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Abstract. Multiple-bank e-cash (electronic cash) model allows users and merchants to open

their accounts at different banks which are monitored by the Center Bank. Some multiple-bank

e-cash systems were proposed in recent years. However, prior implementations of multiple-bank

e-cash all require the random oracle model idealization in their security analysis. We know some

schemes are secure in the random oracle model, but are trivially insecure under any instantiation

of the oracle. In this paper, based on the automorphic blind signature, the Groth-Sahai proof

system and a new group blind signature, we construct a fair multiple-bank e-cash scheme. The

new scheme is proved secure in the standard model and provides the following functionalities,

such as owner tracing, coin tracing, identification of the double spender and signer tracing. In

order to sign two messages at once, we extend Ghadafi’s group blind signature to a new group

blind signature. The new signature scheme may be of independent interest.

Key words: Fair multiple-bank e-cash; Automorphic blind signature; Groth-Sahai proof; Group

blind signature; Standard model.

1 Introduction

E-cash is the digital equivalent of regular money. Most proposed e-cash systems [2, 3, 4, 5, 6] in the

literature have been developed on the assumption that users and merchants have their accounts at the

same bank. But in the real world there exist the following model. Many banks issue real coin and the

users open their account in different banks. The new model is multiple-bank model. To reflect real coin

closer, many multiple-bank e-cash schemes [7, 8, 9, 10] have been proposed.

∗ This paper is the extended version of the paper [1] in CSS 2013.
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A multiple-bank e-cash system should provide some basic security properties, e.g., the anonymity

of users, the anonymity of banks, the transferability of coins and so on. Among them, anonymity of

users and banks is also seen as a fundamental property of multiple-bank e-cash and is well-studied [8].

But anonymity can also be used for blackmailing or money laundering by criminals without revealing

their identities. To make e-cash systems acceptable to government, a fair multiple-bank e-cash system

should be proposed to recovering the criminal’s identity.

Multiple-bank e-cash was firstly introduced by Lysyanskaya et al. [7]. In 2000, Jeong et al. con-

structed a multi-bank e-cash system [8] and analyzed the anonymity property. It provides both client

anonymity and bank anonymity. In 2008, a multiple-bank e-cash [9] is proposed by Wang et al. How-

ever, it does not satisfy the unforgeable requirement. In order to obtain unforgeability, Chen et al.

proposed an e-cash system [10] with multiple-bank.

The multiple-bank e-cash [7, 8, 9, 10] mentioned above are proposed in the random oracle model.

Some results [11, 12] have shown that some schemes proven secure in the random oracle model, are

not secure in the standard model. Groth and Sahai proof systems [13] are the most efficient non-

interactive zero-knowledge (NIZK) proof systems for bilinear groups most heavily used in cryptographic

constructions. However, these techniques used in the proposed multiple-bank e-cash [7, 8, 9, 10] do

not appear compatible with the Groth-Sahai toolbox, we had to find other techniques to construct the

coin. Thus, how to construct a fair multiple-bank e-cash and prove its security in the standard model

is a challenging and meaningful problem.

In this paper, we try to solve the above problems by proposing a fair multiple-bank e-cash in the

standard model. The new fair multiple-bank e-cash has the following functionalities, such as owner

tracing, coin tracing, identification of the double spender and signer tracing (More details on these

concepts are given in Section 2.3). Our contributions1 are listed as follows.

1. To obtain the group blind signature which can sign two messages at once, we extend Ghadafi’s group

blind signature [14] to the group blind signature which can sign two messages at once.

2. Using the new group blind signature, the automorphic blind signature [15] and Groth-Sahai proof

system, we construct a fair multiple-bank e-cash.

1Part of the approach has been published in our previous paper [1]. Compared to the work in [1], we have

two enhancements in this paper: (1) We extend Ghadafi’s group blind signature to the group blind signature

which can sign two messages at once. (2) We achieve the fair properties, such as owner tracing, coin tracing,

identification of the double spender and signer tracing.
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3. We also modify and extend the model of the transferable e-cash to include the bank anonymity.

Moreover, we give the security analysis of the new scheme in the standard model.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we present preliminaries

on the various cryptographic tools and assumptions. Definitions and the security properties of divisible

e-cash are presented in Section 3. In Section 4, we give our new group blind signature. In Section 5, we

present our construction and give efficiency analysis. We analyze the anonymity revocation in Section

6. In Section 7, We give the security proof. Finally we conclude in Section 8.

2 Preliminaries

This section introduces some preliminaries which will be used in this paper.

2.1 Mathematical Backgrounds

Our scheme uses the following mathematical backgrounds.

Bilinear Map. A pairing ê : G1×G2 → G3 is a bilinear mapping from two group elements to a group

element [13].

– G1,G2 and G3 are cyclic groups of prime order p. The elementsG,H generate G1 and G2 respectively.

– ê : G1 ×G2 is a non-degenerate bilinear map, so ê(G,H) generates G3 and for all a, b ∈ Zn we have

ê(Ga, Hb) = ê(G,H)ab.

– We can efficiently compute group operations, compute the bilinear map and decide membership.

Diffie-Hellman pair. A pair (X,Y ) ∈ G1 ×G2 is defined as a Diffie−Hellman pair [16], if there

exists a ← Zp such that X = Ga, Y = Ha, where G,H generate G1 and G2 respectively. We denote

the set of DH pairs by DH = {(Ga, Ha)|a ∈ Zp}.

2.2 Mathematical Assumptions

The unforgeability of the automorphic blind signature and our new group blind signature relies on

the Asymmetric Weak Flexible Computational Diffie-Hellman (AWF-CDH) [17] and q-Asymmetric

Double Hidden Strong Diffie-Hellman (q-ADH-SDH) [15]. The pseudo-randomness of Belenkiy, Chase,

Kohlweiss and Lysyanskaya’s (BCKL’s) simulatable verifiable random functions (sVRF) is based on

the q-Decisional Diffie-Hellman Inversion (q-DDHI) assumption [3]. The zero-knowledge of the Groth-

Sahai proof system rests on the Symmetric External Diffie-Hellman (SXDH).
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Definition 1 (SXDH). Let G1,G2 be cyclic groups of prime order generated by G1 and G2, re-

spectively, and let ê : G1 × G2 → G3 be a bilinear map. The SXDH assumption states that given

(Gi, G
ai
i , G

bi
i , G

ci
i ) for random ai, bi ∈ Zp(i = 1, 2), it is hard to decide whether ci = aibi or ci is

random.

Definition 2 (AWF-CDH). Let G1 ← G1, G2 ← G2 and a ← Zp be random. Given (G1, A =

Ga1 , G2), it is hard to output (Gr1, G
ar
1 , G

r
2, G

ar
2 ) with r 6= 0, i.e., a tuple (R,M,S,N) that satisfies

ê(A,S) = ê(M,G2), ê(M,G2) = ê(G1, N), êR,G2 = ê(G1, S).

Definition 3 (q-ADH-SDH). Let G,F,K ← G1, H ← G2 and x, ci, vi ← Zp be random. Given

(G,F,K,Gx;H,Y = Hx) and (Ai = (K ·Gvi)
1

x+ci ,

Bi = F ci , Di = Hci , Vi = Gvi ,Wi = Hvi) for 1 ≤ i

≤ q − 1, it is hard to output a new tuple (A = (K ·Gv)
1
x+c , B = F c, D = Hc, V = Gv,W = Hv) with

(c, v) 6= (ci, vi) for all i. i.e., one that satisfies

ê(A, Y ·D) = ê(K · V,H), ê(B,H) = ê(F,D), ê(V,H) = ê(G,W ).

Definition 4 (q-DDHI). On input g, gα, gα
2

, · · · , gαq ∈ G for a random α← Zp, it is computationally

infeasible to distinguish g
1
α from a random element of G with probability non-negligibly better than

1/2.

Note that our BCKL’s sVRF requires that the q-DDHI assumption holds either in G1 or G2.

Without loss of generality we fix this group to be G1.

2.3 Fair Properties.

A fair multiple-bank e-cash should provide the following properties.

– Owner tracing. The owner tracing is that the Center Bank can recover the identity of the coin in

case of dispute.

– Coin tracing. The coin tracing is that the Center Bank can trace the coin from the record of the

withdrawal protocol which is kept in the bank.

– Identification of the double spender. When a double-spending had happened, the bank can recover

the identity of the double spender.

– Signer tracing. The signer tracing is that the Center Bank can recover the signer’s identity in case

of dispute.
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2.4 Useful Tools

Now we revisit four useful tools: Groth-Sahai Proof, Automorphic Blind Signature, Ghadafi’s Group

Blind Signature and Strongly Simulatable Verifiable Random Functions (sVRF).

2.4.1 Groth-Sahai Proofs

Groth and Sahai [13] constructed an efficient non-interactive zero-knowledge proof systems. The

class of equations for our proof system are pairing-product equations (PPE). A PPE is an equation of

the form

n∏
j=1

ê(Aj , Yj)

m∏
i=1

ê(Xi, Bi)

m∏
i=1

n∏
j=1

ê(Xi, Yj)
γi,j = tT ,

where X1, · · · , Xm ∈ G1 and Y1, · · · , Yn ∈ G2 are the secret variables and Ai ∈ G1, Bi ∈ G2, γi,j ∈ Zp

and tT ∈ G3 are public constants. We use ε as a shorthand for the above pairing product equation.

Groth-Sahai proofs can be instantiated under different security assumptions but since as noted by

[18] the most efficient Groth-Sahai proofs are those instantiated under the SXDH assumption, we will

be focusing on this instantiation. Following the Ghadafi’s definitions [14], the proof system consists

of the algorithms GS = (GSSetup,GSProve,GSV erify,GSExtract,GSSimSetup,GSSimProve).

For ease of exposition, we also define the algorithm GSPOK(crs, {w1, . . . , wi}, {ε1 ∧ . . . ∧ εj}) [14]

which proves j multiple equations {ε1 ∧ . . . ∧ εj} involving witness (w1, . . . , wi) and returns a vector

of size j of Groth-Sahai proofs. We refer to Appendix A for the detailed descriptions of SXDH-based

commitments, randomization of the SXDH-based commitments, SXDH-based Proof and randomization

of the SXDH-based Proof.

Groth-Sahai Proof of Committing to Constants. Groth-Sahai proofs has many additional prop-

erties [16], of which we use the Lemma 5 in [16]. Note that we need to generate the Groth-Sahai proof

of committing to the user’s public key in our paper.

2.4.2 Automorphic Blind Signature

Abe et al. proposed an automorphic blind signature scheme [15] which is structure-preserving

signatures. It allows a user to obtain signatures on messages hidden from the signer. The message

signed may be one message or message vectors. We define the automorphic blind signature to sign one

message as ABSign() and the verification of the signature as ABSV erify(). We refer to Appendix

B for the detailed descriptions of Abe et al.’s automorphic blind signature on one message and two

messages.

Note that in the joining protocol of our paper, the group manager uses the automorphic blind

signature on one message to issue a certificate.
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2.4.3 Ghadafi’s Group Blind Signature

Ghadafi constructed a group blind signature [14] which provides the dual privacy requirement. On

the one hand, the signer can hide his identity and parts of the signature that could identify him.

On the other hand, the user can hide the message and parts of the signature which could lead to a

linkage between a signature and its sign request. Ghadafi presented two example instantiations. We

use the first construction. We refer to Appendix C for the detailed descriptions of Ghadafi’s group

blind signature.

Note that the Ghadafi’s group blind signature can only be used to sign a single message. Our

multiple-bank need the bank to be able to sign two messages, thus we extend the construction to sign

two messages at once in the Section 4. In order to extend the ghadafi’s group blind signature to sign

two messages, we employ the automorphic blind signature on message vectors.

2.4.4 BCKL’s sVRF

BCKL’s sVRF is the first efficient fully simulatable sVRF with a polynomial sized output domain.

Belenkiy et al. revisit the simulatable verifiable random functions [3] to obtain the BCKL’s sVRF

construction. It will be in the bilinear group setting. The new construction would be compatible with

the Groth-Sahai proof system. We refer to Appendix D for the detailed descriptions.

Note that to avoid forging the user’s coin, we use BCKL’s sVRF to construct the security tag of

the coin.

3 Definitions for Fair Multiple-bank E-cash

Our model builds on the model for the transferable e-cash from [4]. We convert the anonymity of the

model to that of uses and extend it to include the bank anonymity. The parties involved in a multiple-

bank e-cash are: a Center Bank CB, a group manager GM , many banks Bi and users Ui. CB recovers

the identity of the bank in case of dispute. GM controls which bank can join the group. Each bank can

dispense coin. The users and merchants open their accounts in different bank. Note that merchants M

are the special users and the opener is the Central Bank.

In the following, we firstly describe the algorithms for fair multiple-bank e-cash.

3.1 Algorithms

We represent a coin as coin, which its identity is Id. A fair multiple-bank e-cash system, denoted Π,

is composed of the following procedures, where λ is a security parameter.
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– ParamGen(1λ) is run by some trusted third party (TTP) which takes as input 1λ and output-

s the public key mbpk for the fair multiple-bank e-cash system, the group manager’s key pair

(pkGM , skGM ) and the Center Bank’s key pair (ckcb, ekcb).

– BKeyGen() is run by the banks Bi, to generate his pairs of personal secret/public key pairs

(bsski, bspki) and (bgski, bgpki). The former is used in the joining protocol. The latter is used

for issuing the group blind signature in the withdrawal protocol. We assume that the public key is

publicly accessible.

– UKeyGen() is run by the users Ui, to generate his pair of personal key pair (skUi , pkUi). Note that

the merchants M are special users.

– Join(Bi(mbpk, i, bsski),GM(skGM , i, bspki)) is an interactive protocol between a bank Bi and the

group manager GM . Bi generates the signature sigi on the second secret/public key (bgski, bgpki)

using the first secret/public key (bsski, bspki) and then sends sigi and bgpki to GM . GM generates

the certificate certi which is used for joining the group by Bi and then sends certi to Bi. If successful,

GM stores bgpki and sigi into the database regi. Bi becomes a member of the group and stores

(bgski, bgpki) and certi into the database gski.

– Withdraw(Ui(mbpk, L),Bi(bgski, bgpki, pkUi)) is an interactive protocol between a user Ui and an

anonymous bank Bi. If the protocol completes successfully, Ui obtains a coin coin of monetary value

L. Bi does not learn what the coin was. Ui knows who issued the coin, but others only know that

the coin is issued by the bank and does not know which bank issued the coin.

– Spend(Ui(coin, pkM , skUi , pkUi , ckcb),M(skM , pkM ,mbpk)) is an interactive protocol between a user

Ui and a merchant M . If the protocol completes successfully, Ui obtains the corresponding serves.

M obtains a coin coin.

– Deposit(M(coin, skM , pkM ,mbpk),Bj(pkM , DB,mbpk)) is an interactive protocol between a mer-

chant M and a bank Bj , where Bj may be Bi or not. If coin is not valid, Bj outputs ⊥. Else, Bj

checks whether the database DB contains a coin coin′ in which the serial number is the same as the

one in coin. If DB contains coin′, Bj outputs (coin, coin′) and executes algorithm Identify. Else, Bj

sends coin to Central Bank CB who adds coin to the database DB, and credits M ’s account. Note

that DB is regularly updated by CB.

– Identify(coin, coin′) is a deterministic algorithm executed by Bj . It outputs the public key pkUi and

a proof τG.

– VerifyGuilt(coin, pkUi , τG) is a deterministic algorithm that can be executed by anyone. It outputs

1 if τG is correct, and 0 otherwise.
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– Open(mbpk, ekcb, regj , coin) is a deterministic algorithm in which the Center Bank uses his extrac-

tion key ekcb to recover the identity pkBj of the bank and produces a proof τS attesting to this

claim.

– VerifySigner(mbpk, j, bspkj , coin, τS) is a deterministic algorithm which inputs an index j and returns

1 if the coin coin was signed by the bank Bj , and 0 otherwise.

In this paper, the Center Bank is a trust organizer. The Center Bank cannot recover an honest

user’s identity except that the bank supplies two double-spending coins. This is also the requirement

of the fair e-cash [19].

3.2 Global Variables and Oracles

This section gives the adversary’s means of interaction with his challenger in the security experiments

of a fair multiple-bank e-cash system. Therefore, we introduce global variables and oracles.

The global lists are: HBL is a set of honest banks; CBL is a set of corrupt banks; HUL is a set

of honest users; CUL is a set of corrupt users; SC is a set of coins supplied by the adversary in the

withdrawal protocol; OC is a set of coins owned by the oracle. DC is a set of coins deposited; RU is

a set of users who have received a coin from the adversary; SU is a set of users who have spent a coin

to the adversary. The lists HBL,CBL,HUL,CUL,RU, SU are empty at initialization. SC,OC,DC

are 0 at initialization. The set of oracles the adversary has access to in the experiments are defined as

follows:

– AddB(i): The adversary can use this oracle to add an honest bank Bi to the group.

– CrptB(i, bspki): The adversary can use this oracle to create a new corrupt bank Bi, where Bi’s

public key is bspki and the secret key is ⊥.

– AddU(i): The adversary can use this oracle to add an honest user Ui.

– CrptU(i, pkUi): The adversary can use this oracle to create a new corrupt user Ui, where Ui’s public

key is pkUi and the secret key is ⊥.

– Join(i): The oracle plays the bank side to engage in the joining protocol with the honest group

manager.

– Issue(i): This oracle models the scenario that the adversary has corrupted the group manager. The

adversary uses this oracle to engage in the joining protocol with an honest bank.

– BWith(i): This oracle plays the bank side of a withdrawal protocol. The adversary supplies the coin

to an honest user and updates SC by adding (i, coin).
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– UWith(i): This oracle plays the user in a withdrawal protocol. The adversary obtains the coin and

updates OC by adding (i, coin).

– Rcv(i): This oracle allows the adversary to receive a coin from an honest user Ui. The oracle plays

M in the spending protocol. It updates the set OC by adding a new entry (i, coin) and adds i to

the set RU .

– Spd(i): This oracle allows the adversary to spend a coin to an honest merchant M . The oracle plays

the user Ui in the spending protocol.

– BDepo(): The merchant M uses the oracle to deposit a coin in the deposit protocol. This oracle

gives the output of the deposit protocol and updates the set DC.

– UDepo(j, coin): The bank Bj uses the oracle to accept a coin in the deposit protocol. This oracle

plays the merchant M .

– Open(m,Σ): This oracle allows the adversary to ask for signatures to be opened by revealing the

identity of the bank Bj who signed them.

– Idt(coin, coin′): This oracle plays the role of the bank Bj in the Identify procedure.

3.3 Security Properties

In this section, we define the security properties by using a set of experiments.

3.3.1 Anonymity

Unlike the model of [3], ours adopts a indistinguishability-based formulation of anonymity. Anonymity

includes the bank anonymity and the user anonymity. In the following, we give the formal definition

of the bank anonymity and the user anonymity.

The bank anonymity guarantees that the adversary is unable to distinguish which bank produced

a signature. We require that the adversary is given two banks of its choice, the adversary still cannot

distinguish which of the two banks produced the signature. Formally, we have the following definitions

based on the experiment given below. Note that b∗ represents 0 or 1.

Definition 5 (Bank Anonymity). Let Π be a multiple-bank e-cash system. For an adversary A and

λ← N, we let SuccBAnon−bΠ,A (λ) = Pr[ExpBAnon−1Π,A (λ) = 1]− Pr[ExpBAnon−0Π,A (λ) = 1]. Π is said to be

bank anonymity if the function SuccBAnon−bΠ,A (·) is negligible for any polynomial-time adversary A.

Experiment ExpBAnon−bΠ,A (λ)

– (mbpk, pkGM , skGM , bsski, bspki, ckcb, ekcb)← AllGen(1λ);HBL := φ;HUL := φ;CBL := φ;CUL :=

φ; st := φ.

– (B0, B1, st1)← A(mbpk, pkGM : CrptB,AddB,BWith, Join,Open,Rcv, Spd, UDepo, Idt).
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– (st2, coin)←Withdraw(·, Bb).

– b∗ ← A(st2, coin : CrptB,AddB,BWith, Join,Open,Rcv, Spd, UDepo, Idt).

– Return b∗.

The user anonymity guarantees that the adversary, even helped by malicious users and banks, can

not learn anything about a spending. We require that the adversary is given two users of its choice, the

adversary still cannot distinguish which of the two users spends the coin to the adversary. Formally,

we have the following definition based on the experiment given below.

Definition 6 (User Anonymity). Let Π be a multiple-bank e-cash system. For an adversary A and

λ← N, we let SuccUAnon−bΠ,A (λ) = Pr[ExpUAnon−1Π,A (λ) = 1]− Pr[ExpUAnon−0Π,A (λ) = 1]. Π is said to be

user anonymity if the function SuccUAnon−bΠ,A (·) is negligible for any polynomial-time adversary A.

Experiment ExpUAnon−bΠ,A (λ)

– (mbpk, pkGM , skGM , bsski, bspki, ckcb, ekcb)← AllGen(1λ);HBL := φ;HUL := φ;CBL := φ;CUL :=

φ; st := φ.

– (U0, U1, st1)← A(mbpk, pkGM : CrptU,AddU, Issue, UWith,Rcv, Spd, UDepo, Idt).

– (st2, coin)← Spend(Ub, ·)

– b∗ ← A(st2, coin : CrptU,AddU, Issue, UWith,Rcv, Spd, UDepo, Idt).

– Return b∗.

3.3.2 Unforgeability

Unforgeability guarantees that no collection of users can ever spend more coins than they withdrew.

Formally, we have the following definition based on the experiment given below.

Definition 7 (Unforgeability). Let Π be a multiple-bank e-cash system. For an adversary A and

λ ← N, we let SuccunforΠ,A (λ) = Pr[ExpunforΠ,A (λ) = 1]. Π is said to be unforgeability if the function

SuccunforΠ,A (·) is negligible for any polynomial-time adversary A.

Experiment ExpunforΠ,A (λ)

– (mbpk, pkGM , skGM , bsski, bspki, ckcb, ekcb)← AllGen(1λ);HBL := φ;HUL := φ;CBL := φ;CUL :=

φ; st := φ; cont := true.

– While (cont=true)do {

(cont, st)← A(st,mbpk : AddB,CrptB, Issue,BWith,Rcv, Spd,BDepo).

Let qW be the number of successful calls to BWith.

Let qD be the number of successful calls to BDepo.

If qW · L < qD · L then return 1;}
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– Return ⊥.

3.3.3 Identification of Double-spender

The identification of double-spender guarantees that no collection of users, collaborating with the

merchant, can spend a coin twice without revealing one of their identities. Formally, we have the

following definition based on the experiment given below.

Definition 8 (Identification of Double-spender). Let Π be a multiple-bank e-cash system. For

an adversary A and λ ← N, we let SuccidentΠ,A (λ) = Pr[ExpidentΠ,A (λ) = 1]. Π identifies double spenders

if the function SuccidentΠ,A (·) is negligible for any polynomial-time adversary A.

Experiment ExpidentΠ,A (λ)

– (mbpk, pkGM , skGM , bsski, bspki, ckcb, ekcb)← AllGen(1λ);HBL := φ;HUL := φ;CBL := φ;CUL :=

φ; st := φ; cont := true.

– While (cont=true)do {

(st)← A(st,mbpk : AddB,CrptB, Issue,BWith,Rcv, Spd,BDepo, Idt).

If a call to BDepo outputs (coin∗) then cont← false.}

– If Identify(coin∗, ekcb) = 0 ∧ V erifyGuilt(coin∗, pki∗ , τG) = 0 then return 1.

– Return ⊥.

3.3.4 Exculpability

The exculpability guarantees that the bank, even when colluding with malicious users, cannot falsely

accuse honest users of having double-spent a coin. Formally, we have the following definition based on

the experiment given below.

Definition 9 (Exculpability). Let Π be a multiple-bank e-cash system. For an adversary A and

λ ← N, we let SuccexculΠ,A (λ) = Pr[ExpexculΠ,A (λ) = 1]. Π identifies double spenders if the function

SuccexculΠ,A (·) is negligible for any polynomial-time adversary A.

Experiment ExpexculΠ,A (λ)

– (mbpk, pkGM , skGM , bsski, bspki, ckcb, ekcb)← AllGen(1λ);HBL := φ;HUL := φ;CBL := φ;CUL :=

φ; st := φ; cont := true.

– (coin∗, i∗, τ∗)← A(st,mbpk : AddU,CrpU, Join, UWith,Rcv, Spd, UDepo, Idt).

– If Identify(coin∗) = (pki∗ , τ
∗) and V erifyGuilt(coin∗, pki∗ , τ

∗) = 1 and ski∗ 6=⊥, return 1;

– Return ⊥.
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4 New Group Blind Signature.

Ghadafi constructed a group blind signature [14] which can only be used to sign one message. In

Ghadafi’s construction, he uses the automorphic blind signature [15] which only signs one message

to construct the group blind signature. We extend the construction to sign two messages tusing the

automorphic blind signature [15] which can sign two messages at once. We refer to the Appendix B

for the automorphic blind signature on two messages.

We assume that the two messages (V,W ) and (M,N) are signed by using the new group blind

signature. Note that in our new group blind signature, the Center Bank is the opener in the Ghadafi’s

group blind signature. We define the new construction as NGBS().

The new group blind signature consists of nine algorithms: Group-Key-Generation, Bank-

Key-Generation, Join-Protocol, The-First-Round, The-Second-Round, Obtain, V erify, Open and

Judge.Group-Key-Generation(1λ) generates the group public key gpk = (bgpp, F,K, T, crs1, crs2, pkGM ).

Bank-Key-Generation(bgpp) generates two pairs of the secret/public key (ski, pki) and (sski, spki).

Join-Protocol allows the signer sii to join a group and obtain the group certificate certi. The-First-

Round allows the user Ui to blind the messages (V,W ), (M,N) to U and sends U and corresponding

proof Ψ to sii. The-Second-Round allows sii to generate the pre-signature Ω and send Ω to Ui. Obtain

allows Ui to compute a signature Σ. V erify output accept if Σ is valid. Open allows the opener to

recover sii’s identity. Judge allows anyone verify the correctness of Open. In the following, we give the

construction of the new group blind signature.

– The Group-Key-Generation, Bank-Key-Generation, Join-Protocol, Open, Judge and V erify are

the same as those of the Ghadafi’s group blind signature. They can be found in Appendix C.

– The-First-Round [Ui → Bi]. Choose q1, q2 ← Zp and compute Q11 = Gq1 , Q12 = Hq1 ,Q21 = Gq2 ,

Q22 = Hq2 , U1 = T q11 · V and U2 = T q22 ·M . Ui generates the proof ΨV and ΨM to the two messages

(V,W ) and (M,N). Finally, U sends (U1, ΨV ) and (U2, ΨM ) to Bi.

– The-Second-Round [Bi → Ui]. If (crs1, ΨV ) and (crs1, ΨM ) are valid, Bi obtains the signatures

σ0, σ1, σ2 and σ3 by using Abe et al.’s automorphic blind signature on two messages [16]. Bi also gives

the proof for the correct of the certificate Ωcerti ← GSPOK(crs2, {certi}, {ABSSign(gpk, (S1, S2),

certi) = 1}. The signatures σ0, σ1, σ2, σ3 and Ωcerti are a set of Groth-Sahai proofs of knowledge

of values satisfying pairing product equations. By the Lemma 3 from [16], we know the Groth-

Sahai proofs are homomorphic. We thus obtain the proof of the new group blind signature Ω =

{σ0, σ1, σ2, σ3, Ωcerti}. Finally, Bi sends (R11, R12, R21, R22, Ω) to U .
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– Obtain [U ]. If (crs2, Ω) is valid and ê(R11, H) = ê(G,R12), ê(R21, H) = ê(G,R22), U computes

R′11 = R11 ·Q11, R′12 = R12 ·Q12, R′21 = R21 ·Q21 and R′22 = R22 ·Q22. U re-randomizes Ω as Ω′.

Then U gives the proof Ω′ to the two messages (V,W ) and (M,N). Finally, U obtains the signature

Σ = Ω′.

The unforgeability of the automorphic blind signature and the Ghadafi’s group blind signature relies

on the AWF-CDH and q-ADH-SDH. Our new group blind signature is obtained from the automorphic

blind signature and the Ghadafi’s group blind signature. Therefore, the new group blind signature is

strongly unforgeable under q-ADH-SDH and AWF-CDH [14, 17].

5 Fair Multiple-Bank E-cash

Fair Multiple-bank e-cash allows users and merchants to open their accounts at different banks. It

supplies the users anonymity and the banks anonymity. The Central Bank regularly updates the

database DB. In the following, we give the details of this scheme.

5.1 General Description of the Scheme

We present an intuition on how our scheme is constructed. A coin is represented by a unique serial

number S, where S is a Diffie-Hellman pair. Using the Diffie-Hellman pair, we can use the automorphic

blind signature and new group blind signature.

The Fair multiple-bank e-cash scheme is composed of the joining protocol, the withdrawal protocol,

the spending protocol, the deposit protocol, the identify procedures and the verify procedures. Before

issuing the coin, the bank Bi firstly joins into a group for obtaining the certificate in the joining

protocol. Then Ui withdraws a coin from Bi. Ui can spend the coin to a merchant M . Finally, M

deposits the coin into Bj (j = i, or j 6= i). If Bj finds a double-spending of the coin, Bj executes the

identify procedures. Anyone can verify the correctness of the double-spenders and the signer (bank).

The framework map of our scheme is given in the following Figure 1.

The simple description on these protocols is given as follows.

– The Joining Protocol. Bi obtains the certificate for issuing the group blind signature from GM . Bi

owns two pairs of secret/public key. The first is used for obtaining the certificate. The second is used

for issuing the group blind signature. Bi firstly generates the signature on the second public key by

using the first secret key. Then Bi sends the signature and the second public key to GM . Finally,

GM generates the signature on the second public key and sends the signature (certificate) to Bi.
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Ui M

Bi

GM

CB

Bj

5 5

1 1

2

3

4

Fig. 1. Framework map.

(Note that: i = j or i 6= j. 1 represents “the Joining Protocol”. 2 represents “the Withdrawal Protocol”. 3

represents “the spending Protocol”. 4 represents “the Deposit Protocol”. 5 represents “the Signer Tracing”.)

– The Withdrawal Protocol. Ui withdraws a coin from Bi. Ui generates the serial number and the

commitment of the serial number. Then Ui sends the commitments of the serial number and his

public key to Bi. Bi verifies the correctness of the commitments. If they are correct, Bi generates

the group blind signature on the commitments and sends the signature to Ui. Ui transforms the

signature on the commitments to the signature on the serial number and the public key.

– The Spending Protocol. Ui spends a coin to M . M sends a random value to Ui. Ui firstly ran-

domizes the commitment on Ui’s public key and the signature into new commitment and signature.

Meanwhile, Ui generates the security tag and the corresponding correctness proof. Then Ui sends

the new coin to M . M verifies the correctness of the proof. If it is correct, M offers goods or services

to Bi.

– The Deposit Protocol. M deposits the coin to Bj . Bj verifies the validity of the coin. If it is valid,

Bj accepts the coin. Otherwise, Bj executes the following identify procedures.

– The Identify procedures. We assume that coin and coin′ are two double-spending coins. Bj recovers

the double-spender’s public key by using the security tag in two double-spending coin.

– The V erify procedures. Anyone can verify the correctness of the double-spender and the signer by

using the algorithms V erifyGuilt and V erifySigner respectively.
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5.2 Setup

On input of 1λ, then output is the public parameters of bilinear groups bgpp = (p,G1,G2,G3, ê, G,H),

where λ is the security parameter. We choose random elements F,K, T ∈ G1. On input bgpp run the

setup algorithms for Groth-Sahai proofs and return two reference strings crs1, crs2 and the correspond-

ing extraction keys ek1, ek2. The two reference strings are used in constructing Groth-Sahai proofs used

in the first round and the second round of the group blind signature. The Center Bank’s commitment

key and extraction key are (ckcb = crs2, ekcb = ek2). Choose sGM ← Zp and output the key pair of

group manager (skGM = sGM , pkGM = (S1 = GsGM , S2 = HsGM )). The public key of multiple-bank

e-cash is mbpk = (bgpp, F,K, T, crs1, crs2, pkGM ). H is a collision-resistant hash function.

Each bank Bi chooses sBi , s
′
Bi
← Zp and creates two key pairs (bsski = sBi , bspki = (S1 =

GsBi , S2 = HsBi )) and (bgski = s′Bi , bgpki = (S1 = Gs
′
Bi , S2 = Hs′Bi )). The first key pair is the bank’s

personal key pair. The second one is used for the group blind signature scheme. Each user Ui chooses

sUi ← Zp and generates the key pair (skUi = sUi , pkUi = (S1 = GsUi , S2 = HsUi )). Each merchant Mi

also creates the key pair (skMi
= sMi

, pkMi
= (S1 = GsMi , S2 = HsMi )).

5.3 The Joining Protocol

The joining protocol allows the bank to obtain a certificate from the group manager as described in

the following Figure 2. In order to issue a coin, each bank firstly joins into the group whose manager is

GM . Then the bank Bi obtains the certificate certi. Using the certificate and the key pair (bgsk, bgpk),

the bank issuing the coin. In the following, we give the details of the protocol.

1. (Bi → GM). The bank Bi generates the signature sigi = ABSign(bsski, bgpki). The signature is

used to stop a corrupt bank from framing others. Then Bi sends sigi, bgpki = (Sbg1 = Gs
′
Bi , Sbg2 =

Hs′Bi ) to the group manager GM .

2. (GM → Bi). GM checks whether the public key bgpki has existed in the database DBpk. If it is

not, GM verifies ê(Sbg1 , H) = ê(G,Sbg2 ) and ABSverify(bspki, bgpki, sigi) = 1. If they are OK, GM

generates the certificate certi = ABSign(skGM , bgpki). Finally, GM stores bgpki and certi into regi

and sends certi to Bi.

3.Bi verifies the correctness of the certificate. If ABSverify(pkGM , bgpki, certi) = 1, Bi stores

bgski, bgpki and certi into gski.
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Bi GM

sigi = ABSign(bsski, bgpki)

sigi,bgpki−−−−−−−−−−→

check bgpki in DBpk

verify ê(Sbg1 , H) = ê(G,Sbg2 )

ABSverify(bspki, bgpki, sigi) = 1

generate certi

regi = {bgpki, certi}
certi←−−−−−−−−−−

ABSverify(pkGM , bgpki, certi) = 1

obtain certi

gski = {bgski, bgpki, certi}

Fig. 2. The joining protocol.

5.4 The Withdrawal Protocol

The withdrawal protocol allows Ui to withdraw a coin from Bi as described in the following Figure 3.

It achieves the user anonymity and the bank anonymity. The bank anonymity guarantees that anyone

does not know which bank issued the coin except Ui. The reason is that the group signature issued by

the bank consists of the Groth-Sahai proofs and the proofs can be verified by the common reference

string. The message m is a Diffie-Hellman pair (m1,m2). cm includes the commitments to m1,m2 and

the Pedersen commitment to m1. Cckcbm is defined as the commitment to m using the commitment key

ckcb. In the following, we give the protocol in detail.

1. (Ui → Bi). Ui chooses sm ← Zp and generates the serial number S = (Gsm , Hsm). Ui also chooses

q1, q2 ← Zp and computes Q1 = Gq1 , Q2 = Hq1 , Q3 = Gq2 , Q4 = Hq2 . Ui picks at random nonces

ι1, ι2 ← Zp. To hide the serial number, Ui generates the following commitments cS by using the

commitment key ckcb and the correct proofs πS . Ui also generates the commitment cpkUi and the

correct proof πpkUi to Ui’s public key pkUi = (S1 = GsUi , S2 = HsUi ).

cS = (CckcbGsm , C
ckcb
Hsm , C

ckcb
Q1

, CckcbQ2
, U1 = T ι1 ·Gsm),

πS ← GSPOK{crs2, {Gsm , Hsm , Q1, Q2}, ê(Gsm , H) = ê(G,Hsm) ∧ ê(Q1, H) = ê(G,Q2) ∧

ê(T,Q2) · ê(Gsm , H) = ê(U1, H)},
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Ui Bi

choose sm ← Zp

generate the serial number S

choose q1, q2, ι1, ι2 ← Zp

compute cS , πS , cpkUi , πpkUi
L,pkUi ,cS ,πS ,cpkUi

,πpkUi−−−−−−−−−−−−−−−→

verify pkUi , πS , πpkUi

generate Σ(S,pkUi )

Σ(S,pkUi
)

←−−−−−−−−−−−−−−−

verify Σ(S,pkUi )

transform Σ(S,pkUi )
to NGBS(S, pkUi)

generate NGBS(S, cpkUi )

obtain coin

Fig. 3. The withdrawal protocol.

cpkUi = (Cckcb
G
sUi
, Cckcb

H
sUi
, CckcbQ3

, CckcbQ4
, U2 = T ι2 ·GsUi ),

πpkUi ← GSPOK{crs2, {GsUi , HsUi , Q3, Q4}, ê(GsUi , H) = ê(G,HsUi ) ∧ ê(Q3, H) = ê(G,Q4) ∧

ê(T,Q4) · ê(GsUi , H) = ê(U2, H)}.

Finally, Ui sends {L, pkUi , cS , πS , cpkUi , πpkUi} to Bi, where L is the monetary value.

2. (Bi → Ui). Bi verifies the public key pkUi , πS and πpkUi . If GSV erify(crs2, πS) = 1 and

GSV erify(crs2, πpkUi) = 1, Bi generates the Groth-Sahai proof Σ(S,pkUi )
on cS and cpkUi by using

our new group blind signature.

Finally, Bi sends NGBS(S, pkUi) to Ui.

3. Ui verifiesΣ(S,pkUi )
. If it is correct, Ui transformsΣ(S,pkUi )

to the group blind signatureNGBS(S, pkUi)

to S and pkUi . In the group blind signature, pkUi is a constant [14]. To hide the Ui’s identity, Ui

generates the group blind signature NGBS(S, cpkUi ) to S and cpkUi by using the Lemma 5 in [16].

Finally, Ui obtains the wallet coin = {S,L, cpkUi , NGBS(S, cpkUi )}.
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5.5 The Spending Protocol

The spending protocol allows Ui to spend a coin of monetary value L to the merchant M as described

in the following Figure 4.

M Ui

choose r ← Zp

compute R

R,pkM ,Date−−−−−−−−−−→

compute R

choose ι′2, t
′, µ′, ν′, ρ′ ← Zp

re-randomize cpkUi as c′pkUi

re-randomize NGBS(S, cpkUi ) as NGBS′(S, cpkUi )

compute Y and TA

generate πY , πT

obtain coin′

coin′←−−−−−−−−−−

verify πcoin′

Fig. 4. The spending protocol.

1. (M → Ui). M computes R = H(pkM ||Date) and sends {R, pkM , Date} to Ui.

2. (Ui → M). Ui also computes R = H(pkM ||Date). The commitment to Ui’s public key is

cpkUi = (Cckcb
G
sUi
, Cckcb

H
sUi
, CckcbQ3

, CckcbQ4
, U2 = T ι2 · GsUi ). In order to hide Ui’s public key, Ui choos-

es ι′2, t
′, µ′, ν′, ρ′ ← Zp and randomizes cpkUi and NGBS(S, cpkUi ) by RdCom and RdProve [16]

into c′pkUi
and NGBS′(S, cpkUi ).

Ui computes Y = G
1

sm+L and the security tag TA = pkUi · ê(Y,HR), where L is the monetary value.

Meanwhile, Ui gives the following NIZK proofs πY , πT . πY gives a proof that Y = G
1

sm+L and sm

in Y is equal to sm in S. πT gives a proof that the security tag TA is correctly formed.

πY ← GSPOK{crs2, {Y, sm}, {ê(φY , Hsm ·HL) = 1G3
∧ ê(Y/φY , Hθ) = 1G3

∧ ê(G,Hθ) = ê(G,H)}},

πT ← GSPOK{crs2, {TA, Y }, {φT = pkUi · ê(φY ′ , HR) ∧ ê(Y/φY ′ , Hθ) = 1G3 ∧ ê(TA/φT , Hθ) = 1G3 ∧

ê(G,Hθ) = ê(G,H)}},
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where φY , φT , φY ′ and θ = 1 are auxiliary variables [6].

Finally, Ui sends coin′ = {S,L,R, c′pkUi , TA, πcoin′ = {NGBS′(S, cpkUi ), πY , πT }} to M .

3.M verifies the proofs. If they are correct, M saves coin′ and offers goods and services to Ui.

5.6 The Deposit Protocol

M can deposit the coin to any bank. We assume that M has an account in Bj , where Bj may be Bi or

not. When M wants to deposit a coin coin′ to Bj , M just sends coin′ to Bj . Bj checks the validity of

πcoin′ and the consistency with S. If coin′ is not a valid coin, Bj rejects the deposit. Else, Bij checks if

there is already the serial number S in the database. If S is not found in the database, then Bj accepts

the deposit of the coin coin′, credits the M ’s account and adds coin′ in the database. Else, there is

an entry coin′′ = {S,L,R′, c′′pkUi , TA
′, π′coin′} in the database. Then, Bj checks the freshness of R in

coin′ compared to coin′′. If it is not fresh, M is a cheat and Bj refused the deposit. If R is fresh, Bj

accepts the deposit of the coin′, credits the M ’s account and add (coin′, coin′′) to the list of double

spenders. For recovering the identity of double spender, Bj executes the Identify algorithm.

5.7 Identify

The Identify algorithm makes sure that when a double-spending is found, Bj recovers the identity of

double spender. The description of the Identify algorithm is as follow.

Bj knows two coins coin1 = {S,L,R1, {c′pkUi }1, TA1, π1} and coin2 = {S,L,R2, {c′pkUi }2, TA2, π2}.

Therefore, Bj directly recovers the public key pkUi by computing (TAR2
1 /TAR1

2 )
1

R2−R1 .

5.8 Verify

Anyone can verify the correctness of the double spenders and the signer (bank). In order to verify the

correctness of the double spenders, anyone executes the algorithm V erifyGuilt. One can parse the

coin1 and coin2 as (S,L,R1, {c′pkUi}1, TA1, π1) and (S,L,R2, {c′pkUi}2, TA2, π2) and next run Identify

on these values. If the algorithm Identify returns a public key, then one can check if π1 is consistent

with (S,L,R1, {c′pkUi }1, TA1) and if π2 is consistent with (S,L,R2, {c′pkUi}2, TA2).

In order to verify the correctness of the signer (bank) who is opened by Center Bank, anyone

executes the algorithm V erifySigner. The input of the algorithm is (mbpk, j, bspkj ,m, πm, τS). After

verifying the correctness of πm, anyone can check if the signature is signed by the bank.
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5.9 Efficiency Analysis

We compare the efficiency of the multiple-bank e-cash [10, 8] with our scheme and analyze the security

model of them in the following Table 1. It is somehow hard to quantify the exact cost of the spending

protocol in [8] as the instantiation of the SKREP is very complex. We thus simplify the comparison

by stating the total multi-exponentiations needed.

We give the following definitions. ABS and ABV represent the computation complexity of the au-

tomorphic blind signature and the verification of the automorphic blind signature. NGBS and NGBV

represent the computation complexity of the new group blind signature and its verification. GSP and

GSV represent the computation complexity of the Groth-Sahai proof and its verification. E represents

the computation complexity of the verification of a pairing product equation. EXP represents a mod-

ular exponentiation. REC and REP represent the computation complexity of the re-randomization

of the Groth-Sahai commitments and proofs. C and Π represent the computation complexity of the

Groth-Sahai commitments and proofs. Assuming that Groth-Sahai proofs are instantiated in the SXDH

setting, we get the following efficiency.

We assume that C1 is the computation cost of the joining protocol. C2 is the efficiency of the with-

drawal protocol. C3 is the efficiency of the spending protocol. C4 is the efficiency of the deposit protocol.

C5 is the security model. ME represents the number of multi-exponentiation. ROM represents random

oracle model. SM represents standard model.

The efficiency of the Joining Protocol. In our joining protocol, the bank Bi needs to generate

and verify an automorphic blind signature. Thus, Bi needs (1ABS + 1ABV ) = 17ME. GM needs to

verify a pairing product equation, and generate and verify an automorphic blind signature. Thus, GM

needs (1E + 1ABS + 1ABV ) = 17ME. In Chen’s scheme [10], Bi and GM need 62ME and 273ME

respectively. In Jeong’s scheme [8], Bi and GM need 11ME and 12ME respectively.

The efficiency of the Withdrawal Protocol. In our withdrawal protocol, Ui generates two

Groth-Sahai commitments and proofs, does two new group blind signature verifications, verifies two

pairing product equations and re-randomizes two Groth-Sahai commitments and proofs. So Ui needs

2(C+Π+NGBV +GSV +E+RE) = 36ME. The bank Bi needs to verify two Groth-sahai proofs and

does two new group blind signatures. Thus, Bi needs 2(GSV + NGBS) = 17ME. In Chen’s scheme

[10], Bi and Ui need 91ME and 71ME respectively. In Jeong’s scheme [8], Bi and GM need 10ME

and 19ME respectively.

The efficiency of the Spending Protocol. In our spending protocol, Ui re-randomizes one

Groth-Sahai commitment and proof, generates Y and the security tag T and two correct proofs. Thus,
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Ui needs 2(REC+REP +EXP +GSP ) = 26ME. M verifies the correctness of the coin. M needs to

verify two Groth-Sahai proofs and new group blind signatures. Thus, M needs 2(GSV + NGBV ) =

101ME. In Chen’s scheme [10], M and Ui need 580ME and 61ME respectively. In Jeong’s scheme

[8], M and Ui need 12ME and 11ME respectively.

The efficiency of the Deposit Protocol. In our deposit protocol, M deposits the coin to Bi. Bi

verifies the correctness of the coin. Thus, Bi also needs 2(GSV +NGBV ) = 76ME. In Chen’s scheme

[10], Bi needs 285ME. In Jeong’s scheme [8], Bi needs 12ME.

The security model. Our scheme is proven secure in the standard model. Chen’s scheme [10] and

Jeong’s scheme [8] are proven secure in the random oracle model.

Table 1. Efficiency comparison between related work and our scheme.

C1 C2 C3 C4 C5

[10]
Bi 62ME Bi 91ME M 580ME

Bi 285ME ROM
GM 273ME Ui 71ME Ui 61ME

[8]
Bi 11ME Bi 10ME M 12ME

Bi 12ME ROM
GM 12ME Ui 19ME Ui 11ME

Ours
Bi 17ME Bi 17ME M 101ME

Bi 76ME SM
GM 17ME Ui 36ME Ui 26ME

Based on the above analysis, the number of multi-exponentiation in our scheme is less than one in

Chen’s scheme [10], but more than Jeong’s scheme [8]. However, our scheme is proven secure in the

standard model. We know that the scheme proven secure in the standard model is more securer than

one proven secure in the random oracle model. Therefore, our scheme is more secure.

6 Anonymity Revocation

The fair e-cash system provides three functionalities, i.e., owner tracing, coin tracing and identification

of the double spender. To obtain the signer bank’s identity in the multiple-bank e-cash, we also supplies

the signer tracing. The identification of the double spender is given in the section 5.7. In this section,

the coin is coin = {S,L, cpkUi , NGBS(S, cpkUi )} in the withdrawal protocol, and the coin is coin′ =

{S,L,R, c′pkUi , TA, πcoin′} in the spending protocol. When Ui withdraws a coin from Bi, Bi obtains

{cS , cpkUi} from Ui. In the following, we give the owner tracing, coin tracing and the signer tracing.
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6.1 Owner Tracing

Owner tracing is that the Central Bank CB can recover Ui’s identity from the coin coin. coin includes

the commitment cpkUi to Ui’s public key. cpkUi is obtained by using the CB’s commitment key. To

trace the owner of the coin, Bi sends coin to CB. CB extracts the owner’s public key pkUi by using

the extraction key ekcb.

6.2 Coin Tracing

Coin tracing is that the Center Bank CB can trace the coin from the record of the withdrawal protocol

which is kept in the bank. When Ui withdraws coin from Bi, Bi obtains {cS , cpkUi} from Ui. In

order to achieve the coin tracing, Bi sends cS to CB. CB extracts the serial number S from cS by

using the extraction key ekcb. Then CB sends the serial number S to Bi. When Ui spends the coin

coin′ = {S,L,R, c′pkUi , TA, πcoin′} to M , Bi can trace the coin from the record of the withdrawal

protocol by using S which is extracted from cS .

6.3 Signer Tracing

Signer tracing is that the Center Bank CB can recover the signer Bi’s identity. Ui obtains the

group blind signature NGBS(S, cpkUi ). Using the Open algorithm in Section 3.1, CB extracts

(σS , σpkUi , certi, bgpki) from NGBS(S, cpkUi ) in coin. Therefore, we know which bank signs the coin.

7 Security Analysis

This section gives the security analysis of the scheme. The scheme fulfills all the security requirements

given in Section 3.3. An adversary is defined as A. A challenger is defined as C. A series of games is

given between A and C to prove the security properties.

Theorem 1. The scheme provides the bank anonymity under the following assumptions: the SXDH

assumption and the zero-knowledge of the Groth-Sahai proofs.

Proof. The advantage that A breaks the bank anonymity is AdvBAnonΠ,A (λ), where Π is our multiple-

bank e-cash system. In the following, a series of games is given to prove that AdvBAnonΠ,A (λ) is negligible.

Game 0. This is the real scheme where the real oracle Join,BWith are executed at each joining

and withdrawal query.
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Game 1. As Game 0 except that in ParamGen the public key mbpk of the system is replaced by

the perfectly hiding one. Under SXDH assumption, this change is negligible.

Game 2. As Game 1 except that in oracle Join the signature of the bank’s public key issuing the

group signature is replaced by the simulation signature which is generated using the perfectly hiding

public key. The certificate is zero-knowledge proofs. We know the Groth-Sahai is zero-knowledge, this

Game and Game 1 are indistinguishable.

Game 3. As Game 2 except that in oracle BWith the group signature is replaced by the simulation

group signature which is generated using the perfectly hiding public key. The group signature is also

zero-knowledge proofs. Thus, this Game and Game 2 are indistinguishable.

By the above series of games, we know if A can distinguish which bank signs the coin he can break

the SXDH assumption and the zero-knowledge of the Groth-Sahai proofs.

Theorem 2. This scheme provides the user anonymity under the following assumptions: the SXDH

assumption, the zero-knowledge of the Groth-Sahai proofs and the pseudo-randomness of the BCKL’s

sVRF.

Proof. The advantage that A breaks the user anonymity is AdvUAnonΠ,A (λ), where Π is our multiple-

bank e-cash system. In the following, a series of games is given to prove that AdvUAnonΠ,A (λ) is negligible.

Game 0. This is the real scheme where the real oracle Issue, Spd are executed at each joining and

spending query.

Game 1. As Game 0 except that in ParamGen the public key mbpk of the system is replaced by

the perfectly hiding one. Under SXDH assumption, this change is negligible.

Game 2. As Game 1 except that in oracle Issue the certificate is replaced by the simulation certifi-

cate which is generated using the perfectly hiding public key. The certificate is zero-knowledge proofs.

We know the Groth-Sahai proofs is zero-knowledge, this Game and Game 1 are indistinguishable.

Game 3. As Game 2 except that in oracle Spd the NIZK proof is replaced by the simulation

proof which is generated using the perfectly hiding public key. We know the Groth-Sahai proofs is

zero-knowledge, this Game and Game 1 are indistinguishable.

Game 4. As Game 3 except that in oracle Spd the security tag is replaced by the random value.

The security tag is generated by using the BCKL’s sVRF. If A can distinguish between this Game and

Game 3 we can break the pseudo-randomness of the BCKL’s sVRF.

Game 5. As Game 4 except that in oracle Spd the commitment of user’s public key is replaced

by the random value. The commitment of user’s public key is generated by the re-randomness of the
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Groth-Sahai proof. IfA can distinguish between this Game and Game 4 we can break the re-randomness

of the Groth-Sahai proofs.

By the above series of games, we know if A can distinguish which user spends the coin he can

break the SXDH assumption, pseudo-randomness of the BCKL’s sVRF and the zero-knowledge and

re-randomness of the Groth-Sahai proofs.

Theorem 3. This scheme provides unforgeability under the following assumptions: the soundness of

the Groth-Sahai proof and the unforgeability of the new group blind signature.

Proof. The advantage that A breaks the user anonymity is AdvunforΠ,A (λ). A deposited coin can

be parsed as coin = (S,L,R, cpkUi , TA,NGBS(S, cpkUi ), πY , πT ). We consider the following multiple

games.

Game 0. This is the real scheme.

Game 1. As Game 0 except that in oracle UDepo A supplies a coin that the serial number is the

same as that in coin, but the user’s public key is different. If the event occurs, one of user’s public

keys does not correspond to the opening of cpkUi , c
′
pkUi

in which case we found a forgery for one of the

two new group signature or if we broke the soundness of the Groth-Sahai proof.

Game 2. As Game 1 except that in oracle UDepo A supplies a coin that the serial number is not

obtained by the BWith query. If the event occurs, we break the unforgeability of the new group blind

signature. This is because a serial number is correspond to a group signature. The group signature is

not obtained by the BWith query. Thus, we break the unforgeability of the new group blind signature.

It is known A can win if he breaks the soundness of the Groth-Sahai proof and the unforgeability

of the new group blind signature.

Theorem 4. This scheme provides identification of double-spender under the following assumptions:

the pseudo-randomness of the BCKL’s sVRF, the soundness of the Groth-Sahai proof, the unforge-

ability of the new group blind signature and the collision-resistant of the hash function.

Proof. The advantage that A breaks the user anonymity is AdvidentΠ,A (λ). A successful adversary A

in the identification game outputs two coins (coin1, coin2) that verify and have the same serial number

S but different merchant.

Game 0. This is the real scheme.

Game 1. As Game 0 except that in BWith one of user’s public keys does not correspond to the

opening of cpkUi , c
′
pkUi

in which case we found a forgery for one of the two new group signature or if

we broke the soundness of the Groth-Sahai proof.
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Game 2. As Game 1 except that in security tag the sm is different. If the event occurs, we breaks

the the pseudo-randomness of the BCKL’s sVRF or zero-knowledge of the Groth-Sahai proof.

Game 3. As Game 2 except that the two coin coin1 and coin2 are such that (pkM1 ||Date1) 6=

(pkM2
||Date2) but result in the same hash value H(pkM1

||Date1) = H(pkM2
||Date2). If the hash

function is collision-resistant, this game is indistinguishable from Game 2.

It is known A can win if he breaks the soundness of the Groth-Sahai proof, the unforgeability of

the new group blind signature and the collision-resistant of the hash function.

Theorem 5. This scheme provides exculpability under the following assumptions: the pseudo-

randomness of the BCKL’s sVRF, the soundness of the Groth-Sahai proof, the unforgeability of the

new group blind signature and the collision-resistant of the hash function.

Proof. The advantage that A breaks the user anonymity is AdvexculΠ,A (λ). A successful adversary A

acting the bank in the exculpability game outputs two coins (coin1, coin2) that verify and have the

same serial number S but different merchant.

Game 0. This is the real scheme.

Game 1. As Game 0 except that one certificate of two coins is not issued by the group manager.

If the event occurs, we break the unforgeability of the automorphic blind signature.

Game 2. As Game 1 except that in two coins the group signature is different. If the event occurs,

we break the unforgeability of the new group blind signature.

Game 3. As Game 2 except that in two coins the security tag is different. If the event occurs, we

break the pseudo-randomness of the BCKL’s sVRF.

It is known A can win if he breaks the pseudo-randomness of the BCKL’s sVRF and the unforge-

ability of the new group blind signature and the automorphic blind signature.

8 Conclusion

In this paper, we present a fair multiple-bank e-cash which is proved secure in the standard model.

We propose a new group blind signature by extending the Ghadafi’s group blind signature. Then we

achieve the dual privacy requirement (the users anonymity and the bank anonymity) by using the

new group blind signature. To hide the identity of the user, we re-randomize the commitment and

corresponding proof to the user’s public key by using the re-randomness of the Groth-Sahai proofs

system. To ensure the security of the security tag, we use the pseudo-randomness of BCKL’s sVRF.

Finally, we prove the security properties in the standard model.
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Appendix A

In this section, We define SXDH-based commitments, randomization of the SXDH-based com-

mitments, SXDH-based Proof, randomization of the SXDH-based Proof and Groth-Sahai Proof of

Committing to Constants as follows.

– SXDH-based commitments.

– Setup. On input of the public parameter pp = (p,G1,G2,G3, ê, G,H), choose α1, α2, t1, t2 ∈ Zp,

then output is crs = (U1,U2,V1,V2), where U1 = (U1,1, U1,2) = (G,Gα1),U2 = (U2,1, U2,2) =

(Gt1 , Gα1t1),V1 = (V1,1, V1,2) = (H,Hα1) and V2 = (V2,1, V2,2) = (Ht1 , Hα1t1).

– Commit. Define the commitment to a group element X ∈ G1 as

CX = Com(crs,X, r = (r1, r2)) = (Ur11,1 · U
r2
2,1, X · U

r1
1,2 · U

r2
2,2),

where r1, r2 ∈ Zp. So the commitment to Y ∈ G2 is

CY = Com(crs, Y, s = (s1, s2)).

where s1, s2 ∈ Zp.

– Randomization to commitment. Define the randomization to the commitment CX as

RdCom(crs, CX , r
′) = CX � Com(crs, 1, r′) = (CX,1 · U

r′1
1,1 · U

r′2
2,1, CX,2 · U

r′1
1,2 · U

r′2
2,2),

where r′ = (r′1, r
′
2), r′1, r

′
2 ∈ Zp, � denotes component-wise multiplication.

– SXDH-based proof .

Groth-Sahai proofs assert that some group elements satisfy the class of pairing-product equations ε

mentioned above.

Following the definition in [16], we also define the prove that Xi ∈ G1, Yi ∈ G2 satisfy ε as

Prove(crs, (Xi, ri)
m
i=1, (Yj , sj)

n
j=1, ε;Z), where ri, sj ∈ Z2

p, and Z ∈ Z2×2
p is the internal random-

ness.

– Randomization to proof. It is similar to the randomization to the commitment. We random the

proof by replacing the internal randomness of the commitment. Therefore, the randomization to

proof is defined as
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RdProve(crs, (Xi, ri + r′i)
m
i=1, (Yj , sj + s′j)

n
j=1, {ε1 ∧ . . . ∧ εj}),

where r′i, s′j ∈ Z2
p, r′i and s′j are the randomness of the commitments CXi = Com(crs,Xi, r

′
i) and

CYj = Com(crs, Yj , s
′
j).

Appendix B

In this section, we give the simple descriptions of Abe et al.’s Automorphic Blind Signature on one

message and two messages.

Automorphic Blind Signature on one Message. Note that algorithm(a) represents the input

of the parameters of the algorithm is a, and protocol[A ↔ B] represents A and B interacts in the

protocol.

– Setup(1λ). Output the public parameters of bilinear groups bgpp = (p,G1,G2,G3, ê, G,H), where

λ is the security parameter. Choose random elements G,F,K, T ∈ G1, H ∈ G2 and output the

public parameters abspp = (bgpp, F,K, T ). On input bgpp run the setup algorithms for Groth-

Sahai proofs and return the reference string crs and the extraction key ek. The message space is

DH = {(Gm, Hm)|m ∈ Zp} = {M1,M2}.

– Key−Generation. Choose s← Zp and set S1 = Gs, S2 = Hs. The public key is pk = (S1, S2). The

signing key is sk = s.

– The−First−Round [U → Signer]. Choose q ← Zp and computeQ1 = Gq,Q2 = Hq and U = T q ·M1.

U generates the proof Ψ ← GSPOK(crs, {M1,M2, Q1, Q2}, {ê(M1, H) = ê(G,M2) ∧ ê(Q1, H) =

ê(G,Q2) ∧ ê(T,Q2) · ê(M1, H) = ê(U,H)}). Finally, U sends (U, Ψ) to signer.

– The−Second−Round [Signer → U ]. If Ψ is valid the signer chooses c, r ← Zp and computes A = (K ·

T r · U)
1
s+c , C1 = F c, C2 = Hc, R1 = Gr, R2 = Hr. Finally, the signer sends σ = (A,C1, C2, R1, R2)

to U .

– Obtain [U ]. If ê(R1, H) = ê(G,R2), ê(F,C2) = ê(C1, H) and ê(A,S2 ·C2) = ê(K ·M1, H) · ê(T,R2),

U computes R′i = Ri ·Qi for i = 1, 2. U outputs Ω ← GSPOK(crs, {A,C1, C2, R
′
1, R

′
2}, {ê(R′1, H) =

ê(G,R′2) ∧ ê(C1, H) = ê(F,C2) ∧ ê(A,S2 · C2) · ê(T−1, R2) = ê(K ·M1, H)}). Finally, U obtains the

signature Σ = Ω.

– V erify(pk,M1,M2, Σ, crs). Anyone can verify the correctness of the blind signature. The output is

1 or 0.

Automorphic Blind Signature on Two Messages. In order to sign two messages, Fuchsbauer gives

the following method in [16] to finish a generic transformation from the automorphic blind signature

on single message to one singing two messages at once. The messages signed are (V,W ) and (M,N)
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which are the Diffie-Hellman pair. We generate two key pairs (vk, sk) and (vk∗, sk∗). The first one is

used for signing vk∗. The second one is used for signing the messages.

– Sign. The signature is σ(V,W ),(M,N) = (vk∗, σ0 = ABSign(sk, vk∗), σ1 = ABSign(sk∗, (M,N)),

σ2 = ABSign(sk∗, (V,W )� (M,N)), σ3 = ABSign(sk∗, (V,W )3 � (M,N))),

where � denotes applying the group operation componentwise.

– V erify. In order to verify the signature, we verifyABSV erify(vk, vk∗, σ0), ABSV erify(vk∗, (M,N), σ1),

ABSV erify(vk∗, (V,W )� (M,N), σ2) and ABSV erify(vk∗, (V,W )3 � (M,N), σ3).

Appendix C

In this section, we give the description of Ghadafi’s group blind signature. We define by Sii the ith

signer. We define by GM the group manager. We define by Ui the ith user. In the following, we give

the simple description. Note that algorithm(a) represents the input of the parameters of the algorithm

is a, and protocol[A↔ B] represents A and B interacts in the protocol.

– Group−Key−Generation(1λ). Output the public parameters of bilinear groups bgpp = (p,G1,G2,G3, ê, G,H),

where λ is the security parameter. Choose random elements G,F,K, T ∈ G1, H ∈ G2 and output

abspp = (bgpp, F,K, T ). On input bgpp run the setup algorithms for Groth-Sahai proofs and return

two reference strings crs1, crs2 and the corresponding extraction keys ek1, ek2. The two reference

strings and the extraction keys are used for the first round and the second round of the auto-

morphic blind signature scheme which is used for issuing the group blind signature. The second

extraction key ek2 is given to the opener for recovering the malicious bank. On input bgpp and

output the key pair of group manager (skGM , pkGM ). The public key of group blind signature is

gpk = (abspp, crs1, crs2, pkGM ).

– Signer −Key − Generation [Sii]. On input bgpp run the setup algorithms for automorphic blind

signature scheme and return two key pairs (ski, pki) and (sski, spki). The first one is used for issuing

the group blind signature. The second one is used for signing the public key bgpki in the joining

protocol.

– Join − Protocol [Sii ↔ GM ]. Sii chooses s ← Zp. The secret key is ski = s. The public key is

pki = (S1 = Gs, S2 = Hs). Sii gives the signature sigi ← ABSSign(ski, spki) for spki using ski.

Finally, Sii sends sigi, pki to GM . If S1 and S2 are well-formed, pki is signed by GM , and sigi

is valid, GM gives the signature certi ← ABSSign(skGM , pki) which is used for Bi’s certificate.

The registration information is set to regi = (pki, sigi). If certi is valid, Bi’s group signing key is

(ski, pki, certi).
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– The−First−Round [Ui → Sii]. Choose q ← Zp and compute Q1 = Gq,Q2 = Hq and U = T q ·M1.

Ui generates the proof Ψ ← GSPOK(crs1, {M1,M2, Q1, Q2}, {ê(M1, H) = ê(G,M2) ∧ ê(Q1, H) =

ê(G,Q2) ∧ ê(T,Q2) · ê(M1, H) = ê(U,H)}). Finally, Ui sends (U, Ψ) to Bi.

– The − Second − Round [Sii → Ui]. If (crs1, Ψ) is valid the signer chooses c, r ← Zp and computes

A = (K · T r · U)
1
s+c , C1 = F c, C2 = Hc, R1 = Gr, R2 = Hr. Bi sets σ = (A,C1, C2, R1, R2). In

order to hide the parts which identify Sii’s identity, Sii commits to certi, pki, A,C1 and C2. Then

Sii gives the proof Ω ← GSPOK(crs2, {certi, S1, S2, A,C1, C2}, {ABSSign(gpk, (S1, S2), certi) =

1 ∧ ê(S1, H) = ê(G,S2) ∧ ê(C1, H) = ê(F,C2) ∧ ê(A,S2 · C2) · ê(T−1, R2) = ê(K · U,H)}). Finally,

Sii sends (R1, R2, Ω) to Ui.

– Obtain [Ui]. If (crs2, Ω) is valid and ê(R1, H) = ê(G,R2), Ui computes R′i = Ri ·Qi for i = 1, 2. Ui re-

randomizes Ω as Ω′. Then Ui gives the proof Ω′ ← GSPOK(crs2, {certi, S1, S2, A,C1, C2, R
′
1, R

′
2},

{ABSSign(gpk, (S1, S2), certi) = 1 ∧ ê(S1, H) = ê(G,S2) ∧ ê(C1, H) = ê(F,C2) ∧ ê(A,S2 · C2) ·

ê(T−1, R2) = ê(K ·M1, H) ∧ ê(R′1, H) = ê(G,R′2)}). Finally, Ui obtains the signature Σ = Ω′.

– V erify(gpk,Σ). Anyone can verify the correctness of the blind signature Σ. The output is 1 or 0.

– Open(crs2, ek2, Σ). The opener extracts the public key pki, the signature σ and the membership

certificate certi from the proof Σ.

– Judge(gpk, spki,M1,M2, Σ, τ = (i, A,C1, C2, R
′
1, R

′
2, certi, pki, sigi)). If i > 0, ê(A,S2 · C2) ·

ê(T−1, R2) = ê(K ·M1, H) and ê(R′1, H) = ê(G,R′2), ABSV erify(spki, pki, sigi) = 1, ê(C1, H) =

ê(F,C2) and ABSV erify(pkGM , pki, certi) = 1, the opener’s claim is correct.

Appendix D

In this section, we give the description of BCKL’s sVRF.

– Setup(1k). Output parameters paramsV RF = ((p,G1,G2,G3, G,H), paramsGS), where paramsGS

is the parameters of the corresponding Groth-Sahai NIZK proof system.

– Keygen(paramsV RF ). Pick a random seed s ← Zp and random opening information opens, and

output secret key sk = (s, opens) and public key pk = Com(hs, opens).

– Eval(paramsV RF , sk, x). Compute y = g1/(s+x).

– Prove(paramsV RF , sk, x). Compute y = g1/(s+x) and Cy = Com(y, openy) from random opening

openy. Next create the following two proofs: π1 is a composable NIZK proof that Cy is a commitment

to y; π2 is a GS composable witness indistinguishable proof that Cy is a commitment to Y and pk

is a commitment to hs.

– V erify(paramsGS , pk, x, y, Cy, π1, π2). Use the Groth-Sahai verification to verify π1 and π2 with

respect to Cy, x, pk, y.


