
An improved compression technique for
signatures based on learning with errors

Shi Bai and Steven D. Galbraith

Department of Mathematics,
University of Auckland,

New Zealand.
S.Bai@auckland.ac.nz

S.Galbraith@math.auckland.ac.nz

Abstract. We present a new approach to the compression technique of
Lyubashevsky et al. [18, 14] for lattice-based signatures based on learn-
ing with errors (LWE). Our ideas seem to be particularly suitable for
signature schemes whose security, in the random oracle model, is based
on standard worst-case computational assumptions. Our signatures are
shorter than any previous proposal for provably-secure signatures based
on standard lattice problems: at the 128-bit level we improve signature
size from (more than) 16500 bits to around 9000 to 12000 bits.
This is the full version of the paper. The conference version was published
at CT-RSA 2014.

Keywords: Lattice-based signatures, learning with errors.

1 Introduction

An important problem is to obtain practical and provably secure public key sig-
nature schemes based on lattice assumptions. One approach is to use trapdoor
functions and the hash-and-sign methodology (see Gentry, Peikert and Vaikun-
tanathan [13], Stehlé and Steinfeld [23]). However, the most promising avenue for
practical signatures (with security in the random oracle model) has long been the
use of the Fiat-Shamir paradigm; this is the approach used for all currently de-
ployed discrete-logarithm-based digital signature schemes. (For signatures that
are proven secure in the standard model, we refer to Boyen [7] and Böhl et al.
[6].)

A series of works by Lyubashevsky and others [16, 18, 14, 10] have developed
schemes based on the Fiat-Shamir paradigm that are secure in the random oracle
model. There are several challenges when implementing lattice-based signature
schemes, including the size of the public key, the size of the signature and the
requirement to sample from discrete Gaussians during the signing process. Our
main focus in this paper is to reduce the size of signatures.

The basic idea of Lyubashevsky’s signatures in the case of LWE is to have
a public key of the form (A,T = AS + E (mod q)) where A is an m × n
matrix and m ≈ n. The signing procedure starts by choosing vectors y1,y2 of

2

small norm and computing v = Ay1 +y2 (mod q). Then, using the Fiat-Shamir
paradigm, the signer computes c = H(v, µ) where µ is the message and H is a
hash function. Finally, the signer computes z1 = y1 +Sc and z2 = y2 +Ec. The
signature is (z1, z2, c). The verifier checks that ‖z1‖ and ‖z2‖ are small enough
and that H(Az1 + z2 − Tc (mod q), µ) is equal to c. A significant obstacle to
short signatures is the need to send the length m vector z2. Recent work [14, 10]
has introduced compression techniques that greatly reduce the amount of data
to be sent for the vector z2. The main contribution of our paper is to give a
variant of the signature scheme with the feature that z2 can be omitted entirely.

1.1 Related work

At Eurocrypt 2012, Lyubashevsky [18] gave a signature scheme whose security
(at around the 100-bit security level) relies on SIS and LWE, and for which
signatures are 16500 bits. To our knowledge, this is the current record in the
literature for signatures whose security is reduced to worst-case assumptions in
general lattices. The signing algorithm for that scheme requires sampling from
discrete Gaussians. At the 128-bit security level, signatures for this scheme would
be around 20000 bits.

Güneysu, Lyubashevsky and Pöppelmann [14] introduced an important com-
pression technique and gave a signature scheme that does not require sampling
from Gaussians. The security depends on the Ring-SIS and DCK (an NTRU-like
variant of Ring-LWE with small parameters) assumptions, however a full secu-
rity analysis is not given in their paper. The signatures are around 9000 bits.
The compression technique can be modified to shorten the signatures from [18]
(of course, it is necessary to change the rejection sampling used in [14] to a
Gaussian distribution).

Recently Ducas, Durmus, Lepoint and Lyubashevsky [10] have given a new
scheme with several further tricks to reduce the signature size. For security
based on SIS (and hence on standard worst-case lattice problems) their scheme
has signatures of size more than 20000 bits1. They also give a variant, based on
a non-standard computational assumption related to NTRU, that has signatures
of around 5000 bits.

1.2 Our contribution

As mentioned already, our main contribution is to present a variant of the Lyuba-
shevsky signature scheme based on LWE that does not require sending any in-
formation about the z2 vector. At a high level, Lyubashevsky’s scheme [14, 18]
based on LWE has public key (A,b = As + e (mod q)) and a signature is like a
proof of knowledge of the pair (s, e). The key feature of our scheme is to prove

1 It may seem paradoxical that the improved techniques of [10] lead to larger signatures
than [18]. This is due to the requirement that the matrix A in the public key be
indistinguishable from a uniformly chosen matrix, which makes m larger. Indeed, it
is necessary to take m = O(n log q

logn
).

3

knowledge of only s. The smallness of e becomes implicit in the verification equa-
tion, so we no longer need to send any information about e. Since s has length n
and e has length m ≈ n, not needing to prove knowledge of e has the potential
to provide a significant reduction in signature size.

Briefly, the public key for our scheme is an LWE instance (A,T = AS + E
(mod q)) where all terms are matrices, and S,E have small entries. A signature
is formed by first choosing a vector y and computing v = Ay (mod q). One
then throws away the least significant bits of v and hashes the remaining bits
together with the message µ to get a hash value c. The value c is used to create
a low weight vector c and the signature is the pair (z = y + Sc, c). As in [10, 14,
18], we use rejection sampling to ensure that the distribution of z is independent
of the secret. To verify the signature one computes w = Az − Tc ≡ Ay − Ec
(mod q). Assuming that Ec is small enough then the most significant bits of w
will match those of v and so the hash value computed using the most significant
bits of w equals c.

Our work employs several ideas from [10, 14, 18]. We prove the security of
our scheme using the proof methodology from [18].

For signatures based on worst-case lattice assumptions we improve signature
size from more than 16500 bits to around 9000 bits. The security level (at the
128 bits-level) of our signatures is supported by Regev’s reduction for LWE and
also arguments about BKZ 2.0 lattice reduction due to Chen and Nguyen [9].
Hence, we match the signature size of [14], and still with the beneficial feature of
using uniform distributions, but with security based on standard assumptions.
Relaxing the conditions of Regev’s theorem also allows signatures of size under
10000 bits (see Section B.2). We also give signatures of under 8000 bits with
security based on a non-standard matrix-NTRU-like problem (see Section B.3).

One problematic aspect of our result is that we use standard LWE rather
than Ring-LWE. Previous work on lattice signatures assumed that using Ring-
LWE or NTRU would give more practical signatures. While there are certainly
significant practical benefits from using Ring-LWE (such as smaller public keys),
there are also some constraints (such as preferring n to be a power of 2), and
so the Ring-LWE case is a little less flexible. To conclude, the two advantages
of using standard LWE are: we get security based on standard assumptions in
general lattices; we have complete flexibility in the parameters (n,m) for LWE
(rather than being stuck with m = 2n and n = 2d). Nevertheless, it is interesting
to consider implementing our scheme using Ring-LWE or NTRU. For the pa-
rameters in Table 1 one can see that column IV can be easily implemented using
Ring-LWE with n = 512 and m = 1024, and signatures should still be around
12400 bits. Column V invites an implementation of the signature scheme using a
ring Zq[x]/(F (x)) where deg(F (x)) = 400; it is an interesting question to choose
a suitable polynomial F (x) of this degree that enables fast implementation.

4

2 Preliminaries

2.1 Basic notation and Gaussians

Let q ∈ N be a prime. We write Zq for the integers modulo q and represent this
set by integers in the range (−q/2, q/2]. We write (column) vectors in bold face
as v = (v1, . . . , vn)T , where vT denotes the transpose of the vector, and matrices
in bold face as A. The n×n identity matrix is denoted In. The Euclidean norm
is ‖v‖ = ‖v‖2 =

√∑n
i=1 v

2
i and the infinity norm (or sup norm) is ‖v‖∞ =

max1≤i≤n |vi|.
For a ∈ Z and d ∈ N, define [a]2d to be the unique integer in the set

(−2d−1, 2d−1] such that a ≡ [a]2d (mod 2d). For a ∈ Z, we define baed = (a −
[a]2d)/2d (dropping the d-least significant bits). Note that it satisfies b2d−1ed =
b−2d−1 + 1ed = 0 and b2d−1 + 1ed = −b−2d−1ed = 1. We extend this function
to vectors: on input a length m vector v = (v1, . . . , vm)T ∈ Zm the function bved
is the length m vector with entries bvied. A lattice in Zm is a subgroup of Zm;
for background see [19, 20].

Let A be a finite set. We write a ← A to denote that a is sampled uni-
formly from A. We write A ← Zm×nq to denote that A is an m × n matrix
with entries uniformly and independently sampled from Zq. Let σ ∈ R>0. Define
ρσ(x) = exp(−x2/(2σ2)) and ρσ(Z) = 1 + 2

∑∞
x=1 ρσ(x). The discrete Gaussian

distribution on Z with standard deviation σ is the distribution that associates
to x ∈ Z the probability ρσ(x)/ρσ(Z). We denote this distribution Dσ. Some
authors write s =

√
2πσ and define ρs(x) = exp(−πx2/s2) and denote the dis-

tribution Ds. The tail of a discrete Gaussian variable can be bounded by the
following result.

Lemma 1. (Lemma 4.4, full version of [18]) For any k > 0,

Prx←Dσ (|x| > kσ) ≤ 2e−k
2/2. (1)

Taking k = 13 gives tail probability approximately 2−121, taking k = 13.5
gives 2−130 and k = 14 gives 2−140.

One can also define discrete Gaussian distributions on vectors. We write
y ← Dn

σ to mean that the vector y = (y1, . . . , yn)T ∈ Zn is sampled such that
each entry yi is independently sampled according to the distribution Dσ.

2.2 Learning with errors

The learning with errors problem (LWE) was introduced by Regev [24]. It is
parameterised by integers n, q ∈ N and distributions χ and φ on Z (typically
χ is the uniform distribution on Zq and φ = Dαq for some fixed real number
0 < α < 1).

Definition 1. Let n, q ∈ N and let χ and φ be distributions on Z. The LWE
distribution for a given vector s ∈ Znq is the set of pairs (a,a · s + e (mod q))
where a ∈ Znq is sampled uniformly and where e is sampled from φ.

5

– The computational-LWE problem is: For a vector s ← χn and given arbi-
trarily many samples from the LWE distribution for s, to compute s.

– The decisional-LWE problem is: Given arbitrarily many samples from Zn+1
q

to distinguish whether the samples are distributed uniformly or whether they
are distributed as the LWE distribution for some fixed vector s← χn.

We sometimes use notation like (n, q, φ)-LWE to mean the computational
LWE problem with these parameters. We also write (n, q, α)-LWE to mean LWE
where φ = Dαq.

If the error distribution is small enough compared with q and if one has
enough samples from the LWE-distribution then it can be shown that these
computational problems are well-defined. Well-defined for decisional-LWE means
that the LWE-distribution, for all vectors likely to be sampled as s← χn, is not
statistically close to the uniform distribution. Well-defined for computational-
LWE means that there is a unique solution s that is most likely to be the
one used to generate the samples from the LWE distribution (in other words,
computational-LWE is well-defined as a maximum likelihood problem). There is
a reduction (Lemma 4.2 of Regev [25]) from the computational-LWE problem
to the decisional-LWE problem. So if one problem is hard then so is the other.

Regev’s main theorem is that the LWE problems are as hard as worst-case
assumptions in general lattices when χ is the uniform distribution and when φ is
a discrete Gaussian with standard deviation σ = αq for some fixed real number
0 < α < 1.

Theorem 1. (Regev) Let n, q ∈ N and 0 < α < 1 be such that αq ≥ 2
√
n. Then

there exists a quantum reduction from worst-case GapSVPÕ(n/α) to (n, q, α)-
LWE.

One can also fix an integer m and consider the case of LWE with a bounded
number of samples. We often write the LWE instance in this case as (A,b ≡
As + e (mod q)) where A is an m × n matrix over Zq, s is a length n column
vector, and e is a length m vector with entries sampled independently from φ.
As long as the bounded samples LWE instance is well-defined then this problem
cannot be easier than the general LWE instance. Consider the bounded samples
LWE problem when χ is the uniform distribution on Zq and when φ is such that
error values satisfy |e| ≤ E with overwhelming probability (in our application
we will have E = 2d−1 or E = 2d). Then there are at most qn(2E + 1)m choices
for (s, e) compared with qm choices for b. Hence, as a rule of thumb, we need
qm > qn(2E + 1)m for the bounded samples LWE problem to be well-defined.

Another well-known fact (see [2]) is that one may reduce LWE to the case
where χ = φ. Suppose we have m samples, where m is significantly larger than
n, and write the LWE instance as (A,b ≡ As+e (mod q)). With overwhelming
probability, A has rank n and (swapping rows of A if necessary) we may write

A =

(
A1

A2

)

6

where A1 is an invertible n× n matrix and A2 is an (m− n)× n matrix. Write
b = (b1

b2
) and e = (e1

e2
) where b1 and e1 have length n and we have b1 = A1s+e1

and b2 = A2s + e2. It follows that

b2 −A2A
−1
1 b1 = (−A2A

−1
1)e1 + e2 (mod q)

which gives an LWE instance where the solution (e1, e2) is sampled from the
error distribution. We call this problem LWE with short secrets.

It follows that LWE with short secrets is not easier than the general case.
We can also consider the LWE problem with short secrets and with a bounded
number of samples. As long as this problem is well defined then it is also not eas-
ier than the general case. Furthermore, fewer samples are required for the LWE
with short secrets problem to be well-defined: If we again assume the distribu-
tion φ is such that error values satisfy |e| ≤ E with overwhelming probability,
then we need, as a rule of thumb, qm > (2E + 1)n+m for the LWE problem
to be well-defined. To get very short signatures one can push this further and
have the distribution χ having smaller support than the error distribution φ (cf.
Appendix B.2).

In our work we will consider a matrix variant of LWE. The LWE distribution
is on pairs (A,AS+E (mod q)) where S and E are matrices. Each of the columns
of S and E corresponds to an LWE instance (A,As + e (mod q)), so this is just
a collection of individual LWE instances. However, note that the matrix A is
shared across all instances; we call them semi-independent instances of LWE. In
any case, it is clear that this matrix variant of LWE cannot be easier than LWE
with a single vector b ≡ As + e (mod q).

To summarise, we may choose (n, q, α) such that αq > 2
√
n and set χ = φ =

Dαq. We should choose m such that qm > (28αq)n+m so that the problem is
well-defined with overwhelming probability. Consider the computational LWE
problem (A,AS + E (mod q)) where A is an m × n matrix uniformly chosen
from Zm×nq and where S and E are chosen to have entries sampled independently
from Dαq. Then this problem is not easier than GapSVPÕ(n/α) in n-dimensional
lattices.

2.3 Rejection sampling

For security we will need to ensure that the signatures do not leak the private
key. We use a variant of the general rejection sampling lemma of [18] (also see
Chapter 2 of Devroye [11]).

Lemma 2. Let f : Zn → R be a probability distribution. Given a subset V ⊆ Zn,
let h : V → R be a probability distribution defined on V . Let gv : Zn → R be a
family of probability distributions indexed by v ∈ V such that for almost all v’s
from h there exists a universal upper bound M ∈ R such that

Pr [Mgv(z) ≥ f(z); z← f] ≥ 1− negligible.

Then the output distributions of the following two algorithms have negligible
statistical difference:

7

1. v← h, z← gv, output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)

, else fail.

2. v← h, z← f , output (z, v) with probability 1
M .

In the signature (and the security proof), distribution f is a uniform distri-
bution over [−B + U,B − U]n where U = 14σSc. Each v = Sc is a vector with
entries in a close-to-Gaussian distribution with standard deviation σSc. With
high probability, the coefficients in v are bounded by 14σSc. This accounts for
the “almost all” argument in above lemma. In the signature z = Sc + y, vector
y is generated from a uniform distribution over [−B,B]n (so each entry is set
for 2−140 error). For success probability of roughly 1/e, we can set B = 14σScn.

3 Our signature scheme

In Appendix A, we recall some standard background on signature schemes. We
will focus on our signature scheme (Figure 1) in this section.

The scheme depends on parameters n,m, k, κ, w, q, α, d,B and distributions
DE , DS , Dy and Dz. The distributions DS and DE are the distributions for
the secret and error respectively in the LWE assumption. As in [10, 18], the
distribution Dn

y,Sc(z) is the distribution coming from the shift of the distribution
Dn
y by an offset vector Sc. Various constraints on the parameters will be given

later, but we typically have m > n = k and q > 2d ≥ B. The main security
parameters are n (the security of our scheme will depend on (n, q, α)-LWE) and
κ (which controls the probability of breaking the hash function).

The scheme requires a hash function H to binary strings of fixed length κ,
and an encoding function F that maps binary strings of length κ to elements of
the set Bk,w of length k vectors of weight w with coefficients in {−1, 0, 1}. We
require F to be close to an injection in the sense that

Prs1,s2←{0,1}κ(F (s1) = F (s2)) ≤ c1
2κ

(2)

for some constant c1. We also typically choose parameters so that 2κ ≈ #Bk,w =

2w
(
k
w

)
. There are several ways to construct a suitable function F . One method is

given in Section 4.4 of [10] and some other approaches are discussed in Appendix
C (and the references) of Biswas and Sendrier [5].

The verifier wants to test that signature vectors z have come from the cor-
rect distribution Dn

z . This could be done in many ways, depending on Dz and
how much statistical analysis the verifier wishes to perform. If Dz is a uniform
distribution on [−B,B] then the natural test is that ‖z‖∞ ≤ B; this could be
entirely implicit if the interval is of the form [−2a−1 + 1, 2a−1] and entries of z
are represented by a bits. If Dz is a Gaussian or Gaussian-like distribution with
mean 0 and standard deviation σz then a cheap test is to have a bound B (e.g.,
B = 2

√
nσz; see Lemma 4.4 of the full version of [18]) such that z← Dn

z implies
‖z‖2 ≤ B with high probability. Hence, in Line 4 of Algorithm 3 we write this
as ‖z‖` ≤ B where typically ` ∈ {2,∞}.

8

The scheme is given by Algorithms 1, 2 and 3 in Figure 1. While reading the
protocol the reader may keep in mind the following set of parameters:

(n,m, k, κ, q, d,B) = (512, 945, 512, 132,≈ 230.84, 24,≈ 220.97).

The distributions DE = DS used here are discrete Gaussians with standard
deviation σE = σS ≥ 2

√
n. We will choose the distributions Dy and Dz to be

uniform distributions, such as [−B,B]. A minor subtlety is that Dy must cover
Dz with a little slack on each side, so to keep the notation simple we choose Dy

to be the uniform distribution on [−B,B] and Dz to be the uniform distribution
on [−(B − U), B − U] where U = 14

√
wσE ≥ 28

√
wn. If one wanted to be

pedantic would one could modify line 4 of Algorithm 3 to ‖z‖∞ ≤ B − U .

The message is denoted µ. Recall that, for a ∈ Z, baed = (a − [a]2d)/2d is
essentially the integer a with its d least significant bits removed. The value M
used in the rejection sampling in Line 10 of Algorithm 2 is a bound for the
expected number of trials until rejection sampling succeeds, as in Lemma 2. The
rejection in Line 4 of Algorithm 1 occurs with probability less than 1/30 for our
parameters, and since LWE with bounded number of samples is not easier than
general LWE (see Section 2.2), it follows that the outputs of the key generation
algorithm are hard LWE instances.

9

Algorithm 1 Key generation

Input: n,m, k, q, σS , σE

Output: A,T
1: A← Zm×n

q

2: S← Dn×k
S

3: E← Dm×k
E

4: if |Ei,j | > 7σE for any (i, j) then
5: Restart
6: end if
7: T ≡ AS + E (mod q)
8: return A,T

Algorithm 2 Signing
Input:

µ,A,T,S, Dy, Dz, d, w, σE , H, F,M
Output: (z, c)
1: y← Dn

y

2: v ≡ Ay (mod q)
3: c = H (bved, µ)
4: c = F (c)
5: z = y + Sc
6: w ≡ Az−Tc (mod q)
7: if |[wi]2d | > 2d−1 − 7wσE then
8: Restart
9: end if

10: return (z, c) with probability
min

(
Dn

z (z)/(M ·Dn
y,Sc(z)), 1

)

Algorithm 3 Verifying

Input: µ, z, c,A,T, `, B, d,H, F
Output: Accept or Reject
1: c = F (c)
2: w ≡ Az−Tc (mod q)
3: c′ = H (bwed, µ)
4: if c′ = c and ‖z‖` ≤ B then
5: return “Accept”
6: else
7: return “Reject”
8: end if

Fig. 1: The LWE Signature Scheme

The test in Line 7 of Algorithm 2 ensures that bved = bv−Eced = bwed,
and so the signatures do verify. The bound 7wσE comes from the fact that
entries of E are bounded by 7σE and that the weight of c is w. Assuming that w
is distributed close to uniformly, then this condition will hold with probability
(1− 14wσE/2

d)m and so we require

2d ' 7wmσE . (3)

The probability of acceptance is targeted between 1/3 and 1/2 for our parameters
(see Table 1 for details).

Remark 1. The signature size essentially depends on n and the distribution Dz.
Due to the rejection sampling, the distribution Dz depends on the size of Sc,
which depends on DS (i.e., σS) and the weight w of c. Hence, the signature size
is driven by n,w and DS . A surprising fact is that the signature size does not
depend on m or d. In fact, it seems to be quite possible to choose 2d rather

10

large and q quite a bit larger than 2d (as a minimum we need bAy (mod q)ed
to provide more than κ-bits of entropy into the hash function.

3.1 Possible Attacks

We give a rigorous security proof in the random oracle model in Section 4,
but to give some intuition into the design of the scheme and the idea of the
proof we informally sketch some potential attacks. Note that the LWE problem
appears in different ways in both attacks 1 and 4, and the SIS problem appears
in attack 5. These issues are reflected in our security proofs. The modification of
Lyubashevsky’s proof from [18] shows how to use a forgery to solve SIS, while our
new proof deals with attack 5 by choosing parameters so that the SIS instance
has no solutions with overwhelming probability.

1. One can try to determine S from (A,T). This is n semi-independent in-
stances of LWE.

2. A general attack on any such 3-move protocol is to guess the hash value
c. Precisely: the attacker chooses z and c and computes c = H(bAz − Tc
(mod q)ed, µ) and hopes that F (c) = c. This attack is prevented by ensuring
that the hash function has large enough output set (i.e., κ is sufficiently
large) and that F is close to a bijection.

3. A similar standard attack is to request a signature (z, c) on a message µ and
then to try to determine a second message µ′ such that

H(bAz−TF (c)ed, µ′) = H(bAz−TF (c)ed, µ).

In other words, we have to compute a second-preimage for the hash function.
Again this forgery is prevented by taking κ large enough.

4. Another natural attack is to choose a random vector v and compute c =
F (H(bved, µ)). Then one has to find a short vector z such that

Az−Tc ≡ v + e (mod q)

where e is a vector so that bv + eed = bved (in particular, the entries of e
are small). We re-write this equation as

Az− e ≡ (v + Tc) (mod q)

where the right hand side is known and we want to find (z, e) subject to
‖z‖` ≤ B and ‖e‖∞ ≤ 2d−1. This is a variant of LWE.

5. Suppose one can find a short (yet non-zero) vector x such that bAxed = 0. If
(z, c) is a signature on message µ then, with high probability, so is (z+x, c).
This would lead to a successful forgery under our adaptive security definition.
Finding such an x is essentially solving SIS: we seek a short vector (x

e) such
that (A|I)(x

e) ≡ 0 (mod q). This attack can be prevented either by choosing
the parameters so that no solution exists (for example, using Lemma 7) or
by making a specific computational assumption on the hardness of SIS for
our parameters.

11

6. One can try to perform a statistical analysis of the values (z, c) to learn
something about S or E. For example, one could try to “average” the z to
learn about S, or use the fact that bwed = bw + Eced to learn something
about E. All such attacks are prevented by ensuring that the distribution of
values (z, c) is independent of the secret values.
Note that we are not stating that the output distribution on pairs (z, c) from
the signing algorithm is equal to Dn

z × Uκ, where Uκ denotes the uniform
distribution on κ-bit strings. Indeed, there could be a bias coming from the
fact that certain values for c do not arise for certain values for z (e.g., due to
the check in Line 7 of the signing algorithm). What we are claiming is that
any bias in the distribution depends only on public information and not on
the private key.

4 Security proofs

There are several ways to prove security of our signature scheme in the random
oracle model. Each requires different conditions on the parameters. Theorem 2
follows Lyubashevsky’s blueprint and seems to be the most useful for short
signatures.

Theorem 2. Let q be prime. Let parameters n,m, d, κ,B be such that

(2B)nqm−n ≥ (2d+1)m2κ. (4)

and suppose equation (2) holds. Let Dy = [−B,B] with the uniform distribution
and let S,E have entries chosen from discrete Gaussian distributions with stan-
dard deviation σS = σE = αq. Let A be a forger against the signature scheme
in the random oracle model that makes h hash queries, s sign queries, runs in
time t and succeeds with probability δ. Then there is a negligible ε and some
0 ≤ δ′ ≤ δ such that A can be turned into either of the following two algorithms:

1. an algorithm, running in time approximately t and with advantage δ−δ′−ε,
that solves the (n,m, q, α)-decisional-LWE problem.

2. an algorithm, running in time approximately 2t and with success probability

δ′
(
δ′

h −
1
2κ

)
, that solves the unbalanced (m + n,m, q)-search-SIS problem:

Given an m× (n+m) matrix A′ to find a length n vector y1 and a length m
vector y2 such that ‖y1‖∞, ‖y2‖∞ ≤ max(2B, 2d−1) + 2E′w and A′(y1

y2
) ≡ 0

(mod q) where E′ satisfies

(2E′)m+n ≥ qm2κ. (5)

Theorem 3. Let q be prime. Let the parameters be chosen such that B, 2d ≥
14αq and

qm ≥ (4B + 1)n(2d+1)m2κ. (6)

Suppose equation (2) holds. Let Dy = [−B,B] with the uniform distribution and
let S,E have entries chosen from discrete Gaussian distributions with standard

12

deviation σS = σE = αq. Let A be a forger against the signature scheme in the
random oracle model that makes h hash queries, s sign queries, runs in time t
and succeeds with probability δ. Then A can be turned into an algorithm that
solves (n,m, q, α)-decisional-LWE, running in time approximately 2t, and with
success probability at least

min
0<δ′<δ

max
{
|δ − δ′|, δ

′

h

(
δ′

h −
1
2κ

)
+O

(
s(s+h)

2κ + m+n
2140

)}
.

The proof of Theorem 2 is given in Subsection 4.2. We sketch the main
idea here. We first replace the signing oracle with a simulation in the random
oracle model. We then replace the public key (A,T) with a different value; the
decisional-LWE assumption appears at this point. The forking lemma is then
used to transform a forger into an algorithm that solves SIS.

Here, we first show that there is enough entropy going into the hash function.
In Algorithm 2 the vector y is sampled from Dn

y , and when Dy is the uniform
distribution on [−B,B] this means there are (2B + 1)n choices for y. There
are at most (q/2d)m choices for bAyed, and these values are hashed to κ-bit
strings, giving at most 2κ possible values for c. It is necessary that the hash
outputs are uniformly distributed, which requires that there is sufficient entropy
in the distribution of values bAyed being hashed. Since (2B + 1)n will be much
greater than 2κ (this condition is required for the computational assumptions
to be reasonable), it suffices to ensure that there is a sufficiently large supply of
possible values for bAyed. This is the content of Lemma 3.

Lemma 3. Let q > 4B > 4 and m > n > κ and other notation be as above.
Let Dy be the uniform distribution on [−B,B] and suppose the condition in
Equation (4) holds. Then the number of values for bAy (mod q)ed is at least
2κ, and the probability that two values y1,y2 sampled uniformly from [−B,B]n

give the same value is at most 1/2κ.

Proof. Let A be a randomly chosen matrix. We can assume the rank of A is n
provided that m ≥ n (if not then we can re-generate A in the key generation).
Hence A defines an injective linear map from Zn to Zm.

Let y1 ∈ Dn
y and set u = bAy1 (mod q)ed. Define

Su = {y2 ∈ Dn
y : bAy2 (mod q)ed = u}.

It suffices to bound #Su. Note that if y2 ∈ Su then y = y1 − y2 satisfies
‖y‖∞ ≤ 2B and

Ay (mod q) ∈ [−2d, 2d]m.

Hence, to bound #Su it suffices to bound the number of such vectors y.
A randomly chosen matrix A defines a random lattice L = {v ∈ Zm : v ≡ Ay

(mod q) for some y ∈ Zn}. The volume of L is qm−n. By the Gaussian heuristic,
the number of elements in L∩[−2d, 2d]m is expected to be 2(d+1)m/qm−n. Finally,
suppose y,y′ ∈ [−2B, 2B]n are such that Ay ≡ Ay′ (mod q). Then A(y−y′) ≡
0 (mod q), which implies y ≡ y′ (mod q) which, due to the size constraints

13

and the condition q > 4B, implies y = y′. Hence, #Su is upper bounded by
2(d+1)m/qm−n for all u.

There are (2B + 1)n choices for y1, so if we choose two of uniformly, the
probability of a collision is bounded by

2(d+1)m/qm−n

(2B + 1)n
≤ 1

2κ
. (7)

�

4.1 Simulation in the random oracle model

Let A be a forger for the signature scheme. The forger takes as input a public
key for the signature scheme, makes h random oracle queries and s sign queries,
runs in time t, and outputs a valid signature with probability δ. Note that sign
queries contain implicit hash queries, but we count those separately. So the total
number of calls to the random oracle is actually s+h. We want to use A to solve
LWE or SIS.

Game 0 is running the forger A on the real cryptosystem. Game 1 is the
same as Game 0, except that the sign queries are replaced by a simulation in
the random oracle model (see Algorithm 4 below) and hash queries are handled
by answering with random values (as usual we use a list to ensure that the hash
function responses are consistent). Our goal in this section is to show that Game
0 and Game 1 are indistinguishable.

Algorithm 4 Game 1 sign query handler.

Input: µ,A,T, Dy, Dz, d, w, σE , H, F,M
Output: (z, c)
1: choose uniformly a κ-bit binary string c
2: c = F (c)
3: z← Dn

z

4: w ≡ Az−Tc (mod q)
5: if |[wi]2d | > 2d−1 − 7wσE then
6: Restart
7: end if
8: if H has already been defined on (bwed, µ) then
9: Abort game

10: else
11: Program H(bwed, µ) = c
12: end if
13: return (z, c) with probability 1/M

Lemma 4. Let notation be as above and suppose the conditions of Lemma 3
hold. Then Game 0 and Game 1 are indistinguishable.

14

Proof. As with Lemma 5.3 of [18] the indistinguishability can be shown in several
steps. We sketch the main ideas.

The first step is to show that, in the random oracle model, one can consider
c as being independent of y. We decouple c from y and show that the changes
(Lines 1-2, 8-9) are statistically negligible. First, by Lemma 3 the distribution
of values bAy (mod q)ed has sufficient entropy that c is uniformly distributed
on κ-bit strings. Hence the real signing algorithm is consistent with line 1 of the
simulation.

Lemma 3 can be used to show that the values bwed are well-distributed.
Hence, the probability that the game aborts in line 9 of Algorithm 4 is negligible
(the danger is that two values of bwed might arise from different choices of c,
and this cannot happen in Algorithm 2). This follows by an argument similar to
that in [18]. The probability is bounded by s(s+h) max

(
(2d+1/q)m, 2−κ

)
using a

hybrid argument (this term contributes to the ε in the statement of Theorem 2).
The next step of the proof is to note that the output distributions have

negligible statistical difference, due to the rejection sampling (cf. Lemma 2) in
two places in the sign algorithm. Hence, the success of any distinguisher between
these two games is negligible. �

4.2 Completing the proof of Theorem 2

We want to show that a forger A can be used to solve SIS. We could apply
the forking lemma to Game 1, showing that an adversary who can win Game
1 can be used to solve search-SIS. This approach is analogous to Lemma 5.4 of
Lyubashevsky [18]. The argument requires there to be more than one private
key for the given public key (A,T). Precisely, we need there to exist at least
two pairs (S,E), (S′,E′) such that T ≡ AS + E ≡ AS′+ E′ (mod q) and where
both pairs are roughly equally likely with respect to the output distribution of
the key generation algorithm. This is achieved in Lemma 5.2 of [18] in the case
of SIS by taking m to be sufficiently large. This approach would require taking
n large and the signature size is increased.

Instead we employ an alternative proof technique given in Section 6 of Lyuba-
shevsky [18]. The idea is to introduce Game 2, which is Game 1 but with the
public key replaced by a pair (A,T ≡ AS′ + E′ (mod q)) of matrices over Zq,
where S′ and E′ have larger entries (chosen uniformly in [−E′, E′] where E′ is as
in equation (5)) than S and E do. The decisional-LWE assumption is that Game
1 and Game 2 are computationally indistinguishable: the only change happens in
the public keys which the adversary can not distinguish, according to Lemma 5.
Note that we do not claim that (A,T) are uniformly distributed.

Lemma 5. If the decisional (n,m, q, σS , σE)-LWE assumption and decisional
(n,m, q, E′)-assumption holds then Game 1 and Game 2 are hard to distinguish.

Proof. (Sketch) Let D0 be the distribution of pairs (A,T) output by the key
generation in Game 1, so that T ≡ AS+E (mod q) where S and E have entries
chosen from discrete Gaussian distributions with parameter σS and σE respec-
tively. Let D1 be the distribution of pairs (A,T) output by the key generation

15

in Game 2. Namely, T ≡ AS′ + E′ (mod q) where S′ is an n × k matrix with
entries in [−E′, E′] and E′ is an m× k matrix with entries in [−E′, E′]. The in-
equality in Equation (5) implies that an LWE instance from D1 has non-unique
solutions with overwhelming probability. Let U be the uniform distribution on
pairs (A,T). The assumptions in the proof are that it is hard to distinguish U
from D0, and that it is hard to distinguish U from D1.

If the forger A behaves differently between Games 1 and 2, then it acts as a
distinguisher between D0 and D1. So, for simplicity, write B for any distinguisher
that takes inputs (A,T) fromD0 orD1 and outputs a bit b. The algorithm wins if
the samples were taken from Db. The advantage of B is |Pr(B wins)− 1

2 |. Write
bD0

for the expected output of B when run on D0, and bD1
for the expected

output of B when run on D1. We have | bD0
− bD1

| = δ where δ is the difference
in the behaviour of A between the two games.

Now, suppose we run B on samples from U . Then B also outputs b ∈ {0, 1}
with some average behaviour bU . It is then easy to see that either |bU−bD0 | ≥ δ/2
or |bU − bD1

| ≥ δ/2. It follows that B distinguishes either D0 from U or D1 from
U , which is a contradiction.

We write δ′ for the success probability of the forger when running Game 2. If
the decisional-LWE assumption holds then δ− δ′ is negligible. Finally, we apply
the forking lemma to Game 2; this is the content of Lemma 6. Theorem 2 follows
from Lemma 6.

Lemma 6. Suppose the forger A plays Game 2, makes h hash function queries
and s sign queries, runs in time t, and succeeds with probability δ′. Suppose the
parameters satisfy the conditions in Theorem 2. Then there exists an algorithm

running in time approx 2t and with success probability δ′

h

(
δ′

h −
1
2k

)
+ O(s

2

2κ +
n+m
2140) that solves the unbalanced search-SIS problem defined in Theorem 2.

Proof. Let A′ be the m× (n+m) matrix giving the input SIS instance. Taking
the Hermite normal form we can write A′ = (A|Im), where A is an m × n
matrix. The goal of the proof is to compute short non-zero vectors y1,y2 such
that Ay1 + y2 ≡ 0 (mod q).

As mentioned, we choose a random n× k matrix S′ with entries in [−E′, E′]
and a random m × k matrix E′ with entries in [−E′, E′]. Set T ≡ AS′ + E′

(mod q). The inequality in Equation (5) implies that the LWE instance has non-
unique solutions with overwhelming probability. Game 2 is to run the forger A
on (A,T).

The forger makes hash and sign queries that are simulated in the random
oracle model as usual. Eventually A outputs a valid signature (z, c) on message
µ. We know that the random oracle has been queried in order for the verification
equation c = H(bwed, µ) to hold for w = Az−Tc (mod q).

We will now reduce to the case where c arises from a hash query, rather than
a sign query. Suppose not: then there is a sign query on a message µ′ with output
equal to (z′, c), and so

c = H(bAz−Tc (mod q)ed, µ) = H(bAz′ −Tc (mod q)ed, µ′).

16

If µ′ 6= µ or bAz−Tc (mod q)ed 6= bAz′ −Tc (mod q)ed then we have a colli-
sion in H, so this event occurs with probability 1/2κ. Therefore we may assume
that µ′ = µ and that A(z − z′) (mod q) has entries in [−2d, 2d]. If z 6= z′ then
we have a non-zero solution to Ay1 + y2 ≡ 0 (mod q) with ‖y1‖∞ ≤ 2B and
‖y2‖∞ ≤ 2d and we have solved the SIS instance and we are done. Finally, if
z = z′ then (µ′, z′, c) is equal to (µ, z, c) and so it is not a forgery. Hence, for the
remainder of the proof we may assume that the forgery (z, c) has c an output of
a random oracle query (on some index I) that was not made as part of a sign
query.

Now we apply the Bellare-Neven [4] version of the forking lemma. In other
words, we re-wind the attack, so that v is the same but the I-th random oracle
output is taken to be a different binary string c′. One can verify that our signature
scheme is a generic signature scheme with security parameter κ. With probability
δ′(δ

′

h −
1
2κ) we obtain a valid signature (z′, c′) on the same message µ. Let c =

F (c) and c′ = F (c′). With overwhelming probability we have c 6= c′.
Now, we have bAz−Tc (mod q)ed = bAz′ −Tc′ (mod q)ed and so Az −

Tc + e ≡ Az′ −Tc′ (mod q) for some vector e satisfying ‖e‖∞ ≤ 2d−1 coming
from the rounding. Hence, putting T ≡ AS′ + E′ (mod q), we see

A(z− z′ + S′(c′ − c)) + e + E′(c′ − c) ≡ 0 (mod q). (8)

Writing y1 = z−z′+S′(c′−c) and y2 = e+E′(c′−c) we have ‖y1‖∞ ≤ 2B+2E′w
and ‖y2‖∞ ≤ 2d−1+2E′w. Hence, as long as (y1,y2) 6= (0, 0), we have a solution
to the input SIS instance. Finally, since the matrices (S′,E′) are not uniquely
defined with high probability, the adversary does not know which pair (S′,E′) is
being used to construct the vectors y1 and y2. Hence, with probability at least
1
2 , we deduce that (y1,y2) 6= (0, 0). �

5 Parameter selection

In Table 1, we give some concrete parameters for our signature scheme in Figure
1. The parameters are provably secure (cf. Theorem 2) and reduce to worst-case
computational problems in general lattices. In Appendix B.2, we also give some
shorter signatures that are based on non-standard LWE assumptions.

We discuss how the signature parameters in Table 1 are chosen. Given the
security parameter n, the weight w is chosen such that 1/(2w ·

(
n
w

)
) < 2−κ.

Standard estimates show that w ≈ κ/ log(n). The standard deviation of Gaussian
entries S and E are chosen such that the LWE problem for the key is secure. In
the signature, one computes z = y+Sc. By the central limit theorem the entries
of Sc are Gaussian with mean 0 and standard deviation σSc =

√
wσS. We bound

the entries of Sc by 14σSc, which is true with probability 2−140. Let Dz and
Dy be the uniform distribution on [−B + U,B − U] and [−B,B] respectively.
The probability of acceptance in line 7 of Algorithm 2 is (1 − 14σEw/2

d)m;
hence we need q > 2d ≥ 14mσEw. We also need the parameters to satisfy
the conditions in the statement of Theorem 2. The signature size is given by
ndlog2(2(B − U))e + κ ≈ dlog2(2B)e + κ. Note that the public key size can

17

be effectively halved by generating A using a pseudo-random generator and by
publishing only the seed for the generator as part of the public key (cf. [12]).

Table 1: Parameters for LWE Signatures using Uniform Distributions.

I II III IV V

n 640 576 512 512 400

m 1137 969 945 1014 790

w 2w ·
(
n
w

)
≥ 2128 18 18 19 19 20

Approx. log2(q) 34.34 33.10 30.84 32.66 28.71

κ 132 132 132 132 132

σE 58 68 66 224 70

σS 58 68 66 224 70

σSc
√
wσS 246.07 288.50 287.69 976.39 313.05

B 14σSc(n− 1) 2201370 2322422 2058115 6985118 1748695

2d 224 224 224 226 224

Prob. acceptance in
(
1− 14σEw/2

d
)m

0.371 0.371 0.372 0.406 0.397
line 7 of Alg 2.

Hermite factor (for breaking the key) 1.0056 1.0057 1.0057 1.0055 1.0064

Hermite factor (for forging signature) 1.0038 1.0044 1.0048 1.0047 1.0061

Signature (bits) ndlog2(2B)e+ κ 14852 13380 11396 12420 8932

Public key (Mb) 2mn log2(q) 6.0 4.4 3.6 4.0 2.2

Signing key (Mb) 2mn log2(4σS) 1.4 1.0 0.9 1.2 0.6

To evaluate the security of our parameters against practical lattice attacks
we consider the LWE problem for the secret key and the SIS problem for the
forgery. The security can be estimated by computing the (root) Hermite factor γ
of the lattices (based on the BKZ 2.0 estimates of Chen and Nguyen [9]). Tables
2 and 3 of [9] suggest that instances with γ ≤ 1.0065 should require around 2128

operations to solve using BKZ lattice reduction. These security estimations are
standard in the field so we only sketch the details.

Solving an LWE instance (A,b ≡ As+e (mod q)) corresponds to solving the
closest vector problem (CVP) with target b in the image lattice {v ∈ Zm : v ≡
As (mod q)} ⊆ Zm. It is known that the optimal dimension m, when using a lat-
tice reduction algorithm with root Hermite factor δ, is around

√
n log(q)/ log(δ).

To get closer to the optimal dimension (which is often larger thanm) one can con-
sider the inhomogeneous SIS (ISIS) problem b = (A|Im)(sT , eT)T (mod q). Let
v′ ∈ Zn+m be any solution (not necessarily small) to the equation b = (A|Im)v′

(mod q). One can solve the ISIS problem by solving the CVP (with target v′)
in the kernel lattice {v ∈ Zn+m : b ≡ (A|Im)v (mod q)} ⊆ Zm.

The CVP problem can be solved use the embedding technique. It is plausible
to turn the CVP problem into an Unique-SVP problem in the embedded lat-
tice. For instance, using the embedding technique, the above ISIS problem gives
(A|Im|b)(sT , eT ,−1)T ≡ 0 (mod q) and so one can solve the problem by finding
a short vector in this lattice. Since the short vector (sT , eT ,−1)T is often very

18

small, the standard approach is to estimate the lattice gap γ = λ2(L)/λ1(L)
(see [17, 1]). We let λ1(L) be the length of the target vector and λ2(L) be the
Gaussian expected shortest vector of the q-ary lattice. In the ISIS case, the tar-
get vector has norm

√
n+m+ 1σE in the case σS = σE . The root Hermite

factor δ (needed for the attack) is γ1/(n+m+1) =
(
qm/(n+m+1)

σE
√
2πe

)1/(n+m+1)

.

We also want the SIS problem in the forgery to be hard. In the proof of
Lemma 6, we choose random matrices S′ and E′ with entries in [−E′, E′] for
large enough E′ such the there exists alternative keys. The short vectors in
the forgery (cf. Equation (8)) have entries bounded by max(2B, 2d−1) + 2E′w.
The short vectors v in the forging problem Av ≡ 0 (mod q) have length ‖v‖2 ≤(
max(2B, 2d−1

)
+2E′w)

√
m+ n. Following Section 3 and equation (1) of [20], an

estimate for the length of the shortest vector that we can find is qm/(n+m)δm+n

(where δ ≈ 1.0065), and for the forgery security we need this to be larger than
D =

(
max(2B, 2d−1) + 2E′w

)√
m+ n. In Table 1 we estimate the Hermite fac-

tor required to solve the problem by δ = (D/qm/(m+n))1/(n+m).
An asymptotically good set of parameters would be to choose κ and n, then

set m = 2n, w ≈ κ/ log(n), σE = σS = 2
√
n, B = 14nσSc ≈ 28n

√
κn/ log(n),

2d ≈ 56n
√
nκ/ log n, q ≈ 22d/2B. The public key and signatures for such pa-

rameters are polynomially-sized in the security parameter. By Regev’s theorem,
the security follows from worst-case computational problems in lattices with
polynomial approximation factors.

6 Conclusion

We have described a new method for compressing lattice-based signatures in
Lyubashevsky’s framework. The new signature scheme, together with the com-
pression method, is based on the standard worst-case hardness of LWE and SIS
in general modular lattices. Our signature size for 128-bit security is about 12000
bits, which is shorter than the previous signatures (≥ 16500 bits) whose security
are based on hard problems in general lattices.

Acknowledgements

The authors are grateful to Vadim Lyubashevsky, Chris Peikert and anonymous
referees for helpful comments and discussions on drafts of this paper. The au-
thors wish to acknowledge NeSI (New Zealand eScience Infrastructure) and the
Centre for eResearch at the University of Auckland for providing CPU hours
(for searching the parameters in Table 1) and support.

References

1. M . R. Albrecht, R. Fitzpatrick and F. Göpfert, On the Efficacy of Solving LWE by
Reduction to Unique-SVP, to appear in Proceedings of International Conference
on Information Security and Cryptology 2013.

19

2. B. Applebaum, D. Cash, C. Peikert and A. Sahai, Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems, in S. Halevi
(ed.) CRYPTO 2009, Springer LNCS 5677 (2009) 595–618.

3. S. Bai and S. D. Galbraith, Lattice Decoding Attacks on Binary LWE, IACR
Cryptology ePrint Archive 2013: 839 (2013).

4. M. Bellare and G. Neven, Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma, in A. Juels, R. N. Wright and S. De Capitani di Vimercati
(eds.), ACM CCS 2006, ACM (2006) 390–399.

5. B. Biswas and N. Sendrier, McEliece Cryptosystem Implementation: Theory and
Practice, in J. Buchmann and J. Ding (eds.), PQCrypto 2008, Springer LNCS 5299
(2008) 47–62.

6. F. Böhl, D. Hofheinz, T. Jager, J. Koch, J. H. Seo and C. Striecks, Practical
Signatures From Standard Assumptions, in T. Johansson and P. Q. Nguyen (eds.),
EUROCRYPT 2013, Springer LNCS 7881 (2013) 461–485.

7. X. Boyen, Lattice Mixing and Vanishing Trapdoors – A Framework for Fully Secure
Short Signatures and More, in P. Q. Nguyen and D. Pointcheval (eds.), PKC 2010,
Springer LNCS 6056 (2010) 499–517.

8. Z. Brakerski, A. Langlois, C. Peikert, O. Regev and D. Stehlé, Classical Hardness
of Learning with Errors, in D. Boneh, T. Roughgarden and J. Feigenbaum (eds.),
STOC 2013, ACM (2013) 575–584.

9. Y. Chen and P. Q. Nguyen, BKZ 2.0: Better Lattice Security Estimates, in D. H.
Lee and X. Wang (eds.), ASIACRYPT 2011, Springer LNCS 7073 (2011) 1–20.

10. L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky, Lattice Signatures and
Bimodal Gaussians, in R. Canetti and J. A. Garay (eds.), CRYPTO 2013, Springer
LNCS 8042 (2013) 40–56.

11. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York,
1986.

12. S. D. Galbraith, Space-efficient variants of cryptosystems based on learning with
errors, preprint, 2013.

13. C. Gentry, C. Peikert and V. Vaikuntanathan, Trapdoors for Hard Lattices and
New Cryptographic Constructions, in C. Dwork (ed.), STOC 2008, ACM (2008)
197-206.

14. T. Güneysu, V. Lyubashevsky and T. Pöppelmann, Practical Lattice-Based Cryp-
tography: A Signature Scheme for Embedded Systems, in E. Prouff and P. Schau-
mont (eds.), CHES 2012, Springer LNCS 7428 (2012) 530–547.

15. M. Liu and P. Q. Nguyen, Solving BDD by Enumeration, An Update, in E. Dawson
(ed.), CT-RSA 2013, Springer LNCS 7779 (2013) 293–309.

16. V. Lyubashevsky, Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures, in M. Matsui (ed.), ASIACRYPT 2009, Springer LNCS 5912
(2009) 598–616.

17. V. Lyubashevsky and D. Micciancio, On Bounded Distance Decoding, Unique
Shortest Vectors, and the Minimum Distance Problem, in S. Halevi (ed.), CRYPTO
2009, Springer LNCS 5677 (2009) 577–594.

18. V. Lyubashevsky, Lattice Signatures without Trapdoors, in D. Pointcheval and T.
Johansson (eds.), EUROCRYPT 2012, Springer LNCS 7237 (2012) 738–755.

19. D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A cryptographic
Perspective, Kluwer, 2002.

20. D. Micciancio and O. Regev, Lattice-Based Cryptography, in D. J. Bernstein,
J. Buchmann, and E. Dahmen (eds.), Post Quantum Cryptography, Springer
(2009) 147–191.

20

21. D. Micciancio and C. Peikert, Hardness of SIS and LWE with Small Parameters,
in R. Canetti and J. A. Garay (eds.), CRYPTO 2013, Springer LNCS 8042 (2013)
21–39.

22. D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind
Signatures, J. Cryptology, 13 (2000) 361–396.

23. D. Stehlé and R. Steinfeld, Making NTRUEncrypt and NTRUSign as Secure as
Standard Worst-Case Problems over Ideal Lattices, Cryptology ePrint Archive:
Report 2013/004.

24. O. Regev, On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography, in H. N. Gabow and R. Fagin (eds.), STOC 2005, ACM (2005) 84–93.

25. O. Regev, On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography, Journal of the ACM 56(6), article 34, 2009.

A Signatures

A signature scheme comprises three randomized algorithms: KeyGen, Sign, Ver-
ify. KeyGen takes as input a security parameter and outputs a public/private key
pair (pk, sk). Sign takes as input a message µ and a private key sk, and outputs
a signature Σ. Verify takes as input a message µ, signature Σ and public key pk,
and outputs “valid” or “invalid”. We require that, at least with overwhelming
probability, Verify(µ, Sign(µ, sk), pk) = “valid”.

Adaptive security for signatures is defined using a game between a forgery
algorithm F and a challenger. The challenger generates a public key pk for
the signature scheme at a given security level and runs the forger. The forger
takes as input the public key for the signature scheme, makes h random oracle
queries and s sign queries, runs in time t, and outputs (µ,Σ). The forger wins
if Verify(µ,Σ, pk) = “valid”. The success probability (taken over all public keys
generated by the challenger, all responses to the hash and sign queries, and over
the random choices made by F) is denoted ε. The signature scheme is secure if
there is no polynomial-time (in terms of the security parameter) algorithm F
whose success probability in the above game is non-negligible.

An important tool for analysing signatures in the random oracle model is the
Forking Lemma of Pointcheval and Stern [22]. We need the signature scheme
to be a generic signature scheme (the scheme in this paper does satisfy that
requirement) with security parameter κ and hash output of size 2κ. Note that
a sign query involves an implicit hash query, but that this is to a random value
that is chosen by the challenger. Hence, when we say that F makes h hash
queries we are only counting the actual queries to the random oracle, and not
the additional s hash queries implicit in the signing algorithm.

The basic principle is to run a forger for the signature scheme, interacting
with a specific instance of the random oracle, to get a forgery. The forgery cor-
responds to specific hash value corresponding to the I-th random oracle query.
One then replays or rewinds the forger, with the same random tape, and answer-
ing the first I − 1 queries to the random oracle with the same values as before,
but answering the subsequent queries with freshly chosen random values. With
a certain probability, the forger outputs a new forgery that corresponds once
again to the I-th hash query.

21

Theorem 13 of [22] considers a forger F that runs in time t, makes h queries
to the random oracle (including those performed by the sign oracle), s sign
queries, and outputs a forgery with probability ε > 10(s + 1)(s + h)/2κ. Then
the re-winding process produces, with probability one, two valid signatures with
the same “y-value” but different hash values in time t′ ≤ 120686 th/ε.

An alternative formulation was given by Bellare and Neven [4]. The two main
differences are a cleaner and more general presentation, and an analysis in the
case where the forking lemma just runs F twice (rather than 120686 th/ε times).
Bellare and Neven consider a forger F that outputs a valid forgery in time t
with probability ε making h random oracle queries and s sign queries. Then the
rewinding algorithm outputs two valid signatures in time approximately 2t and
with probability at least (Lemma 1 of [4])

ε

(
ε

h
− 1

2κ

)
.

In Theorem 3 we use a slight variant of the forking lemma. In our case,
we must guess in advance the index I of the hash query that corresponds to a
successful forgery (as we need to program this hash value to be a specific element
corresponding to the problem instance). Hence, we need to guess the index I from
among the h possible values. We then answer the I-th hash query with a specific
value c∗ and then, in the re-winding, answer the I-th hash query with another
specific value c†. Both values c∗ and c† are chosen uniformly at random. Hence,
the probability the rewinding algorithm outputs two valid signatures in time
approximately 2t is

ε

h

(
ε

h
− 1

2κ

)
. (9)

B Variants

This section discusses some avenues to obtain even shorter signatures. Some of
these ideas have already been used by other authors [18, 14, 10]. First we discuss
obstructions to very short lattice signatures. The main driver of signature size is
that n must be sufficiently large to ensure the lattice problems are hard. Some
further issues are:

– The z vector has to cover all possible values for Sc, so if Sc can be made
smaller then signatures will be smaller. Unfortunately, we cannot just reject
those c for which Sc is large, since we are unable to simulate such behaviour.

– Lemma 4 requires the simulation to be statistically very close to the real
game, and this requires high-grade rejection sampling in the sign algorithm.
If we want to have a constant rejection rate then this leads to a linear
factor of n in the bound B for the distribution Dz. In principle, using a
Gaussian distribution for Dz reduces this to a

√
n factor, but large constants

are introduced that prevent short signatures for concrete small parameters.
Overall, the strong requirement of Lemma 4 is a major contributor to the
signature size.

22

B.1 General tricks

One can take k very large so that w is smaller. However, the public key grows
in size and the improvement is minor (for example, taking k = 3n so that public
keys are 3 times larger only reduces w from 18 to 14 when n = 600).

One can apply a further rejection sampling to ensure that z is small. For
example, one can save n bits in the signature by replacing B by B/2 in the
distribution Dz. In other words, we require that z ∈ [−B/2, B/2]n. Since z
is sampled uniformly it follows that the acceptance probability goes from 1/e
to 1/e2. Similarly, saving 2n bits by reducing Dz to [−B/4, B/4] changes the
acceptance probability to 1/e4 ≈ 1/55.

B.2 Signatures based on non-standard LWE

We have seen that signature size depends on both n and Sc. Hence, there is a
temptation to choose the entries of S to be as small as possible. For instance,
we could choose S to be a binary matrix (entries uniformly chosen from {0, 1})
and E from a discrete Gaussian distribution with standard deviation σE. This
is the binary secret LWE problem.

Micciancio and Peikert [21] and Brakerski, Langlois, Peikert, Regev and
Stenlé [8] have studied the case of LWE with binary secrets. They give some
results that imply that such variants of LWE can be hard. However, their results
are not useful for our application as they require a large increase in the param-
eter n for the LWE problem. More precisely, Theorem 4.6 of [21] shows that
(m,n, q)-binary-LWE can be hard as long as SIVPγ is hard in k = n/ log(n)

dimensional lattices, where γ = Õ(
√
kq). The value n = 512 corresponds to

k = 82, and so such parameters give a weak security guarantee.
Furthermore, there is a lattice decoding attack [3] for LWE with small secrets

(where the entries of S are uniformly chosen from {−d, d}). The algorithm first
translates the binary-LWE problem into an inhomogeneous short integer solution
problem and then solves the closest vector problem on the re-scaled lattice basis.
The results of [3] confirm that n must be significantly enlarged if one works with
binary vectors for the secret. Section 4.3 of Liu and Nguyen [15] also considers
attacking a system with very small uniform errors. They find that the attack
works for a much larger range of parameters than the general case, including
n = 350. Hence, using binary secrets for the signatures application seems to not
be a good way to get short signatures.

Alternatively, we could choose S and E from Gaussian with deviation σS =
σE ≤ 2

√
n. As a example we choose (n,m, σS , σE , d, w) = (448, 886, 32, 32, 23, 19)

and take q ≈ 227.84. Here B is about 219.74 which gives signatures of size
21n + 128 = 9540 bits. The Hermite constant γ needed is roughly 1.0060. The
acceptance probability is roughly 0.407.

In practice, Liu and Nguyen [15] have considered the best lattice decoding
attacks and given security estimates for LWE. They use the BKZ 2.0 for basis
reduction (based on estimates of Chen and Nguyen [9]) and then lattice enumer-
ation algorithms for the decoding. Their results imply that n = 256 dimensional

23

lattices with Gaussian errors (of deviation about 3.3) should require around 2105

time to break. This suggests that, in practice, n = 320 dimensional lattices with
Gaussian errors (of larger deviation) should be safe for LWE.

The size of σS and σE also affects relations in Equation (4). This turns out
to be a stricter constraint: it is easier to find suitable parameters when σS and
σE are large. In general, it seems that using small values for σS and σE may turn
out to provide a relatively minor saving in signature size, so we do not pursue
this idea further.

B.3 Bi-modal

We can also consider the bimodal technique of Ducas, Durmus, Lepoint and
Lyubashevsky [10] in our setting. The main idea is to work modulo 2q and to
choose the matrix T to be such that −T ≡ T (mod 2q). This can be achieved
by ensuring that the entries of the matrix T are all in {0, q}. The matrix T can
be represented using mn bits rather than mn log2(2q) bits.

One particular choice for T is q times an n × n identity matrix (note that
this requires m = n, which may result in a further increase in q. In this case
the public key is further compressed, since there is no need to publish T at all.
Let k = n and suppose the n × n matrix S with Gaussian entries is invertible.
Construct the public key (A,T) as follows. Choose (S,E) first and set A ≡
(T − E)S−1 (mod 2q). The computational assumption is now related to the
NTRU assumption: Given A find matrices (S,E) with small entries such that
A ≡ −ES−1 (mod q). In particular, it is necessary (but not sufficient as far
as we know) for this matrix-NTRU problem to be hard for our scheme to be
secure. Note that the security of the short signature scheme of [10] also relies on
an NTRU assumption (also in a ring) of a similar form.

The goal of using the bimodal distribution is that is makes the rejection
sampling work better, and so one can use smaller distributions for Dy and Dz

(indeed, Gaussian distributions). Using a Gaussian distribution for Dy with stan-
dard deviation σ and the bi-modal trick we should be able to take (as on page
5 of [10])

σ = 12
√
nσS
√
w/
√

2.

For instance, from parameters (n, σS , w) = (448, 32, 19) we can obtain σ =
12
√
wn/2σS ≈ 25051. Assuming a perfect encoding of Gaussian data that only

requires log2(4σ) bits to represent elements from this distribution we might hope
to have signatures of around 448 · log2(4σ) + 132 ≈ 7575 bits.

The security analysis of this variant requires a different use of the forking
lemma, as well as a non-standard assumption. We do not give the details here.

B.4 Signatures based on Ring-LWE/NTRU

Our scheme could be implemented with Ring-LWE. The signature is a single
ring element and the hash value. The public key is now a sequence ti = ais + ei
(mod q), for 1 ≤ i ≤ `, with elements in Zq[x]/(x2

k

+ 1).

24

To sign we compute c = H(ba1yed . . . ba`yed, µ) and then z = y + sc. Ver-
ification is that z is short and that H(ba1z − t1ced, . . . ba`z − t`cedµ) equals
c.

The security proof is identical (one can always consider Ring-LWE as a par-
ticular case of the matrix problem), but of course the security now depends on
the Ring-LWE assumption. Using Ring-LWE will reduce the public key size and
improve speed, but it does not seem to lead to any reduction of the signature
size, so we do not consider it further in this paper.

C Completing the proof of Theorem 3

This approach is rather different. When we replace the public key we insert an
LWE instance into the key. The forgery therefore can be used to obtain a solution
to the LWE instance.

The proof is a little less tight than the proof of Theorem 2 or the proofs
in [10, 18], due to our non-standard use of the forking lemma. Our proof applies
to many different distributions Dy, but it is simplest to consider Dy to be the
uniform distribution [−B,B]. Hence, the full details are given for this case, and
so we take ` =∞.

The idea of the proof is as follows: We define Game 2 to be the same as Game
1, except that the public key is replaced by a uniformly chosen pair of matrices
(A,T). Game 3 is the same as Game 2, except it has a different key generation
algorithm (see Algorithm 5 below). Lemma 8 shows that an adversary that can
distinguish Game 1 and Game 2 is solving the matrix version of decisional-LWE.
Lemma 9 shows that a distinguisher between Game 2 and Game 3 is solving
decisional-LWE. Finally, we show that an adversary who can win Game 3 can
be used to solve search-LWE.

Lemma 7. Suppose q is prime and that condition (6) holds. Then, with proba-
bility 1−1/2κ, there is no non-zero vector y ∈ [−B,B]n with bAy (mod q)ed = 0
and the output of bAy (mod q)ed is uniform and the cardinality of the set

{bAy (mod q)ed : y← Dn
y }

is (2B + 1)n.

Proof. Let q be a prime such that the equation (6) is satisfied. Fix a non-zero
vector y and consider the set Ay = {A ∈ Zm×nq : bAy (mod q)ed = 0}. These
are the bad matrices for our vector y. Considering each row of A we may choose
(n − 1) positions arbitrarily, and one remaining entry is constrained to a set of
2d values. Hence #Ay =

(
qn−12d

)m
.

Consider any set of (2B + 1)n choices for non-zero y, then the union of all
the bad sets has at most (2B + 1)n

(
qn−12d

)m
elements. If a matrix A is not

chosen from that union of sets then the function bAy (mod q)ed is non-zero for
all those y. Hence, the probability a matrix A is bad for the set of y is

(2B + 1)n
(
qn−12d

)m
/qnm = (2B + 1)n(2d/q)m < 1/2κ.

25

Now, suppose that bAy1 (mod q)ed = bAy2 (mod q)ed. It follows that y =
y1−y2 is a vector with Ay (mod q) having entries in [−2d, 2d]. In other words,
y ∈ [−2B, 2B]n is such that bAy (mod q)ed+1 = 0. Applying the same argument
as above on the enlarged parameters shows that such a vector y occurs with
probability at most 1/2κ, and so with overwhelming probability there are no
collisions in the function bAy (mod q)ed. �

Note that Lemma 7 prevents the fifth possible attack mentioned in Sec-
tion 3.1.

Lemma 8. Let the forger have success probability δ in Game 1 in the random
oracle model. If the success probability of the forger in Game 2 is δ′ with ε = |δ′−
δ| then there is an algorithm to distinguish the distribution (A,AS+E (mod q))

from the uniform distribution on Zm×(n+k)q that runs in time approximately t and
gives the correct answer with advantage ε.

Proof. (Sketch) The signing algorithm in Game 2 is the same as Game 1, while
the public key of Game 2 is a uniformly chosen pair of matrices (A,T).

Let A be a forger. We build a distinguisher D that takes as input a pair (A,T)
of matrices, taken either from the uniform distribution or the LWE distribution.
The distinguisher runs A on the public key (A,T). The forger A can make hash
queries and sign queries, and the distinguisher answers these in the random
oracle model as we have explained in Algorithm 4. Eventually the forger outputs
a candidate signature. If the signature is valid then D outputs 1, else D outputs
0.

The advantage of D is defined to be the absolute value of the difference of
the probabilities it outputs 1 when the input (A,T) is from each of the two
distributions. This is ε by definition. �

Algorithm 5 Game 3 key generation (Tw ≡ b (mod q)).

Input: A,b,w 6= 0
Output: (A,T)
1: For notational convenience we suppose that w1 6= 0.
2: Write w = (w1

w′)

3: T′ ← Zm×(k−1)
q

4: Set t ≡ b−T′w′ (mod q)
5: Set T = [w−1

1 t (mod q) | T′] (This is now m× k.)
6: return (A,T)

Lemma 9. Let the forger have success probability δ in Game 2 in the ran-
dom oracle model. If the success probability of the forger in Game 3 is δ′ with
ε = |δ′ − δ| then there is an algorithm to distinguish the LWE distribution

(A,As + e (mod q)) from the uniform distribution on Zm×(n+1)
q that runs in

time approximately t and gives the correct answer with advantage ε.

26

Proof. (Sketch) Let (A,b) be the decisional-LWE instance and choose any vector
w of low weight. Consider Algorithm 5 on input (A,b,w). If b is sampled
uniformly then the output matrix T is uniformly chosen, whereas if b is sampled
from the LWE distribution then T is constrained. Any difference in the behaviour
of the forger for these games therefore distinguishes b from random. �

Lemma 10. Suppose the forger A plays Game 3, makes h hash function queries
and s sign queries, runs in time t, and succeeds with probability δ′. Suppose the
parameters satisfy the conditions in Theorem 3.

Then there exists an algorithm running in time approx 2t and with success

probability δ′

h

(
δ′

h −
1
2k

)
+O(s

2

2κ + n+m
2140) that solves (n,m, q, α)-LWE with short

secrets.

Proof. (Sketch) Let (A,b) be the input (n,m, q, α)-LWE instance. We wish to
find vectors y1,y2 such that Ay1 + y2 ≡ b (mod q) and we know that y1,y2

have been sampled from the discrete Gaussian distribution Dαq. It follows that,
with probability 2−140, ‖y1‖∞, ‖y2‖∞ ≤ 14αq (see equation (1)).

Due to our choice of parameters 2B, 2d ≥ 14αq we have that

‖y1‖∞ ≤ 2B and ‖y2‖∞ ≤ 2d. (10)

Furthermore, equation (6) implies the LWE instance is well-defined in the sense
that, with high probability, any pair (y′1,y

′
2) of vectors satisfying the bounds of

equation (10) is actually the desired pair (y1,y2) corresponding to the distribu-
tion Dαq.

Choose uniformly at random c∗, c† ← {0, 1}κ and set w = F (c∗) − F (c†).
Then w is a length k vector over Z but we do not need any restriction on
its weight (as long as w 6= 0, which fails with negligible probability c1/2

κ by
equation (2)). Then perform the key generation algorithm in Algorithm 5. The
point is that Tw ≡ b (mod q).

We now guess an index 1 ≤ I ≤ h and run the forger A on (A,T). The
forger makes hash and sign queries. Hash queries are answered by choosing fresh
uniform values that are stored in a list, with the exception that the I-th hash
query is answered with c∗. Sign queries are simulated in the random oracle model
as usual.

Eventually A outputs a valid signature (z, c) on message µ. We know that
the random oracle has been queried in order for the verification equation c =
H(bved, µ) to hold.

We will now explain that c arises with overwhelming probability from a hash
query, not a sign query. Suppose not: then a sign query on a message µ′ with
output equals to (z′, c), and hence we have c = H(bAz−Tc (mod q)ed, µ) =
H(bAz′ −Tc (mod q)ed, µ′). We have µ′ = µ with probability 1 − 1/2κ. Oth-
erwise, we find a pre-image of c with non-negligible probability. Hence, with
overwhelming probability A(z− z′) (mod q) has entries in [−2d, 2d] and so, by
Lemma 3, z′ = z with probability (1 − 1/2κ). Hence, for the remainder of the
proof we may assume that the forgery (z, c) has c an output of a random oracle
query that was not made as part of a sign query.

27

Now we apply the forking lemma. In other words, we re-wind the attack, so
that v is the same but the I-th random oracle output is taken to be the binary
string c† such that F (c∗) = F (c†) + w.

One can verify that our signature scheme is a generic signature scheme with
security parameter κ. As discussed in Appendix A, we use a variant of the
Bellare-Neven [4] formulation given in equation (9). This takes into account
that we need a forgery with hash value taken to be the specific value c∗ chosen
at the start of the proof, and then replace the same random oracle query with
the value c†. Note that both values c∗ and c† are chosen independently and
uniformly at random, as required to apply the forking Lemma. It follows that
we may obtain a pair of valid signatures (c∗, z∗) and (c†, z†) corresponding to
the same hash input (bved, µ) in time approximately 2t and with probability at
least

δ′

h

(
δ′

h
− 1

2κ

)
.

We have
Az∗ −TF (c∗) ≡ v + e∗ (mod q)

and, similarly,
Az† −TF (c†) ≡ v + e† (mod q).

Subtracting gives

A(z∗ − z†) + (e† − e∗) ≡ T(F (c∗)− F (c†)) = Tw ≡ b (mod q).

Note that ‖z∗‖∞, ‖z†‖∞ ≤ B and so ‖z∗−z†‖∞ ≤ 2B. Similarly, ‖e∗‖∞, ‖e†‖∞ ≤
2d−1 and so ‖e† − e∗‖∞ ≤ 2d. Hence, by uniqueness of the LWE solution,
(z∗ − z†, e† − e∗) is the desired solution to the LWE instance. �

This completes the proof of Theorem 3.

