
A Modular Framework for Building Variable-Input-Length
Tweakable Ciphers

Thomas Shrimpton and R. Seth Terashima

Dept. of Computer Science, Portland State University
{teshrim,seth}@cs.pdx.edu

Abstract. We present the Protected-IV construction (PIV) a simple, modular method for building
variable-input-length tweakable ciphers. At our level of abstraction, many interesting design opportu-
nities surface. For example, an obvious pathway to building beyond birthday-bound secure tweakable
ciphers with performance competitive with existing birthday-bound-limited constructions. As part of
our design space exploration, we give two fully instantiated PIV constructions, TCT1 and TCT2; the
latter is fast and has beyond birthday-bound security, the former is faster and has birthday-bound
security. Finally, we consider a generic method for turning a VIL tweakable cipher (like PIV) into an
authenticated encryption scheme that admits associated data, can withstand nonce-misuse, and allows
for multiple decryption error messages. Thus, the method offers robustness even in the face of certain
sidechannels, and common implementation mistakes.

Keywords: tweakable blockciphers, beyond-birthday-bound security, authenticated encryption, asso-
ciated data, full-disk encryption

The proceedings version of this paper appears in Asiacrypt ’13. This is the full version.

1 Introduction

FK1
~

VK2
~

FK1
~

IV

XL

YL

XR

YR

T

T

Fig. 1: The PIV[F̃ , Ṽ] tweakable cipher. In-
put T is the tweak, and X = XL ‖XR is a
bit string, where |XL| = N and XR is any

length accepted by Ṽ . The filled-in box is
the tweak input.

The main contribution of this paper is the Protected-IV construc-
tion (PIV), see Figure 1. PIV offers a simple, modular method for
building length-preserving, tweakable ciphers that:

(1) may take plaintext inputs of essentially any length;

(2) provably achieves the strongest possible security property for
this type of primitive, that of being a strong, tweakable-PRP
(STPRP);

(3) admit instantiations from n-bit primitives that are STPRP-
secure well beyond the birthday-bound of 2n/2 invocations.

Moreover, by some measures of efficiency, beyond-birthday secure
instantiations of PIV are competitive with existing constructions
that are only secure to the birthday bound. (See Table 1.) We will
give a concrete instantiation of PIV that has beyond birthday-
bound security and, when compared to EME [20], the overhead is
a few extra modular arithmetic operations for each n-bit block of
input.

Tweakable ciphers with beyond birthday-bound security may
have important implications for cryptographic practice. For ex-
ample, in large-scale data-at-rest settings, where the amount of
data that must be protected by a single key is typically greater than in settings where keys can be easily
renegotiated.

At least two important applications have already made tweakable ciphers their tool-of-choice, namely
full-disk encryption (FDE) and format-preserving encryption (FPE). Our work provides interesting new
results for both FDE and FPE.

We also show that tweakable ciphers enable a simple mechanism for building authenticated encryption
schemes with associated data (AEAD), via an extension of the encode-then-encipher approach of Bellare
and Rogaway [8]. This approach has some practical benefits, for example, it securely handles the reporting
of multiple types of decryption errors. It can also eliminate ciphertext expansion by exploiting any existing
nonces, randomness, or redundancies appearing in either the plaintext or associated data inputs. Combined
with our other results, encode-then-encipher over PIV gives a new way to build AEAD schemes with beyond
birthday-bound security.

Background. Tweakable blockciphers (TBCs) were introduced and formalized by Liskov, Rivest and Wag-

ner [24]. An n-bit TBC Ẽ is a family of permutations over {0, 1}n, each permutation named by specifying a
key and a tweak. In typical usage, the key is secret and fixed across many calls, while the tweak is not secret,
and may change from call to call; this allows variability in the behavior of the primitive, even though the key
is fixed. A tweakable cipher1 is the natural extension of a tweakable blockcipher to the variable-input-length
(VIL) setting, forming a family of length-preserving permutations.

Since the initial work of Liskov, Rivest and Wagner, there has been substantial work on building tweakable
ciphers. Examples capable of handling long inputs (required for FDE) include CMC [19], EME [20], HEH
[38], HCH [14], and HCTR [41]. Loosely speaking, the common approach has been to build up the VIL
primitive from an underlying n-bit blockcipher, sometimes in concert with one or more hashing operations.
The security guaranteed by each of these constructions become vacuous after about 2n/2 bits have been
enciphered. One of our main goals is to break through this birthday bound, i.e., to build a tweakable cipher
that remains secure long after 2n/2 bits have been enciphered.

The PIV construction. To this end, we begin by adopting a top-down, compositional viewpoint on the design
of tweakable ciphers, our PIV construction. It is a type of three-round, unbalanced Feistel network, where
the left “half” of the input is of a fixed bit length N , and the right “half” has variable length. The first and
third round-functions are an N -bit tweakable blockcipher (F̃), where N is a parameter of the construction,

e.g. N = 128 or N = 256. The middle round-function (Ṽ) is itself a VIL tweakable cipher, whose tweak is
the output of first round.

It may seem as though little has been accomplished, since we need a VIL tweakable cipher Ṽ in order
to build our VIL tweakable cipher PIV[F̃ , Ṽ]. However, we require substantially less of Ṽ than we do of

PIV[F̃ , Ṽ]. In particular, the target security property for PIV is that of being a strong tweakable pseudorandom
permutation. Informally, being STPRP-secure means withstanding chosen-ciphertext attacks in which the
attacker also has full control over all inputs. The attacker can, for example, repeat a tweak an arbitrary
number of times. Our PIV security theorem (Theorem 1) says the following: given (1) a TBC F̃ that is

STPRP-secure over a domain of N -bit strings, and (2) a tweakable cipher Ṽ that is secure against attacks

that never repeat a tweak, then the tweakable cipher PIV[F̃ , Ṽ] is STPRP-secure. Thus, qualitatively, the
PIV construction promotes security (over a large domain) against a restricted kind of attacker, into security
against arbitrary chosen-ciphertext attacks.

Quantitatively, the PIV security bound contains an additive term q2/2N , where q is the number of
times PIV is queried. Now, N might be the blocksize n of some underlying blockcipher; in this case the PIV
composition delivers a bound comparable to those achieved by existing constructions. But N = 2n presents
the possibility of using an n-bit primitive to instantiate F̃ and Ṽ , and yet deliver a tweakable cipher with
security well beyond beyond-birthday of 2n/2 queries.

As a small, additional benefit, the PIV proof of STPRP-security is short and easy to verify.

Impacts of modularity on instantiations. Adopting this modular viewpoint allows us to explore constructions
of F̃ and Ṽ independently. This is particularly beneficial, since building efficient and secure instantiations of

1 Sometimes called a “tweakable enciphering scheme”, or even a “large-block cipher”.

2

VIL tweakable ciphers (Ṽ) is relatively easy, when tweaks can be assumed not to repeat. The more difficult

design task, of building a tweakable blockcipher (F̃) that remains secure when tweaks may be repeated, is
also made easier, by restricting to plaintext inputs of a fixed bit length N . In practice, when (say) N = 128

or 256, inefficiencies incurred by F̃ can be offset by efficiency gains in Ṽ .

To make thing concrete, we give two fully-specified PIV tweakable ciphers, each underlain by n-bit block-
ciphers. The first, TCT1, provides birthday-bound security. It requires only one blockcipher invocation and
some arithmetic, modulo a power of two, per n-bit block of input. In contrast, previous modes either require
two blockcipher invocations per n-bit block, or require per-block finite field operations.

The second, TCT2, delivers security beyond the birthday-bound. When compared to existing VIL tweak-
able ciphers with only birthday-bound security, like EME∗ construction, TCT2 incurs only some additional,
simple arithmetic operations per n bit block of input. Again, this arithmetic is performed modulo powers of
two, rather than in a finite field.

In both TCT1 and TCT2, the VIL component is instantiated using counter-mode encryption, but over a
TBC instead of a blockcipher. The additional tweak input of the TBC allows us to consider various ‘tweak-
scheduling’ approaches, e.g. fixing a single per-message tweak across all blocks, or changing the tweak each
message block.2 We will see that the latter approach of re-tweaking on a block-by-block basis leads to a
beyond birthday-bound secure PIV construction that admits strings of any length at least N .

AEAD via encode-then-(tweakable)encipher. We have already mentioned FDE and FPE as the current,
main applications of tweakable ciphers and blockciphers. But the ability to construct beyond birthday-bound
secure tweakable ciphers with large and flexible domains motivates us to consider their use for traditional
encryption.

Specifically, we build upon the “encode-then-encipher” results of Bellare and Rogaway [8]. They show
that messages endowed with randomness (or nonces) and redundancy do not need to be processed by a
authenticated encryption (AE) scheme in order to enjoy privacy and authenticity guarantees; a VIL strong-
PRP suffices. This is valuable when typical messages are short, as there is no need to waste bandwidth upon
transmitting an AE scheme’s IV and a dedicated authenticity tag.

We find that the tweakable setting gives additional advantages to the encode-then-encipher approach.
First, the tweak can be used effectively to bind a message header to the ciphertext, enabling authenticated
encryption with associated data (AEAD). Additionally, one can explore the effects of randomness, state or
redundancy present in the message and the header inputs. For example, we will see that randomness and
state can be shifted to the header without loss of security, potentially reducing the number of bits that must
be processed cryptographically.

Our results show that AEAD schemes, built via encode-then-encipher over a tweakable cipher, can ac-
commodate multiple decryption error messages. Multiple, descriptive error messages can be quite useful in
practice, but have often empowered damaging attacks (e.g. padding-oracle attacks [40, 11, 32, 2, 16]) against
AE schemes using blockcipher modes, CBC-mode in particular. These attacks don’t work against our AEAD
schemes because, loosely, changing any bit of a ciphertext will randomize every bit of the decrypted string.

Our work in this direction also has important implications for FPE [7, 9]. Motivated by the need to
transparently insert an encryption layer into legacy systems with minimal changes to, e.g., database schemas
or protocol specifications, FPE requires ciphertexts to have the same format as plaintexts; for example,
both might be restricted to the set Σn, for some (often non-binary) alphabet Σ. This precludes inserting
dedicated IVs into ciphertexts, making encryption deterministic. One compensates by using associated data
to tweak encryption, making tweakable ciphers and their security definitions a natural fit. Our work formally
proves the intuitive ideas that unique associated data guarantees privacy in a more standard sense, and
that checking redundancies, such as credit card Issuer Identification Numbers and checksums, provides
authenticated encryption.

2 There is a natural connection between changing the tweak of a TBC, and changing the key of a blockcipher. Both
can be used to boost security, but the former is cleaner because tweaks do not need to be secret.

In addition, the Tor network is considering the use of tweakable ciphers in their onion-encryption
scheme [27], where multiple layers of encryption make ciphertext expansion prohibitively expensive, and
our results shed light on this application.

Related work. Researchers have developed three general approach for constructing tweakable ciphers from
n-bit blockciphers. Each approach has yielded a series of increasingly refined algorithms.

We contribute a new, top-down approach that leads us to the first beyond-birthday-bound secure tweak-
able cipher suitable for encrypting long inputs (i.e., longer than the blocksize of an underlying blockcipher).
Table 1 and Figure 2 compare existing algorithms with our new TCT1 and TCT2 constructions in terms of
computational cost and security, respectively. Note that the finite field operations counted in Table 1 take
hundreds of cycles in software [25, 4], whereas their cost relative to an AES blockcipher invocation is much
lower in hardware [26]. TCT1 is the first tweakable cipher to require only a single blockcipher invocation and
no extra finite field multiplications for each additional n bits of input, while TCT2 is the first to provide
beyond-birthday-bound security (and still gets away with a fixed number of finite field multiplications).

Cost

Cipher [BC] [F2n×] [Zw+] [Z2w] Ref.

HCTR ` 2`+ 2 – – [41]
CMC 2`+ 1 – – – [19]
EME 2`+ 1 – – – [20]
EME∗ 2`+ 3 – – – [17]
PEP `+ 5 4`− 6 – – [13]
HCH `+ 3 2`− 2 – – [14]
TET ` 2` – – [18]
HEH `+ 1 `+ 2 – – [38, 39]

TCT1 `+ 1 5 2`
(
n
w

)2
2`
(
n
w

)2
–

TCT2 2`+ 8 32 4`
(
n
w

)2
4`
(
n
w

)2
–

Table 1: Tweakable ciphers and their computational costs for `n-bit inputs. Costs measured in n-bit blockcipher calls
[BC], finite field multiplications [F2n×], and ring operations [Zw+] and [Z2w], for some word size w. Typically, ` = 32
for FDE, and we anticipate n = 128, w = 64.

The first approach for constructing tweakable ciphers, “encrypt-mix-encrypt”, is used by CMC [19], EME
[20], and EME∗ [17], which employ two rounds of encryption separated by a light-weight “mixing layer”.
CMC is the first in this line of work, and can be used to encrypt strings whose lengths are integral multiples
of n. EME improves on CMC by allowing encryption and decryption to be parallelized, and EME∗ extends
the domain to include strings of arbitrary length.

Naor and Reingold [31] proposed the “hash-ECB-hash” approach, which sandwiches a layer of ECB-mode
encryption between two invertible hashes. Informally, the role of the hashing layers is to diffuse the input. The
PEP [13] mode of operation employs this approach. TET [18] and HEH [38] provide various improvements,
notably in terms of performance. In each case, the two hashing layers require finite field multiplications. A
variant of HEH described by Sarkar [39], however, manages to halve the number of multiplications that are
required.

The final approach is “hash-CTR-hash”. Here, the hashing layers are not invertible, but provide the
mechanism by which the first output bits become dependent on every input bit. Examples include HCTR
[41], which initially offered rather poor security bounds, and HCH, which provides birthday-bound security
and requires only a single blockcipher key. Chakraborty and Nandi [12] later gave a birthday-bound-security
proof for HCTR.

When blockcipher calls are faster than two finite field multiplications, the encrypt-mix-encrypt approach
appears most promising.

We mention the LargeBlock constructions due to Minematsu and Iwata [29], since they provide ciphers
with beyond-birthday-bound security. These do not support tweaking, but it seems plausible that they

4

could without significant degradation of performance or security. These constructions overcome the birthday
bound by using 2n-bit blockciphers as primitives, which are in turn constructed from an n-bit TBC. To our
knowledge, CLRW2 [23] is the most efficient n-bit TBC with beyond-birthday-bound security that supports
the necessary tweakspace (Minematsu’s TBC [28] limits tweak lengths to fewer than n/2 bits). Compared to
TCT2, instantiating the LargeBlock constructions with this primitive ultimately requires an extra six finite
field multiplications for each n bits of input. Thus, we suspect the LargeBlock designs would be impractical
even if adding tweak support proves feasible.

A construction due to Coron, et al. [15], which we refer to as CDMS (after the authors), builds a 2n-
bit TBC from an n-bit TBC, providing beyond-birthday-bound security in n. Like PIV, CDMS uses three
rounds of a Feistel-like structure. However, our middle round uses a VIL tweakable cipher, and we require a
weaker security property from the round. This allows PIV to efficiently process long inputs. That said, CDMS
provides an excellent way to implement a highly-secure 2n-bit TBC, and we will use it for this purpose inside
of TCT2 to build F̃ . (Nesting CDMS constructions could create (2mn)-bit tweakable blockciphers for any
m > 1, but again, this would not be practical.) We note that Coron, et al. were primarily concerned with
constructions indifferentiable from an ideal cipher, a goal quite different from ours.

The Thorp shuffle [30] and its successor, swap-or-not [21], are highly-secure ciphers targeting very small
domains (e.g., {0, 1}n for n ≤ 64). Swap-or-not could almost certainly become a VIL tweakable cipher,
without changing the security bounds, by using domain separation for each input length and tweak in the
underlying PRF. Essentially, one would make an input-length parameterized family of (tweakable) swap-or-
not ciphers, with independent round-keys for each length. While still offering reasonable performance and
unmatched security for very small inputs, the result would be wildly impractical for the large domains we
are considering: swap-or-not’s PRF needs to be invoked at least 6b times to securely encipher a b-bit input
(below that, the bound becomes vacuous against even q = 1 query), and disk sectors are often 4096 bytes.
Also, to match TCT2’s security, the PRF itself would need to be secure beyond the birthday bound (with
respect to n).

Finally, we note that Rogaway and Shrimpton [37] considered some forms of tweakable encode-then-
encipher in the context of deterministic AE (“keywrapping”), and our work generalizes theirs.

0

1

S
ec
u
ri
ty

b
ou

n
d

0 20 40 60 80 100

log2 q

TCT2
TCT1
EME

Fig. 2: Security bounds for TCT1, EME and TCT2, all using an underlying 128-bit primitive and 4096-bit
inputs, typical for FDE. The EME curve is representative of other prior constructions.

5

2 Tweakable Primitives

Preliminary notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers. For n ∈ N, {0, 1}n denotes
the set of all n-bit binary strings, and {0, 1}∗ denotes the set of all (finite) binary strings. We write ε for the
empty string. Let s, t ∈ {0, 1}∗. Then |s| is the length of s in bits, and |(s, t)| = |s ‖ t|, where s ‖ t denotes

the string formed by concatenating s and t. If s ∈ {0, 1}nm for some m ∈ N, s1s2 · · · sm n← s indicates that
each si should be defined so that |si| = n and s = s1s2 · · · sm. When n is implicit from context, it will be
omitted from the notation. If s = b1b2 · · · bn is an n-bit string (each bi ∈ {0, 1}), then s[i..j] = bibi+1 · · · bj ,
s[i..] = s[i..n], and s[..j] = s[1..j]. The string s⊕ t is the bitwise xor of s and t; if, for example, |s| < |t|, then

s⊕ t is the bitwise xor of s and t[.. |s|]. Given R ⊆ N and n ∈ N with n ≤ min(R), {0, 1}R =
⋃
i∈R {0, 1}

i
,

and by abuse of notation, {0, 1}R−n =
⋃
i∈R {0, 1}

i−n
. Given a finite set X , we write X

$←−X to indicate that
the random variable X is sampled uniformly at random from X . Throughout, the distinguished symbol ⊥ is
assumed not to be part of any set except {⊥}. Given an integer n known to be in some range, 〈n〉 denotes
some fixed-length (e.g., 64-bit) encoding of n.

Let H : K × D → R ⊆ {0, 1}∗ be a function. Writing its first argument as a subscripted key, H is
ε-almost universal (ε-AU) if for all distinct X,Y ∈ D, Pr [HK(X) = HK(Y)] ≤ ε (where the probabil-

ity is over K
$←−K). Similarly, H is ε-almost 2-XOR universal if for all distinct X,Y ∈ D and C ∈ R,

Pr [HK(X)⊕HK(Y) = C] ≤ ε.
An adversary is an algorithm taking zero or more oracles as inputs, which it queries in a black-box manner

before returning some output. Adversaries may be random. The notation Af ⇒ b denotes the event that an
adversary A outputs b after running with oracle f as its input.

Sometimes it will be convenient to give pseudocode descriptions of the oracles with which an adversary
can interact, as well as procedures that set up or otherwise relate to such interactions. These descriptions
will be referred to as games (borrowing from the Bellare-Rogaway game-playing framework [5]). Each game
consists of a set of procedures, including a special Main procedure that takes an adversary A as input. We
define Pr [G(A)⇒ y] as probability that the Main procedure of game G outputs y when given an adversary
A as input. When no Main procedure is explicitly given, Main(A) simply executes A, providing it with the
remaining procedures as oracles (in some order that will be clear from context), and then returns A’s output.

Syntax. LetK be a non-empty set, and let T ,X ⊆ {0, 1}∗. A tweakable cipher is a mapping Ẽ : K×T ×X → X
with the property that, for all (K,T) ∈ K × T , Ẽ(K,T, ·) is a permutation on X . We typically write the

first argument (the key) as a subscript, so that ẼK(T,X) = Ẽ(K,T,X). As ẼK(T, ·) is invertible, we let

Ẽ−1K (T, ·) denote this mapping. We refer to K as the key space, T as the tweak space, and X as the message

space. We say that a tweakable cipher Ẽ is length preserving if |ẼK(T,X)| = |X| for all X ∈ X , T ∈ T , and
K ∈ K. All tweakable ciphers in this paper will be length preserving. Restricting the tweak or message spaces
of a tweakable cipher gives rise to other objects. When X = {0, 1}n for some n > 0, then Ẽ is a tweakable
blockcipher with blocksize n. When |T | = 1, we make the tweak implicit, giving a cipher E : K × X → X ,
where EK(·) is a (length-preserving) permutation over X and E−1K is its inverse. Finally, when X = {0, 1}n
and |T | = 1, we have a conventional blockcipher E : K × {0, 1}n → {0, 1}n.

Security notions. Let Perm (X) denote the set of all permutations on X . Similarly, we define BC(K,X) be
the set of all ciphers with keyspace K and message space X . When X ,X ′ are sets, we define Func(X ,X ′) to

be the set of all functions f : X → X ′. Fix a tweakable cipher Ẽ : K× T ×X → X . We define the tweakable
pseudorandom-permutation (TPRP) and strong-TPRP (STPRP) advantage measures as

Advp̃rp
E (A) = Pr

[
K

$←−K : AẼK(·,·)⇒ 1
]
− Pr

[
Π

$←− BC(T ,X) : AΠ(·,·)⇒ 1
]

Advs̃prp
E (A) = Pr

[
K

$←−K : AẼK(·,·),Ẽ−1
K (·,·)⇒ 1

]
− Pr

[
Π

$←− BC(T ,X) : AΠ(·,·),Π−1(·,·)⇒ 1
]

6

where, in each case, adversary A takes the indicated number of oracles. We assume that A never makes
pointless queries. By this we mean that for both the TPRP and STPRP experiments, the adversary never
repeats a query to an oracle. For the STPRP advantage measure, this also means that if A queries (T,X)
to its leftmost oracle and receives Y in return, then it never queries (T, Y) to its rightmost oracle, and vice
versa. These assumptions are without loss of generality. We define a related measure, the SRND advantage,
as

Advs̃rnd
Ẽ

(A) = Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K (·,·)⇒ 1

]
− Pr

[
A$(·,·),$(·,·)⇒ 1

]
where the $(·, ·) oracle always outputs a random string equal in length to its second input: |$(T,X)| = |X|
for all T and X. As before, we assume that A never makes a pointless query. Here, these assumptions are
not without loss of generality, but instead prevent trivial wins. Adversaries for the above three advantages
are nonce-respecting if the transcript of their oracle queries (T1, X1), . . . , (Tq, Xq) does not include Ti = Tj
for any i 6= j.

Now, fix a cipher E : K×X → X . Then we define the pseudorandom permutation (PRP) and strong-PRP
(SPRP) advantage measures

Advprp
E (A) = Pr

[
K

$←−K : AEK(·)⇒ 1
]
− Pr

[
π

$←− Perm (X) : Aπ(·)⇒ 1
]

Advsprp
E (A) = Pr

[
K

$←−K : AEK(·),E−1
K (·)⇒ 1

]
−

Pr
[
π

$←− Perm (X) : Aπ(·),π
−1(·)⇒ 1

]
.

where, in each case, adversary A takes the indicated number of oracles. We assume without loss of generality,
that the adversary does not make pointless queries.

For all security notions in this paper, we track three adversarial resources: the time complexity t, the
number of oracle queries q, and the total length of these queries µ. The time complexity of A is defined to
include the complexity of its enveloping probability experiment (including sampling of keys, oracle compu-
tations, etc.), and we define the parameter t to be the maximum time complexity of A, taken over both
experiments in the advantage measure.3

3 The PIV Construction

We begin by introducing our high-level abstraction, PIV, shown in Figure 1. Let T = {0, 1}t for some t ≥ 0,

and let Y ⊆ {0, 1}∗ be such that if Y ∈ Y, then {0, 1}|Y | ⊆ Y. Define T ′ = T × Y. Fix an integer N > 0.

Let F̃ : K′ × T ′ × {0, 1}N → {0, 1}N be a tweakable blockcipher and let Ṽ : K × {0, 1}N × Y → Y be a

tweakable cipher. From these, we produce a new tweakable cipher PIV[F̃ , Ṽ] : (K′×K)×T ×X → X , where

X = {0, 1}N × Y. As shown in Figure 1, the PIV composition of F̃ , Ṽ is a three-round Feistel construction,
working as follows. On input (T,X), let X = XL ‖ XR where |XL| = N . First, create an N -bit string

IV = F̃K′(T ‖XR, XL). Next, use this IV to encipher XR, creating a string YR = ṼK(IV , XR). Now create

an N -bit string YL = F̃K′(T ‖ YR, IV), and return YL ‖ YR as the value of PIV[F̃ , Ṽ]K′,K(T,X). The inverse

PIV[F̃ , Ṽ]−1K′,K(T, Y) is computed in the obvious manner.
At first glance, it seems that nothing interesting has been accomplished: we took an N -bit TBC and a

tweakable cipher, and produced a tweakable cipher with a slightly larger domain. However, the following
theorem statement begins to surface what our abstraction delivers.

Theorem 1. Let sets T ,Y, T ′,X and integer N be as above. Let F̃ : K′ × T ′ × {0, 1}N → {0, 1}N be a

tweakable blockcipher, and let Ṽ : K × {0, 1}N × Y → Y be a tweakable cipher. Let PIV[F̃ , Ṽ] be as just

3 We do this simply to make our theorem statements easier to read. A more explicit accounting of time resources in
reductions, e.g. separating the running time of A from the time to run cryptographic objects “locally”, would not
significantly alter any of our results.

7

described. Let A be an adversary making q < 2N/4 queries totaling µ bits and running in time t. Then there
exist adversaries B and C, making q and 2q queries, respectively, and both running in O(t) time such that

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

Ṽ
(B) + Advs̃prp

F̃
(C) + 4q2

2N
, where B is nonce-respecting and whose queries total

µ− qN bits in length.

The first thing to notice is that the VIL portion of the PIV composition, Ṽ , need be SRND-secure against
nonce-respecting adversaries only. As we will see in the next section, it is easy to build efficient schemes
meeting this requirement. Only the FIL portion, F̃ , needs to be secure against STPRP adversaries that can
use arbitrary querying strategies. Thus the PIV composition promotes nonce-respecting security over a large
domain into full STPRP security over a slightly larger domain.

The intuition for why this should work is made clear by the picture. Namely, if F̃ is a good STPRP, then
if any part of T or X is “fresh”, then the string IV should be random. Hence it is unlikely that an IV value
is repeated, and so nonce-respecting security of the VIL component is enough. Likewise when deciphering,
if any part of T, Y is “fresh”.

The term 4q2/2N accounts for collisions in IV and the difference between F̃ and a random function. This

is a birthday-bound term in N , the blocksize of F̃ . Since most TBC designs employ (one or more) underlying

blockciphers, we have deliberately chosen the notation N , rather than n, to stress that the blocksize of F̃
can be larger than that of some underlying blockcipher upon which it might be built. Indeed, we’ll see in
the next section that, given an n-bit blockcipher (and a hash function), we can build F̃ with N = 2n. This
gives us hope of building beyond birthday-bound secure VIL STPRPs in a modular fashion; we will do so,
and with relatively efficient constructions, too.

It will come as no surprise that, if one does away with the lower F̃ invocation and returns IV ‖ YR,
the resulting composition does not generically deliver a secure STPRP. On the other hand, it is secure as
a TPRP (just not a strong TPRP). This can be seen through a straight-forward modification of the PIV
security proof.

Proof. Fix a message space {0, 1}S (S ⊆ N), a tweakspace T , and a non-negative integer n ≤ min(S). Let A
be an adversary making at most q queries and running in time t. Halevi and Rogaway [20] show that

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

PIV[F̃ ,Ṽ]
(A) +

q(q − 1)

2min(S)+1
.

This result is essentially a PRF–PRP switching lemma for TBCs, and reduces our problem to that of

bounding Advs̃rnd
PIV[F̃ ,Ṽ]

(A).

We begin in the information-theoretic setting, and consider E [Ṽ] = PIV[Π, Ṽ], where Π
$←− BC(N) is

an ideal cipher. The oracles in Game 1 simulate E [Ṽ] and E [Ṽ]−1 using lazy sampling to define Π, so

Pr
[
AE[Ṽ],E[Ṽ]−1 ⇒ 1

]
= Pr [G1(A)⇒ 1].

In Game 2, we no longer resample “illegal” values when defining Π. The only changes in the code occur
after a boolean “bad” flag is set to true; by the Fundamental Lemma of Game-Playing,

Advs̃rnd
E[Ṽ]

(A) ≤
(

Pr [G2(A)⇒ 1]− Pr
[
A$(·,·),$(·,·)⇒ 1

])
+ Pr [G2(A) ; bad1 ∨ bad2 ∨ bad3]

Note that in Game G2, Ṽ is never queried using the same tweak twice. Hence we may consider a third
game (not shown), Game G3, in which Ṽ is replaced by an oracle $(·, ·) that always returns a random string
equal in length to its second input. By a standard argument, there exists some nonce-respecting adversary
B making q queries and running in O(t) time such that

Pr [G2(A)⇒ 1]− Pr [G3(A)⇒ 1] ≤ Advs̃rnd
Ṽ

(B).

We now have

Advs̃rnd
E[Ṽ]

(A) ≤
(

Pr [G3(A)⇒ 1]− Pr
[
A$(·,·),$(·,·)⇒ 1

])
+ Pr [G2(A) ; bad1 ∨ bad2 ∨ bad3] + Advs̃rnd

Ṽ
(B).

8

However, note that now each the first N bits of each oracle output (corresponding to Z ′i) are always uniformly

random in Game G2, and when we switch from Ṽ to $(·, ·) in the next game, the remaining bits also become
uniformly random. Hence Pr [G3(A)⇒ 1] = Pr

[
A$(·,·),$(·,·)⇒ 1

]
.

Games G1 , G2

Oracle E`(T,X):

200 j ← j + 1

201 Tj ← T ‖X[N + 1..]

202 IVj
$←− {0, 1}N \ range(Π[Tj])

203 Π[Tj](X[1..N])← IVj
204 IV ← IVj
205 if IVj ∈ {IVi : i < j} then

206 bad1 ← true

207 IVj
$←− {0, 1}N \ {IVi : i < j}

208 IVj ← IV // Rollback to “real” value

209 Zi ← Ṽ [IVj](X[N + 1..])

210 T ′j ← T ‖ Zi
211 Z ′i

$←− {0, 1}N

212 if IVj ∈ dom(Π[T ′j]) then

213 bad2 ← true

214 Z ′i ← Π[T ′j](IVj)

215 else if Z ′i ∈ range(Π[T ′j])

216 bad3 ← true

217 Z ′i
$←− {0, 1}N \ range(Π[T ′j])

218 Π[T ′j](IVj)← Z ′i
219 return Z ′i ‖ Zi

Oracle E−1` (T, Y):

220 j ← j + 1

221 Tj ← T ‖ Y [N + 1..]

222 IVj
$←− {0, 1}N \ dom(Π[Tj])

223 Π[Tj]
−1(Y [1..N])← IVj

224 IV ← IVj
225 if IVj ∈ {IVi : i < j} then

226 bad1 ← true

227 IVj
$←− {0, 1}N \ {IVi : i < j}

228 IVj ← IV

229 Zi ← Ṽ [IVj]
−1(Y [N + 1..])

230 T ′j ← T ‖ Zi
231 Z ′i

$←− {0, 1}N

232 if IVj ∈ range(Π[T ′j]) then

233 bad2 ← true

234 Z ′i ← Π[T ′j]
−1(IVj)

235 else if Z ′i ∈ dom(Π[T ′j])

236 bad3 ← true

237 Z ′i
$←− {0, 1}N \ dom(Π[T ′j])

238 Π[T ′j](Z
′
i)← IVj

239 return Z ′i ‖ Zi

Fig. 3: Game 1, which includes the boxed statements, simulates PIV[Π, Ṽ] by defining Π through lazy sam-

pling. Game 2, which does not include the boxed statements, never invokes Ṽ with the same tweak twice, and
the oracles in this game always return values with a random n-bit prefix. All boolean variables are silently
initialized to false.

Our final task is to bound the probability that A sets a bad flag in Game G2. The probability that bad1
is set during query j is less than j/(2N − 2j). Similarly, the probabilities of bad2 and bad3 being set are
at most 2j/(2N − 2j) and 2j/2N , respectively. Therefore the probability that at least one flag is set during
query j is at most 3j/(2N − 2j) + 2j/2N .

Taking the union bound over j ∈ 1, 2, . . . , q gives us Pr [G1(A) ; bad1 ∨ bad2 ∨ bad3] ≤ q2
(

1.5
2N−2q + 1

2N

)
.

Since q < 2N/4, 1.5/(2N − 2q) < 3/2N . Collecting our previous results and using a standard argument to
return to the computational setting completes the proof:

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

Ṽ
(B) + Advs̃prp

F̃
(C) +

4q2

2N
,

9

where C makes 2q queries, B makes q queries of total length µ − qN bits without repeating a tweak, and
both run in O(t) time.

4 Concrete Instantiations of PIV

Instantiating a PIV composition requires two objects, a (fixed-input-length) tweakable blockcipher F̃ with

an N -bit blocksize, and a variable-input-length tweakable cipher Ṽ . In this section we explore various ways
to instantiate these two objects, under the guidance of Theorem 1 and practical concerns.

Theorem 1 suggests setting N to be as large as possible, so that the final term is vanishingly small for
any realistic number of queries. But for this to be useful, one must already know how to build a TBC F̃
with domain {0, 1}N for a large N , and for which Advs̃prp

F̃
(C) approaches q2/2N . To our knowledge, there

are no efficient constructions that permit Advs̃prp

F̃
(C) to be smaller than O(q3/22n) when using an n-bit

blockcipher as a starting point. (A recent result by Lampe and Seurin [22] shows how to beat this security
bound, but at a substantial performance cost.) A construction by Coron, et al., which will be discussed in
more detail shortly, does meet this bound4 while providing N = 2n.

So we restrict our attention to building TBC F̃ with small N . In particular, we follow the common
approach of building TBCs out of blockciphers. Letting n be the blockcipher blocksize, we will consider
N = n, and N = 2n. In the former case, Theorem 1 only promises us security up to roughly q = 2n/2, which
is the birthday bound with respect to the blockcipher. With this security bound in mind, we can use simple
and efficient constructions of both F̃ and the VIL tweakable cipher Ṽ . On the other hand, when N = 2n,
Theorem 1 lets us hope for security to roughly q = 2n queries. To realize this hope we will need a bit more
from both F̃ and Ṽ , but we will still find reasonably efficient constructions delivering beyond birthday bound
security.

In what follows, we will sometimes refer to objects constructed in other works. These are summarized for
convenience in Figure 10, found in Appendix A.

An efficient VIL tweakable cipher. We will start by considering general methods for constructing the VIL
tweakable cipher, Ṽ . Recall that Ṽ need only be secure against adversaries that never repeat a tweak. In
Figure 4, we see an analogue of conventional counter-mode encryption, but over an n-bit TBC Ẽ instead
of a blockcipher. Within a call (T,X) to TCTR, each n-bit block Xi of the input X is processed using a

procedure TCTR[Ẽ]K(T,X):

X1, X2, . . . , Xν
n←X

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Yi ← ẼK(Ti, Zi)⊕Xi

Return Y1, Y2, . . . , Yν

procedure TCTR[Ẽ]−1
K (T, Y):

Y1, Y2 . . . , Yν
n← Y

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Xi ← Yi ⊕ ẼK(Ti, Zi)

Return X1, . . . , Xν

Fig. 4: The TCTR VIL tweakable cipher.

per-block tweak Ti, this being determined by a function g : T ′ ×N→ T of the input tweak T and the block
index i.

Consider the behavior of TCTR when g(T, i) = T . The following result is easily obtained using standard
techniques.

4 However, nesting this construction to provide a VIL tweakable cipher is prohibitively inefficient.

10

Theorem 2. Let Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n be a tweakable blockcipher, and let TCTR[Ẽ]K and

TCTR[Ẽ]−1K be defined as above, with g(T, i) = T ∈ T . Let A be a nonce-respecting adversary that runs in
time t, and asks q queries, each of length at most `n bits (so, µ ≤ q`n). Then for some adversary B making

at most q` queries and running in time O(t), Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B) + 0.5q`2/2n.

We note that the bound displays birthday-type behavior when ` = o(
√
q), and is tightest when ` is a small

constant. An important application with small, constant ` is full-disk encryption. Here plaintexts X would
typically be 4096 bytes long, so if the underlying TBC has blocksize n = 128, we get ` = 256 blocks.5

Extending tweakspaces. In PIV, the TBC F̃ will need to handle long tweaks. Fortunately, a result by Coron,
et al. [15] shows that one can compress tweaks using an ε-AU hash function at the cost of adding a q2ε term
to the tweakable cipher’s TPRP security bound. In particular, we will use (a slight specialization of) the NH
hash, defined by Black, et al. [10]; NH[r, s]L takes r-bit keys (|L| = r), maps r-bit strings to s-bit strings,

and is 2s/2-AU. Please see Table 10 for the description. Given a TBC Ẽ, ẼNH denotes the resulting TBC,
whose tweakspace is now the domain of NH, rather than its range.

4.1 Targeting efficiency at birthday-type security: TCT1

Let us begin with the case of N = n. To instantiate the n-bit TBC F̃ in PIV we refer to the pioneering TBC
work of Liskov, Rivest and Wagner [24], from which we draw the LRW2 TBC; please refer to Figure 10 for
a description.

Before we give the TCT1 construction, a few notes. In Figure 10 we see that in addition to a blockcipher
E, LRW2[H,E] uses an ε-AXU2 hash function, H, and so, in theory, it could natively accommodate large
tweaks. But for practical purposes, it will be more efficient to implement LRW2 with a small tweakspace,
and then extend this using a fast ε-AU hash function.6 For the ε-AXU2 hash function itself, we use the
polynomial hash polyH (also described in Table 10).

Now we are ready to give our TCT1 construction, which is birthday-bound secure for applications with
small plaintext messages (e.g. FDE).

The TCT1 Construction. Fix k, n > 0, and let N = n. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher,

and let polyHmn, and NH be as defined in Table 10. Then define TCT1 = PIV[F̃ , Ṽ], where to obtain a τn-bit

tweakspace and domain {0, 1}{n,n+1,...,`n}
we set:

1. n-bit TBC F̃ = LRW2[polyH2n, E]NH[(`+τ)n,2n], i.e. LRW2 with its tweakspace extended using NH. The

keyspace for F̃ is {0, 1}k × {0, 1}2n × {0, 1}(`+τ)n, with key K ′ partitioning into keys for E, polyH2n,
and NH[(`+ τ)n, 2n]. (Since NH supports only fixed length inputs, we implicitly pad NH inputs with a

1 and then as many 0s as are required to reach a total length of (`+ τ)n bits.) The tweakspace for F̃ is

{0, 1}{0,1,2,...,(`+τ−1)n}.
2. VIL tweakable cipher Ṽ = TCTR [LRW2[polyHn, E]] with the TCTR function g : {0, 1}n×N→ {0, 1}n

as g(T, i) = T . The keyspace for Ṽ is {0, 1}k × {0, 1}n, with key K partitioning into keys for E and

polyHn. The tweakspace for Ṽ is {0, 1}n, and its domain is {0, 1}{0,1,...,(`−1)n}.

Putting together Theorems 1,2, and results from previous works [10, 24], we have the following security
bound.

Theorem 3 (STPRP-security of TCT1). Define TCT1 as above, and let A be an adversary making
q < 2n/4 queries and running in time t. Then there exist adversaries B and C, both running in time O(t)

and making (` − 1)q and 2q queries, respectively, such that Advs̃prp
TCT1[E](A) ≤ Advprp

E (B) + Advsprp
E (C) +

32q2

2n + 4q2(`−1)2
2n .

5 Actually, slightly less than this when used in the PIV composition, since the first N bits are enciphered by F̃ .
6 Indeed, one can show composing an ε-AU hash function with an ε′-AXU2 hash function yields an (ε + ε′)-AXU2

hash function; however, we prefer to work on a higher level of abstraction.

11

Fig. 5: The TCT2 construction (top). TCT2 takes τn-bit tweaks, and the input length is between 2n and `n bits,

inclusive. Here, F̃ is implemented using the 2n-bit CDMS construction coupled with the NH hash function (bottom

left). Both Ṽ and the TBC Ẽ used inside of CDMS are implemented using CLRW2[polyHrn, E] (bottom right), with
r = 6 and r = 2, respectively. The function Pad maps s to s ‖ 10(`+1)n−1−|s|. In the diagram for CDMS, the strings

00T̃ , 01T̃ , and 10T̃ are padded with 0s to length 5n before being used.

12

Proof. Using Theorem 1 and security bounds from prior works,

Advs̃prp
TCT1[E](A) ≤ 4q2

2n
+ Advs̃rnd

Ṽ
(t′, q) + Advsprp

F̃
(t′, 2q)

≤ 4q2

2n
+

[
q(`− 1)2

2n
+ Advp̃rp

LRW2[polyHn,E](t
′, (`− 1)q)

]
+

[
24q2

2n
+

4q2

2n
+ Advsprp

E (t′, 2q)

]
≤ 4q2

2n
+

[
q(`− 1)2

2n
+

3q2(`− 1)2

2n
+ Advprp

E ((`− 1)q, t′)

]
+

[
28q2

2n
+ Advsprp

E (t′, 2q)

]
≤ 32q2

2n
+ +

q(`− 1)2

2n
+

3q2(`− 1)2

2n
+ Advprp

E ((`− 1)q, t′) + Advsprp
E (t′, 2q).

This algorithm requires 2k + (3 + τ + `)n bits of key material, including two keys for Ẽ. As we show at
the end of this section, we can get away with a single key for E with no significant damage to our security
bound, although this improvement is motivated primarily by performance concerns.

Thus TCT1 retains the security of previous constructions (see Figure 2 for a visual comparison), uses
arithmetic in rings with powers-of-two moduli, rather than in a finite field. This may potentially improve
performance in some architectures.

4.2 Aiming for beyond birthday-bound security: TCT2

Now let us consider the PIV composition with N = 2n. For the FIL component, we can use Coron et al.’s [15]
CDMS construction to get a 2n-bit TBC from an n-bit TBC, and implement the latter using the CLRW2, a
recent beyond-birthday-bound secure construction by Landecker, Shrimpton, and Terashima [23]. Table 10
describes both constructions.7 We again extend the tweakspace using NH. (To stay above the birthday

bound, we set the range of NH to {0, 1}2n). Ultimately, setting F̃ = CDMS[CLRW2]NH is secure against up
to around 22n/3 queries.

CLRW2 also gives us a way to realize a beyond birthday-bound secure VIL component, namely Ṽ =
TCTR[CLRW2[E,H], at least for ` = o(q1/4). (We’ll see how to avoid this restriction, if desired, in a
moment.)

We are now ready to give our second fully concrete PIV composition, TCT2, targeted at applications that
would benefit from beyond birthday-bound security. This algorithm requires us to nest four layers of other
constructions, so we provide an illustration in Figure 5. Again we emphasize that the (admittedly significant)

cost of F̃ can be amortized.
TCT2 supports τn-bit tweaks and has domain {0, 1}{2n,2n+1,...,`n}

.

The TCT2 Construction. Fix k, `, n, τ > 0, and let N = 2n. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a

blockcipher, and let polyH`n, and NH be as defined in Table 10. Then define TCT2 = PIV[F̃ , Ṽ], where:

1. F̃ = CDMS
[
CLRW2[polyH6n, E]

]NH[(`+τ−1)n,4n]
, that is, the 2n-bit TBC CDMS

[
CLRW2[polyH6n, E]

]
with its tweakspace extended using NH. The keyspace for F̃ is {0, 1}2k×{0, 1}12n×{0, 1}(`+τ−1)n, with
key K ′ partitioning into two keys for E, two keys for polyH6n, and a key for NH[`n, 4n]. The tweakspace

for F̃ is {0, 1}τn.

2. Ṽ = TCTR
[
CLRW2[polyH2n, E]

]
, with the TCTR function g : {0, 1}n × N → {0, 1}n as g(T, i) = T .

The keyspace for Ṽ is {0, 1}2k × {0, 1}4n with key K partitioning into two keys for E and two keys for

polyH2n. The tweakspace for Ṽ is {0, 1}2n, and its domain is {0, 1}{0,1,2,...,(`−2)n}.

7 We note that for CDMS[Ẽ], we enforce domain separation via Ẽ’s tweak, whereas the authors of [15] use multiple

keys for Ẽ. The proof of our construction follows easily from that of the original.

13

TCT2 requires 4k + (` + τ + 15)n bits of key material. Putting together Theorems 1, 5, and results from
previous works [10, 15, 23], we have the following security result.

Theorem 4 (STPRP-security of TCT2). Define TCT2 as above, and let A be an adversary making q
queries and running in time t, where 6q, `q < 22n/4. Then there exist adversaries B and C, both running

in O(t) time and making (` − 1)q and 6q queries, respectively, such that Advs̃prp
TCT2

(A) ≤ 2Advprp
E (B) +

2Advsprp
E (C) + 12q2

22n + q(`−1)2
2n + 6`3q3

22n−2−`3q3 + 64q3

22n−2−63q3 .

Proof. Using Theorem 1 and security bounds from prior works,

Advs̃prp
TCT2

(A) ≤ 4q2

22n
+ Advs̃rnd

Ṽ
(t′, q) + Advsprp

F̃
(t′, 2q)

≤ 4q2

22n
+

[
q(`− 1)2

2n
+ Advp̃rp

CLRW2[H2n,E](t
′, (`− 1)q,)

]
+

[
4q2

22n
+

4q2

22n
+ Advs̃prp

CLRW2[H6n,E](t
′, 6q,)

]
≤ 12q2

22n
+
q(`− 1)2

2n
+

6`3q3

22n−2 − `3q3
+

64q3

22n−2 − 63q3
+ 2Advprp

E (t′, (`− 1)q) + 2Advsprp
E (t′, 6q).

Some of the constants in this bound are rather significant. However, as Figure 2 shows, TCT2 nevertheless
provides substantially better security bounds than TCT1 and previous constructions.

4.3 Additional practical considerations

Several variations and optimizations on TCT1 and TCT2 are possible. We highlight a few of them here. None
of these changes significantly impact the above security bounds, unless otherwise noted.

Reducing the number of blockcipher keys. In the case of TCT1, we can use a single key for both LRW2 instances
provided we enforce domain separation through the tweak. This allows us to use a single key for the underlying
blockcipher, which in some situations may allow for significant implementation benefits (for example, by al-
lowing a single AES pipeline). One method that accomplishes this is to replace LRW2[polyH2n, E]NH[(`+1)n,2n]

with LRW2[polyH3n, E]f(ε,·) and LRW2[polyHn, E] with LRW2[polyH3n, E]f(·,ε). Here, f is a 2−n-AU func-

tion with keyspace {0, 1}3n × {0, 1}`n, taking inputs of the form (X, ε) (for some X ∈ {0, 1}n) or (ε, Y)

(for some Y ∈ {0, 1}{0,1,...,`n}), and outputting a 3n-bit string. Let fL(X, ε) = 02n ‖ X and fL(ε, Y) =
1n ‖NH[(`+ 1)n, 2n]L(Y). The function f described here is a mathematical convenience to unify the signa-
tures of the two LRW2 instances, thereby bringing tweak-based domain separation into scope; in practice,
we imagine the two instances would be implemented independently, save for a shared blockcipher key. We
note that TCT2 can be modified in a similar manner to require only two blockcipher keys.

Performance optimizations. If we need only a tweakable (FIL) blockcipher, we can use NH[`n, 2n] in place
of NH[(`+1)n, 2n] by adjusting our padding scheme appropriately. We emphasize that in the TCTR portion,
the polyH functions only need to be computed once, since each LRW2 invocation uses the same tweak. The
corresponding optimizations apply to TCT2, as well.

A näıve implementation of TCT2 would make a total 72 finite field multiplications during the two FIL
phases (a result of evaluating polyH6n twelve times). We can cache an intermediate value of the polyH6n

hash used inside of CDMS (four n-bit tweak blocks are constant per invocation), and this saves 32 finite field
multiplications. Precomputing the terms of the polynomial hash corresponding to the domain-separation
constants eliminates 12 more multiplications, leaving 28 in total. Four more are required during the VIL
phase, giving the count of 32 reported in Table 1.

14

Handling large message spaces. Both TCT1 and TCT2 are designed with FDE applications in mind. In
particular, they require ` to be fixed ahead of time, and require more than `n bits of key material.

These limitations are a consequence of using the NH hash function; however, a simple extension to NH
(described by the original authors [10]) accommodates arbitrarily long strings. Fix a positive integer r and
define NH∗L(M1M2 · · ·Mν) = NHL(M1) ‖ NHL(M2) ‖ · · · ‖ NHL(Mν) ‖ 〈|M | mod rn〉, where |Mi| = rn for
i < ν, |Mν | ≤ rn, and NHL abbreviates NHL[rn, 2N]. Thus defined, NH∗ is 2−N -almost universal, has
domain {0, 1}∗, and requires rn bits of key material. This modification shifts some of the weight to the
polyH hash; we now require eight extra finite field multiplications for each additional rn bits of input. As
long as r > 4, however, we require fewer of these multiplications when compared to previous hash-ECB-hash
or hash-CTR-hash constructions.

With these modifications, the final two terms in TCT1’s security bound (Theorem 3) would become
8q2/2n+600q2`2/r22n+4q2(`−1)2/2n, where `n is now the length of the adversary’s longest query, ` > 2.5r,
and the remaining terms measure the (S)PRP security of the underlying blockcipher. We also assume 2n ≥ rn,
so that |M | mod rn can be encoded within a single n-bit block. Although the constant of 600 is large, we
note that setting r = 16, for example, reduces it to a more comfortable size — in this case to less than three.
The bound for TCT2 changes in a similar manner. (Note that if 2n−2 ≥ rn, we can use a single n-bit block
for both the tweak domain-separation constants and 〈|M | mod rn〉.)

Beyond birthday-bound security for long messages. When ` is not bounded to some small or moderate value,
TCT2 no longer provides beyond-birthday-bound security. The problematic term in the security bound is
q(`−1)2/2n. To address this, we return to TCTR (Figure 4) and consider a different per-block tweak function.

In particular, g(T, i) = T ‖ 〈i〉. In the nonce-respecting case, the underlying TBC Ẽ is then retweaked

with a never-before-seen value on each message block. Again, think about what happens when Ẽ is replaced
by an ideal cipher Π: in the nonce-respecting case, every block of plaintext is masked by the output of a
fresh random permutation.8 In other words, every block returned will be uniformly random. Thus we expect
a tight bound, in this case. Formalizing this logic yields the following theorem.

Theorem 5. Let Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n be a tweakable blockcipher, and let TCTR[Ẽ]K and

TCTR[Ẽ]−1K be defined as above, with g : T ′ × N → T an arbitrary injective mapping. Let A be a nonce-
respecting adversary that runs in time t, and asks q queries of total length at most µ = σn bits. Then there

exists some adversary B making at most σ queries and running in time O(t) such that Advs̃rnd
TCTR[Ẽ]

(A) ≤
Advp̃rp

Ẽ
(B).

Consequently, using this variation of TCTR in Theorems 3 and 4 would remove the q(` − 1)2 term from
the bounds, thereby lifting message length concerns. Note that if this change is made, g(T, i) needs to be
computed up to ` times per invocation, rather than just once. This problem may be mitigated by using the
XEX [33] TBC in place of LRW2, which makes incrementing the tweak extremely fast without significantly
changing our security bound.

When the above change are made, TCT1 and TCT2 offer efficient tweakable ciphers on an unbounded
domain, losing security guarantees only after O(2n/2) (resp., O(22n/3)) bits have been enciphered.

4.4 Instantiating PIV with conventional encryption

To further highlight the flexibility surfaced by our compositional approach, we point out that the VIL
component Ṽ can be realized directly using conventional blockcipher-based encryption. Consider the imple-
mentation of Ṽ , Ṽ −1 shown in Figure 6. We recognize this immediately as counter-mode encryption, but
with the initial value T surfaced as an input to make it a tweakable cipher. (Rogaway [34] formalized this
as a “nonce-based encryption scheme”.) Unfortunately, we cannot use the main PIV security statement,

Theorem 1, with this F̃ , because it is not SRND-security against nonce-respecting adversaries. Nonetheless,

8 Notice that one could use (say) Zi ← 0n and the same would be true. We present it as Zi ← 〈i〉 for expositional
purposes.

15

procedure ṼK(T,X):

X1, X2, . . . , Xb
n←X

for i = 1 to b

Yi←EK(〈T + i〉)⊕Xi
Return Y1, Y2, . . . , Yb

procedure Ṽ −1
K (T, Y):

Y1, Y2 . . . , Yb
n← Y

for i = 1 to b

Xi←Yi ⊕ EK(〈T + i〉)
Return X1, . . . , Xb

procedure G̃K(T,X):

X1, X2, . . . , Xb
n←X

K ← fK(T)

for i = 1 to b

Yi←EK(〈T + i〉)⊕Xi
Return Y1, Y2, . . . , Yb

procedure G̃−1
K (T, Y):

Y1, Y2 . . . , Yb
n← Y

K ← fk(T)

for i = 1 to b

Xi←Yi ⊕ EK(〈T + i〉)
Return X1, . . . , Xb

Fig. 6: Two VIL tweakable cipher constructions, based on conventional counter-mode encryption over an n-bit block-
cipher E.

examination of the proof of Theorem 1 shows that it can be modified to work. To that end, we introduce a

new notion of security Advs̃rnd$

Ẽ
(A) = Pr

[
K

$←−K : AẼK(·),Ẽ−1
K (·)⇒ 1

]
− Pr

[
A$(·),$(·)⇒ 1

]
. Given Ẽ with

tweakspace T and message space X , the oracle EK takes a query X ∈ X and: (1) samples T
$←− T , (2) returns

EK(T,X). Oracle E−1K behaves likewise on input Y ∈ X , sampling T
$←− T and returning E−1K (T, Y). With

this, one can state an alternative composition theorem.

Lemma 1. Let sets T ,Y, T ′,X , integer N , TBC F̃ and tweakable cipher Ṽ be as described in Theorem 1.
Let A be an adversary making q < 2N/4 queries and running in time t. Then there exist adversaries B and
C, making q and 2q queries, respectively, and both running in O(t) time such that B is nonce-respecting and

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ 5q2

2N
+ Advs̃rnd$

Ṽ
(B) + Advs̃prp

F̃
(C).

Then a standard proof shows that the TBC in Figure 6 is SRND$-secure, up to a birthday bound, if E is
secure as a PRP.

Lemma 2. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher, and let Ṽ and Ṽ −1 be as in Figure 6. Let A
be an adversary running in time t, and ask asking q queries, these totalling at most µ = σn bits. Then

Advs̃rnd$

Ṽ
(A) ≤ σ2/2n + Advprp

E (B), where B asks at most σ queries, and runs in time O(t).

Thus, one could compose counter-mode encryption with F̃ based on LRW2 to build an efficient, birthday-
bound-secure STPRP.

Here we point out that there is much similarity between the SIV construction of Rogaway and Shrimp-
ton [37], and PIV using this counter-mode Ṽ . Indeed, one can view F̃K′(T ‖X[N + 1..], X[1..N)) as a special
kind of PRF (one with invertibility properties), that takes input (T,X) and returns a “synthetic IV” for use

in counter-mode. The second application of F̃K′ then serves to hide this synthetic IV in way that leaves it
recoverable to those in possession of key K ′. The SIV construction achieves both privacy and authenticity
by using the IV as a plaintext authenticator, too. In the next section, we’ll look at generic ways to build
authenticated encryption with the PIV composition.

As a final topic in this section, we examine a folklore suggestion for increasing the security of this counter-
mode construction, namely to “rekey” the underlying blockcipher, using a PRF f : {0, 1}k × {0, 1}n →
{0, 1}k to generate per-message keys, as shown in the construction of G̃, G̃−1 in Figure 6. The idea of

rekeying formally addressed by Abdalla and Bellare [1]. Following their lead, we notice that G̃K(T,X) can

be computed as (1) K ← fK(T), (2) Return F̃K(T,X). Recalling that, for any function f : K × S → S ′,
the pseudo-random function (PRF) advantage of adversary A against f is defined to be Advprf

f (A) =

Pr
[
K

$←−K : AfK(·)⇒ 1
]
− Pr

[
ρ

$←− Func(S,S ′) : Aρ(·)⇒ 1
]
, we have the following theorem.

Theorem 6 (Rekeyed CTR). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let Ṽ and Ṽ −1

be as just defined. Let f : {0, 1}k × {0, 1}n → {0, 1}k be a function, and let G̃ and G̃−1 be as just defined.
Let A be a nonce-respecting adversary that runs in time t, and asks q queries, each of length at most mn

16

bits (so, µ ≤ qmn). Then Advs̃rnd$

G̃
(A) ≤ q

(
m2/2n + Advprp

E (B)
)

+ Advprf
f (C) where: (1) B asks at most

m queries, and runs in time O(t), and (2) C asks q queries, and runs in time at most O(t).

Thus, if the maximum number of blocks in a message m is small, this rekeying approach seems to have the
potential to give beyond birthday-bound SRND-security against nonce-respecting adversaries. In the case of
full-disk encryption, say, it seems reasonable to believe that Advprp

E (t′, 32) is very small when n = 128, so
security for q � 264 seems possible. Although one needs a PRF f that remains secure for any such q, which
is no small assumption.

In any case, the construction of the VIL tweakable cipher G̃ violates a core principle of the tweakable
primitive abstraction, namely that tweak changes should be fast, and much faster than changing the key.
But this example offers further support for the thesis put forward by Liskov, Rivest and Wagner, that if one
wants to build a tweakable primitive, it is better to start with a tweakable primitive.

5 AEAD from Tweakable Ciphers

We now turn our attention to a new use of PIV (and other tweakable ciphers), that of building authenticated
encryption with associated data (AEAD) [35] via a generalization of Bellare and Rogaway’s “encode-then-
encipher” [8]. Bellare and Rogaway show that when messages are augmented with a nonce and redundancy,
one can obtain authenticated encryption [6] simply by passing these encoded messages directly through
an SPRP-secure blockcipher with a sufficiently large domain. (Similar tricks do not work if the primitive
is merely IND-NM or IND-CCA secure [3].) We revisit encode-then-encipher in the tweakable setting. In
particular, we precisely identify the salient properties of the mapping from header-message pairs (H,M) to
tweakable cipher inputs (T,X), and explore where best to apportion state, randomness, and redundancy in
this encoding.

Our results answer natural questions regarding the relationship between tweakable ciphers and nonce-
based encryption. But there remains the question of why one would adopt this method, given the existence of
highly efficient AEAD schemes, such as OCB [36, 33]. In addition to its simplicity, there are two important,
practical advantages of our approach:

(1) It admits the use of multiple decryption error messages, while remaining robust against side-channel
attacks that seek to exploit them (e.g. padding oracles).

(2) It can eliminate bandwidth overhead by leveraging nonces, randomness and redundancy already present
in plaintext inputs.

The first point holds because, loosely, changing any ciphertext bit results in randomizing every resulting
plaintext bit. Thus, descriptive error messages, e.g. bad padding or bad seq number, cannot be leveraged
to forge useful future ciphertexts. We also remark that, under our approach, nonce repetitions only leak
equality of plaintexts.

As an example of the second point, messages in protocols that include sequence numbers, human-readable
fields, or padding likely contain useful nonces and redundancy. In these cases, the encoding step of encode-
then-encipher is implicit, acting as an assumed model for how information is encoded into bit strings before
being passed down the stack to encrypt.

Before moving on to formal definitions for our encode-then-encipher scheme, we will provide a brief exam-
ple of what we have in mind in order to motivate certain departures from the standard AEAD formulation.
Given a header H and a message M , we need to encode (H,M) into a tweakable cipher input, (T,X). What
if we choose a nonce N of some fixed length, set T = N ‖H, and X = N ‖M? We are already sending H

down the wire, but our ciphertext cannot simply be C = ẼK(T,X) because we also need N to decrypt. So
our ciphertext should be (N,C). In this example, T = N ‖H was an encoded header, and X = N ‖M was
an encoded message. However, we wish to consider encoding schemes separately from tweakable ciphers, so
we will discard the symbols T and X in favor of H and M , respectively. The mapping from H to H = N ‖H
is non-deterministic, but can be completely reproduced provided one knows N . We therefore refer to N as

17

our reconstruction information. (Note that the message encoding function needs the reconstruction informa-
tion, and therefore has a different signature than the header encoding function; further, the reconstruction
information should not depend on M). The recipient computes Ẽ−1K (H,C) and verifies that N is a prefix.

Authenticated encryption with associated data. An authenticated encryption scheme with associated data
is a tuple Ψ = (K, E ,D) consisting of a key-generation algorithm K, an encryption algorithm E , and a
decryption algorithm D. For simplicity, we assume the key-generation algorithm K samples a key from a
non-empty set of the same name. The encryption algorithm, which may be randomized or stateful, is a
mapping E : K ×H ×M → R× {0, 1}∗. Thus, encryption takes a key K ∈ K, a header H ∈ H ⊆ {0, 1}∗,
and a message M ∈ M ⊆ {0, 1}∗, and returns some reconstruction information R ∈ R, along with a

ciphertext C. We write (R,C)
$←− EK(H,M) to mean running EK on (H,M), this returning (R,C). The

deterministic decryption algorithm is a mapping D : K ×H ×R × {0, 1}∗ →M∪ Errors, where Errors is a
set such that M∩ Errors = ∅. (We do not insist that |Errors| = 1.) For proper operation, we require that
Pr [DK(H, EK(H,M)) = M] = 1 for all K ∈ K, H ∈ H and M ∈ M. If E is stateful, this must hold for all
states.

Let us discuss this formalization of AEAD. First, in practice the header H will be sent in the clear
along with the ciphertext (e.g., when the header is needed for routing), but our encode-then-encipher AEAD
schemes may encode H into some related H for internal use. If this encoding is non-deterministic, we use
the reconstruction information R to deliver whatever is needed by decryption to properly reconstruct this H
from H. For example, R may consist of a counter, some random bits, or some redundancy. (It may also be
the empty string.)

To avoid constructions that are trivially insecure by virtue of writing message or key bits into R, we
require the following. Given any sequence of inputs {(Hi,Mi)}i≤q and any two sequences of possible out-
comes {(Ri, Ci)}i≤q and {(R′i, C ′i)}i≤q, we must have that for any H ∈ H, M,M ′ ∈ M, K,K ′ ∈ K, and
r ∈ R, Pr [R = r | EK(Hi,Mi) = (Ri, Ci) for i ≤ q] = Pr [R′ = r | EK′(H ′i,M ′i) = (R′i, C

′
i) for i ≤ q] where

(R,C)
$←− EK(H,M) and (R′, C ′)

$←− EK(H,M ′), the states of EK and EK′ being conditioned on the two tran-
scripts, respectively. That is, R (hence, R′) can depend only on H, q, and coins tossed by EK on the query
that generates R.

Second, by allowing |Errors| > 1, we let our AEAD schemes return multiple, distinct error messages. This
can be useful in practice for, say, diagnostics within a protocol session. Often, allowing decryption to return
multiple error messages has been problematic in practice; witness the various “padding oracle” attacks on
SSL/TLS [40, 11, 32]. For our encode-then-encipher AEAD schemes, such attacks will not be a concern.

AEAD security notions. Our desired privacy notion is indistinguishability of ciphertexts from random bits.
However, we do not require the recovery information to be random (e.g., R might be a counter), so we modify
the usual IND$-CPA notion slightly. To be specific, we measure the privacy of an AEAD scheme Ψ via the

following advantage: Advpriv
Ψ (A) = Pr

[
K

$←−K ; AEK(·,·)⇒ 1
]
− Pr

[
K

$←−K ; A$K(·,·)⇒ 1
]
. Here, $K(·, ·)

is an oracle that on input (H,M), computes (R,C)
$←− EK(H,C), samples Y

$←− {0, 1}|C|, and returns (R, Y).
The authenticity goal for our AEAD scheme is integrity of ciphertexts, INT-CTXT [6]. Namely, we define

Advint-ctxt
Ψ (A) = Pr

[
K

$←−K ; AEK(·,·),DK(·,··) Forges
]

where the boolean event Forges is true if and only if A

asks a query (H,R,C) to its DK oracle such that (1) DK(H,R,C) 6∈ Errors, and (2) no prior query to EK(·, ·)
returned (H,R,C). Without loss of generality, A halts as soon as Forges becomes true.

5.1 Encoding schemes

Informally, an encoding algorithm is responsible for reformatting its input, injecting randomness, state or
redundancy, while decoding validates and distills out the original input data.

Fix a message space M, a header space H, an encoded message space M ⊆ {0, 1}∗, and an encoded
header space H ⊆ {0, 1}∗. All of these sets must be non-empty (but could equal {ε}). Also fix a set Errors
such that Errors ∩M = ∅.

18

As mentioned earlier, we need two types of encoding functions. A header encoding function EncodeH :
H → H maps headers to encoded headers, possibly in some random or stateful fashion. We require there to be
a non-empty set R and a bijection 〈·, ·〉 : R×H → H with the property that for all H, EncodeH(H) = 〈R,H〉
for some R ∈ R. In other words, we should always be able to recover H from EncodeH(H), and any
particular output of EncodeH(H) can be reconstructed from H given the corresponding R. We call EncodeH

an (H,R,H)-encoder (leaving 〈·, ·〉 implicit).
A message encoding scheme EncodeMsg = (EncodeM,DecodeM) consists of a message encoding func-

tion EncodeM : H × M → M and a message decoding function DecodeM : H × M → M ∪ Errors.
We allow EncodeM to be randomized or stateful. We require DecodeM(H,M) = M ∈ M if and only if
Pr
[

EncodeM(H,M) = M
]
> 0 for some state of EncodeM; otherwise, DecodeM(H,M) ∈ Errors (note that

we allow, for example, DecodeM(H,M) = (⊥, H,M) ∈ Errors). The DecodeM algorithm must be deter-
ministic, and all algorithms should run in linear time. We call EncodeMsg a (H,M,H,M,Errors)-encoding
scheme.

We only consider encoding functions having an associated maximal stretch, defined to be the smallest
s ∈ N such that, for all H ∈ H, H ∈ H, and M ∈ M, |EncodeH(H)| ≤ |H| + s and

∣∣EncodeM(H,M)
∣∣ ≤

|M |+ s.

Encoding scheme properties. Our encode-then-encipher AEAD security theorems will surface two key prop-
erties of the encoding mechanisms. The first property speaks to the likelihood that an encoding scheme can
be made to repeat outputs.

Let A be an adversary that asks q queries (not necessarily distinct) to an oracle f , receiving Y 1, Y 2, . . . , Y q
in response, and that halts by outputting these values. (Think of f as a message– or header-encoding
function.) Without loss of generality, we can assume A is deterministic. Let δ : N → [0, 1] be a function.
Generalizing the definition from [8], we say f is (d, δ)-colliding if

Pr
[
Af ⇒ (Y 1, Y 2, . . . , Y q) : ∃i1 < i2 < . . . < id such that Y i1 = Y i2 = · · · = Y id

]
≤ δ(q).

This notion is only defined for d ≥ 2. Given a (d, δ)-colliding oracle, we may assume without loss of generality
that δ(0) = δ(1) = 0.

The second property captures the probability that a random string (of a given length) is a valid encoding.
One can think of this as a measure of the density of encodings. Thus, let ε ∈ R be a real number. Then
the (H,M,H,M,Errors)-encoding scheme EncodeMsg = (EncodeM,DecodeM) is ε-sparse if for all positive
integers n and all H ∈ H, |{C ∈ {0, 1}n : Decode(H,C) 6∈ Errors}| /2n ≤ ε.

5.2 AEAD via encode-then-encipher

Now, let Ẽ : K × H × M → M be a tweakable cipher. Let EncodeH be a (H,R,H)-encoder, and let
EncodeMsg = (EncodeM,DecodeM) be an (H,M,H,M,Errors)-encoding scheme, for some non-empty sets

H, M, and R. From these, we define an encode-then-encipher AEAD scheme Ψ [EncodeH,EncodeMsg, Ẽ] in
Figure 7. As a simple example, let EncodeH prepend an 64-bit counterR to the headerH, and EncodeM(H,M)
return M ‖080. Then EncodeH is (2, 0)-colliding, and EncodeM is 2−80-sparse (but (2, 1)-colliding). We point
out that all authenticity checks implicitly take place inside of the DecodeM function.

Security theorems and discussion. Here we give the privacy and authenticity security statements for our
encode-then-encipher AEAD scheme. We’ll give the statements first, and then discuss what they imply.
Proofs follow the discussion.

Theorem 7. [Privacy.] Let Ψ = Ψ [EncodeH,EncodeMsg, Ẽ] be defined as in Figure 7. Let s be the maximal
stretch of EncodeMsg, s′ be the maximal stretch of EncodeH, and define m as the length of the shortest
M ∈ M satisfying DecodeM(H,M) 6= Errors for some H ∈ H. Let A be an adversary making q queries
totaling µ bits, and running in time t. Then if EncodeH is (d, δH)-colliding and EncodeM is (2, δM)-colliding
for some δM that is increasing and convex on {0, 1, . . . , q}, there is an adversary B such that

Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) +

(
δM (d− 1) +

(d− 1)(d− 2)

2m+1

)⌈
q

d− 1

⌉
+

(
δM (q) +

q(q − 1)

2m+1

)
δH(q)

19

procedure EK(H,M):

H ← 〈R,H〉 $←− EncodeH(H)

M
$←− EncodeM(H,M)

Return R, ẼK(H,M)

procedure DK(H,R,C):

H ← 〈R,H〉
M ← Ẽ−1K (H,C)

Return DecodeM (H,M)

Fig. 7: The AEAD scheme Ψ [EncodeH,EncodeMsg, Ẽ]. Reconstruction information R allows decryption to
reconstruct H from the header. (This is in lieu of sending H as part of the ciphertext, or forcing the calling
application to replace H with H.) Note that all authenticity checks are implicitly carried out by DecodeM .

where B makes q queries of total length at most µ+ q(s+ s′) bits and runs in time O(t).

Theorem 8. [Authenticity.] Let Ψ [Ẽ] = Ψ [EncodeH,EncodeMsg, Ẽ] be defined as in Figure 7. Let s be the
stretch of EncodeMsg, s′ be the maximal stretch of EncodeH, and define m as the length of the shortest
M ∈ M satisfying DecodeM(H,M) 6= Errors for some H ∈ H. Let A be an adversary making qE (resp., qD)
queries totaling µE (resp., µD) bits to its encryption (resp., decryption) oracle, and running in time t. Then
if EncodeM is ε-sparse and qE + qD < 2m−1, there is an adversary B such that

Advint-ctxt
Ψ [Ẽ]

(A) ≤ Advs̃prp

Ẽ
(B) + 2qDε.

where B makes qE forward-queries of total length (µE+qEs) bits, qD inverse-queries of total length (µD+qDs
′)

bits, and runs in O(t) time.

To begin our discussion of these results, consider the case that EncodeH is (2, 0)-colliding. Then the privacy

bound (Theorem 7) simplifies to Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B). This is intuitive, since if the tweak H never

repeats, the outputs ẼK(H,M) are uniformly random strings for any valid encoding of (H,M) into M ;
EncodeH(H,M) = M suffices. Thus, good encodings of the header H can substantially reduce the burden
placed upon encoding of (H,M) into M .

This case generalizes nicely. Say that we can assume that the probability of EncodeH producing any H
more than d times, for some small constant d � q, is negligible. Then the final term in the bound can
effectively be ignored. The second term is roughly qδM (d) + q/2m+1. Now, notice that δM is evaluated at d,
not q, and so qδM (d) can be made negligible by encoding a reasonable amount of randomness into M (e.g.
log(q) bits). For some natural choices of EncodeMsg then, q/2m+1 will be the dominating term, where m is
the shortest length of M . But to achieve good authenticity bounds, which we will turn to momentarily, m is
unlikely to let q/2m+1 ruin the bound.

We point out that in the un-tweakable setting considered in [8], privacy must be achieved by encoding
randomness or state into M . The presence of the tweak allows us to shift these “extra” bits into the encoding
of the header, which potentially reduces the number of bits that must be cryptographically processed.

In the extreme case that H is fixed across all queries (perhaps by design, or perhaps a result of a
faulty implementation), the construction reverts to the un-tweakable setting. In this case, EncodeH is (2, 1)-
colliding, and our bound essentially reverts to the one in [8], although we consider indistinguishability from
random bits, which is stronger than the privacy notion considered there.

Turning now to the authenticity bound (Theorem 8), note that if EncodeM inserts b redundant bits (so
ε ≈ 2−b) and qE + qD � 2m, the second term of our authenticity bound is approximately qD/2

b. Thus,

if the tweakable cipher Ẽ has STPRP-security up to (say) 280 queries (e.g., an appropriately instantiated
PIV with N = 256), then encoding the header with an nonce, and the message with 80 bits of redundancy,
yields an AEAD scheme with roughly 80-bit privacy and authenticity guarantees, and one that can tolerate
nonce-misuse.

We note that the proof of Theorem 8 can be easily modified to show that the stated bound holds even
if the adversary controls the coins and state of EncodeM and EncodeH. Additionally, we assume only that

20

decryption oracle queries are not redundant — adversaries are not assumed to respect any nonces encoded
into the headers or messages.

Relationship to deterministic authenticated encryption. Motivated by the key-wrapping problem, Rogaway
and Shrimpton [37] introduce deterministic authenticated encryption (DAE). The encryption and decryption
algorithms of a DAE scheme take a header string as an auxiliary input, as in the AEAD case. However, both
algorithms are required to be deterministic. The corresponding security notion considers only adversaries
that never repeat queries (or make redundant queries to a decryption oracle).

Our encode-then-encipher AEAD scheme may be viewed as a DAE scheme, provided the EncodeM and
EncodeH algorithms are deterministic. One can easily show that the DAE security of a scheme is upper
bounded by the sum of its privacy and authenticity bounds, as given in Theorems 7 and 8. We note that
under the assumption that adversaries do not repeat queries, the privacy bound from Theorem 7 reduces to
Advp̃rp

Ẽ
(B) + q2/2m+1 for some adversary B. Obtaining this result requires trivial proof modifications, and

generalizes a result from [37], which considers EncodeM(H,M) = M ‖ 0s.

5.3 Proof of Theorem 7

Proof. Let Π
$←− BC(H,M) be a random cipher. Let Ψ [Π] be the AEAD scheme obtained by replacing ẼK

and Ẽ−1K with Π and Π−1, respectively, everywhere in the algorithms of Ψ [EncodeH,EncodeMsg, Ẽ]. Let EΠ
be the corresponding encryption algorithm. We begin by observing that Pr

[
AEK(·,·)⇒ 1

]
−Pr

[
AEΠ(·,·)⇒ 1

]
≤

Advp̃rp

Ẽ
(B), for the standard adversary B that simulates EK or EΠ , depending on its own oracle. This leaves

us with Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) + Pr

[
AEΠ(·,·)⇒ 1

]
− Pr

[
K

$←−K ; A$K(·,·)⇒ 1
]
.

Now we proceed by a sequence of games. Let s be the stretch of EncodeM. Game G1 implements EΠ ,
using lazy-sampling to define Π. In particular, on the i-th query (Hi,Mi), Game G1 computes the encodings
Hi,M i, and then samples a potential value Si to assign to Π(Hi,M i). This value will be valid so long as
Π(Hi,M i) has not already been set, and as long as Si has not been used with Hi before; otherwise, Game G1
sets bad1 or bad2, and then reassigns Si an appropriate value.

Since Game G2 is identical to Game G1 until bad1 or bad2 is set, we have

Pr
[
AEΠ(·,·)⇒ 1

]
= Pr [G1(A)⇒ 1]

= Pr [G1(A)⇒ 1 ∧ (bad1 ∨ bad2)] + Pr [G1(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

≤ Pr [G2(A) ; bad1 ∨ bad2] + Pr [G2(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

where in the final line we use an alternative formulation of the fundamental lemma of game-playing [5].

Now, notice that in Game G2, the value of Si is always uniformly random in {0, 1}|Mi|+s, and EΠ ’s outputs
are independent of each Mi. Consequently we can postpone assigning values to each Mi until after A halts.
This in turn allows us to postpone checking to see if bad1 or bad2 should be set without altering the
probability that they will be. We make both these changes to create Game 3 (so Pr [G2(A) ; bad1 ∨ bad2] =
Pr [G3(A) ; bad1 ∨ bad2]). Thus,

Pr [G2(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)] = Pr [G3(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

≤ Pr [G3(A)⇒ 1] = Pr
[
K

$←−K ; A$K(·,·)⇒ 1
]

where the final equality follows from the fact that in Game G3, each Si is sampled independently and
uniformly at random from the set of appropriately sized strings. To recap, at this point we have

Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) + Pr [G3(A) ; bad1 ∨ bad2]

We need an upper bound for Pr [G3(A) ; bad1 ∨ bad2]. Therefore suppose that A has just generated its
output after running in G3. We will first bound the probability that bad1 gets set. Let N =

∣∣{Hi : i ≤ q
}∣∣

21

be the number of distinct tweak encodings generated during the course of the game. Let R1, R2, . . . , RN ⊆
{1, 2, . . . , q} be equivalence classes characterized by the property that i and j are in the same class if and
only if Hi = Hj . The probability that bad1 will be set is at most

∑
k δM (|Rk|).

Note that the upper bound is obtained by summing the values of the increasing convex function δM at
the points |R1| , |R2| , . . . , |RN | where |R1|+ |R2|+ · · ·+ |RN | = q.

Consequently the bound is largest (for fixed q) when N = 1 and R1 = {1, 2, . . . , q}. But suppose that
each |Rk| < d, an event we shall denote as Capped; then Pr [G3(A) ; ¬Capped] ≤ δH(q). Given that Capped
occurs,

∑
k δM (|Rk|) is largest when N = dq/(d− 1)e and |Rk| = d− 1 for k = 1, 2, . . . , N − 1. We have

Pr [G3(A) ; bad1] ≤ Pr [G3(A) ; bad1 | Capped] + Pr [G3(A) ; bad1 | ¬Capped] Pr [G3(A) ; ¬Capped]

≤ δM (d− 1)d q

d− 1
e+ δM (q)δH(q).

By a similar argument,

Pr [G3(A) ; bad2] ≤ Pr [G3(A) ; bad2 | Capped] + Pr [G3(A) ; bad2 | ¬Capped] Pr [G3(A) ; ¬Capped]

≤ (d− 1)(d− 2)

2m+1
d q

d− 1
e+

q(q − 1)

2m+1
δH(q),

since the standard i 7→ i(i− 1)/2m+1 birthday bound (for the probability of a collision among i independent
random variables sampled uniformly from {0, 1}m) meets the criterion of an increasing convex function. This
completes the proof.

Games G1 , G2

Oracle EΠ(H,M):

i← i+ 1; Mi ←M

Hi ← 〈r,Hi〉
$←− EncodeT (Hi)

M i
$←− EncodeM (Hi,Mi)

Si
$←− {0, 1}|M|

if Si ∈ range(Π(Hi, ·)) then

bad2 ← true

Si
$←− {0, 1}|M| \ range(Π(Hi, ·))

if M i ∈ dom(Π(Hi, ·)) then

bad1 ← true

Si ← Π(Hi,M i)

Π(Hi,M i)← Si
return r ‖ Si

Game G3

procedure Main(A):

b
$←−AE(·,·)

for i← 1 to q do

M i
$←− EncodeM (Hi,Mi)

if M i ∈ dom(Π(Hi, ·)) then bad1 ← true

if Si ∈ range(Π(Hi, ·)) then bad2 ← true

Π(Hi,M i)← Si
return b

Oracle EΠ(H,M):

i← i+ 1; Mi ←M

Hi ← 〈r,Hi〉
$←− EncodeT (Hi);

Si
$←− {0, 1}|M|+s

return r ‖ Si

Fig. 8: Games for the proof of Theorem 7. Boxed commands are omitted in Game G2, causing the EΠ oracle to always
return random strings. We use Game G3 to bound the probability that this change can be detected by an adversary
(as measured by the probability that a bad will be set).

22

5.4 Proof of Theorem 8

Proof. Let B be the STPRP adversary that simulates the INT-CTXT experiment for A and outputs 1 if A
would set Forges to true. Then Advint-ctxt

Ψ (A) ≤ Advs̃prp

Ẽ
(B) + Advint-ctxt

Ψ [Π] (A), where Ψ [Π] is the scheme

obtained by replacing ẼK and Ẽ−1K with Π and Π−1, respectively, everywhere in the algorithms of Ψ , and

Advint-ctxt
Ψ [Π] (A) is defined in the natural way (with probabilities over the random choice of Π, rather than K).

Game G4

Oracle EΠ(H,M):

H ← 〈r,H〉 $←− EncodeT (H)

M
$←− EncodeM (H,M)

if M 6∈ dom(Π(H, ·)) then

Π(H,M)
$←− {0, 1}|M| \ range(Π(H, ·))

return r ‖Π(H,M)

Oracle DΠ(H, r, C):

H ← 〈r,H〉
M

$←− {0, 1}|C| \ dom(Π(H, ·))
Π(H,M)← C

M ← DecodeM(H,M)

if M ∈ Errors then Forges← true

return M

Fig. 9: Game G4 simulates the IND-CTXT experiment for SE [Π].

Consider Game G4. By defining Π through lazy sampling, we have Advint-ctxt
Ψ [Π] (A) = Pr [G4(A) ; Forges].

Note that in the code for the DΠ oracle, we do not need to check if Π−1(H,Y) has already been defined;
this possibility is excluded by the fact that A does not repeat queries to DΠ , and does not send DΠ a value
previously returned by EΠ (while preserving the header).

Fix some query to DΠ . The probability that A forges on this query is equal to the probability that the
corresponding, randomly chosen value of M is a valid encoding. There are at most 2|Y |ε valid encodings of
the correct length, and M is sampled from a set of size at least 2|Y | − (qE + qD). Consequently, A forges
on this query with probability at most 2|Y |ε/(2|Y | − (qE + qD)) < 2mε/(2m − 2m−1) = 2ε. A union bound
completes the proof.

6 Acknowledgements

Portions of this work were carried out while Terashima was visiting Voltage Security. We thank them,
especially Terence Spies, for their support. We also thank the CRYPTO and Asiacrypt 2013 reviewers for
their diligence and useful feedback. Both Terashima and Shrimpton were supported by NSF grants CNS-
0845610 and CNS-1319061.

References

1. Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: A comparative analysis of the security
of re-keying techniques. In Proceedings of the 6th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’00, pages 546–559, London, UK,
UK, 2000. Springer-Verlag.

2. N AlFardan and KG Paterson. Lucky 13: Breaking the TLS and DTLS record protocols. In IEEE Symposium
on Security and Privacy, 2013.

23

3. Jee Hea An and Mihir Bellare. Does encryption with redundancy provide authenticity? In Advances in Cryptology–
Eurocrypt, pages 512–528. Springer, 2001.

4. D. Aranha, J. López, and D. Hankerson. Efficient software implementation of binary field arithmetic using vector
instruction sets. Progress in Cryptology–LATINCRYPT 2010, pages 144–161, 2010.

5. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In Advances
in Cryptology–EUROCRYPT, volume 4004, page 10, 2006.

6. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. Advances in Cryptology–ASIACRYPT 2000, pages 531–545, 2000.

7. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving encryption. In Selected
Areas in Cryptography, pages 295–312. Springer, 2009.

8. Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in
plaintexts for efficient cryptography. In ASIACRYPT, pages 317–330, 2000.

9. Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode of operation for format-preserving encryption.
Unpublished NIST proposal, 2010.

10. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast and secure message
authentication. In CRYPTO, pages 216–233, 1999.

11. Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password interception in a SSL/TLS
channel. Advances in Cryptology–CRYPTO 2003, pages 583–599, 2003.

12. Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR. In Kaisa Nyberg, editor,
Fast Software Encryption, volume 5086 of Lecture Notes in Computer Science, pages 289–302. Springer Berlin /
Heidelberg, 2008.

13. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a tweakable strong pseudo-random
permutation. In Matthew Robshaw, editor, Fast Software Encryption, volume 4047 of Lecture Notes in Computer
Science, pages 293–309. Springer Berlin / Heidelberg, 2006.

14. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash
approach. IACR Cryptology ePrint Archive, 2007:28, 2007.

15. Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin. A domain extender for the ideal
cipher. In TCC, pages 273–289, 2010.

16. Jean Paul Degabriele and Kenneth G Paterson. On the (in)security of IPsec in MAC-then-encrypt configurations.
In Proceedings of the 17th ACM conference on Computer and communications security, pages 493–504. ACM,
2010.

17. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT,
pages 315–327, 2004.

18. Shai Halevi. Invertible universal hashing and the TET encryption mode. In CRYPTO, pages 412–429, 2007.
19. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Advances in Cryptology — CRYPTO 2003,

pages 482–499, 2003.
20. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
21. Viet Tung Hoang, Ben Morris, and Phillip Rogaway. An enciphering scheme based on a card shuffle. In Advances

in Cryptology–CRYPTO 2012, pages 1–13. Springer, 2012.
22. Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptotically optimal security. In FSE,

2013.
23. Will Landecker, Thomas Shrimpton, and R. Terashima. Tweakable blockciphers with beyond birthday-bound

security. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology — CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 14–30. Springer Berlin / Heidelberg, 2012.

24. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Proceedings of the 22nd Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’02, pages 31–46, London, UK, UK,
2002. Springer-Verlag.

25. J. Luo, K.D. Bowers, A. Oprea, and L. Xu. Efficient software implementations of large finite fields GF(2n) for
secure storage applications. ACM Transactions on Storage (TOS), 8(1):2, 2012.

26. Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-Henriquez. Reconfigurable hard-
ware impementations of tweakable enciphering schemes. IEEE Transactions on Computers, 59:1547–1561, 2010.

27. Nick Mathewson. Cryptographic challenges in and around Tor. Talk given at the Workshop on Real-World
Cryptography, Jan 2013.

28. Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable block cipher. In FSE, pages 308–326,
2009.

29. Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable blockcipher: Extending FSE 2009
proposal. In IMA International Conference, pages 391–412, 2011.

24

30. Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a small domain. In Shai Halevi,
editor, Advances in Cryptology–CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 286–
302. Springer Berlin Heidelberg, 2009.

31. M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-rackoff revisited. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages 189–199. ACM, 1997.

32. Kenneth Paterson and Arnold Yau. Padding oracle attacks on the ISO CBC mode encryption standard. Topics
in Cryptology–CT-RSA 2004, pages 1995–1995, 2004.

33. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC.
Advances in Cryptology–ASIACRYPT 2004, pages 55–73, 2004.

34. P. Rogaway. Nonce-based symmetric encryption. In Fast Software Encryption, pages 348–358. Springer, 2004.
35. Phillip Rogaway. Authenticated-encryption with associated-data. In ACM Conference on Computer and Com-

munications Security, pages 98–107, 2002.
36. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of operation for efficient

authenticated encryption. In Proceedings of the 8th ACM conference on Computer and Communications Security,
pages 196–205. ACM, 2001.

37. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In EURO-
CRYPT, pages 373–390, 2006.

38. Palash Sarkar. Improving upon the TET mode of operation. In Kil-Hyun Nam and Gwangsoo Rhee, editors,
Information Security and Cryptology - ICISC 2007, volume 4817 of Lecture Notes in Computer Science, pages
180–192. Springer Berlin / Heidelberg, 2007.

39. Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash functions. IEEE Trans.
Inf. Theor., 55(10):4749–4760, October 2009.

40. Serge Vaudenay. Security flaws induced by CBC paddingapplications to SSL, IPSEC, WTLS. . . . In Advances in
Cryptology–EUROCRYPT 2002, pages 534–545. Springer, 2002.

41. P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length enciphering mode. In Information Security and
Cryptology, pages 175–188. Springer, 2005.

42. M.N. Wegman and J.L. Carter. New hash functions and their use in authentication and set equality. Journal of
computer and system sciences, 22(3):265–279, 1981.

25

A Components for TCT1 and TCT2

LRW2 [24]: Birthday-bound TBC. Needs blockcipher E, ε-AXU2 function H.

LRW2[H,E](K,L)(T,X) = EK(X ⊕HL(T))⊕HL(T)

CLRW2[23]: TBC with beyond-birthday-bound security. Requires blockcipher E and ε-AXU2 function H.

CLRW2[H,E](K1,K2,L1,L2)(T,X) =

LRW2[H,E](K2,L2)(T,LRW2[H,E](K1,L1)(T,X))

polyHmn [42]: ε-AXU2 function with domain ({0, 1}n)m and ε = m/2n. All operations in F2n .

polyHmn
L (T1T2 · · ·Tm) =

m⊕
i=1

Ti ⊗ Li,

NH(νw, 2tw) [10]: ε-AU hash function with ε = 1/2tw. Inputs are νw bits, where ν is even and w > 0 is fixed.

NH[ν, t]K1 ‖ ··· ‖Kν+2(t−1)
(M) =

HK1···Kν (M) ‖HK3···Kν+2(M) ‖ · · · ‖HK2t−1···Kν+2t−2(M)

where HK1 ‖ ··· ‖Kν (X1 · · ·Xν) =
∑ν/2
i=1(K2i−1 +w X2i−1) · (K2i +w X2i) mod 22w.

CDMS [15]: Feistel-like domain extender for TBC Ẽ.

CDMS[Ẽ]K(T,L ‖R) = ẼK(10 ‖ T ‖R′, L′) ‖R′

where R′ = ẼK(01 ‖ T ‖ L′, R) and L′ = ẼK(00 ‖ T ‖R,L).

Fig. 10: TCT1 and TCT2 use these constructions as components.

26

