. QR
keys are omitted from EncCompare protocol when it is called from private sort protocol in Table 8 for simplicity
since QR keys are used only in EncCompare protocol.

Bit Re-encryption The purpose of our bit re-encryption task is to privately decrypt a bit encrypted using QR
scheme and then encrypt it using Paillier cryptosystem without neither S1 nor S2 learning the bit. Recall that
in this setting S1 has ‖v‖ as a private input and S2 has secret keys from QR and Paillier encryption schemes.
The ReEncryptBit protocol, given in Table 6, proceeds as follows:

– S1 computes two values ‖v‖ · ‖0‖ and ‖v‖ · ‖1‖ which are equal to v ⊕ 0 and v ⊕ 1, respectively.
– S1 permutes these two values according to a random bit r and sends them to S2 as ‖s0‖ and ‖s1‖.
– S2 decrypts them (always gets a “0” and a “1” in an order that is independent of t), re-encrypts them using

second layer of Paillier scheme and sends them back to S1 in the same order as he received them.
– Given that S1 knows the permutation, he outputs [[sr]] which corresponds to the relation between a and b.

Note that S1 and S2 can agree on any other encryption layer for bit v, however for the bit to be used in EncSelect
we require second layer of generalized Paillier cryptosystem.

We capture privacy of ReEncryptBit using the following definition and prove that ReEncryptBit adheres the
definition in Theorem 2.

Definition 2. Let ΠReEncryptBit be a two party protocol for computing ReEncryptBit functionality. S1 takes as
input (PKP,PKQR, ‖v‖) and S2 takes as input (PKP, SKP, PKQR, SKQR), where v is a bit. When ΠReEncryptBit

terminates S1 receives the output [[v]] of ReEncryptBit. Let VIEW
ΠReEncryptBit

Si
(PKP, SKP, PKQR, SKQR, ‖v‖) be all the

messages that Si receives while running the protocol on inputs PKP, SKP, PKQR, SKQR, ‖v‖ and OUTPUTΠReEncryptBit

be the output of the protocol received by S1.

7

Table 6: [[v]] ← ReEncryptBit(PKP, SKP,PKQR, SKQR, ‖v‖): Interactive protocol between S1 and S2 for
converting ‖v‖ to [[v]] where v is a bit.

S1(PKP,PKQR, ‖v‖) S2(PKP,SKP,PKQR,SKQR)

pick r ∈ {0, 1}
‖sr‖ := ‖v‖ · ‖0‖
‖s1−r‖ := ‖v‖ · ‖1‖ ‖s0‖, ‖s1‖−−−−−−→

decrypt ‖s0‖, ‖s1‖
[[s0]], [[s1]]
←−−−−−−

encrypt [[s0]], [[s1]]

[[v]] := [[sr]]

We say that ΠReEncryptBit privately computes ReEncryptBit if there exists a pair of probabilistic polynomial
time (PPT) simulators (SimS1 ,SimS2) such that

(1) (SimS2
(PKP,PKQR, ‖v‖),ReEncryptBit(KP,KQR, ‖v‖)) u

(VIEW
ΠReEncryptBit

S1
(KP,KQR, ‖t‖),OUTPUTΠReEncryptBit(KP,KQR, ‖t‖));

(2) SimS1(KP,KQR) u VIEW
ΠReEncryptBit

S2
(KP,KQR, ‖v‖),

where KP and KQR denote the key pairs (PKP,SKP) and (PKQR,SKQR), correspondingly.

Theorem 2. The protocol in Table 6 privately computes ReEncryptBit functionality according to Definition 2.

Proof. (Sketch) We construct SimS2
as follows. SimS2

, as S1, has access to inputs PKP,PKQR, [v]. When inter-
acting with S2, S1 receives the following messages [[s0]] and [[s1]]. SimS2

can easily simulate them using [[r0]]
and [[r1]] where r0, r1 are random bits. S1 cannot distinguish [[r0]],[[r1]] from [[s0]],[[r1]] due to the properties of
semantic security that comes from generalized Paillier encryption.

SimS1 , similar to S2, has access to public and secret keys from Paillier and QR cryptosystems and, hence,
can decrypt any messages he receives. S2’s VIEW consists of messages [s0] and [s1] while participating in
ReEncryptBit. Note that (s0, s1) equals (0, 1) or (1, 0) by construction since S1 performs a homomorphic XOR of
bit v with 0 and 1. Moreover, the order in which encryptions of s0 and s1 are independent of XOR of v and 0,1
bits since S1 sends them permuted according to his secret bit r and, hence, is independent of v. SimS1

can easily
simulate this behavior by picking a random bit r′ and substituting [s0], [s1] with [r′], [1− r′] and construct the
view that is indistinguishable from S2’s VIEW.

We capture privacy of EncCompare below.

Definition 3. Let ΠEncCompare be a two party protocol for computing EncCompare functionality. S1 takes as input
(PKP,PKQR, [a], [b]) and S2 takes as input (PKP, SKP, PKQR, SKQR). When ΠEncCompare terminates S1 receives

the output [[v]] of EncCompare. Let VIEW
ΠEncCompare

Si
(PKP, SKP, PKQR, SKQR, [a], [b]) be all the messages that Si

receives while running the protocol on inputs PKP, SKP, PKQR, SKQR, [a], [b] and OUTPUTΠEncCompare be the output
of the protocol received by S1.

We say that ΠEncCompare privately computes EncCompare if there exists a pair of probabilistic polynomial time
(PPT) simulators (SimS1

,SimS2
) such that

(1) (SimS2(PKP,PKQR, [a], [b]),EncCompare(KP,KQR, [a], [b])) u

(VIEW
ΠEncCompare

S1
(KP,KQR, [a], [b]),OUTPUTΠEncCompare(KP,KQR, [a], [b]));

(2) SimS1
(KP,KQR) u VIEW

ΠEncCompare

S2
(KP,KQR, [a], [b]),

where KP and KQR denote the key pairs (PKP,SKP) and (PKQR,SKQR), correspondingly.

Theorem 3. The protocol in Table 5 privately computes EncCompare functionality according to Definition 3.

Proof. (Sketch) We can construct SimS1
and SimS2

by using corresponding simulators from [10] to simulate all
but first line of EncCompare in Table 6, and then use corresponding simulators from Definition 2 to simulate
the behavior of ReEncryptBit.

8

2.4 Text Search and Ranking

We represent a document collection using an inverted index [48]. Each unique term, or keyword, t appearing
in the collection is associated with a set of document ids Jt, where each document id d ∈ Jt corresponds to a
document containing t. We refer to Jt as a posting list of term t.

We consider free text queries [35], a common type of queries supported by today’s search engines. A free
text query q is a set of terms and the result to q is a set of documents Jq that contain at least one of the terms
in q. We can define Jq in terms of posting lists as

Jq =
⋃
∀t∈q

Jt.

In this paper we use a common ranking of search results based on frequency of query terms in each document and
the collection, namely tf-idf [48]. Let N be the number of documents in the collection and cft be the frequency
of term t in the collection then inverse document frequency, idf, is defined as:

idft = log
N

cft
.

Document frequency of term t in document d is defined as:

tf-idft,d = tft,d × idft

where tft,d is frequency of term t in document d. If a document d does not contain t we set tf-idft,d to zero.
Given a free text query q for each document d ∈ Jq a score based on frequencies is computed as

score(q, d) =
∑
t∈q

tf-idft,d (1)

Documents in Jq can then be sorted according to the output of the score function. We use F to denote the
frequency table of all tf-idft,d entries including zero entriesfor a document d that does not contain a term t.

Finally, we note that a conjunctive query q =
∧
t∈q t, i.e., query that returns only documents Jq that contain

all the query keywords, can be expressed using the above notation as follows:

Jq =
⋂
∀t∈q

Jt.

2.5 Searchable Encryption of Structured Data

Symmetric searchable encryption (SSE) allows a user that has in his possession a collection of documents
D = {D1, . . . , DN} to compute a “secure search index”, I, on them and then outsource the index to the server6.
The server should be able to search on I but without learning anything about the actual collection D. In
traditional definitions of searchable encryption the user gives as input the actual document collection and his
SSE secret key and receives back a secure index I and a set of ciphertexts [15]. However, for our construction
of private ranked search in Section 4 we need a generalized version of the SSE definition, where the user uses
SSE to encrypt a dictionary and some ranking meta-data instead of the document collection itself.

Such a generalized notion of SSE was given by Chase and Kamara [14] who introduced structured encryption
(StE) that allows SSE for arbitrarily-structured data. Specifically, they consider static data types: collections
of objects that support query operations on them. More formally, a data type T is defined by a universe
U = {Uk}k∈Z and an operation Query: U ×Q → R with Q = {Qk}k∈N being the query space and R = {Rk}k∈N
being the response space, where k is the security parameter. Below, we present the “structure-only” variant of
the StE definition (in the original definition the encryption of semi-private data together with the data structure
is also considered). This scheme consists of the following algorithms [14]:

SKStE ← GenStE(1k) run by the owner of the data. The output is owner’s secret key SKStE for the security
parameter k.

6 One can think of the “secure index” as a standard search index encrypted under the data owner’s encryption key.

9

I ← EStE(SKStE, δ) run by the owner to encrypt a data structure δ of type T , under his secret key SKSSE. The
output is the secure index (encrypted data structure) I.

T ← Trpdr(SKStE, t) is a deterministic algorithm run by the owner to generate a trapdoor for a query t ∈ Q. It
outputs a trapdoor T or the failure symbol ⊥.

a← Search(I, T) is run by the server S to perform a search for a trapdoor T and outputs an answer a ∈ R.

The SSE definition due to Curtmola et al. [15] is a special case of the definition above for the scenario of private
keyword search over encrypted data. In [15] the input to EStE is the whole document collection D and the output
is the secure index I together with a sequence of ciphertexts c. To achieve this, constructions of [15] first build
a data structure on D that allows efficient search queries and then encrypt this data structure to get I.

The construction of ranked search presented in Section 4.2 and Section 5 use a dictionary data type for StE.
In particular, in both the keys (or queries) of a dictionary are keywords of the document collection D. The value
(or a response) that corresponds to a particular keyword in the dictionary is a sequence of pairs of document ids
and encrypted frequency scores. The number of such pairs per keyword differs between the two constructions:
the scheme in Section 4.2 has a pair for every document identifier in the collection, while the first scheme of
Section 5 stores only pairs for document ids in which the keyword appears in.

The main security guarantee of traditional SSE is that the server does not learn anything about the docu-
ments and the queries beyond what can be inferred from the access pattern (e.g., co-occurrence of document ids
in answers to queries) and search pattern (e.g., co-occurrence of keywords in queries). Similarly, the StE security
definition formalizes access and search patterns as the “leakage” that is observed in the system and refers to
them as intersection and query pattern, respectively.

3 Private Sort

In this section we define a new tool for secure outsourced computation: a private sort, or private outsourced sort,
protocol and present its efficient construction. As mentioned above we believe that our primitive is of independent
interest since it privately computes, arguably, one of the most used functionalities over data, sorting.

3.1 Model

Private sort7 is executed between two parties S1 and S2 as follows. S1 has an array A encrypted using a secret
key SK that is known to S2 but not S1. The goal of private sort is for S1 to obtain B, a re-encryption of a sorted
array A, such that neither S1 nor S2 learn anything about the plaintext values of A (e.g., their initial order,
frequency of the values) while running the protocol. We consider the honest-but-curious model: our servers
honestly follow the protocol but might try to analyze the protocol transcript to infer more information about
the data in the array.

We formally capture the definition of private sort below.

Definition 4. (EncSort) An encrypted sorting functionality EncSort(PK, SK, A) takes as input a public/secret
key pair (PK,SK) of a semantically secure cryptosystem {GenSS, ESS, DSS}, and an array A = [ESS(vi)]i∈{1,N}
of N elements where each element is encrypted individually using PK. Let π be a permutation of indices 1 to
N that corresponds to the indices of A’s elements sorted using its unencrypted values vi. Then, the output of
EncSort is an array B = [ESS(v′j)]j∈{1,N} where v′j = vπ(i) and i ∈ {1, N}.

In the definition above, though v′j = vπ(i), it holds with very high probability that ESS(v′j) 6= ESS(vπ(i)) since
fresh randomness is used during re-encryption. We note that Definition 4 can be easily expanded to take as
input an array A that stores (key, value) pairs and the output is required to be sorted using values.

We describe the privacy property of the encrypted sorting functionality stated above using the paradigm for
defining privacy in the semi-honest model given by Goldreich [21].

Definition 5. (EncSort Privacy) Let ΠEncSort be a two party protocol for computing EncSort functionality. S1

takes as input (PK, A) and S2 takes as input (PK,SK). When ΠEncSort terminates S1 receives the output B
of EncSort. Let VIEWΠEncSort

Si
(PK,SK, A) be all the messages that Si receives while running the protocol on inputs

PK,SK, A and OUTPUTΠEncSort be the output of the protocol received by S1.

7 We note that one should not confuse our problem with Multi-Party Computation protocols for sorting [26, 28], where
every party has an input array and the goal is to output to every participating party the sorting of all inputs combined.

10

We say that ΠEncSort privately computes EncSort, i.e., ΠEncSort is a private outsourced sort, if there exists a
pair of probabilistic polynomial time (PPT) simulators (SimS1

,SimS2
) such that

(1) (SimS2(PK, A),EncSort(PK,SK, A)) u

(VIEWΠEncSort

S1
(PK,SK, A),OUTPUTΠEncSort(PK,SK, A));

(2) SimS1(PK,SK, N) u VIEWΠEncSort

S2
(PK,SK, A),

where N is the size of the array A and u denotes computational indistinguishability for all tuples PK,SK, A.

The intuition behind the privacy definition of EncSort is as follows. S1 has an array A encrypted using a
semantically secure encryption and by the end of the protocol he receives an array B which contains the values
of A sorted and encrypted using fresh randomness, i.e., a property of semantic security. S2 has the corresponding
secret key SK and receives nothing as an output. VIEWSi captures messages that Si receives while participating
in ΠEncSort. In order to capture that S1 does not learn anything about SK, and plaintext of A or B as a
consequence, one has to show that there exists a simulator of S2, SimS2

. SimS2
knows exactly what is known to

S1 and nothing more. The main property of SimS2
is that S1 should not be able to distinguish if he is interacting

with SimS2
or with S2 who knows the secret key of the encryption scheme. Hence, S1 learns nothing more than

he knew already. The privacy guarantee for S1 is similar. One shows that there is a simulator SimS1 that knows
the key pair of the cryptosystem and only the size of A.

3.2 Construction

In this section we develop a construction for the private sort functionality EncSort(PK,SK, A) presented in
Definition 4. From now on we assume that the array A is encrypted using the first layer of Paillier cryptosys-
tem (Section 2.1), however, the system can be adapted to higher levels with corresponding adjustment to the
protocols.

Our private sort protocol relies on (a) homomorphic properties of the generalized Paillier cryptosystem from
Section 2.1 to allow S1 and S2 to privately compare and swap pairs of ciphertexts, and (b) a data independent
sorting network, Batcher’s sort [5], which allows to sort the data such that comparisons alone do not reveal the
order of the encrypted elements. We first describe a protocol for sorting just two elements and then use it as a
blackbox for general sorting. Finally, we show how to extend the protocol to sort an array where an element is
not a single ciphertext value but a (key, value) pair where key and value are individually encrypted and sorting
has to be performed on value.

Two Element Sort We develop a protocol between two parties S1 and S2 to blindly sort two encrypted values.
In particular, S1 possesses encryptions of a and b, [a] and [b], while S2 has the corresponding decryption key
SKP. S1 and S2 engage in an interactive protocol, EncPairSort, by the end of which S1 has a pair of values
([c], [d]) such that (c, d) = (a, b) if a ≤ b and (c, d) = (b, a), otherwise. Informally, EncPairSort has the following
privacy guarantees. S1 nor S2 should learn nothing about values a and b nor their sorted order. The formal
definition of EncPairSort is a special case of EncSort in Definition 4 with N = 2.

The EncPairSort makes use of the comparison protocol EncCompare from Section 2.3 to help S1 to acquire
an encryption of the bit v that denotes whether a ≥ b or not. QR cryptosystem. Given a Paillier encryption of
v we can then use a ciphertext selection EncSelect from Section 2.1 to blindly swap a and b according to v, i.e.,
their sorted order. The complete protocol EncPairSort is shown in Table 7. To simplify the notation in Table 7
we denote public and secret key pair for Paillier cryptosystem as KP = (PKP,SKP). We ommit the QR keys
when calling EncCompare protocol to simplify notation.

Theorem 4. The EncPairSort protocol in Table 7 is a private outsourced sorting protocol according to Defini-
tion 5 for the case N = 2.

Proof. (Sketch) In order to show that EncPairSort in Table 7 is secure according to Definition 5 we need to
construct two simulators SimS1

and SimS2
that show that behavior of S1 and S2 can be simulated without

their corresponding private inputs and hence cannot reveal any information about these inputs to S2 and S1,
correspondingly.

We construct SimS2 as follows. SimS2 has access to private inputs of S1 in the protocol. The VIEW of S1

consists of VIEW’s from EncCompare and two invocations of EncSelect protocols. In Theorems 1 and 3 we showed

11

Table 7: ([c], [d]) ← EncPairSort(PKP, SKP, [a], [b]): Interactive protocol between S1 and S2 for sorting two encrypted
elements such that only S1 receives the result. The key pair for Paillier cryptosystem is denoted as KP = (PKP, SKP)

S1(PKP, [a], [b]) S2(PKP,SKP)
[[v]] ← EncCompare(KP, [a], [b]) % Compare a, b: v := a ≥ b
[c] ← EncSelect(KP, [a], [b], [[v]]) % c := (1− v)a+ vb
[d] ← EncSelect(KP, [a], [b], [[1]][[v]]−1) % d := va+ (1− v)b

that there exist simulators for each of these functionalities. Let us refer to Sims2 from Theorem 1 as SimEncSelect
S2

,

and to Sims2 from Theorem 3 as SimEncCompare
S2

. Then SimS2 for EncPairSort simply invokes SimEncCompare
S2

and

SimEncSelect
S2

twice. The construction of SimS1 is symmetrical and uses SimS1 ’s from Theorems 1 and 3. ut

General Sort In the previous section we developed an interactive method EncPairSort for blindly sorting two
elements (Table 7). In this section, we use EncPairSort as a blackbox to build a protocol EncSort for privately
sorting N elements according to Definition 5. Recall that EncSort is an interactive protocol between S1 and S2.
S1 has an encrypted array A that he wishes to sort and S2 has a secret key of the underlying encryption scheme.
In the end of the protocol, S1 obtains a re-encryption of his array A with S2’s help while neither of them learn
anything about A nor its sorting.

Privacy properties of two element sorting EncPairSort guarantee that S1 does not learn the result of the
comparison of two encrypted elements nor anything about the elements being compared. Hence, sorting algo-
rithms that make calls to a comparison function depending on the data are not applicable in our scheme (e.g.,
quick sort performs a different sequence of comparisons depending on the layout of the data it is sorting, giving
O(N logN) comparisons on average). For our purposes we require a sorting network that performs comparisons
in a data-independent manner and guarantees that after performing a deterministic sequence of comparisons
the result is sorted. We pick Batcher’s sorting [5] for our purposes. Even though asymptotically AKS [3] is more
efficient, it has high hidden constants that in practice make it inferior to Batcher’s sorting network.

Batcher’s sorting network sorts an array of N elements using O(N(logN)2) data independent calls to a
comparator function (i.e., the number of rounds is the same for a fixed N independent of the data). One can
view the network in O((logN)2) consecutive levels where O(N) pairs of elements are compared and swapped at
every level. In particular, let Ai be an array of elements at ith level such that A1 is the input array, where Ai{j}
denotes the jth element of array Ai. Each level i takes as input array Ai and produces Ai+1 where the pairs
scheduled to be sorted at level i are in sorted order in Ai+1. For example, A2{0} and A2{1} contain A1{0},
A1{1} in sorted order, A2{2} and A2{3} contain A1{2}, A1{3} in sorted order and so on. We use pairsi to
denote an iterator over pairs that need to be sorted in the ith level and pairsi.next returns the next pair to be
sorted.

In Table 8 we present our protocol EncSort where S1 performs Batcher’s sorting network using S2 to help
him sort the elements of pairs at every level of the network. To sort every pair, S1 and S2 run EncPairSort.
Recall that the output of EncPairSort is encrypted using the first layer of Paillier cryptosystem, hence, the result
of pairwise sorting at level i can be used as input for calls to EncPairSort in the next level i+ 1. (See Figure 2
for an illustration of EncSort on an example array of size 4.) Recall that S1 and S2 are two non-colluding honest
but curious adversaries and hence will execute their side of the protocol faithfully.

Theorem 5 (EncSort Privacy). The EncSort protocol in Table 8 is a private outsourced sorting protocol ac-
cording to Definition 5.

Proof. (Sketch) The protocol EncSort in Table 8 makes O(N(logN)2) calls to EncPairSort protocol in Table 7.
In Theorem 4 we showed that there exist simulators SimS1

and SimS2
for EncPairSort. Hence, the simulators for

EncSort can be trivially constructed by calling corresponding simulators of EncPairSort. ut

Theorem 6 (EncSort Performance). The EncSort protocol in Table 8 has the following performance guaran-
tees:
– The storage requirement of S1 is O(N);
– The total computation required by S1 and S2 is O(N(logN)2);
– The communication complexity between S1 and S2 consists of O(N(logN)2) rounds;

12

Table 8: B ← EncSort(PKP, SKP, A): Interactive protocol between S1 and S2 for privately sorting an array A of N
elements encrypted using Paillier encryption such that only S1 acquires the sorted result B (see Definition 5). Paillier
key pair is denoted using KP = (PKP,SKP). See Figure 2 for an illustration for the case when N = 4.

S1(PKP, A) S2(PKP, SKP)
A1 ← A
for i ∈ {1, . . . , k − 1} % k = O((logN)2), N = |A|

(x, y)← pairsi.next % ith level of Batcher’s sort
while((x, y) 6= ⊥)

(Ai+1{x}, Ai+1{y})← EncPairSort(KP, Ai{x}, Ai{y})−−−→←−−−
% Sort x, y entries of Ai

(x, y)← pairsi.next % Next pair of Ai to sort
B ← Ak

[5]	

	

[1]	

	

[2]	

	

[9]	

	

[1]	

	

[5]	

	

[2]	

	

[9]	

	

A1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 A2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 A3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 A4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

[1]	

	

[5]	

	

[2]	

	

[9]	

	

[1]	

	

[2]	

	

[5]	

	

[9]	

	
 pairs1={(1,2),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3,4)}	

pairs2={(1,3),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (2,4)}	

pairs3={(2,3)}	

Invoca;on	
 of	
 EncPairSort	
 protocol	
 between	

S1	
 and	
 S2	
 that	
 returns	
 two	
 re-­‐encrypted	
 sorted	

values	
 to	
 S1.	

Fig. 2: Example of EncSort protocol in Table 8 for sorting
an array of four elements 5, 1, 2, 9 where [m] denotes a
Paillier encryption of message m. Note that only S1 stores
values in the arrays Ai while S2 blindly assists S1 in sorting
the values.

– If S2 has O(1) storage, the time overhead of the protocol is O(N(logN)2);
– If S2 has O(N) storage, the time overhead of the protocol is O((logN)2).

Proof. (Sketch) S1 needs to have O(N) storage space in order to store the original array A of size N along with
the intermediate sorting results. The intermediate storage is at most two arrays Ai and Ai+1 since after finishing
the ith level of sorting S1 can safely discard array Ai. S2, on the other hand, is only required to store the keys
of the encryption schemes used and perform field arithmetic to run encryption and decryption algorithms on
constant number of elements.

The protocol requires O(N(logN)2) roundtrips between S1 and S2 where S1 and S2 perform a constant
computation after every round.

If S2 has O(N) memory then a highly parallelizable nature of the Batcher’s sorting network can be exploited.
It allows all invocations of EncPairSort during a single round i to be run in parallel since they operate on different
pairs of the array Ai. ut

Key-Value Sort In the previous section we described how to sort an array where every element of an array is
an encrypted plaintext used for comparison. However, the protocol is easily expandable to work on arrays where
every element is a pair of ciphertexts representing a (key, value) pair and value is used to sort the array. The
main alternations happen in EncPairSort protocol where the input is not two ciphertexts as in Table 7 but two
pairs of ciphertexts: ([k1], [v1]) and ([k2], [v2]), and similarly in the output. Since comparison is performed only
on values EncCompare is called only on [v1] and [v2]. Once the bit representing the result of the comparison is
computed, EncSelect is used not only on the ciphertexts of the values but also on the keys. That is, if values have
to be swapped so do their corresponding keys. This functionality is used in Section 4.2 when sorting document
identifiers using their query score where the key is an encrypted document id and value is an encryption of the
corresponding score.

13

4 Private Ranked Search (MRSE)

We now describe our Multi-keyword Ranked Searchable Encryption (MRSE) framework that allows an owner of
a data collection to outsource his documents to a server S1 and then search on them and receive ranked results.
S1 is able to sort the results by running the private sort (Section 3) with server S2.

4.1 MRSE Security Model

MRSE is essentially an augmented structured searchable encryption system that also supports ranking; MRSE con-
sists of GenStE, EStE, Trpdr ,Search, as defined in Section 2.5, plus a ranking mechanism. To describe the security
properties of MRSE we start by defining the ranking mechanism.

We assume ranking mechanisms that can be described by two algorithms, PrepareRankStruct and RankSortFunc.
PrepareRankStruct takes as input the document collection D and returns a score data structure ScT that al-
lows one to evaluate a score for every document given a set of keywords for a specific ranking method. Then,
RankSortFunc, given as input the result of Search and the secure index I (which is the output of EStE on input
ScT, returns the result sorted according to the ranking.

Definition 6. (Ranking mechanism: PrepareRankStruct,RankSortFunc) Let D be a document collection and
(PK,SK) be a public/secret key pair of a semantically secure cryptosystem {GenSS, ESS, DSS}. A ranking
mechanism is represented by PrepareRankStruct and RankSortFunc as follows. PrepareRankStruct takes as in-
put (PK,SK), and D, and returns the score data structure ScT.
A rank and sort functionality RankSortFunc takes as input (PK,SK), a set of keyword tags X and the encrypted
secure (score) data structure I. The outputs of RankSortFunc are: (1) B, the result of a query consisting of
keywords with tags in X ranked and sorted according to the underlying ranking mechanism; (2) VIEWSi

, the
view of an involved party Si.

In searchable encryption, a server, given an encrypted document collection or encrypted data structure and
the corresponding secure search index, while answering multiple search queries, should not be able to deduct
anything regarding the data collection or the corresponding search index apart from the access and search
patterns. By the term access pattern we denote the identifiers of the documents that contain a keyword8, while
the search pattern refers to whether the search was for the same term or not. Our MRSE setting though consists
of two servers S1 and S2. The user queries only S1 which is required to return the document id’s that match
the search query sorted by relevance criteria (i.e., tf-idf) by running private sort with S2. Thus, we examine
the privacy of the client against S1 and S2. This is sufficient for the overall privacy given that S1 and S2

are non-colluding and the privacy of the interaction between them is limited to using private sort as specified
in Definition 5.

Informally, MRSE privacy definitions (Definitions 9 and 10 below) capture the following: S1 learns the number
of documents and unique keywords in the collection (he can infer this from the size of the encrypted index),
as well as the search pattern of client queries since he observes the “encrypted” queries of the user. However,
S1 learns nothing about the access pattern. S2, on the other hand, only learns the number of documents in
the collection and knows when the client is querying the system. However, S2 learns nothing about the access
and search patterns, and hence does not know anything about the content of the queries. We note that S1’s
capabilities are similar to those of the server in the original SSE definition [15] while S2 learns much less.

Let ∆ = (t1, . . . , tM) denote a dictionary of M unique keywords in lexicographic order, and 2∆ denote the
set of all possible documents with words in ∆. The ith search query is defined as qi = (ti,1, . . . , ti,lq), ti,j ∈ ∆
and lq ≤M denotes the number of terms on the query. Without loss of generality we assume that all terms in a
search query are unique. Recall that for every term the client wishes to query, SSE generates a trapdoor. Since
we allow multi-term queries, we use Ti to denote the sequence of trapdoors that corresponds to the terms in the
ith query. By σ(H) we denote the search pattern induced by an nq-query history H and by τ(H) = (N,M, σ(H))
we denote corresponding trace, that is allowed to be leaked during searching and is related to the search pattern.
The interaction between the server S1 and the client is captured under the notion of history and trace.

Definition 7. (Trace [15]) Let ∆ be a dictionary and D ⊆ 2∆ be a document collection over ∆. Let the nq-query
history over D be a tuple H = (D,Q) where Q is the set of nq multi-term queries, i.e., Q = (q1, . . . , qnq

). The

8 It would be possible to hide the access pattern by utilizing Oblivious RAM techniques [22]. However, this would lead
to a significantly less efficient protocol and it is out of the scope of this work.

14

trace induced by an nq-query history H is the total number of documents in the collection N , the total number
of unique terms M and the search pattern σ(H), i.e., τ(H) = (N,M, σ(H)).

We extend the definition of the search pattern σ(H) given in [15] in order to capture the search pattern of
multi-keyword queries.

Definition 8. (Search Pattern) Let ∆ be a dictionary and D ⊆ 2∆ a document collection over ∆. Let lmax
be the length of the longest query in the set of queries Q. The search pattern induced by an nq-query history
H = (D,Q) is a binary, four dimensional matrix σ(H) of size nq × nq × lmax × lmax such that the element in
position i, j, y, x is 1 if in qi the yth term was the same as xth term of query qj and 0 otherwise.

Note that we omitted the lengths of the documents from the definition of the trace since our construction
does not reveal document sizes and behaves the same for all collections that contain the same total number of
documents N and same number of unique terms M .

We are now ready to present our privacy definitions for each MRSE server. Our definitions are inspired by
the game based indistinguishability definition of searchable encryption due to Curtmola et al. [15] for adaptive
adversaries. Note that adaptivity is more natural for searchable encryption and moreover, as shown in the same
work the corresponding simulation based definition is equivalent. Remember that the definitions in [15] are
a special case of [14] for document collections instead of data structures – for our model where we want to
capture security against the ranking mechanism as well which takes as input the whole document collection the
definitions of [15] are more compatible as a starting point.

As mentioned before, our MRSE definitions extend the SSE model in order to support ranking and sorting
by making use of the PrepareRankStruct and RankSortFunc functionalities. If RankSortFunc can be executed by
a single party then our S1 privacy definition below would be sufficient to describe the privacy of the resulting
framework against this party. Finally note that, the MRSE model assumes that it is sufficient to return to the
client only document identifiers and not the actual documents. This is consistent with related work on searchable
encryption with ranking, e.g., [11] (see discussion in Section 6).

S1 Privacy Definition We now define privacy against an adaptive adversary that acts as a curious server S1.
The client flips a secret coin b that the adversary has to guess. The adversary (acting like a malicious S1)
submits two document collections (D0,D1) that have the same number of documents N and same number of
unique terms M . A receives the index of one of the collections Db along with the secure score data structure
ScT and is allowed to query the system polynomially many times nq. At each round i he picks two queries

q
(i)
0 , q

(i)
1 with the same number of terms, |q(i)0 | = |q

(i)
1 |, and receives trapdoors T

(i)
b for qb. Then, he uses the StE

Search algorithm to find the entries in the search index that match the query. Given these entries he invokes
RankSortFunc functionality and receives its output B as well as the view of the first server VIEWS1 . S1 wins if
he manages to correctly guess the bit b.

In the experiments below, running the SSE Trpdr algorithm on a multi-term query is equivalent to running
the algorithm for each term separately.

Definition 9. (Adaptive indist. for S1) Let StE = {GenStE, EStE,Trpdr , Search,} be an StE scheme with secu-
rity parameter k and let PrepareRankStruct and RankSortFunc be a ranking mechanism. Let A = (A0, . . . , Alq+1

)
be a polynomial adversary that for each query receives B and VIEWS1

from RankSortFunc’s output. Then consider
the experiment in Figure 3 for nq = poly(k).

Let Qb = (q
(1)
b , . . . , q

(nq)
b). We say that MRSE is secure against S1 as long as ∀i ∈ {1, . . . , nq} |q(i)0 | = |q

(i)
1 |

and histories H0 = (D0,Q0) and H1 = (D1,Q1) that have the same trace τ(D0,Q0) = τ(D1,Q1), then for all
PPT A it holds that

Pr[Expt
IndsS1

A (1k) = 1] ≤ 1/2 + negl(k).

In our MRSE model we assume that it is sufficient for server S1 to return to the client only document identifiers
and not the actual documents. Thus, EStE algorithm of the SSE scheme can return only the index I and omit
the ciphertexts c. However, S1 can only query the system with the same search pattern as defined in Definition 8

which requires |q(i)0 | = |q(i)1 | as well as co-appearance of terms across queries. Note that S1’s capabilities are
similar to those of the server in the original SSE definition [15] but as we will see below S2 learns much less.

15

Expt
IndsS1
A (1k)

SKStE ← GenStE(1k);

(PK, SK)← GenSS(1k);
b← {0, 1};
(stA,D0,D1)← A0(1k,PK);
ScTb ← PrepareRankStruct(PK,SK,Db)

9;
Ib ← EStE(SKStE, ScTb);

(stA, q
(1)
0 , q

(1)
1)← A1(stA,PK, Ib, ScTb);

T
(1)
b ← Trpdr(q

(1)
b);

X(1) ← Search(Ib,T
(1)
b);

(B(1), V
(1)
1 , V

(1)
2)10 ←

RankSortFunc(PK, SK, ScTb, X
(1));

for 2 ≤ i ≤ nq

(stA, q
(i)
0 , q

(i)
1)←

Ai(stA,PK, Ib, ScTb,T
(i−1)
b , V

(i−1)
1 , B(i−1));

T
(i)
b ← Trpdr(q

(i)
b);

X(i) ← Search(Ib,T
(i)
b);

(B(i), V
(i)
1 , V

(i)
2)←

RankSortFunc(PK, SK,ScTb, X
(i));

b′ ← Anq+1(stA,PK, Ib, ScTb,T
(nq)

b , V
(nq)
1 , B(nq));

if b′ = b, output 1; else output 0

Fig. 3: Indistinguishability Game for S1

Expt
IndsS2
A (1k)

SKStE ← GenStE(1k);

(PK, SK)← GenSS(1k);
b← {0, 1};
(stA,D0,D1)← A0(1k,PK,SK);
ScTb ← PrepareRankStruct(PK, SK,Db)

9;
Ib ← EStE(SKStE, ScTb);

(stA, q
(1)
0 , q

(1)
1)← A1(stA,PK, SK);

T
(1)
b ← Trpdr(q

(1)
b);

X(1) ← Search(Ib,T
(1)
b);

(B(1), V
(1)
1 , V

(1)
2)10 ←

RankSortFunc(PK, SK, ScTb, X
(1));

for 2 ≤ i ≤ nq

(stA, q
(i)
0 , q

(i)
1)← Ai(stA,PK, SK, V

(i−1)
2);

T
(i)
b ← Trpdr(q

(i)
b);

X(i) ← Search(Ib,T
(i)
b);

(B(i), V
(i)
1 , V

(i)
2)←

RankSortFunc(PK,SK, ScTb, X
(i));

b′ ← Anq+1(stA,PK, SK, V
(nq)
2);

if b′ = b, output 1; else output 0

Fig. 4: Indistinguishability Game for S2

9 Where ScTb is a secure score data structure of Db.
10 Where Vi stands for VIEWSi .

S2 Privacy Definition For S2 privacy we note that S2 never gets access to the encrypted index Ib, encrypted
score table ScT nor the trapdoors that correspond to queries. Thus, when designing the attack, S2 is not
restricted on the search pattern. Informally, he can pick collections with different number of unique terms and

then query the system with arbitrary queries q
(i)
0 and q

(i)
1 . His only input is the view that the second server gets

during while running RankSortFunc. The formal definition of privacy against S2 is given below:

Definition 10. (Adaptive indist. for S2) Let StE = {GenStE, EStE,Trpdr , Search, } be an StE scheme with secu-
rity parameter k and let PrepareRankStruct and RankSortFunc be a ranking mechanism. Let A = (A0, . . . , Alq+1

)
be a polynomial adversary who for every query receives VIEWS2 , one of the outputs of RankSortFunc functionality.
Then consider the experiment in Figure 4 for nq = poly(k).

We say that MRSE is secure against S2 if for all PPT A and (D0,D1) having the same number of documents
N it holds that:

Pr[Expt
IndsS2

A (1k) = 1] ≤ 1/2 + negl(k).

4.2 MRSE Construction

We are now ready to present the details of our MRSE construction. We split our description into two phases:
the setup phase and the query phase.

Setup and Initialization The client sets up the system by generating a secret key for StE, SKStE, and a
public/secret key pair for Paillier cryptosystem (PKP, SKP). Then, shares PKP with S1 and (PKP,SKP) with S2.
We omit exact details of how the client sends the secret key to S2 but any efficient key wrapping algorithm
suffices for our purposes. S1 and S2 are honest but curious and interact with each other faithfully only using
the private sort protocol from Section 3.2.

The client first extracts all M unique terms11 from his collection of documents D and associates every unique
term t with an array Ft of size N . An element in position d of list Ft corresponds to the frequency of term t in
document with id d, i.e., tf-idft,d as defined in Section 2.4. Note that tf-idft,d is zero if the term t does not appear
in document d. Given all tf-idft,d entries the client obtains the frequency table F where the number of rows

11 Stemming and removal of stop words is outside of the scope of our paper.

16

is M (number of unique terms in D) and the number of columns is N (number of documents in D). The client
then maps every frequency score tf-idft,d to an integer and encrypts it using the first layer of Paillier encryption
(Section 2.1). The mapping to integers ensures that we can use Paillier cryptosystem whose plaintext space
is defined over Zn. Note that, once encrypted, the table representing frequencies of terms does not reveal the
number of documents that every term appears in, i.e., the length of the posting list. We overload the notation
and define [Ft] = {[tf-idft,d] | ∀d ∈ {1, N}}.

The client then wishes to upload encrypted term and frequency index to S1 and query it later. For this
purpose, he uses a structured encryption scheme as defined in Section 2.5. Since the frequencies are already
in an encrypted form, it is sufficient to create a searchable index for all the terms and allow S1 to find the
corresponding frequency array [Ft] only if he is given a trapdoor for t. To do so, we consider a simplified version
of the labeled data structured encryption scheme described in [14]. Let SKStE consist of two random k-bit
strings K1,K2 and let GK1

and G′K2
be two different pseudo-random functions (PRF) with keys K1 and K2,

respectively.
The client first sorts the terms using the lexicographic order and numbers each term in this order as

{t1, t2, . . . , tM}. Then, he picks a pseudo-random permutation π and creates an auxiliary index of pairs (ti, π(i))
∀i ∈ {1,M}. He also appends π(i) to the corresponding [Fti] and permutes the pairs (π(i), [Fti]), i.e., creates a
dictionary that maps a keyword ti to a list of encrypted scores for all the documents in the collection (not only
the documents in which the keyword appears at).

Then, the encryption algorithm of StE, EStE, works as follows. For every i ∈ {1,M}, the search key kti =
G′K2

(ti) and the value (π(i), [Fti])⊕GK1(ti) are computed. Both are stored together in the secure index I which
is sent as an input to S1. We do not give to S1 the encryption of the document collection since this is outside
of our model.

Multi-user setting Our scheme could potentially be extended to a multi-user setting where the data owner
allows authorized users to search on the data stored in the cloud server. This can be done by using a multi-user
SSE scheme (MSSE) like the one proposed by Curtmola et al. [15]. In order to authorize a user, the data owner
creates a unique secret key for him which the user can later use to generate keyword trapdoors for search. MSSE
also allows the data owner user to revoke users and forbid them accessing the collection.

Query Phase During the query phase, the client computes the trapdoor T ← Trpdr(SKStE, t) for each keyword t
in the query q. In our scheme, Trpdr sets T to (GK1

(ti), G
′
K2

(t)). The client then sends the trapdoors of all
the query terms (i.e., an “encrypted” representation of the query) T = {T | ∀t ∈ q} to S1. Server S1, upon
receiving client’s query T, can locate each encrypted keyword t ∈ q using the corresponding trapdoors by running
Search(I, T) ∀T ∈ T. The Search algorithm parses T as (α, β) and computes the answer as I(β)⊕α, where I(β)
is the value stored in I under the search key β. The answer is a vector [Ft] = {[tf-idft,d] | ∀d ∈ {1, N}} for every
term t in the query.
Computing Document Scores: Recall that [Ft] is an array of individually encrypted tf-idft,d scores for d ∈ {1, N}.
In order to compute the document scores, S1 uses the additive property of the homomorphic encryption scheme
and for every document d computes an encrypted score

ed = [score(q, d)] =
∑
t∈q

[tf-idft,d].

Note that ed is simply an encryption of score(q, d). S1 then creates an array A of (key, value) pairs where a key
is an encryption of a document id and value is the corresponding encrypted score:

A = {([1], e1), ([2], e2), . . . , ([N], eN)}.

Sorting Document Scores: The server S1 has acquired the final scores for every document identifier, however,
these scores are encrypted which prohibits S1 from sorting them and returning the document identifiers sorted
by their relevance to the query q. To sort the documents S1 engages with S2 in the private sorting protocol
EncSort defined in Table 8 and its extension to (key,value) pairs in Section 3.2. The protocol returns to S1 an
array

B = {([d1], ed1), ([d2], ed2), . . . , ([dN], edN)}
which corresponds to a re-encryption of array A sorted using document scores, that is

D(ed1) ≤ D(ed2) ≤ . . . ≤ D(edN)

17

where D is a decryption algorithm of Paillier cryptosystem and di are document identifiers. Moreover, as we
showed in Section 3.2 the protocol maintains privacy guarantees against S1 and S2. In particular, S1 learns
nothing about the scores, their relative order in neither A nor B, while the privacy guarantees against S2 are
even stronger. S2 also learns nothing about A nor B as well as nothing about the search pattern. That is S2

only learns that a query happened but learns nothing about it including the number of keywords nor whether
the same query or keyword has been queried before or not.

Finally, S1 sends to the client array B. If the client is not interested in document scores, server S1 can send
only the ordered encrypted document identifiers [di] from the array B, i.e., the key from every pair in B. Note
that our construction can be easily adapted for the case where the user only asks for the top k documents as
a result by returning only {[d1], . . . , [dk]}. Since the client has a decryption key of the Paillier cryptosystem he
can easily decrypt the ordered sequence of document identifiers received from S1. If the client needs the scores,
the server can send the encrypted document scores which the client is also able to decrypt.

Theorem 7 (MRSE Privacy). Let EncSort be a secure private sorting protocol as defined in Definition 5.
Then, the MRSE protocol described in Section 4.2 is secure against S1 and S2 according to Definitions 9 and 10.

Proof (Sketch). We first show how PrepareRankStruct and RankSortFunc are defined in MRSE. The ranking
mechanism supported by MRSE is the tf-idf scoring system and, hence, the output of PrepareRankStruct is a
frequency table [Fti] ∀i ∈ {1,M} encrypted under Paillier. On a query q, RankSortFunc takes as input tags t ∈ T
returned by StE Search on a query q, finds the corresponding rows in [Ft], adds them to get an array A, and
then performs EncSort on A to receive the sorted result B.
Security against S1 Definition 9 guarantees that S1 could not possibly distinguish between two different
document collections as long as they have the same trace. Recall from Definition 7 that the trace of a collection
includes the number of documents, N , and the number of unique keywords, M , as well as the search pattern.
According to the indistinguishability game (Figure 3) assume that an adversarial S1 picks two document collec-
tions with the same trace. He is then given an index I encrypted under StE and a frequency table [Ft] encrypted
under Paillier for one of them, say b, chosen uniformly at random. By only seeing Ib and [Ft], S1 cannot guess b
with probability greater than 1/2 + negl(k). [Ft] gives no information to S1 since it is constructed in such a
way that the number of keywords per document is hidden (padded with 0s). Also, Ib will be of the same size
for b = 0, 1.

In the next phase, S1 picks queries with the same answer size in both collections and receives the correspond-
ing set of query trapdoors for one of the collections. The trapdoors are generated using the Trpdr algorithm
of the StE scheme which is deterministic. Once the trapdoors are generated the RankSortFunc is invoked to
perform ranking and then sorting using EncSort. S1 is given the trapdoors, the sorted array B as well as the
view of the first server of EncSort. Given that the instantiation of the StE scheme for labeled data [14] is secure
against adaptive chosen query attacks, S1 cannot possibly infer anything about which are the actual terms
being queried, thus the privacy of the data collection is preserved. As in the StE instantiation of [14], the search
pattern is also leaked to S1. Note that the keywords in Ib and the corresponding rows of [Ft] are permuted, thus,
an adversarial S1 cannot use lexicographical order of queried keywords to distinguish the collections. Finally, by
EncSort privacy we guarantee that S1 learns nothing about the sorting of the documents thus cannot use any
information to distinguish between the two collections.
Security against S2 In the MRSE construction S2 behaves in exactly the same way as S2 does in EncSort,
thus, inherits the security properties of private sort second server. The only information leaked to S2 is the
number of documents included on the collection since he can infer that by the number of pairs he will be given
to compare for one query. However, this is not enough to distinguish given that the two challenge documents
are of the same size N .
Overall privacy As long as the servers are honest and non colluding the MRSE scheme presented in Section 4.1
is secure. As noted above, given that the servers are non colluding, it is sufficient to study security against each
one of them independently. ut

The performance of MRSE is summarized in the following theorem.

Theorem 8 (MRSE Performance). MRSE protocol presented in Section 4.2 gives the following performance
guarantees:
– The client takes O(|D|) time and space to setup the system, and O(|q|) time to generate a query;
– The communication cost between the client and S1 during the query phase is O(|q|+N);
– The space requirements for S1 and S2 are O(N ×M) and O(1), respectively;

18

– The query phase takes O(N(logN)2) for both S1 and S2;
where |D| is the size of the data collection D, N is the number of documents and M is the number of unique
terms in D, and |q| is the query size.

Proof (Sketch). The initialization cost of the system for the client is linear in the size of the document collection
since term frequencies can be computed while parsing the collection and maintaining an efficient index of
unique terms for updating the corresponding occurrence count. Hence, the client performs O(N ×M) work
before uploading the search and frequency indices to S1.

During the query phase the client sends to S1 a trapdoor for every keyword in the query q and as a result
obtains l, 1 ≤ l ≤ N , ordered document identifiers where l is the parameter specified by the client. Hence, query
generation time for the client is |q| and overall communication cost between the client and S1 in the worst case
is O(|q|+N).

We now analyze the query phase for S1 and S2. S1 queries StE in O(|q|) time [15] and sums the corresponding
frequency score vectors in |q| ×N time, i.e., to obtain ed for every document. Private sort of encrypted scores
takes O(N(logN)2) rounds of communication between S1 and S2 since Batcher’s sorting network gives the
dominating cost. Hence, the total work for S1 and S2 is O(N(logN)2). ut

Note that the non-secure counterpart of the same ranking and sorting functionality also takes |q| ×N time to
add the scores for every document, while sorting in the clear takes O(N logN). Hence, our privacy preserving
construction over encrypted data gives only a logN multiplicative overhead over a non-secure construction. If
S1 and S2 operate in parallel the runtime overhead can be dropped to O((logN)2).

5 MRSE-X Protocol

In this section we present a scheme that is more efficient than the scheme in the previous section but achieves
weaker privacy guarantees in return. Recall that MRSE hides the access pattern of SSE by padding the posting
lists to be of the same length and inserting zero scores for a document-keyword pair in cases when a keyword is
not present in a given document. In this section, we use the single keyword SSE scheme of [15] and extend it to
support ranking for multiple keyword queries while having same security guarantees as [15]. We also discuss how
to include our ranking mechanism in a scheme by Cash et al. [13] that addresses conjunctive queries directly as
opposed to combining results of multiple single keyword queries.

5.1 Ranking for Curtmola et al. [15] Scheme

Setup and Initialization The main difference between MRSE-X and MRSE is in the construction of the frequency
table F . In particular, for every term t we compute tf-idft,d only if t appears in document d. We then set Ft
to contain pairs (d, tf-ifdt,d). We encrypt entries tf-idft,d using the first layer of Paillier and leave document
identifiers open. Hence, now the frequency mapping is Ft = {(d, [tf-idft,d]) | ∀d ∈ Jt}, where Jt is the posting
list of t.

The client sets up StE scheme by simply feeding (key, value) pairs (t, Ft),∀t, as the dictionary δ to EStE

(similar to MRSE). The output of EStE is again the secure index I that is sent to S1.

Query Phase For a query q the client proceeds as before. He creates a trapdoor Tt by running StE Trpdr
for every term t in the query q, and sends Tq = {Tt | ∀t ∈ q} to S1. S1 then runs Search procedure for every
trapdoor Tt and as a response receives pairs (d, [tf-idft,d]), where document identifiers d are in the clear. His next
task is to compute the sum of the encrypted scores. Let Jq =

⋃
t∈q Jt, if q is a disjunctive query, or Jq =

⋂
t∈q Jt

for a conjunctive query. Then ∀d ∈ Jq:

ed = [scored] =
∑

∀t∈q∧d∈Jt

[tf-idft,d].

S1 constructs A = {([d], ed) | ∀d ∈ Jq} by encrypting d’s in Jq himself. The rest of the protocol is the same as
for MRSE: S1 proceeds by calling S2 to get a sorting of A, B. It is important to note that the size of query
response Jq, N̄ , is the size of the union of posting lists of keywords that appeared in the query and, hence,
N̄ ≤ N . In practice, however, N̄ should be much less than N .

19

Performance and Security We use SSE-2 construction of [15] to instantiate our StE scheme12 since it has optimal
search time and is adaptively secure. The performance of the resulting MRSE-X is summarized in the following
theorem.

Theorem 9 (MRSE-X Performance). MRSE-X protocol presented in Section 5 gives the following perfor-
mance guarantees:
– The client takes O(|D|) time and space to setup the system, and O(|q|) time to generate a query;
– The communication cost between the client and S1 during the query phase is O(|q|+ N̄);
– The space requirements for S1 and S2 are O(L) and O(1), respectively;
– The query phase takes O(N̄(log N̄)2) for both S1 and S2;

where |D| is the size of the data collection D, N is the number of documents in D, L is the the size of the index
(sum of lengths of positing lists for unique terms in D), and |q| is the query size and N̄ is the size of a query
reply where N̄ < N .

The space requirement at S1 is reduced due to the size of the frequency table. In particular, it is N ×M for
MRSE and L for MRSE-X where L =

∑
∀t Jt. In practice, L is much smaller than N ×M but in the worst case,

when every term appears in every document, L = N ×M .
In return for the performance improvement in MRSE-X, the security for S1 and S2 is weakened compared

to MRSE. S1 learns L, the sum of posting list sizes for D, and the access pattern [15]. Informally, the access
pattern reveals which documents were accessed for every keyword in the query. The security definition for S1

can be trivially extended from Definition 9 to accommodate for this leakage as follows. We set L and the access
pattern to be part of the trace that is enforced on the document collection and query sequence allowed to be
queried by the adversary during IndsS1

game in Figure 3 (we refer the reader to [15] for more details).
The definition of security for S2 extends IndsS2

game in Figure 4, since S2 learns N̄ everytime he assists in
private sort. Hence, Ai is given the size of the query response after every query in IndsS2 game.

5.2 Ranking for Cash et al. [13] Scheme

The ranking mechanism can be also applied to a recent construction by Cash et al. [13]. This construction handles
conjunctive queries over multiple terms directly. Hence, it has different guarantees in terms of performance and
leakage of access pattern, if compared to our näıve extension of [15] in previous section. Below we apply our
ranking mechanism to [13].

We first give an overview of the construction by Cash et al. [13] and refer the reader to the original paper
for details. The construction considers a client who sends Boolean queries to a server who stores a search index
and replies client’s queries. The main intuition behind the method is to let the server open only a small subset
of document ids for every keyword in the query, instead of opening document ids for all keywords in the query.
In particular, the client picks the first keyword in query q, t1, and creates trapdoor-like tags for every document
where t1 appears, i.e., a tag for every document in the posting list of t1, Jt1 . The client also creates secure tags
for every remaining keyword in q. The server then combines all the received tags and verifies the presence of
keywords in q only for a subset of documents in Jt1 . Note that for conjunctive queries it is enough to check
document ids in Jt1 . Then the server returns to the client only the document ids for which he could verify the
presence of all keywords in the query. We note that as a result the server stores a tag for every (t, d) pair where
term t appears in document d.

The scheme of [13] has the following performance. For a query q, the client sends |q| + |Jt1 | objects to the
server, where |Jt1 | is the size of the posting list for the first term in the query. The running time at the server
is |q| × |Jt1 | since he has to build all possible keyword-document pairs to verify their presence. This scheme is
more efficient than [15] when

∑
t∈q |Jt| > |q||Jt1 |, e.g., when t1 is a very rare word while t2 ∈ q is a very frequent

word.
We extend this method with our ranking functionality as follows. Since the server already stores a tag

for every (t, d) pair, we can simply append [tf-idft,d] to every tag. The rest follows trivially from MRSE-X
construction for [15] in Section 5.1, where S1 behaves as the server of [13] when searching for keyword-document
match, adds the encrypted tf-idf scores for the documents in the query reply, and engages in private sort with S2

to sort these documents according to encrypted tf-idf scores.

12 Though the encryption method in [15] takes as input a document collection D, it first produces an intermediate
dictionary structure and only then encrypts it. Hence, this method can be easily extended to take our dictionary δ as
its input instead.

20

6 Discussion

MRSE and MRSE-X return to the client only document identifiers and not documents themselves. Here, we
argue that with presently known techniques a system that returns documents ranked according to a search
query using tf-idf is either not secure or very expensive.

Searchable symmetric encryption schemes are known to reveal search and access patterns where access
pattern refers to the documents that are returned as a result for each query (recall that MRSE reveals only the
search pattern). Hence, the server learns co-occurrence of queried terms in documents. Indeed, Islam et al. [27]
show how one can reconstruct single word queries made to an SSE scheme by observing search and access
patterns. Now consider a SSE scheme that indeed allows one to return documents sorted based on keyword
frequency and allows for multi-term queries. This scenario gives even more possibilities for an attack since
now the server learns word frequencies in documents and can potentially reconstruct the document collection.
Example: consider three queries (t1), (t2) and (t1, t2), where each keyword is hidden using SSE trapdoor, and
their corresponding response with ranked documents are (d1, d2, d3), (d3, d2, d1) and (d1, d2, d3). Knowing the
basic principle behind tf-idf ranking system, it is clear to the attacker that t1 is a more “important” word in
the system (e.g., rare) and that t1 occurs more often in d1 than d2. Hence, revealing the order of the document
based on a ranking significantly increases the leakage of a SSE scheme.

Techniques for mitigating the above attacks by hiding search and access patterns are expensive. Oblivious
RAM [22, 25] requires poly-log number of rounds of communication between the client and the server, where every
round would require sending back and forward encrypted documents. Private Information Retrieval (PIR) [31],
on the other hand, for every query requires that the server touches every document he stores.

Finally we note that previous work [11] on ranked multi-keyword search also returns only document ids and
not the documents. While the construction of [36] does return the documents but reveals the access and search
patterns as well as the ranking to one of the servers.

7 Related Work

In recent years the topic of searching over encrypted data has received a lot of attention. Many models have been
proposed, each one of them trying to solve the problem under a different prism or trying to achieve different
properties. We start by giving an overview of the literature on searchable encryption and then we discuss and
compare our scheme with multi-keyword searchable encryption schemes that return ranked results.

7.1 Searchable encryption

In the standard searchable encryption setting one wishes to perform a boolean search on an encrypted document
(potentially stored on a remote server) to decide whether a keyword exists in the document without having to
decrypt it. In the symmetric scenario the owner of the data encrypts them himself so that he can first organize
it in a certain data structure to make search more efficient. The encrypted data and the corresponding data
structure can be stored on a server so that only the data owner (or a user authorized by him) can search on
them. Song et al. [42] are the first to introduce symmetric searchable encryption for a single user. Their scheme
requires two layers of encryption and search time by the server is linear in the length of the document collection
for every query.

Curtmola et al. [15] formally defined symmetric searchable encryption (SSE) and gave efficient constructions.
Moreover, they proposed multi-user SSE, where even though a single user owns the data, there exists an arbitrary
group of users (authorized by the owner) that can submit search queries to the cloud by computing a trapdoor
for the term to be queried. Another notable work is the one due to Kamara et al. [29] who propose a solution in
the symmetric setting that not only allows single keyword search over encrypted data but also allows a user to
verify the integrity of the returned documents and verify that the server has all the files, i.e., proof of ownership
protocols are integrated into their solution. Recently Cash et al. [12] proposed a symmetric scheme that allows
for efficient multi-term conjunctive queries.

Boneh et al. [9] were the first to introduce the idea of asymmetric encryption with keyword search (PEKS)
and their work inspired a series of other proposals [1, 6, 24, 46]. In this public key setting users who encrypt the
data and send them to the server may be different from the user who owns the decryption key and is able to
perform search queries (e.g., consider mail server scenario).

Schemes that do not require a precise match to a search query have also been proposed [33, 32]. They use a
similarity measurement to find documents that match the query.

21

Table 9: Comparison of MRSE with multi-keyword searchable encryption schemes returning ranked results in terms of
soundness of the result, the ranking technique, the client query generation time, server(s) time to compute the result
and the privacy guarantees. We note that schemes [11] and [43] are single server solutions. Inner product similarity is
denoted as ips, N is the number of documents and M is the number of unique terms in the collection, |q| is the query
length, ∗ denotes the use of FHE techniques, CCA-2 is security against chosen ciphertext attack for SSE schemes [15].
All the time complexities are asymptotic.

Scheme S
o
u
n
d

R
a
n
k
in
g

C
li
e
n
t

Server(s) Privacy

Cao et al. [11] ips M2 N ×M2 Precision-privacy tradeoff

Örencik et al. [36] X tf-idf |q| N logN CCA-2 v.s. S1, but not S2

Strizhov-Ray [43] ∗ X ips† |q|N |q|N +M2 CCA-2

Our scheme MRSE X tf-idf |q| N(logN)2 CCA-2 v.s. S1 and S‡2
† the client receives document scores and sorts them himself.

‡ security against S1, S2 is in fact stronger than CCA-2 (see Section 4.1).

7.2 Comparison with Related Work

In this section we compare MRSE with other multi-keyword searchable encryption schemes with ranked results.
Cao et al. [11] provide one of the first schemes that allow ranked multi-keyword search. The scheme sorts
documents using the score based on “inner product similarity” (ips) where a document score is simply the
number of matches of query keywords in each document. This ranking is not as standard in information retrieval
as tf-idf since it loses information about keyword importance to the document collection w.r.t. document lengths
and other keywords (e.g., documents which contain all query keywords are ranked equally). The scheme of [11]
also proposes a heuristic to hide the search and access patterns by adding dummy keywords and noise. As a
result, the returned document list may contain false negatives and false positives. Query phase of the scheme is
expensive for the client since query generation time is O(M2), i.e., quadratic in the number of unique keywords
in the original collection, M , and the length of the trapdoor for every query is O(M). To answer the query,
the server has to perform O(N ×M2) computation, where N is the number of documents in the collection. In
comparison, the client of our scheme is required to generate only a constant size trapdoor for every term in the
query which is likely to be much smaller than M . Also, the work for the server in MRSE is O(N(logN)2).

Örencik and Savaş [37, 38] also propose protocols for ranked multi-keyword search. Their ranking is loosely
based on frequency of a word in the document where fake keywords and documents are added, hence, their
scheme also may return false negatives and positives. Recent proposal by Örencik et al. [36] is a solution with
two non-colluding servers. Their first server works similar to our S1, however, the interaction between the two
servers is very different and gives much weaker privacy guarantees than our system. In particular, the second
server has access to the result of every query in the clear, revealing information about user’s data collection as
well as the search and access patterns. Recall that in our scheme S2 is merely assisting S1 during sorting and
never sees neither the queries nor the data. Finally, storage requirement of the second server is linear in the size
of the collection, while it is constant for S2 in MRSE.

Another recent work that uses tf-idf and inner product similarity based ranking is the one due to Strizhov
and Ray [43]. Their model assumes a single server that performs only the search functionality and not the
sorting of the results. In particular, the client generates N trapdoors for every term in the query, the server
finds the required encrypted documents and scores, returns them to the client who performs the sorting based
on tf-idf himself. Moreover, the frequency table has to be encrypted under a fully homomorphic encryption
(FHE) scheme in order for the server to be able to perform ranking. Using FHE in such a setting is a direct
solution but unfortunately is very inefficient.

In Table 9 we present a comparison of our MRSE scheme with the schemes discussed above. We compare
them in terms of soundness of the returned result (e.g., if the result contains false positives), ranking method,
client query generation time and search complexity for the server(s). The last column of the table presents
privacy guarantees of the schemes. We note that privacy of [11] is harder to compare with since a heuristic is
used to hide access and search patterns.

22

8 Future Work

In this paper we presented ranked text search as one appealing application of our new private sorting func-
tionality. In the future we wish to find other cloud computing scenarios that rely on sorting. One immediate
application is database queries that require a join on sorted tables or to return top k results satisfying a query.

Our construction, as well as previous work that addresses ranking, returns as a result to the user only doc-
ument identifiers and not documents themselves. If one does otherwise, he reveals the documents being queried
for and information about word frequencies in each document (due to the tf-idf ranking). An obvious solution
is to use techniques that hide search and access patterns, i.e., Oblivious RAM [22] and Private Information
Retrieval [31]. However, such techniques are known to give high overhead. We also propose to consider a system
that can support ranked search as well as efficient secure updates to the data collection. Another appealing
scenario is to consider a scheme that is secure against malicious servers and allows users to verify the integrity
of returned results.

Acknowledgments

The authors would like to thank Seny Kamara, Markulf Kohlweiss and Roberto Tamassia for useful discussions
and suggestions on how to improve the results and the write-up in hand. Olga Ohrimenko worked on this project
in part while at Brown University, where her research was supported in part by the National Science Foundation
under grants CNS–1012060 and CNS–1228485. Foteini Baldimtsi was supported in part by grants CNS–1012910
(Boston University), FINER project by Greek Secretariat of Research Technology (University of Athens) and
CNS–0964379 (Brown University).

23

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory
Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous
ibe, and extensions. J. Cryptology, 21(3):350–391, 2008.

2. Ben Adida and Douglas Wikström. How to shuffle in public. TCC’07, pages 555–574. Springer-Verlag, 2007.
3. Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In STOC, pages 1–9, 1983.
4. Foteini Baldimtsi and Olga Ohrimenko. Sorting and searching behind the curtain. FC ’15, 2015.
5. Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Conference, 1968.
6. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable encryption.

CRYPTO’07, pages 535–552. Springer-Verlag, 2007.
7. Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and computing on intervals. In ASI-

ACRYPT, pages 515–529. Springer, 2004.
8. Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption revisited: Improved security

analysis and alternative solutions. CRYPTO’11, pages 578–595. Springer-Verlag, 2011.
9. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with keyword

search. In EUROCRYPT, pages 506–522, 2004.
10. Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classification over encrypted

data. Cryptology ePrint Archive, Report 2014/331, 2014.
11. Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-keyword ranked search over

encrypted cloud data. In INFOCOM, pages 829–837, 2011.
12. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner. Highly-scalable

searchable symmetric encryption with support for boolean queries. In CRYPTO 2013, volume 8042, pages 353–373,
2013.

13. David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and Michael Steiner.
Highly-scalable searchable symmetric encryption with support for boolean queries. In CRYPTO 2013, pages 353–
373, 2013.

14. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Masayuki Abe, editor, Advances
in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 577–594. Springer
Berlin Heidelberg, 2010.

15. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. ACM-CCS ’06, pages 79–88. ACM, 2006.

16. Ivan Damgard, Martin Geisler, and Mikkel Kroigard. Homomorphic encryption and secure comparison. Int. J. Appl.
Cryptol., 1(1):22–31, February 2008.

17. Ivan Damgard, Martin Geisler, and Mikkel Kroigard. A correction to efficient and secure comparison for on-line
auctions. Int. J. Appl. Cryptol., 1(4):323–324, August 2009.

18. Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some applications of paillier’s probabilistic
public-key system. PKC ’01, pages 119–136. Springer-Verlag, 2001.

19. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.stanford.

edu/craig.
20. Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC ’09, pages 169–178. ACM, 2009.
21. Oded Goldreich. Foundations of Cryptography, vol. 2. Cambridge University Press, 2001.
22. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM, 43(3):431–473,

1996.
23. Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker keeping secret all partial

information. STOC ’82, pages 365–377. ACM, 1982.
24. Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive keyword search over encrypted data. In

ACNS’04, pages 31–45. Springer-Verlag, 2004.
25. Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Privacy-preserving group

data access via stateless oblivious RAM simulation. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 157–167, 2012.

26. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than custom
protocols? In NDSS, 2012.

27. Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In NDSS, 2012.

28. Kristjn Valur Jnsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-party sorting and applications. In ACNS 11:
Proceedings of the 9th international conference on Applied Cryptography and Network Security, 2011.

29. Seny Kamara, Charalampos Papamanthou, and Tom Roeder. CS2: A Searchable Cryptographic Cloud Storage
System. http://research.microsoft.com/apps/pubs/default.aspx?id=148632.

30. Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

24

31. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computationally-private informa-
tion retrieval. In FOCS, pages 364–373. IEEE Computer Society, 1997.

32. Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. Efficient similarity search over encrypted data.
ICDE ’12, pages 1156–1167. IEEE Computer Society, 2012.

33. Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword search over encrypted data
in cloud computing. INFOCOM’10, pages 441–445, 2010.

34. Helger Lipmaa. An oblivious transfer protocol with log-squared communication. ISC’05, pages 314–328. Springer-
Verlag, 2005.

35. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information retrieval. Cam-
bridge University Press, 2008.

36. Cengiz Örencik, Murat Kantarcioglu, and Erkay Savaş. A practical and secure multi-keyword search method over
encrypted cloud data. CLOUD ’13, pages 390–397. IEEE Computer Society, 2013.

37. Cengiz Örencik and Erkay Savaş. Efficient and secure ranked multi-keyword search on encrypted cloud data. EDBT-
ICDT ’12, pages 186–195. ACM, 2012.

38. Cengiz Örencik and Erkay Savaş. An efficient privacy-preserving multi-keyword search over encrypted cloud data
with ranking. Distributed and Parallel Databases, 2014.

39. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, Lecture
Notes in Computer Science, 1999.

40. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21:120–126, 1978.

41. Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms. pages
169–177. Academic Press, 1978.

42. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted data. In
IEEE Symposium on Security and Privacy, SP ’00, 2000.

43. Mikhail Strizhov and Indrajit Ray. Multi-keyword similarity search over encrypted cloud data. In ICT Systems
Security and Privacy Protection, volume 428, pages 52–65, 2014.

44. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the
integers. In Proceedings of the 29th Annual International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’10, pages 24–43, Berlin, Heidelberg, 2010. Springer-Verlag.

45. Thijs Veugen. Comparing encrypted data. 2010. http://msp.ewi.tudelft.nl/sites/default/files/Comparing%

20encrypted%20data.pdf.
46. Brent Waters, Dirk Balfanz, Glenn Durfee, and D. K. Smetters. Building an encrypted and searchable audit log. In

Annual Network and Distributed System Security Symposium, 2004.
47. Andrew C. Yao. Protocols for secure computations. IEEE Computer Society, 1982.
48. Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Comput. Surv., 38(2), 2006.

25

