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Abstract. In this paper we introduce the first authenticated encryption scheme based on a
hash function, called COFFE. This research has been motivated by the challenge to fit se-
cure cryptography into constrained devices – some of these devices have to use a hash function,
anyway, and the challenge is to avoid the usage of an additional block cipher to provide authenti-
cated encryption. COFFE satisfies the common security requirements regarding authenticated
encryption, i.e., IND-CPA- and INT-CTXT-security. Beyond that, it provides the following
additional security features: resistance against side-channel attacks and INT-CTXT security
in the nonce-misuse scenario. It also support failure-friendly authentication under reasonable
assumptions.
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1 Introduction

The main goal for our work is to provide authenticated encryption in constrained implemen-
tation environments where communication security is required, such as devices connected to
the Internet of Things. That class of devices typically has a small microprocessor with no
direct hardware support for any cryptographic primitives, so that all cryptography must be
implemented in software. There is only limited memory available to hold executable object
code on these processors, so it is imperative to provide the needed cryptographic services
in the most compact way possible. One way to achieve this compactness is through the
careful implementation of cryptographic primitives. However, it is also possible to facilitate
compactness for an overall system by minimizing the number of primitives that must be
included in an implementation. In this work we present a design for an on-line authenticated
encryption (AE) scheme suitable for restricted devices using a standardized or soon-to-be
standardized hash function, e.g., SHA-1 [23], SHA-2 [24], or SHA-3 [4]. Implementations of
this scheme can omit a block cipher mode of operation; this is a useful approach since the
code size for the block cipher is typically greater than that of the hash function, and hash
functions are used in public key cryptography as well.

We focus on the challenge of providing an authenticated encryption scheme that is easily
accessible to developers. To provide this accessibility, we take the approach of defining a hash
function mode of operation. That is, our AE scheme uses a cryptographic hash function as
its only primitive, and does not require direct access to any hash function internals such
as the compression function. We chose this approach based on feedback from the practice
community. Hash function implementations are widely available, but these implementations
do not provide interfaces to the compression function.

Note that to provide data privacy and data integrity, we transform the given hash function
into a keyed hash function (PRF). On systems using restricted devices, due to the limited
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under the Cisco Systems projectMisuse Resistant Authenticated Encryption for Complex and Low-End
Systems (MIRACLE).



Scheme On-line Side-Channel Res. Misuse Res. Rate-1

COFFE (this paper) X X X X

SpongeWrap [5] X X X X

CHM [14] X X X X

CIP[15] X X X X

CWC [19] X X X X

EAX [3] X X X X

GCM [21] X X X X

Generic Composition [2] X X X X

HBS [16] X X X X

SIV [26] X X X X

Table 1. Comparison of existing AE-Schemes which can be instantiated with a PRF.

resources, it is desirable to minimize the cost of the code and the circuits for encrypting a
message block [1], i.e., keep the size of the cryptographic footprint small. This means that
we want only one costly operation per message block. We denote a scheme satisfying this
property as a Rate-1 scheme. For example, the GCM authenticated encryption mode [21] is
not a Rate-1 AE scheme, since it needs not only one block cipher call per message block,
but also an additional galois field multiplication per message block, rendering GCM to be
a Rate-2 AE scheme. Another example would be a Feistel-based scheme which requires at
least three or four block cipher calls rendering such a scheme to a low-performance Rate-3
or Rate-4 scheme.

Since the implementation of an encryption scheme can be error prone (e.g., [6, 13, 18, 27,
28]) it would be desirable to provide a second line of defense to minimize the security fallout.
A further preferable goal for our construction is to provide built-in resistance against side-
channel attacks. Actually, the overlaying protocols, using an AE scheme, are responsible to
provide this goal in an adequate form, e.g., TLS [8] and IPsec [12, 17] generate a new key for
each session minimizing the measurements which can be done on the secret key. Obviously, an
adversary can do a certain amount of measurements (depending on the size of the message)
on the session key, but revealing the session key only compromises security for this specific
encryption/decryption/authentication. Note that it does not compromise the currently used
secret key. But, nevertheless, we provide side-channel resistance even if a protocol may fail
to provide this kind of security.

We started our research by analyzing existing authenticated encryption schemes, where the
block cipher within these schemes can be easily replaced by a keyed hash function. Unfortu-
nately, none of those fulfill our requirements (see Table 1). As one can see, SpongeWrap [5]
seems to be a very promising candidate, since it only lacks of built-in side-channel resistance.
But, it belongs to the class of compression function based AE schemes, which yields to the
fact that the internal used compression function can be seen as the real primitive to be used
both for hashing and for authenticated encryption. This is basically not a technical problem,
but, while cryptographers know what is meant by the internal compression function, typical
standards, such as the SHA-2 standard [24], do not formally define it. So, without an explicit
specification of a “new” cryptographic primitive, engineers (non-cryptographers) would not
be likely to properly implement the authenticated encryption scheme. Also, while on many
constrained devices “jumping” to the address of the internal compression function may be
easy, this may be not the case for all such devices. In fact, we did consider this approach at
the beginning of our research. It would even allow us to design a more efficient AE scheme
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than the one we actually propose. But, due to the reasons discussed here, we made a decision
against a purely compression function based AE scheme in favour of a hash function based
AE scheme.

Contribution. In this paper we introduce COFFE, a novel hash function based on-line
AE scheme which, for the best of our knowledge, is the first scheme which fulfills our stated
requirements. It can be part of a minimal cryptographic suite that includes hashing and
digital signatures. Because it is an authenticated encryption with associated data (AEAD)
algorithm, it could be used in the AEAD interface of the Datagram TLS security protocol [25],
which has been identified by the IETF Constrained Application working group as suitable for
applications for internet of things. COFFE provides the standard INT-CTXT and IND-
CPA (CCA3) security, one would expect from any good AE scheme, plus the following
nonstandard security features.

1. Misuse-resistant authenticity: It is standard for an authenticated encryption scheme to
claim and prove security against nonce-respecting adversaries. Almost always, security
breaks apart if nonces are ever reused [11]. While the privacy of COFFE only holds
for nonce-respecting adversaries (unlike the scheme presented in [11]), we prove that its
authenticity does not depend on unique nonces.

2. Failure-friendly authenticity: The security proofs of most modes of operation assume
PRF or PRP security for the underlying block cipher. If this fails, the mode is likely to
be insecure. While the privacy of COFFE requires the hash function under a secret key
to behave like a random function, authenticity can be established even for failing pseudo-
randomness. Our mode ensures authenticity under a weaker unpredictability assumption
assuming a strong key. Due to space limitation, we will only give a brief and informal
discussion on this (cf. Section 4.1).

3. Resistance against side-channel attacks: Resistance against side-channel attacks is usually
a matter of the implementation of a cryptosystem, rather than of the cryptosystem itself.
Nevertheless, the design of a cryptosystem can contribute and ease side-channel resistant
implementations. COFFE generates a new session key for each message depending on
the nonce and the secret key, resulting in a side-channel resistant implementation in the
nonce-respecting scenario.

Due to the upcoming event of the CAESAR competition1, authenticated encryption has
become a hot topic in the field of symmetric crypto. Nevertheless, since COFFE is designed
to fill a quite particular nische we do not intent to submit it to the CAESAR competition.

Outline. In Section 2 we introduce our on-line authenticated encryption scheme COFFE
and a possible practical instantiation using SHA-224. Section 3 contains essential prelimi-
naries for the security proof. The security-analysis is given in Section 4. Section 5 concludes
the paper.

2 COFFE

In this section we introduce COFFE, our novel on-line authenticated encryption scheme,
which is inspired by the CFB and OFB modes of operation [9] following the idea of using
the chaining value and the ciphertext as a feedback for the next iteration (see Figure 1). In
contrast to other published AE schemes [3, 10, 14, 19, 21, 26], COFFE is based on a cryp-
tographic hash function F : {0, 1}∗ → {0, 1}n instead of a block cipher. Furthermore, the

1 http://competitions.cr.yp.to/caesar.htm
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Fig. 1. Illustration of the encryption and authentication process of COFFE.

integrity of the ciphertext does not depend on a nonce, but only on the security of F . It
is also the first AE scheme, designed to be resistant against side-channel attacks. Table 2
introduce the notions and variables used throughout this paper.

Identifier Description

V nonce (initial value)

H header which is authenticated

M plaintext

C ciphertext

K user-given secret key (long term key)

G collision-resistant hash function processing the header

F, n PRF-RK-secure one-way hash function with n bits of output

S session key (short term key) generated from V and K

Ti the i-th output of the hash function F

Xi i-th block of a value X

Lx length of x in bits

X || Y concatenation of two byte-strings X and Y

X ⊕i Y ⊕-operation of the i least significant bits of X and Y

Table 2. Notions used in the description of COFFE.

The definition of COFFE is given in Algorithm 1, where the left part of the algorithm
denotes the function EncryptAndAuthenticate and the right part denotes the function
DecryptAndVerify. As one can see, both functions consist of four steps, seemly separated
by domains: session key generation (lines 10 and 20), processing of the header (lines 11 and
21), encryption/decryption (lines 12 and 22), and generation of the authentication tag (lines
13 and 23). The domain identifier is either encoded as a one- or two-byte value, depending
on the choice of the hash function.
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The term ’0∗’, which is used in each call to F , denotes a zero-padding, where the number of
zeros depends on the input size of the used hash function (or more precisely the compression
function) and the kind of padding which is used inside the hash function. Thus, it is always
chosen that one needs only one compression function call for one hash function invocation,
which complies with our Rate-1 design goal. Thus, we consider a constant m-bit input for
F , producing an n-bit output with m > n.

Algorithm 1 COFFE
Input: V {Nonce}, H {Header}, M {Message}
Output: C {Ciphertext}, T {Tag}

10: S ← F (K || V || 0∗ || LK || LV || 0)
11: (x, T0)← ProcessHeader(H,F )
12: (C, TL)← ProcessMessage(S, T0,M, x)
13: T ← F (TL ⊕ML || CL || 0

∗ || LT || LM
L
+ 5)

14: return (C, T )

Input: V {Nonce}, H {Header}, C {Ciphertext}
Output: M {Message}

20: S ← F (K,V, 0∗, |K|, |V |, 0)
21: (x, T0)← ProcessHeader(H,F )
22: (M,TL)← ProcessCiphertext(S, T0, C, x)
23: T ′ ← F (TL ⊕ML || CL || 0

∗ || LT || LM
L
+ 5)

24: if T 6= T ′ then

25: M ← ⊥
26: end if

27: return M

Step 1: Session Key Generation. Domain 0 is used to generate the session key S (short
term key), which is derived from the secret key K (long term key) and the nonce V as shown
in lines 10 and 20 of Algorithm 1. Note that LK , LV , and the domain description value
are encoded as one- or two-byte values depending on the size of the key, and describe at
least the three least significant bytes of the input. For practical applications we recommend
to use a key size of n bits. Furthermore, the idea of the session key generation step is to
support a built-in side-channel resistance due to the fact that a possible adversary can only
evaluate one measurement on K per message. Moreover, due to the lack of a key scheduler
in a hash function based setting, changing the key is free. COFFE benefits from this by
using the secret key K only once for processing a message or a ciphertext. Therefore, in the
nonce-respecting scenario, the number of measurements for K and S an adversary can make
are limited.

Algorithm 2 ProcessHeader
Input: H {Header}, n {Output Length}
Output: (x, T0) {Initialization Pair}
10: LH ← len(H)
11: if LH < n then

12: return (1, H || 10∗)
13: else if LH = n then

14: return (2, H)
15: else

16: return (3, F (H))
17: end if

Step 2: ProcessHeader. In this step we describe the processing of the associated data
H (header), which can be of arbitrary length. Note that the domain x and the n-bit initial
chaining value T0 used in the processing of the first message block depend on the size of
the associated data. These two values are computed as shown in Algorithm 2, leading to a

5



collision-resistant hash function. The goal of this definition of ProcessHeader is to achieve
pair-wise distinct tuples (x, T0) for pair-wise distinct values H and H ′. Under the assumption
that there is no collision, we have

H 6= H ′ =⇒ (x, T0) = ProcessHedaer(H) 6= ProcessHedaer(H ′) = (x′, T0
′),

not necessarily meaning that x 6= x′.

Remark. We use this separation process for security and performance reasons. Domain ’1’
is for the case that the authenticated data is less than one input block, thus, requiring 10∗-
padding to generate a full block. Domain ’2’ is for associated data actually fitting into exactly
one block, where no padding is applied. When the data is larger than one block, we must
apply the hash function. This case is represented by Domain ’3’. Omitting the invocation of
the function F for small headers (i.e., LH ≤ n) increases significantly the performance when
small messages with tiny headers are processed, e.g., IP packets.

Step 3: Encryption/Decryption. COFFE is generating a keystream which is XORed
to a message to either encrypt or decrypt it. Since our scheme is designed to comply with
the requirements of the use of standardized building block, it is construed to work with hash
functions like SHA-1 and SHA-2. Thus, the input of the compression function is usually
limited to less than 2n bits, due to the message padding. Note that the n-bit session key S
and the domain separation value are mandatory inputs and hence, we have only less then
n-bit left. To provide adequate security against forgery attacks, we need to additionally
process two from the three following values: keystream block Ti−1, message block Mi−1, and
ciphertext block Ci−1. More precisely, if we only use Ti−1 in the next iteration step, the
tag would become message-independent, i.e., the tag would not provide any integrity at all.
Furthermore, if we use only Ci−1 or Mi−1, omitting Ti−1, the tag value would only depend on
the last ciphertext or plaintext block, respectively. Note that even processing only a single of
those values is not possible using a naive approach without violating our requirement of one
compression function call per hash function invocation. Thus, we decided to use the inputs
to F in the following manner:

– n-bit value S ⊕ Ti−1
– δ-bit domain separation value
– (α < n− δ)-bit ciphertext block Ci−1.

Our approach puts the hash function under a lot of stress, since it violates the PRF indepen-
dency assumption. Thus, we now have to assume F to be PRF-secure in the XOR-related-key
model. More precisely, an adversary has partial control over the key-input to F , resulting in
a chance to produce a collision S ⊕ Ti−1 = S′ ⊕ Tj−1 for two distinct keys S 6= S′. Our se-
curity analysis in Section 4 shows that our approach still satisfies the birthday bound security.

Let M = M1,M2, . . . ,ML denote the message, where L =
⌈

LM/α
⌉

is the number of message
blocks processed. Here, all but the last blocks of M and C are of size α bits. The last blocks of
M and C consist of at most α bit. Then, the encryption and decryption process of COFFE
is defined in Algorithm 3, where ToHex(π) (see lines 10 and 20) outputs the first α/4 post
decimal numbers of π interpreted as hex values (C0 = 0x1415926 . . .).

Step 4: Tag Generation. In the final step we derive the authentication tag from the last
chaining value TL and the last ciphertext CL as shown in lines 13 and 23 of Algorithm 1.
Note that the length of the tag is constrained by the output size of F, e.g., at most n bits.
The last domain allows a user to authenticate the header without any message to encrypt.
Thus, the value β can become zero, but for F , β + 5 is always in the range [5, . . . , LM

L
+ 5].
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Algorithm 3 ProcessMessage/ProcessCiphertext

Input: S {Session Key}, T0 {Initial Chaining Value},
M {Message}, x {Domain Specifier}

Output: C {Ciphertext}
10: C0 ← ToHex(π)
11: T1 = F (S ⊕ T0, C0, 0

∗, x)
12: C1 = M1 ⊕α T1

13: for i = 2→ L− 1 do

14: Ti = F (S ⊕ Ti−1, Ci−1, 0
∗, 4)

15: Ci = Mi ⊕α Ti

16: end for

17: CL = ML ⊕β TL

18: return C

Input: S {Session Key}, T0 {Initial Chaining Value},
C {Ciphertext}, x {Domain Specifier}

Output: M {Message}
20: C0 ← ToHex(π)
21: T1 = F (S ⊕ T0, C0, 0

∗, x)
22: M1 = C1 ⊕α T1

23: for i = 2→ L− 1 do

24: Ti = F (S ⊕ Ti−1,Mi−1, 0
∗, 4)

25: Mi = Ci ⊕α Ti

26: end for

27: ML = CL ⊕β TL

28: return M

2.1 COFFE-SHA-224 – A Practical Instantiation

In this section we discuss a practical instantiation of COFFE using SHA-224 as the un-
derlying hash function – called COFFE-SHA-224. First, we justify our usage of SHA-224
over SHA-256 as the underlying hash function.

Hash Function Choice. For the practical instantiation of COFFE, we where looking for
a common, standardized, and flawless hash function which is suitable to be applied with
restricted devices, where usually the size of a register is at most 32 bits. Thus, we made our
choice in favour of a 32-bit optimized hash function, which renders SHA-224 and SHA-256
reasonable candidates to look at. Both SHA-224 and SHA-256 share the same compression
function f : {0, 1}256 × {0, 1}512 → {0, 1}256. It compresses a 256-bit chaining value and a
512-bit message block into a 256-bit output value. These two hash function standards differ in
two properties 1) they are using different initial values, and 2) SHA-224 truncates the output
of the final compression function invocation while SHA-256 does not. Following the Merkle-
Damg̊ard paradigm [7, 22], SHA-224 and SHA-256 apply the secure 10∗-padding followed by
a 64-bit value encoding the message length. Thus, the maximum possible input size to fit our
requirements is given by 512−1−64 = 447 bit. Due to the sake of simplification, we consider
only byte-aligned values and we assume all values to be encoded octet-strings. Thus, we can
only process message blocks with a size up to 440 bit, i.e., 55 byte. Using SHA-256 implies a
256-bit chaining value and thus, only 184 bits are left for the remaining input, including the
domain separation byte and the previous ciphertext block. Furthermore, the tag generation
step requires two additional input bytes – the length of the last message block β and the tag
length LT . Hence, we can process 160-bit message blocks. Since the size of the hash value
of SHA-224 is reduced by 32 bits in comparison to SHA-256, we can process message blocks
of 192 bits, which leads to an estimated performance speedup of about 20% in comparison
to SHA-256. Furthermore, the 224-bit session key used in SHA-224 is sufficient to make
practical attacks infeasible. This makes SHA-224 a logical choice for COFFE.

Parameter Choice. Here, we introduce a sound parameter choice for COFFE-SHA-224
depending on the applied hash function SHA-224. The first step is to replace the function
F from Algorithm 1 by SHA-224. This obviously leads to a size of 224 bits for the chaining
values Ti. Based on our discussion above, we can process message blocks up to 192 bits
(α = 192, β ≤ 192), i.e., we need only one byte to encode the domain specifier for the tag
generation (5 + β < 256). One the one hand, the internal state of COFFE is larger than
those of other common published AE schemes, which usually support a block size of 128
bits. On the other hand, COFFE employs a slightly worse ratio between the block size and
the size of the internal state. Nevertheless, due to the larger block size, the performance
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of COFFE is still reasonable, i.e., approximately 85% of SHA-224. To ensure an adequate
security, we set the default parameter of the size of the secret key to 224 bits (LK = 224)
and the size of the nonce to 192 bits (LV = 192).

3 Technical Preliminaries

Notions. Let {0, 1}n
∗
denote an arbitrary number of blocks of size n and let ⊥ denote a

rejection of a message, i.e., that the verification of a message failed. Furthermore, we write
0y for a string of y zero-bits, and 0∗ for a string of zero or more zero-bits to fill a given input
for F up to exactly the required input size.

We define an adversary as a computationally unbounded but always-halting algorithm
A. In this paper we assume wlog. that the adversary A never asks a query which answer is
already known. Further, we denote AO for an adversary A with access to an oracle O.

Keyed Hash Function. A keyed hash function F : {0, 1}k × {0, 1}∗ → {0, 1}n is a family
of functions that computes a fixed-size hash value Y ∈ {0, 1}n from a message X ∈ {0, 1}∗

of arbitrary length under a given key K ∈ {0, 1}k. We write Y = FK(X) for Y = F (K,X).

It is easy to build a keyed hash function from an un-keyed hash function by dividing the
input space into two parts, the key space and a new message space. In our approach, the key
is derived by the session key S and the previous chaining value Ti−1. Note, following Liskov
et al. [20], these two values can be seen as a tweak and hence, we name this type of functions
as tweakable keyed hash functions.

Since we combine S and Ti−1 using an XOR operation, the underlying primitive of
COFFE must be secure in the XOR-related-key model. Thus, we define the XOR-related-
key PRF (PRF-XRK) security of a keyed hash function F by the success probability of an
adversary trying to differentiate between the keyed hash function and a random function.
In this scenario the adversary can freely choose the tweak input. In the following, we define
three security notions, which are necessary to proof the security of our scheme.

Definition 1 (PRF). Let F : {0, 1}k × {0, 1}∗ → {0, 1}n be a keyed hash function with

a secret key K
$
← K, and A a fixed adversary. Let $(·) denote a random bit oracle which

returns always n-bit random values. The PRF advantage of A in distinguishing F from a
random function is defined as

AdvPRF
F (A) =

∣

∣

∣

∣

Pr
K

[

AFK(·) ⇒ 1
]

− Pr
[

A$(·) ⇒ 1
]

∣

∣

∣

∣

.

The PRF advantage among all adversaries that run in time at most t and make at most q
queries to the available oracle is given by

AdvPRF
F (q, t) = max

A
{AdvPRF

F (A)}.

Definition 2 (PRF-XRK). Let F : {0, 1}k × {0, 1}∗ → {0, 1}n be a keyed hash function

with a secret key K
$
← K, and A a fixed adversary. Let $(·) denote a random bit oracle which

returns always n-bit random values. The PRF-XRK advantage of A in distinguishing F
from a random function is defined as

AdvPRF-XRK
F (A) =

∣

∣

∣

∣

Pr
K

[

AF⊕(K,·)(·) ⇒ 1
]

− Pr
[

A$(·) ⇒ 1
]

∣

∣

∣

∣

.
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The PRF-RK advantage among all adversaries that run in time at most t and make at most
q queries to the available oracle is given by

AdvPRF-XRK
F (q, t) = max

A

{

AdvPRF-XRK
F (A)

}

.

Note that this is a stronger assumption than the PRF security model as you can easily
reduce PRF-XRK security to PRF security by fixing the tweak input. Thus, we have

AdvPRF
F (q, t) ≤ AdvPRF-XRK

F (q, t).

Authenticated Encryption (With Associated Data). An authenticated encryption
scheme is a triple Π = (K, E ,D). It aims to provide both privacy and data integrity. The key
generation function K takes no input and returns a randomly chosen key K from the key
space {0, 1}k. The encryption algorithm E and the decryption algorithm D are deterministic
algorithms that map values from {0, 1}k × {0, 1}n

∗
× {0, 1}v × {0, 1}n

∗
to a byte string or –

if the input is invalid – the value ⊥. For sake of convenience, we usually write EK(H,V,M)
for E(K,H, V,M) and DK(H,V,M) for D(K,H, V,M), where the message M and the as-
sociated data H are chosen from the set {0, 1}n

∗
, a key K from the key space {0, 1}k, and

a nonce V from the nonce space {0, 1}v. We require DK(H,V, EK(H,V,M)) = M for any
possible quadruple (K,V,H,M).

Definition 3 (CCA3). Let Π = (K, E ,D) be an authenticated encryption scheme, A a fixed

adversary, and K
$
← K be a randomly chosen key. The CCA3 advantage of A in breaking

Π is defined as

AdvCCA3
Π (A) =

∣

∣

∣

∣

Pr
K

[

AEK(·,·,·),DK(·,·,·) ⇒ 1
]

− Pr
[

A$(·,·,·),⊥(·,·,·) ⇒ 1
]

∣

∣

∣

∣

. (1)

The adversary’s random-bit oracle $(·, ·, ·) returns on a plaintext query (H,V,M) ∈ {0, 1}n
∗
×

{0, 1}v × {0, 1}n
∗
a random string of length |EK(H,V,M)|. The ⊥(·, ·, ·) oracle returns ⊥

on every input. In this paper we assume that an adversary never asks a query for which
the answer is already known, e.g., if it has received the result for an encryption query
(C, T ) = E(V,H,M), it will never ask for (V,H,M) = D(C, T ), and vice versa. Bellare
and Namprempre have shown in [2] that one can rewrite Equation 1 as

AdvCCA3
Π (q, ℓ, t) ≤ AdvIND-CPA

Π (q, ℓ, t) +AdvINT-CTXT
Π (q, ℓ, t), (2)

where AdvCCA3
Π (q, ℓ, t) is the maximum advantage of all CCA3-adversaries, which run in

time at most t, asks a total maximum of q queries to E and D, and whose total query length
is at most ℓ blocks. Then, the IND-CPA-advantage is given by

AdvIND-CPA
Π (q, ℓ, t) ≤

∣

∣

∣

∣

Pr
K

[

AEK(·,·,·) ⇒ 1
]

− Pr
[

A$(·,·,·) ⇒ 1
]

∣

∣

∣

∣

.

Furthermore, the advantage of an INT-CTXT-adversary is given by the success probability
of winning the game GINT-CTXT defined in Figure 2. Thus, we have

AdvINT-CTXT
Π (A) ≤ Pr[AGINT-CTXT ⇒ 1],

where
AdvINT-CTXT

Π (q, ℓ, t) ≤ max
A

{

AdvINT-CTXT
Π (A)

}

.

For convenience, we introduce a notation for a restriction on a set. Let Q = A×B×C, then
we denote Q|B,C = {(B,C) | ∃A : (A,B,C) ∈ Q} as the restriction of Q to B and C with
A ∈ A, B ∈ B, and C ∈ C. This generalizes in the obvious way.
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Game GINT−CTXT

1 In i t i a l i z e ( )
2 K ← K();
3 win ← fa l se ;

4 Finalize ( )
5 return win ;

10 Encrypt (H,V,M )
11 C, T ← EK (H,V,M ) ;
12 Q ← Q∪ (H,V,C, T ) ;
13 return (C, T ) ;

20 DecryptAndVerify (H,V,C, T )
21 M ← DK (H,V,C, T ) ;
22 i f ((H,V,C, T ) 6∈ Q
23 and M 6= ⊥) then

24 win ← true ;
25 return ⊥ ;

Fig. 2. Game GINT-CTXT is the INT-CTXTΠ game where Π = (K, E ,D).

4 Security

This section describes the security for our genericCOFFE construction considered under the
reasonable assumption that the size of the secret keyK can be larger or equal to the size of the
session key S, i.e., |K| ≥ |S|. The first step is to show the CPA-security when considering
a nonce-respecting adversary. For the INT-CTXT-proof, we generalize the adversary by
allowing it to reuse a nonce, i.e., transforming it to a nonce-ignoring adversary.

Theorem 1. Let Π = (K, E ,D) be a COFFE scheme as in Algorithm 1, i.e., K is the
key derivation function, E = EncryptAndAuthenticate and D = DecryptAndVerify.
Then,

AdvCCA3
Π (q, ℓ, t) ≤

8ℓ2 + 3q2

2n
+ 2 ·AdvPRF-XRK

F∗
(q, ℓ, t)

+
3ℓ2 + 2q2

2n
+

q

2LT
+ 2 ·AdvPRF-XRK

F∗
(q + ℓ, O(t))

≤
11ℓ2 + 5q2

2n
+

q

2LT
+ 4 ·AdvPRF-XRK

F∗
(q, ℓ, t),

where LT denotes the length of the tag value in bits.

Proof. The proof follows from Equation 2 together with Lemma 1 and Lemma 2. ⊓⊔

Lemma 1. Let Π = (K, E ,D) be a COFFE scheme as in Algorithm 1. Let q be the number
of total queries an adversary A is allowed to ask and ℓ be an integer representing the total
length in blocks of the queries to E. Then,

AdvCPA
Π (q, ℓ, t) ≤

2(ℓ+ q)2 + 2ℓ2 + q2

2n
+ 2 ·AdvPRF-XRK

F∗
(q, ℓ, t)

≤
8ℓ2 + 3q2

2n
+ 2 ·AdvPRF-XRK

F∗
(q, ℓ, t).

Proof (Lemma 1). This proof is using common game playing arguments. As stated above,
the length of the secret key K can differ from the length of the session key S. If this is the
case, we can partition F into two independent PRF’s: F1 : {0, 1}|K| × {0, 1}∗ → {0, 1}n for
the generation of the session key and F2 : {0, 1}|S| × {0, 1}∗ → {0, 1}n for the processing of
the message and the generation of the authentication tag. Due to the domain separation,
the partitioning of F is still valid if |K| = |S|, i.e., the domain of the session key generation
is always 0 and the domain of the message processing is always > 0.

Under this assumption, we can replace the functions F1 by a PRF. This can be upper
bounded by

AdvPRF
F1

(q,O(t)).

10



Furthermore, we can replace the function F2 by a PRF-XRK, since the adversary has partial
control over the key S ⊕ T [i]. This can be upper bounded by

AdvPRF-XRK
F2

(q + ℓ, O(t)).

Due to the sake of simplification, we define

AdvPRF-XRK
F∗

(q, ℓ, t) = max
{

AdvPRF-XRK
F2

(q + ℓ, O(t)),AdvPRF
F1

(q,O(t))
}

.

In the following analysis we always consider the full output length n of the tag generation
step, i.e., even if LT is smaller than n, we skip the truncation step for the proof. This is valid,
since showing CPA-security for the tag generation step without truncation implies CPA-
security for the tag generation with truncation. Assume an adversary B which is successful
by attacking the truncated version, then we can build an adversaryB′ usingB to be successful
with the same probability attacking the untruncated version.

Next, we denote Q as the query history of the adversary, where Q|T i
µ,T

i contains the

produced keystream T i
µ with 1 ≤ µ ≤ ℓ and the tags T i with 1 ≤ i ≤ q. Note that all

samples T i
µ and T i are output values of the hash function F2. We can say that COFFE

is CPA-secure, if the produced keystream and the tag values within the query history are
indistinguishable from a sequence R of distinct random values of the same size, where the
length of this sequence is limited to ℓ + q. It is easy to see that this event can be upper
bounded by

(ℓ+ q)2

2n
.

To complete our proof, we have to estimate the probability Pr[Dist] that all values within
the list Q|T i

µ,T
i are distinct. Therefore, we upper bound the probability Pr[Coll] for a collision

of at least two of the values within this list, since

Pr[Dist] = 1− Pr[Coll].

To upper bound Pr[Coll], we first consider the input parameter of F2 represented by the
quadruple (Si, Tµ, Cµ, d). Note that we ignore the 0

∗-padding, which leads to a higher success

probability for an adversary. Let Zi = (Si, T i
µ, C

i
µ, di) and Zj = (Sj , T j

ν , C
j
ν , dj) with 1 ≤

i, j ≤ q and 1 ≤ µ, ν ≤ L∗, where L∗ denotes the number of blocks of the longest message.
A collision between two such tuples is given either when we have found a collision for F or
we have found an input collision for the values Si ⊕ T i

µ = Sj ⊕ T j
ν . For our case analysis (cf.

Table 3), we encode the difference between two such input tuples Zi and Zj using a five-bit
value. For example, the value “10110” is defined as follows:

10110 :=



























i 6= j

T i
µ = T j

ν

Si ⊕ T i
µ 6= Sj ⊕ T j

ν

Ci
µ 6= Cj

ν

di = dj ,

where 1 ≤ i, j ≤ q and 1 ≤ µ, ν ≤ L∗.
Note that Table 3 contains a complete case analysis, since all possible cases are covered.

The cases which occur with a zero-probability are obviously seen as impossible and marked
by “–”. The reason for the occurrence of these cases is a violation of the XOR relation be-
tween the values Si and T i

µ or Sj and T j
ν , respectively. For example, Si = Sj , T i

µ = T j
ν , and

Si ⊕ T i
µ 6= Sj ⊕ T j

ν is an impossible case. The Case “00000” implies that a collision must

11



Case Event Case Event Case Event Case Event

00000 trivial 01000 – 10000 1 11000 2,4

00001 3 01001 – 10001 1 11001 3

00010 3 01010 – 10010 1 11010 3

00011 3 01011 – 10011 1 11011 3

00100 – 01100 3 10100 3 11100 1,3

00101 – 01101 3 10101 3 11101 3

00110 – 01110 3 10110 3 11110 3

00111 – 01111 3 10111 3 11111 3

Fig. 3. This table illustrates the case analysis for the proof of Lemma 1, where each case with a non-zero
probability is covered by at least one event. The case “11000” is covered by two events depending on the
considered domain (Event 2 covers the domain 1,2, and 3; Event 4 covers all other domains). The second
special case “11100” is covered by Event 1 if Si = Sj and by Event 3 if Si 6= Sj .

have happened before in the same query and is already covered by one of the other non-zero
cases. In the following we analyze four events which cover all remaining cases with a non-zero
probability given in Table 3.

After asking at most q queries, we check the adversaries query history Q – which contains
all queries and their results – for the occurrence of bad events. We let the adversary win
immediately if one of the bad events becomes true. Let denote Ay the y-th event and Az the
z-th event. The occurrence of an event Ay implies that no event Az with z ∈ {1, . . . , y − 1}
occurred before. Hence, the order of the events matters.

Event 1: Session Key Collision. The first case describes the scenario where an adversary
finds two values Si and Sj , generated using the function F1, with i 6= j, Si = Sj , and
1 ≤ i, j ≤ q. This can be upper bounded by

q2/2n.

Since F1 and F2 are independent, all values Si are independent from the values T i (tag
values) and T i

µ (chaining values) with 1 ≤ µ ≤ L∗.
If an adversary is able to find two values Si and Sj with i 6= j and Si = Sj , then it is

able to distinguish COFFE from a PRF using the following attack with a complexity of
O(1). Consider two queries (H,V,M) and (H,V ′,M ′), where M 6= M ′ are two single-block
messages of the same length, i.e., LM = LM ′ and V 6= V ′ with S = S′. Then, it is obvious
that T0 = T ′0 and C0 = C ′0. For the distinguishing attack we test whether M1⊕C1 = M ′1⊕C

′
1.

Therefore, we let the adversary win if it founds two nonces V 6= V ′ which lead to the same
S = S′.

Event 2: Input Collision – Associated Data. In this case we consider an adversary
which finds two pairs (T i

0 ⊕ Si, xi) and (T j
0 ⊕ Sj , xj) with T i

0 ⊕ Si = T j
0 ⊕ Sj , xi = xj , and

i 6= j. This leads to two colliding inputs for F in the first iteration. If no collision occurs,
all T i

1 are independent random values. The success probability for this case can be upper
bounded by

(q + ℓ)2

2n
.

Event 3: Output Collision. For this case we consider an adversary which finds two values
T i
µ and T j

ν with T i
µ = T j

ν , 1 ≤ µ, ν ≤ L∗, 1 ≤ i, j ≤ q, and (µ, i) 6= (ν, j). This can be upper
bounded by

ℓ2/2n.
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If no collision is found, the values T i
L and T j

L with i 6= j must differ, where L denotes the
index of the last chaining value. This implies that all authentication tags T i can be seen as
independent random values.

Event 4: Input Collision – Message and Tag. In this case we consider an adversary
which finds two values T i

µ ⊕ Si and T j
ν ⊕ Sj with T i

µ ⊕ Si = T j
ν ⊕ Sj for 1 < µ, ν ≤ L∗

and 1 ≤ i, j ≤ q. This leads to two colliding inputs for F2. Note that we assume that the
adversary did not find an output collision before. The probability for this event can be upper
bounded by

ℓ2/2n.

Our claim follows by adding up the individual bounds. ⊓⊔

Lemma 2. Let Π = (K, E ,D) be a COFFE scheme as in Algorithm 1. We assume the
adversary to be nonce-ignoring, i.e., it is able to choose two nonces Vi = Vj with i 6= j.
Then,

AdvINT-CTXT
Π (q, ℓ, t) ≤

3ℓ2 + 2q2

2n
+

q

2LT
+ 2 ·AdvPRF-XRK

F∗
(q + ℓ, O(t)),

where LT denotes the length of the tag value in bits.

The proof of Lemma 2 is given in Appendix A.

4.1 Authenticity under Weaker Assumptions (Sketch)

In the following we analyze the case where the underlying primitive of COFFE is not PRF-
RK-secure. For example, assume that c ≥ 1 bits of the hash function output Ti are constant.
Then, privacy is gone for good, since the adversary can easily learn c bits of the message block
Mi. But, as it turns out, the core structure of COFFE still preserves message integrity under
a reasonable “unpredictability” assumption, since an INT-CTXT-adversary apparently must
predict the output of the hash function, not just distinguish it from random. This observation
holds even for nonce-ignoring adversaries. We make the following assumption.

If S is a random variable, or hard to distinguish from one, we could just assume the
outputs FS(·, ·) to be hard to predict. But, if we do not assume F to be a good PRF, we
cannot assume S = FK(·, ·, ·) to be uniformly and randomly distributed. We solve this by
defining a function

F 2
K(X,Y, Z) := F (F (K ⊕X,Y )⊕K,F (K ⊕X,Y )⊕ Z).

It is straightforward to rewrite COFFE as the sequential application of F 2
K(·, ·, ·), rather

than as the sequential application of FS(X,Y ) := F (S ⊕ X,Y ) with S = FK(V, LK , LV ).
Note that we do not pay attention to the 0∗-padding and the domain. This leads to a higher
success probability for the adversary.

Unpredictability of F 2: Fix the key length LK and the length LT of the authentication
tag. Choose a secret LK-byte key K. Allow the adversary to make queries to the oracle
F 2
K . Let denote Q the query history containing all queries (Xi, Yi, Zi), with 1 ≤ i ≤

q, made by the adversary. We assume that no efficient adversary can find any tuple
(X,Y, Z, T ) with (X,Y, Z) /∈ Q and F 2

K(X,Y, Z) = T .

13



Under this assumption, forgeries (INT-CTXT-attacks) are infeasible. For COFFE, a forgery
is a triple (nonce, ciphertext, tag) that is neither the output from the encryption oracle nor
rejected by the decryption oracle – the only event, that would allow an INT-CTXT-adversary
to win its game. Wlog. we assume the (nonce, ciphertext) pair of a forgery has not been used
as the output of an encryption query, before. Thus, there has either been a weak collision,
i.e., two calls of F 2 under the secret key K with different inputs share the same output,
or, there has been no such collision, and the INT-CTXT-adversary has correctly predicted
the tag – directly violating our assumption. But even a weak collision is a violation of the
unpredictability assumption, since an adversary finding a weak collision within q queries
can easily be turned into an adversary predicting F 2

K(·, ·, ·) with probability > 2/q2. (For an
analysis aiming at good concrete security, we might formally assume weak collision resistance
for F 2.)

Cryptographic schemes could be used out of the specifications’ range or employing a primitive
not quite as strong as demanded. Ideally, such schemes should provide a second line of
defense. The brief analysis of COFFE under an unpredictability assumption, as well as our
analysis regarding nonce-ignoring adversaries above, show that COFFE actually provides
a second line of defense, maintaining authenticity in situations where privacy could not be
defended any more.

5 Conclusion

In this paper we presented COFFE, the first provably-secure authenticated encryption
scheme that has been natively designed for the usage of a hash function, rather than a
block cipher as the underlying primitive. COFFE provides the security one would expect
from a traditional scheme, plus three additional properties:

1. It provides reasonable resistance against side-channel attacks based on statistical infor-
mation, since for each encryption process a new short term key is derived from a nonce
and the long term key.

2. It provides ciphertext-integrity in a nonce-misuse scenario.

3. It provides ciphertext-integrity even if the underlying primitive leaks information about
its input. This can be formally proven, based on some unpredictability and strong key
assumptions.

Considering these properties, COFFE is designed to be well-suited for critical security appli-
cations in resource-restricted, embedded devices, which require strong security requirements
by providing only a small cryptographic suite.
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A Proof of Lemma 2

A.1 Proof Preliminaries

Length of Longest Common Prefix (LLCPn). The bit length of a string x ∈ {0, 1}n

is denoted by |x| := n. For integers n, ℓ, d ≥ 1, set Dd
n = ({0, 1}n)d, D∗n :=

⋃

d≥0D
d
n, and

Dℓ,n =
⋃

0≤d≤ℓD
d
n. Note that D0

n only contains the empty string. For M ∈ Dd
n, we write

M = M1, . . . ,Md with Mi ∈ Dn for 1 ≤ i ≤ d. For P,R ∈ D∗n, say, P ∈ Dp
n and R ∈ Dr

n, we
define the length of the longest common n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .
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For a non-empty set Q of strings in D∗n, we define LLCPn(Q, P ) as max
q∈Q
{LLCPn(q, P )}. For

example, if P ∈ Q, then LLCPn(Q, P ) = |P |/n.

1 LLCP′(R, (H,V,M))
2 p← 0 ;
3 for each (H′, V ′,M ′) ∈ R do

4 i f (H′ = H and V ′ = V ) then

5 p = max{p,LLCPa(M ′,M)} ;
6 return p ;

Fig. 4. LLCP’ computes the LLCPa of two inputs, a triple (H,V,M) and a set of tuples R, where a is the
size of a message block.

A.2 Proof

1 In i t i a l i z e ( )

2 K
$
← K() ;

3 B0, B1, B2, B3, B4, B5 ← ∅ ;
4 win ← fa l se ;

5 Finalize ( )
6 return win ;

100 Encrypt(H,V,M) Game G1

101 L← ⌈|M |/a⌉ ;
102 S ← F1(K || V || 0∗ || LK || LV || 0) ;
103 x, T0 ← G(H,F ) ;
104 C0 ← κ(π) ;
105 I ← S ⊕ T0 ;
106 T1 ← F2(I || C0 || 0

∗ || x) ;
107 C1 ← T1 ⊕α M1 ;
108 for i = 2, ..., L− 1 do

109 I ← S ⊕ Ti−1 ;

110 Ti ← F2(I || Ci−1 || 0
∗ || 4) ;

111 Ci ← Ti ⊕α Mi ;
112 b← |ML| ;
113 I ← S ⊕ TL−1 ;

114 TL ← F2(I || CL−1 || 0
∗ || 4) ;

115 CL ← TL ⊕β ML ;
116 I ← S ⊕ TL ;
117 T ← F2(I || CL || 0

∗ || LT || b+ 5) ;
118 Q ← (H,V,C, T ) ;
119 return (C1, . . . , CL, T ) ;

119 DecryptAndVerify(H,V,C, T ) Game G1

120 L← ⌈|C|/a⌉ ;
121 S ← F1(K || V || 0∗ || LK || LV || 0) ;
122 x, T0 ← G(H,F ) ;
123 C0 ← κ(π) ;
124 I ← S ⊕ T0 ;
125 T1 ← F2(I || C0 || 0

∗ || x) ;
126 M1 ← T1 ⊕α C1 ;
127 for i = 2, ..., L− 1 do

128 I ← S ⊕ Ti−1 ;

129 Ti ← F2(I || Ci−1 || 0
∗ || 4) ;

130 Mi ← Ti ⊕α Ci ;
131 b← |CL| ;
132 I ← S ⊕ TL−1 ;

133 TL ← F2(I || CL−1 || 0
∗ || 4) ;

134 ML ← TL ⊕β CL ;
135 I ← S ⊕ TL ;
136 T ′ ← F2(I || CL || 0

∗ || LT || b+ 5) ;
137 i f (T =LT

T ′) then

138 win ← true ;
139 return ⊥ ;

Fig. 5. Games G1 for the proof of Lemma 2. The variable a denotes the block size of the message and
ciphertext blocks with a ≤ n, where n is the output size of F , F1, and F2, each. The function κ(π) returns the
first a/4 post decimal positions of π interpreted as a string of hex characters, and LT denotes the bit-length
of the tag.

This proof borrows ideas from the INT-CTXT-proof presented by Fleischmann et al. [11].
Our bound is derived by game-playing arguments. Consider games G1-G3 of Figure 5 and

Figure 6, and a fixed adversary A asking at most q queries with a total length of at most ℓ
blocks. We assume that the adversary never asks for a query for which the answer is already
known. The functions Initialize and Finalize are identical for all games in this proof. Lets
denote G0 as the INT-CTXT-game defined in Figure 2 (cf. Section 3). Therefore, we have

AdvINT-CTXT
Π (A) ≤ Pr[AG0 ⇒ 1].
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200 Encrypt(H,V,M) Game G2 and G3

201 p← LLCP’(Q|H,V,M , (H,V,M)) ;

202 L← ⌈|M |/a⌉ ;
203 S ← F1(K || V || 0∗ || LK || LV || 0) ;
204 x, T0 ← G(H,F ) ;
205 i f (x = 3) then

206 i f (H /∈ Q|H and T0 ∈ B0 ) then

207 bad ← true ; T0
$
← {0, 1}n\B0 ;

208 B0 ← B0 ∪ T0 ;
209 C0 ← κ(π) ;
210 I ← S ⊕ T0 ;
211 i f ((T0, S, x) /∈ B1 and (I, C0) ∈ B2)

212 bad ← true ; I
$
← {0, 1}n\B2 ;

213 B1 ← B1 ∪ (T0, S, x) ;
214 B2 ← B2 ∪ (I, C0) ;
215 T1 ← F2(I || C0 || 0

∗ || x) ;
216 C1 ← T1 ⊕α M1 ;
217 r ← α ;
218 for i = 2, ..., L do

219 I ← S ⊕ Ti−1 ;

220 i f ((I, Ci) ∈ B3 and i > p) then

221 bad ← true ; I
$
← {0, 1}n\B3 ;

222 B3 ← B3 ∪ (I, Ci) ;
223 Ti ← F2(I || Ci−1 || 0

∗ || 4) ;

224 i f (Ti ∈ B4 and i > p) then

225 bad ← true ; Ti
$
← {0, 1}n\B4 ;

226 B4 ← B4 ∪ Ti ;
227 i f (i = L) then

228 r ← β ;
229 Ci ← Ti ⊕r Mi ;
230 I ← S ⊕ TL ;
231 i f ((I, CL) ∈ B5) then

232 bad ← true ; I
$
← {0, 1}n\B5 ;

233 B5 ← B5 ∪ (I, CL) ;
234 T ← F2(I || CL || 0

∗ || LT || r + 5) ;
235 Q ← (H,V,C, T ) ;
236 return (C1, . . . , CL, T ) ;

237 DecryptAndVerify(H,V,C, T ) Game G2 and G3

238 p← LLCP’(Q|H,V,C , (H,V,C)) ;

239 L← ⌈|C|/a⌉ ;
240 S ← F1(K || V || 0∗ || LK || LV || 0) ;
241 x, T0 ← G(H,F ) ;
242 i f (x = 3) then

243 i f (H /∈ Q|H and T0 ∈ B0 ) then

244 bad ← true ; T0
$
← {0, 1}n\B0 ;

245 B0 ← B0 ∪ T0 ;
246 C0 ← κ(π) ;
247 I ← S ⊕ T0 ;
248 i f ((T0, S, x) /∈ B1 and (I, C0) ∈ B2)

249 bad ← true ; I
$
← {0, 1}n\B2 ;

250 B1 ← B1 ∪ (T0, S, x) ;
251 B2 ← B2 ∪ (I, C0) ;
252 T1 ← F2(I || C0 || 0

∗ || x) ;
253 M1 ← T1 ⊕α C1 ;
254 r ← α ;
255 for i = 2, ..., L do

256 I ← S ⊕ Ti−1 ;

257 i f ((I, Ci) ∈ B3 and i > p) then

258 bad ← true ; I
$
← {0, 1}n\B3 ;

259 B3 ← B3 ∪ (I, Ci) ;
260 Ti ← F2(I || Ci−1 || 0

∗ || 4) ;

261 i f (Ti ∈ B4 and i > p) then

262 bad ← true ; Ti
$
← {0, 1}n\B4 ;

263 B4 ← B4 ∪ Ti ;
264 i f (i = L) then

265 r ← β ;
266 Mi ← Ti ⊕r Ci ;
267 I ← S ⊕ TL ;
268 i f ((I, CL) ∈ B5) then

269 bad ← true ; I
$
← {0, 1}n\B5 ;

270 B5 ← B5 ∪ (I, CL) ;
271 T ′ ← F2(I || CL || 0

∗ || LT || r + 5) ;
272 i f (T =LT

T ′) then

273 win ← true ;
274 return ⊥ ;

Fig. 6. Games G2 and G3 for the proof of Lemma 2. Game G3 contains the code in the box while G2 does not.
The variable a denotes the block size of the message and ciphertext blocks with a ≤ n, where n is the output
size of F , F1, and F2, each. The function κ(π) returns the first a/4 post decimal positions of π interpreted as
a string of hex characters, and LT denotes the bit-length of the tag.
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In G1, the encryption- and verify-placeholders are replaced by their generic COFFE coun-
terparts as of Algorithm 1 and, using similar arguments as in the proof for Lemma 1, we can
partition F into two independent PRF’s F1 and F2. Thus,

Pr[AG0 ⇒ 1] ≤ Pr[AG1 ⇒ 1] + 2 ·AdvPRF-XRK
F∗

(q + ℓ, O(t)),

where

AdvPRF-XRK
F∗

(q, ℓ, t) = max
{

AdvPRF-XRK
F2

(q + ℓ, O(t)),AdvPRF
F1

(q,O(t))
}

.

We now discuss the differences between G1 and G2. The sets B0, . . . , B5 are initialized as
empty sets (cf. Line 3 of Figure 5) and collect fresh values as follows:

– B0 collects all fresh values T0, where |H| > n in lines 208 and 245.

– B1 collects all fresh pairs (T0, S) in lines 213 and 250.

– B2 collects all fresh values I = T0 ⊕ S in lines 214 and 251.

– B3 collects all fresh pairs (I = Tµ ⊕ S,Cµ) with 1 ≤ µ ≤ L− 1, where L is the message
length in blocks. This is done in lines 222 and 259.

– B4 collects all fresh values Tµ with 1 ≤ µ ≤ L in lines 226 and 263.

– B5 collects all fresh pairs (I = TL ⊕ S,CL). This is done in lines 233 and 270.

In lines 201 and 238, the LLCP’ oracle is inquired as defined in Figure 4. Finally, the variable
bad is set to true if one of the if-conditions in lines 206, 211, 220, 224, 231, 243, 248, 257,
261, or 268 is true. None of these modifications affect the values returned to the adversary
and therefore,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|

≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]. (3)

We now proceed to upper bound the two terms contained in (3) – in right to left order.

The success probability of Game G3 does not differ from the success probability of Game
G2 unless one of the following cases occur, where each case causes a bad event, i.e., the
variable bad is set to true. In the following, the indices i and j denote the i-th and j-th
query with 1 ≤ i, j ≤ q, respectively.

Case 1 (Collision – Initial Chaining Value): In lines 207 and 244 the initial chaining
value T0 is set to a new random value if the function G returns the same T0 twice for two
distinct values H i 6= Hj with i 6= j and |H i|, |Hj | > n, i.e., in the case when x = 3. The
probability for such a collision can be upper bounded by

q2/2n.

Case 2 (Input Collision – Domain 1, . . . ,3): In lines 212 and 249 the chaining value I
is set to a new random value if there is a non-trivial input collision between the two input
values I i = Si ⊕ T i

0 and Ij = Sj ⊕ T j
0 with xi = xj , so that Ii = Ij with i 6= j. We can

upper bound the success probability for this case by

ℓ2/2n.
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Case 3 (Input Collision – Domain 4): In lines 220 and 257 we test for a non-trivial
input collision for the pairs ρi = (Si⊕T i

µ, C
i
µ) and ρj = (Sj⊕T j

ν , C
j
ν) with i 6= j, ρi = ρj ,

and 1 ≤ µ, ν ≤ L− 1. The success probability for this case can be upper bounded by

ℓ2/2n.

Case 4 (Output Collision – Domain 4): In lines 224 and 261 we test, if the adversary
has found a non-trivial collision of the form T i

µ = T j
ν with 2 ≤ µ, ν ≤ L− 1 and (i, µ) 6=

(j, ν). The success probability is then given by

ℓ2/2n.

Case 5 (Input Collision – Domain 5): In lines 231 and 268 we test for a non-trivial
input collision for the pairs ρi = (Si ⊕ T i

L, C
i
L) and ρj = (Sj ⊕ T j

L, C
j
L) with i 6= j and

ρi = ρj . We can upper bound the success probability for this case by

q2/2n.

By adding up the individual bounds, it follows that

Pr[AG3sets bad] ≤
3ℓ2 + 2q2

2n
.

The adversary wins Game G3 iff the variable win is set to true, i.e., the if-condition in
Line 272 holds. This implies that the adversary can only win with a fresh query to the
DecryptAndVerify oracle, which leads to T =LT

T ′, where T ′ is computed as shown in
Line 271 and =LT

denotes the comparison over the LT least significant bits. Lines 268 and
269 ensure that the input for the function F in Line 271 is always a fresh value, i.e., it was
never asked before. Since F is modelled as a PRF, the probability for T =LT

T ′ can be
upper bounded by

1/2LT .

As we allow the adversary to ask at most q queries, the success probability for Game G3 can
be upper bounded by

Pr[AG3 ⇒ 1] ≤ q/2LT .

Our claim follows by adding up the individual bounds. ⊓⊔
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