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Abstract—Dynamic Searchable Symmetric Encryption
(DSSE) enables a client to encrypt his document collection
in a way that it is still searchable and efficiently updatable.
However, all DSSE constructions that have been presented in
the literature so far come with several problems: Either they
leak a significant amount of information (e.g., hashes of the
keywords contained in the updated document) or are inefficient
in terms of space or search/update time (e.g., linear in the
number of documents).

In this paper we revisit the DSSE problem. We propose
the first DSSE scheme that achieves the best of both worlds,
i.e., both small leakage and efficiency. In particular, our DSSE
scheme leaks significantly less information than any other
previous DSSE construction and supports both updates and
searches in sublinear time in the worst case, maintaining at
the same time a data structure of only linear size. We finally
provide an implementation of our construction, showing its
practical efficiency.

I. INTRODUCTION

Searchable Symmetric Encryption (SSE) [31] enables
a client to encrypt her document collection in a way that
keyword search queries can be executed on the encrypted
data via the use of appropriate “keyword tokens”. With
the advent of cloud computing (and the emerging need
for privacy in the cloud), SSE schemes found numerous
applications, e.g., searching one’s encrypted files stored
at Amazon S3 or Google Drive, without leaking much
information to Amazon or Google. However, the majority of
SSE constructions that have been presented in the literature
work for static data: Namely there is a setup phase that
produces an encrypted index for a specific collection of
documents and after that phase, no additions or deletions of
documents can be supported (at least in an efficient manner).

Due to various applications that the dynamic version of
SSE could have, there has recently been some progress on

Dynamic Searchable Symmetric Encryption (DSSE) [12],
[20], [21], [36]. In a DSSE scheme, encrypted keyword
searches should be supported even after documents are
arbitrarily inserted into the collection or deleted from the
collection. However, to assess the quality of a DSSE scheme,
one must precisely specify the information leakage during
searches and updates.

Minimizing the leakage for DSSE can be achieved by
using ORAM [3], [10], [13], [15], [17]–[19], [23]–[25], [27],
[30], [35], [37], [38] to hide every memory access during
searches and updates. However, applying ORAM is costly
in this setting (see Section II). In order to avoid expensive
ORAM techniques, one could allow for some extra leakage.
Ideally, the DSSE leakage should only contain:

a) The hashes of keywords we are searching for, referred
to as search pattern in the literature [9].

b) The matching document identifiers of a keyword search
and the document identifiers of the added/deleted docu-
ments, referred to as access pattern in the literature [9].

c) The current number of document-keyword pairs stored
in our collection, which we call size pattern.

Note that the above DSSE leakage implies a strong property
called forward privacy: If we search for a keyword w and
later add a new document containing keyword w, the server
does not learn that the new document has a keyword we
searched for in the past. It also implies backward privacy,
namely queries cannot be executed over deleted documents.

Unfortunately, existing sublinear DSSE schemes [20],
[21], [36] not only fail to achieve forward and backward
privacy, but also leak a lot of additional information during
updates such as the keyword hashes shared between docu-
ments (not just the hashes of the queried keywords). Our
main contribution is the construction of a new sublinear
DSSE scheme whose leakage only contains (a), (b) and (c)
from above (but, like any other existing scheme, it does not
achieve backward privacy). In particular:

1) Our DSSE scheme has small leakage: Apart from the
search, access and size patterns, it also leaks (during
searches) the document identifiers that were deleted in
the past and match the keyword. As such, our scheme
achieves forward privacy (but not backward privacy).

2) Our DSSE scheme is efficient: Its worst-case search
complexity is O(min{α+logN,m log3N}), where N
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is the size of the document collection (specifically, the
number of document-keyword pairs), m is the number
of documents containing the keyword we are searching
for and α is the number of times this keyword was
historically added to the collection (i.e., for α = Θ(m)
the search complexity is O(m + logN); in any other
case it cannot go beyond O(m log3N)). The scheme’s
worst-case update complexity is O(k log2N), where
k is the number of unique keywords contained in the
document of the update (insertion or deletion). Finally,
the space of our data structure is optimal (i.e., O(N)).

To the best of our knowledge, no other DSSE scheme in
the literature achieves Properties (1) and (2) simultaneously.
See the paragraph of Section II that refers to DSSE related
work for details. Further contributions of our work include:

3) Our DSSE scheme is the first one to support dynamic
keywords. As opposed to previous DSSE schemes
that require storing information about all the possible
keywords that may appear in the documents (i.e., all the
dictionary), our scheme stores only information about
the keywords that currently appear in the documents.

4) We implement our DSSE scheme on memory and we
show that our scheme is very efficient in practice,
achieving a query throughput of 100,000 search queries
per second (for result size equal to 100). To achieve
practical efficiency, our implementation is fully parallel
and asynchronous and we can parallelize queries along
with updates at the same time.

Technical highlights. Our technique departs from existing
index-based techniques for SSE (e.g., [9], [20], [21], [31],
[36]) that use an encrypted inverted index data structure.
Instead it stores document-keyword pairs in a hierarchical
structure of logarithmic levels, which is reminiscent of algo-
rithmic techniques used in the ORAM literature (e.g., [15],
[16], [32], [34], [37]). A similar structure was also recently
used by the authors to construct very efficient dynamic
Proofs of Retrievability [33].

Specifically, in our scheme, when a document x contain-
ing keyword w is added to our collection, we store in a hash
table an encryption of the tuple (w, x, add, i), where i is a
counter indicating that x is the i-th document containing
keyword w. When a document x containing keyword w
is deleted from our collection, an encryption of the tuple
(w, x, del, i) is stored. During the encrypted search for a
certain keyword w, all hash table keys of addition/deletion
entries referring to w are retrieved (and decrypted) via an
appropriate token for w (generated by the client).

Storing both addition and deletion entries can however
lead to linear worst-case complexity for search, e.g., first we
add some documents containing keyword w, then we delete
all documents containing w and then we search for keyword
w. In this case the search will have to iterate through all
the addition/deletion entries in order to conclude that no
document contains keyword w.

To avoid this scenario, we need to rebuild the data struc-
ture periodically (so that opposite entries can be canceled
out), which is again a linear cost. To reduce that rebuilding
cost from linear to logarithmic, we use the multilevel struc-
ture that we mentioned above (instead of storing everything
in a flat hash table). Forward privacy is derived from the fact
that every time we rebuild a level of the above data structure,
we use a fresh key for encrypting the entries within the new
level—this makes old tokens unusable within the new level.

II. RELATED WORK

Static SSE. In the static setting, Curtmola et al. [9] gave
the first index-based SSE constructions to achieve sublinear
search time. A similar construction was also described by
Chase and Kamara [8], but with higher space complexity.
Finally, recent work by Kurosawa et al. [22] shows how
to construct a (verifiable) SSE scheme that is universally
composable (UC). While UC-security is a stronger notion
of security, their construction requires linear search time.
Finally, Cash et al. [5] recently presented an SSE scheme
for conjunctive queries over static data. An extension of this
protocol that allows the data owner to authorize third parties
to search in the encrypted static database was recently also
proposed by Cash et al. [6].

Dynamic SSE. Song et al. [31] were the first to explicitly
consider the problem of searchable encryption and presented
a scheme with search time that is linear in the size of the data
collection. Their construction supports insertions/deletions
of files in a straightforward way. Goh [12] proposed a
dynamic solution for SSE, which again requires linear search
time and results in false positives. Chang and Mitzen-
macher [7] proposed a construction with linear search time
but without false positives—their solution also achieves
forward privacy.

The recently introduced dynamic scheme of Kamara et
al. [21] was the first one with sublinear search time, but it
does not achieve forward privacy and reveals hashes of the
unique keywords contained in the document of the update.
The scheme of Kamara and Papamanthou [20] overcomes
the above limitation (still not achieving forward privacy) by
increasing the space of the used data structure.

Finally, the work of van Liesdonk et al. [36] has the
limitations of both [21] and [20], with leaky updates and a
large index. Also, the number of updates supported by their
scheme is not arbitrary.

Dynamic SSE through ORAM. The DSSE problem can
be solved by using oblivious RAM (ORAM) [3], [10], [13],
[15], [17]–[19], [23]–[25], [27], [30], [35], [37], [38] as a
black box. ORAM provides the strongest levels of security,
namely the server only learns the size of the document
collection.

However, ORAM schemes are less efficient in practice
due to a big overhead in terms of bandwidth. The ORAM
schemes that achieve low bandwidth (e.g., [32], [34], [35]
rely on the block sizes being relatively large (e.g., 4 KB).
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In order to handle small block sizes such as document-
keyword pairs, those ORAM techniques would end up using
a lot more client storage (because the ORAM would consist
of many more but smaller blocks). Those schemes can be
re-parameterized to use less client storage (e.g., by using
recursion as in [34], [35]), but that would drastically increase
bandwidth and might in some cases result in multiple round-
trips of communication.

Other related work. Related to searchable encryption is
also functional encryption [4], [11], [28], where one encrypts
the documents in a way that one can issue tokens that would
allow testing whether a specific keyword is contained in
the document, without decrypting the document. However
such solutions incur linear cost for search (however it is
straightforward to address updates). Aiming at more efficient
schemes, Boneh et al. [2] presented functional encryption
schemes for specific functionalities such as keyword search
and Shi et al. [29] presented functional encryption schemes
for multidimensional queries, with linear cost for searches.

III. PRELIMINARIES

The notation ((c out, s out)← protocol((c in, s in)) is
used to denote a protocol between a client and a server,
where c in and c out are the client’s input and output; s in
and s out are the server’s input and output.

Definition 1 (DSSE scheme). A dynamic searchable sym-
metric encryption (DSSE) scheme is a suite of three proto-
cols that are executed between a client and a server with
the following specification:

• (st, D)← Setup((1λ, N), (1λ,⊥)). On input the secu-
rity parameter λ and the number of document-keyword
pairs N , it outputs a secret state st (to be stored by
the client) and a data structure D (to be stored by the
server);

• ((st′, I),⊥) ← Search((st, w), D). The client input’s
include its secret state st and a keyword w; and server’s
input is its data structure D. At the end of the Search
protocol, the client outputs a possibly updated state st′

and the set of document identifiers I that contain the
keyword w. The server outputs nothing.

• (st′, D′)← Update((st, upd), D). The client has input
st, and an update operation upd := (add, id,w) or
upd := (del, id,w) where id is the document identifier
to be added or removed, and w := (w1, w2, . . . , wk)
is the list of unique keywords in the document. The
server’s input is its data structure D. The Update
protocol adds (or deletes) the document to (or from)
D, and results in an updated client secret state st′ and
an updated server data structure D′.

We note that in our construction, Setup and Search can
be performed non-interactively, i.e., involving only a single-
round trip between the server and client. In our construction
the Update protocol is interactive, but the client can always
answer a search query in a single round by storing a

small buffer of documents currently being updated in the
background until the updates finish.

A. Security Definition

We define security using the standard simulation model
of secure computation [14], requiring that a real-world
execution “simulates” an ideal-world (reactive) functionality.
For clarity of presentation, we first present a scheme secure
in the semi-honest model, where the adversary (i.e., server)
faithfully follows the prescribed protocol, but is curious.
Then, in Section VI we show how to make our protocol
work in the malicious model as well. We now define the
following experiments:

Ideal-world execution IDEALF,S,Z . An environment Z
sends the client a message “setup”. The client then sends
an ideal functionality F a message “setup”. The ideal-world
adversary S (also referred to as a simulator) is notified of
N , an upper bound on the number of document-keyword
pairs.

In each time step, the environment Z specifies a search
or update operation to the client. For a search operation, Z
picks a keyword w to search. For an update operation, Z
picks upd := (add, id,w) or upd := (del, id,w). The client
sends the search or update operation to the ideal functional-
ity F . F notifies S of leaks(w) for a search operation, and
leaku(upd) for an update operation (see Section III-B for the
definition of the leakage functions). S sends F either abort
or continue. As a result, the ideal-functionality F sends the
client ⊥ (to indicate abort), “update success”, or the indices
of matching documents for a search query. The environment
Z gets to observe these outputs.

Finally, the environment Z outputs a bit b ∈ {0, 1}.

Real-world execution REALΠF ,A,Z . An environment Z
sends the client a message “setup”. The client then performs
the Setup protocol (with input N ) with the real-world
adversary A.

In each time step, an environment Z specifies a search
or update operation to the client. For a search operation, Z
picks a keyword w to search. For an update operation, Z
picks upd := (add, id,w) or upd := (del, id,w). The client
then executes the real-world protocols Search or Update
with the server on the inputs chosen by the environment.
The environment Z can observe the client’s output in each
time step, which is either ⊥ (indicating protocol abortion),
“update success”, or the indices of matching documents to
a search query.

Finally, the environment Z outputs a bit b ∈ {0, 1}.
Definition 2 (Semi-honest/malicious security). We say that
a protocol ΠF emulates the ideal functionality F in the
semi-honest (or malicious) model, if for any probabilistic,
polynomial-time semi-honest (or malicious) real-world ad-
versary A, there exists an simulator S, such that for all
non-uniform, polynomial-time environments Z , there exists
a negligible function negl(λ) such that

|Pr[REALΠF ,A,Z(λ) = 1]− Pr[IDEALF,S,Z(λ) = 1]| ≤ negl(λ) .

3



Specifically, in the above definition, a semi-honest ad-
versary always faithfully follows the prescribed protocol,
whereas a malicious adversary can arbitrarily deviate from
the protocol. Informally, with a malicious adversary, we
would like to detect any deviation from the prescribed
protocol, i.e., any deviation can be detected and is equivalent
to aborting.

The above definition simultaneously captures correctness
and privacy. Correctness is captured by the fact that the
ideal-world client either receives the correct answer of the
query, or receives an abort message. Privacy is captured by
the fact that the ideal-world adversary (i.e., simulator) has
no knowledge of the client’s queries or dataset, other than
the leakage explicitly being given to the simulator.

B. Defining Leakage

An update upd = (op, id,w) leaks the type of the update
op, the identifier of the document id that is being updated,
the number of keywords |w| in the document and the time
t of of the update (i.e., when a document is added or
removed). Therefore we define leaku(upd) = [op, id, |w|, t].
As opposed to [21], our update protocols do not leak which
keywords are contained in the updated file.

A search for a keyword wi leaks a set I containing the
identifiers of documents matching keyword wi that were
added or removed in the past (referred to as access pattern
in [21]). It also leaks a vector vwi

of i entries such that
vwi

(j) = 1 iff there was a search for wi at time j < i
(referred to as search pattern in [21]). Therefore we define
leaks(wi) = [I, vwi ].

Note that this definition of leakage captures forward
privacy, in that the set of indices matching I leaked con-
tains only documents that were added in the past, but no
future documents. Our definition of leakage does not satisfy
backward privacy, since the set of matching I leaked also
contains documents that were previously added but then
deleted.

IV. BASIC CONSTRUCTION

In this section, we first describe a (relatively inefficient)
basic scheme whose search complexity is linear in the
number of documents that have been historically added,
containing the keyword w. Later, in Section V, we describe
a new technique to reduce the search cost to roughly the
number of matching documents, instead of all documents
that have been historically added containing the keyword—
note that some of these documents may already have been
removed at the time of the search. Our second construction
is built on top of the basic one and we present it as two
parts for clarity.

A. Server-Side Data Structure

Hierarchical levels. The server stores a hierarchical
data structure containing logN + 1 levels, denoted
T0,T1, . . . ,TL, where L = logN . For each level 0 ≤ ` ≤

L, level ` can store up to 2` entries. Each entry encodes
the information (w, id, op, cnt), where w is a keyword; op
encodes the op-code taking a value of either add or del; id
is a document identifier containing the keyword w; and cnt
denotes the current counter for keyword w within level T`.

Intuitively, we can think of each level T` as the permuted
encoding of a table Γ`. Henceforth, we use the notation Γ`
to denote the conceptual, unencoded data structure at level
`, and we use the notation T` to denote the encoded table
at level ` that is actually stored on the server.

The conceptual data structure at level `. The conceptual,
unencoded data structure at level ` is as follows:

Γ` : w →
[

(id, add, 0), (id, add, 1), . . . , (id, add, cntadd),
(id, del, 0), (id, del, 1), . . . , (id, del, cntdel)

]
In other words, for each word w, each level stores add

and del operations associated with the word w: Specifically,
an (id, add, cnt) tuple means that a document identified by
id containing the word w is added; an (id, del, cnt) tuple
means that a document identified by id containing the word
w is deleted.

We ensure that within the same level the same (w, id)
pair only appears once for an add operation or a del
operation, but not both—if both appear, they cancel each
other out during the level rebuilding as explained later.

Furthermore, we ensure that all (w, id, op, cnt) tuples are
lexicographically sorted based on the key (w, id, op).

Encoding the conceptual data structure. The conceptual
table Γ` is encoded and its entries are then permuted, before
being stored on the server. We now describe how to encode
each table Γ` satisfying the following requirements.

• Confidentiality. The idea is to “encrypt” it in such a way
such that it does not leak any information normally.

• Tokens allow conditional decryption. However, when
the client needs to search a keyword w, it can release
a token token`(w) for each level `, such that the server
can then decrypt all entries Γ`[w] without learning any
additional information. Each token corresponds to a
(keyword, level) pair.

• Constant table lookup time. Not only can the server
decrypt all entries in Γ`[w], given token`(w), the server
can read id := Γ`[w, op, cnt ] in O(1) time.

B. Algorithms for Encoding the Level Data Structure

We now explain how to encode a conceptual table Γ`
into an encoded table T` that is actually stored on the server.
For this the client is going to use a secret key ki for each
level i = 0, 1, . . . , ` and a secret key esk to be used for a
randomized symmetric encryption scheme.

The conceptual table Γ` can be thought of as a collec-
tion of entries each encoding a tuple (w, id, op, cnt). Each
entry will be encoded using the EncodeEntry algorithm as
described in Figure 1. When an encoded level T` is being
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Algorithm EncodeEntryesk ,k`(w, id, op, cnt)

1. token` := PRFk`(h(w)).
2. hkey := Htoken`(0||op||cnt).
3. c1 := id⊕ Htoken`(1||op||cnt).
4. c2 := Encryptesk (w, id, op, cnt).
5. Output (hkey, c1, c2).

Fig. 1: The algorithm for encoding an entry.

Algorithm Lookup(token, op, cnt)

1. hkey := Htoken(0||op||cnt).
2. If hkey /∈ T`, output ⊥.
3. Else, output id := T`[hkey].c1 ⊕ Htoken(1||op||cnt).

Fig. 2: The algorithm for looking up an entry.

built, all these encoded entries are randomly permuted by
the client (using an oblivious sorting algorithm as explained
later). Our construction is using a keyed hash function Hk :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ (this is modeled as a random
oracle in our proof of security in Section VIII-B—we show
how to avoid using the random oracle in Section VI by
increasing the client computation and the communication).
Also, we use h(·) to denote a standard hash function (e.g.,
SHA256).

All encoded and permuted entries are stored on the server
in a hash table indexable by hkey, denoted

T`[hkey] = (c1, c2) .

This hash table allows the server to achieve constant lookup:
With an appropriate token for a keyword w, the server can
decrypt the c1 part, and read off the entry id := Γ[w, op, cnt ]
in O(1) time. The Lookup algorithm is detailed in Figure 2.

We also quickly note that the term c2 in the above will
later be used by the client during updates.

C. Basic Searchable Encryption Scheme

We now give the detailed description (Figure 3) of
the three protocols that constitute a dynamic searchable
encryption scheme, as defined in Definition 1.

D. Rebuilding Levels During Updates

Every update entry that the client sends to the server
causes a rebuild of levels in the data structure. The basic
idea of the rebuild is to take consecutively full levels
T0,T1, . . . ,T`−1, as well as a newly added entry, and merge
them (e.g., via protocol SimpleRebuild) into the first empty
level T`. Since protocol SimpleRebuild has O(N logN)
complexity (see below), it is easy to see that every update
takes O(log2N) amortized time, for large levels are rebuilt

Protocol (st, D)← Setup((1λ, N), (1λ,⊥))
Client chooses an encryption key esk , and L = logN
random level keys k0, k1, . . . , kL. The secret client
state consists of st := (esk , k0, k1, . . . , kL).
Server allocates an empty hierarchical structure
D, consisting of exponentially growing levels
T0,T1, . . . ,TL.

Protocol ((st′, I),⊥)← Search((st, w), D)

1) Client: Given a keyword w, the client computes a
token for each level

tks := {token` := PRFk`(h(w)) : ` = 0, 1, . . . , L}.

The client sends the tokens tks to the server.
2) Server: Let I := ∅. For ` ∈ {L,L− 1, . . . , 0} do:
• For cnt := 0, 1, 2, 3, . . . until not found:

id := Lookup(token`, add, cnt).
I := I ∪ {id}.

• For cnt := 0, 1, 2, 3, . . . until not found:
id := Lookup(token`, del, cnt).
I := I − {id}.

Return I to the client.
Protocol (st′, D′)← Update((st, upd), D)

Let upd := (w, id, op) denote an update operation,
where op = add or op = del and w is the vector
storing the unique keywords contained in the docu-
ment of identifier id.
For w ∈ w in random order do:
• If T0 is empty, select a fresh key k0 and set

T0 := EncodeEntryesk ,k0(w, id, op, cnt = 0).
• Else, let T` denote the first empty level:

Call SimpleRebuild(`, (w, id, op)).
(or Rebuild(`, (w, id, op))).

Fig. 3: Our basic construction.

a lot less frequently than small levels (note however that
the bandwidth required for each update is O(logN)). In
particular, over a course of N = 2` operations, level 0 is
rebuilt N/2 times, level 1 is rebuilt N/4 times and level
`− 1 is rebuilt N/2` = 1 times.

We note here that we can use standard de-amortization
techniques (e.g., [15], [16], [37]) to turn these complexities
into worst-case. Namely, each update in our scheme (and in
our implementation) induces O(logN) bandwidth and takes
O(log2N) time in the worst-case.

Concerning the SimpleRebuild protocol in Figure 4,
note the sorting performed in Step 3 before the entries
are processed in Step 4: The reason for this sorting is to
ensure that Step 4 can be performed in O(N) time via
a sequential scan (instead of O(N2) time). Finally, there
is another sorting taking place in Step 5 (based on hkey)
before uploading the entries to the server, and after they have
been processed in Step 4. This performs a random shuffle,
ensuring that the order of the encrypted entries do not reveal
any information about the order of the underlying plaintexts.
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Protocol SimpleRebuild(`, (w, id, op))
(Assuming O(N) client working storage)

1) Client creates local buffer B = (w, id, op, cnt = 0).
2) For each entry = (hkey, c1, c2) ∈ T0 ∪ T1 ∪ . . . ∪ T`−1:

Let (w, id, op, cnt) := Decryptesk(c2).
Let B := B ∪ (w, id, op, cnt).

// Client: download and decrypt all entries, store in local B.
3) Sort B based on lexicographical sorting key (w, id, op).

// All entries with the same keyword now appear sequentially.
4) For each e := (w, id, op, cnt ′) ∈ B (in sorted order):
• If e marks the start of a new word w, for an operation op ∈ {add, del}, then set cntop,w := 0 and update e :=

(w, id, op, 0) in B.
• If e and its adjacent entry are add and del operations for the same (w, id) pair, suppress the entries by updating

both entries with ⊥.
• Else, update e := (w, id, op, cntop,w++) in B.

5) Select a fresh new level key k`.
T` := {EncodeEntryesk,k`(entry)}entry∈B.
// Dummy entries marked ⊥ are also encoded as part of T`.
Upload T` to the server in the order of increasing hkey. Empty all the old levels T0,T1, . . . ,T`−1.

Fig. 4: The simple rebuilding algorithm.

Protocol Rebuild(`, (w, id, op))
(Assuming O(Nα) client working storage, 0 < α < 1)

1) Let entry∗ := EncodeEntryesk ,k0(w, id, op, cnt = 0).
Let B̂ := {entry∗} ∪ T0 ∪ T1 ∪ . . . ∪ T`−1.

2) For each entry = (hkey, c1, c2) ∈ B̂:
Let (w, id, op, cnt) := Decryptesk(c2).
Overwrite entry with Encryptesk (w, id, op, cnt).

// Wrap entries in B̂ in a randomized encryption scheme to prepare for oblivious sorting. During the execution of oblivious sorting,
an entry is re-encrypted in a randomized fashion each time upon write.

3) B̂ := o-sort(B̂), based on the lexicographical sorting key (w, id, op).
// Now, all entries with the same keyword appear sequentially.

4) For each entry e := Encryptesk (w, op, id, cnt ′) ∈ B̂ (in sorted order):
• If e marks the start of a new word w, for an operation op ∈ {add, del}, then set cntop,w := 0 and update e :=
Encryptesk (w, id, op, 0) in B̂.
• If e and its adjacent entry are add and del operations for the same (w, id) pair, suppress the entries by updating

both entries with Encryptesk (⊥).
• Else, update e := Encryptesk (w, id, op, cntop,w++) in B̂.

5) Randomly permute B̂ := o-sort(B̂), based on hkey.
6) Select a new level key k`.

For each entry ∈ B̂:
(w, id, op, cnt) := Decryptesk(entry).
Add EncodeEntryesk,k`(w, id, op, cnt) to T`.

Fig. 5: The main rebuilding algorithm.

For clarity, we first describe in Figure 4 the
SimpleRebuild algorithm for the case when the client has
sufficient (i.e., linear in the size of the dataset) local storage.
Then, in Figure 5 we will describe protocol Rebuild for the
same purpose. The difference between the SimpleRebuild
and the Rebuild protocol is that in the SimpleRebuild pro-
tocol, the client downloads the entire level from the server,

locally computes the result, and then uploads the result to the
server. In the Rebuild protocol, we assume that the client has
small local storage, and is not able to download the entire
level at once.

In this case (i.e., when the client has small local stor-
age), the most straightforward approach would be to treat
the server as a remote Oblivious RAM (ORAM). The
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client computes everything in the same manner as before—
however, instead of accessing its local memory, the client
now reads and writes data from and to the server’s ORAM
as necessary, in an oblivious manner. However, as we argued
in Section II, ORAM is not practical for the case of small
blocks used by our scheme.

We note that the Rebuild protocol of Figure 5 uses an
oblivious sorting protocol to optimize the above generic
ORAM scheme.

E. Oblivious Sorting

The oblivious sorting (o-sort) algorithm used in Figure 5
reorders the entries in the level. The o-sort algorithm allows
the client to re-sort the entries based on their plaintext values
without the server learning the plaintexts and their order
before and after sorting.

We use a standard o-sort algorithm (e.g., see the al-
gorithm described in [17]). On a high level, o-sort works
as follows. The client downloads a small subsets of the
entries, sorts them locally, and uploads them back to the
server (possibly to different locations). After several rounds
of sorting subsets of entries, the entire level becomes sorted.

Our construction ensures that during sorting entries are
wrapped in a non-deterministic encryption layer. Every time
an entry is uploaded back to the server, it is re-encrypted
with a different nonce so the server cannot link the positions
of the reordered entries to their original and intermediate
positions before and during sorting.

Furthermore, locations of the entries that the client
accesses are independent of the entry values and their sorting
order, so the server is not able to learn anything about the
entries by observing the o-sort.

We use an o-sort algorithm that uses O(Na) client mem-
ory for 0 < a < 1 (e.g., about 210 MB of client memory
in our experiments—see Section VII) to obliviously sort N
elements with O(N) entry I/O operations and O(N logN)
client-side computation. Note that even though the number
of entry I/O operations is O(N), the number of comparison
performed by the client is still O(N logN) so this does
not violate the lower bound for sorting. For a more detailed
description of the o-sort algorithm please refer to [17].

V. SUBLINEAR CONSTRUCTION

As mentioned in the introduction, we would like to
achieve at most O(m log3N) cost for search queries, where
m is the number of matching documents. Unfortunately, our
basic construction described in Section IV fails to achieve
this. Consider the following counter-example:

Example. Suppose documents 1, 2, 3, . . . κ are added (κ =
O(N)), all of which contain a keyword w. Then,
suppose documents 1, 2, 3, . . . , κ−1 are deleted. At this
point, running a search query on w should return only
one document (document κ). However, in our basic
construction, it is possible that the top level contains the

add operations for documents 1, 2, 3, . . . κ, and then the
lower levels contain the del operations for documents
1, 2, 3, . . . κ − 1. In this case, the search query would
take time Õ(κ) (which can be as large as Õ(N)), even
though the result set is of size 1.

In this section, we will extend the basic construction
to guarantee that a search operation takes sublinear time
O(m log3N) even in the worst case, where m is the number
of matching documents.

A. Extensions to the Main Construction

In the main protocol, we store the tuple (w, id, op, cnt),
for each (w, id) pair that was either added or deleted. In the
following we describe one extra piece of information that
we need to store with each tuple.

Storing target levels. In the new protocol, with each tuple
(w, id, op, cnt) stored at the level ` of the data structure, we
are going to store the target level `∗ such that

• If op = add, then `∗ is the level of the data structure
that the tuple (w, id, op, cnt) is stored, i.e., `∗ = `;

• If op = del, then `∗ is the level of the data structure
that the respective addition tuple (w, id, add, cnt) is
stored, i.e., `∗ > ` (since deletions happen only after
additions).

We note here that the client can easily compute the target
level of each new entry (w, id, op). Specifically, if op =
add, the target level `∗ (which is the level of the entry) is
the first empty level. Otherwise (i.e., when op = del), the
client can retrieve the timestamp of the respective addition
entry (w, id, add) and can compute its level ` (which is the
target level of (w, id, del)), since the data structure is built
deterministically and is not dependent on the values of w
and id.

Finally, we are going to maintain the invariant that all
tuples (`∗, w, id, op, cnt) with target level `∗ stored at level
` are going to be lexicographically sorted based on the key
(`∗, w, id, op) (instead of just (w, id, op)).

New encoding. Note now that the target level for each entry
is encoded in the same way as the identifier id. Basically, for
an entry (w, id, op) of level ` and target level `∗, we modify
Line 3 of the EncodeEntry algorithm to the following:

c1 := (`∗, id)⊕ PRFtoken`(1||op||cnt) ,

where ` is the level of the tuple (`∗, w, id, op). In this way,
given an appropriate token for a keyword w and level `, the
server can decrypt the entry

(`∗, id) := Γ`[w, op, cnt ]

in constant time. For simplicity, we write the new tuple as

(`∗, w, id, op, cnt) .

An illustrative example. Consider the following state of the
data structure with the old encoding (w, id, op, cnt), where
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the tuples appear in lexicographic ordering based on the key
(w, id, op) (note that we show some of the entries of the
levels and not all the entries of the levels):

• Level 5:
(w, 1, add, 0), (w, 4, add, 1), (w, 13, add, 2)

• Level 4:
(w, 3, add, 0)

• Level 3:
(w, 1, del, 0), (w, 3, del, 1), (w, 4, del, 2), (w, 19, add, 0)

In the above example, documents 1, 4, 13, 3 containing key-
word w were added, then documents 1, 3, 4 were deleted and
finally document 19 containing keyword w was added. With
the new encoding (`∗, w, id, op, cnt), the levels are going
to be as below (the tuples appear in lexicographic ordering
based on the key (`∗, w, id, op)):

• Level 5:
(5, w, 1, add, 0), (5, w, 4, add, 1), (5, w, 13, add, 2)

• Level 4:
(4, w, 3, add, 0)

• Level 3:
(3, w, 19, add, 0), (4, w, 3, del, 0), (5, w, 1, del, 1),
(5, w, 4, del, 2)

The main difference to note is that in Level 3, the
deletions are sorted according to their target level, and not
simply according to the document identifiers. In general,
in the new encoding, each level has a region in which it
contains deletions for each level above it. Within that region,
the deletions are in the same order as the additions appear in
the corresponding upper level. This will enable us to execute
an encrypted search very efficiently.

B. Detailed Protocol

In the previous section, we mentioned that given an
appropriate token token`(w), the server can decrypt the
subtable at level ` corresponding to keyword w, denoted
Γ`[w]. This means:

1) The server can also look up an entry Γ`[w, op, cnt ] in
O(1) time.

2) Since for the same keyword w, the pairs (`∗, id) appear
in increasing order with respect to cnt in each level,
the server can also perform a binary search on the field
of (`∗, id) (without knowing the respective cnt values).
For example, given token`(w), the server can decide
whether an (`∗, w, id, op, cnt) tuple exists in level `
in logarithmic time. This will be helpful later in the
protocol.

Therefore, in this section, we will use the shorthand
Γ`[w, op, cnt ] to denote a corresponding Lookup operation.
We also explicitly write operations to the conceptual table
Γ` for simplicity—but keep in mind that while we write
w and operations to the Γ` table in the clear, the server
performs these operations using the appropriate token`(w)
instead, without actually seeing the search keyword w.

Protocol ((st′, I),⊥)← Search((st, w), D)

1) Client: Given a keyword w, the client computes a
token for each level

tks := {token` := PRFk`(h(w)) : ` = 0, 1, . . . , L}.

The client sends the tokens tks to the server.
2) Server: Let I := ∅. For ` ∈ {L,L− 1, . . . , 0} do:

a) Find all tuples (`, w, id, add) in level `, such that
the corresponding delete operation (`, w, id, del)
does not appear in levels `′ ≤ `.

b) Set I := I ∪ {id}.
Return I to the client.

Fig. 6: The new and efficient search protocol.

Fig. 7: The green region in level L4 corresponds to
all add entries of keyword w. The red regions in levels
L3, L2, L1, L0 correspond to all del entries of keyword w
that were added in level L4 (that is why their target level
is L4). The goal of the SkipHole(`, token`, id) algorithm is
to find the largest green region (i.e., the largest hole) that
contains entries that were all deleted in the lower levels.
In the example above, [id, id′) is a hole because for all
x ∈ [id, id′), there exists a (L4, w, x, del) entry in some
lower level Li for i = 0, 1, 2, 3. This condition is efficiently
checked through the test in the box.

Finally, for any tuple (`∗, w, id, op, cnt) stored at level `
we define

count`,`∗,w,op(id) = cnt .

For tuples (`∗, w, id1, op, cnt1) and (`∗, w, id2, op, cnt2)
with id2 ≥ id1 stored at level ` we also define

count`,`∗,w,op(id2, id1) = cnt2 − cnt1 .

New search protocol. In Figure 6 we present the new search
protocol for a keyword w that operates on the data structure
storing entries with the new encoding:

Note that Step 2a can take O(N) time in the worst
case. We now further show how to exploit the encoding
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that we propose in the previous paragraphs and perform
Step 2a a lot more efficiently, i.e., in O(m log3N) time.
For that purpose we replace Step 2a and 2b with algorithm
ProcessLevel(`, token`) of Figure 8.

The central idea of algorithm ProcessLevel(`, token`)
is the following: Suppose a client has issued a token for
keyword w and level `. Instead of accessing all the add
entries (`, w, id, add, cnt) one-by-one by using successive
values of the counter cnt = 0, 1, 2, . . . (as would happen
in the search protocol of Section IV), the new protocol
efficiently finds the new value of cnt that the server should
use, so that to avoid accessing add entries that have been
deleted in the lower levels. This set of entries are referred
to as a hole. Finding the new value of cnt is performed
in O(log3N) time by algorithm SkipHole(`, token`, id) of
Figure 8.

Algorithm SkipHole(`, token`, id) matches a collection
of successive “addition” identifiers appearing in level ` with
a collection of successive “deletion” identifiers in lower
levels. When a match is found (see count`,`,w,add(id, id

′) =
DeletedSum(`, id, id′) in Figure 8), it can safely ignore
the specific collection of addition identifiers and get the
new value of the counter. A graphical representation of the
SkipHole(`, token`, id) algorithm in shown in Figure 7.

Time complexity. The complexity of the new search al-
gorithm is O(m log3N), where m is the number of the
documents that contain the keyword that is searched for and
N is the current number of document-keyword pairs. This
is because, for every one of the m documents in the search
result, there are two cases:

• Either the algorithm encountered an add entry for the
document and performed an unsuccessful binary search
for the respective del entry in every level of the data
structure, which clearly takes O(log2N) time;
• Or the the binary search for the respective del entry

was successful. In this case the hole must be computed.
To compute the hole, the algorithm performs a binary
search on the level of the add entry, every step of which
takes O(log2N) time, since the algorithm needs to go
through all the levels below and perform a binary search
within each level in order to compute the deleted sum.
The overall task clearly takes O(m log3N) time.

Thus the running time of the new search algorithm is
O(m log3N) in the worst case.

Achieving the O(min{α+logN,m log3N}) bound. In the
introduction, we stated that the worst-case time complexity
of the final search protocol is O(min{α+logN,m log3N}).
To achieve this bound, we use a hybrid of the two search
protocols that we described. Assume S1 is the search proto-
col of Section IV (with O(N) worst-case complexity) and
S2 is the search protocol of this section (with O(m log3N)
worst-case complexity). The hybrid algorithm for searching
for a keyword w is as follows:

1) Execute S1 until O(log2N) addition entries for key-
word w are encountered.

2) Through binary search at each level ` find the total
number α of addition entries referring to keyword w.

3) If α = ω(log3N), then execute S2; Else execute S1.

The above algorithm runs in O(min{α+ logN,m log3N})
worst-case time. To see that, we distinguish two cases. If
the total number of addition entries α = O(log2N), the
algorithm will terminate at Step 1 in O(α + logN) time.
Otherwise, the algorithm will compute the exact number α in
Step 2, which takes O(log2N) time. Then Step 3 computes
the minimum. The reason we do not compute α from the
very beginning is to avoid the O(log2N) cost.

Modifications to the Rebuild algorithm. We note here that
we slightly need to modify the Rebuild algorithm presented
in Section IV, to accommodate for the new encoding. Let `
be the level that is being rebuilt.

Specifically, we need to update the target level of all the
entries that will be shuffled into the new level T`. This is
easy to do with a sequential pass that takes place before
the oblivious sorting. During this sequential pass, we set the
target level of all entries (both add and del) to be ` except
for the del entries whose current target level is `′ > ` (we
then accordingly re-encrypt the whole entry).

VI. EXTENSIONS AND OPTIMIZATIONS

In this section we describe various extensions and opti-
mizations for our scheme.

Supporting a passive server. Our algorithm can easily be
transformed such that we can use a passive server, i.e., a
server that only allows us to read and write data blocks
and does not perform any computation. We can do this by
having the client do the server’s computation and accessing
the data in storage that the server would have accessed. This
has the negative impact of introducing more rounds into the
protocol. For example, the search algorithm of our protocol
is non-interactive because the server can perform binary
search himself. In a passive server scenario, the binary
search would have to be performed by the client, leading
to a polylogarithmic number of rounds.

Achieving security in the malicious model. To make the
sublinear construction work in the malicious model, the
client stores a MAC of each data structure entry at the
server, along with the entry itself. The MAC also includes
the timestamp t and the current level ` of the entry.

During the execution of the Rebuild algorithm, when the
client needs to read an entry from some level ` at the server,
the server returns the entry along with its MAC and its
timestamp t. The client can verify that the entry is correct,
by recomputing the MAC and by comparing it against the
returned MAC. When the client needs to write back an
updated entry, the client uses the same timestamp but the
new level for the computation of the MAC. This prevents
replay attacks.

9



Algorithm ProcessLevel(`, token`)

1) cnt := 0.
2) (`, id) := Γ`[w, add, cnt ].
3) Repeat until (w, add, cnt) not in Γ`.
• If (`, w, id, del) is not found in any lower levels:

// through a binary search for each lower level
◦ I := I ∪ {id}.
◦ cnt++.
◦ (`, id) := Γ`[w, add, cnt ].

• If (`, w, id, del) is found in some lower level (this is referred to as the start of a hole):
◦ Call cnt := SkipHole(`, token`, id) + 1.

Algorithm SkipHole(`, token`, id)

1) Through binary search, compute the maximum identifier id′ > id in level ` such that

count`,`,w,add(id, id
′) = DeletedSum(`, id, id′) .

2) Return the corresponding cnt value for id′.

Algorithm DeletedSum(`, id, id′)

1) sum := 0.
2) For each level `′ < `:
• Find the region [(`, idx), (`, idy)] that falls within the range [(`, id), (`, id′)] (through binary search), and compute

r := count`′,`,w,del(idy, idx) .

• sum := sum+ r.
3) Return sum.

Fig. 8: Algorithms for processing the level efficiently.

For the verification of a search operation, the server
needs to prove to the client that it has (1) returned the correct
results, and (2) returned all of the results. To achieve these
guarantees, recall that when the client performs a search for
a keyword w, it sends search tokens that allows the server
to unlock a set of entries in each level that correspond to the
keyword w. To protect against a possibly malicious server,
we require that the server send the following to the client
for each level `.

• Each add entry in level ` which has not been deleted
(i.e., via a del entry in a lower level). Also, a MAC for
each such entry along with its timestamp.
• A proof of each hole. Recall that a hole is a set

of consecutive add entries each of which have been
deleted (i.e., via a del entry in a lower level). The proof
of the hole consists of the del entries at the edge of each
deletion region in the lower levels, along with a MAC
for each such del entry.

After receiving this information, the client can recon-
struct the sums of each deletion region (by using the
counters) below a certain level and verify that the sum of
those sums is equal to the sum of entries in the hole.

Removing the random oracle. Our scheme uses the random
oracle. We can however replace the random oracle by a PRF:

For the encoding of the entry, the client computes

hkey := PRFk`(w||0||op||cnt)

and
c1 := id⊕ PRFk`(w||1||op||cnt) .

When searching for a keyword w, the client now needs to
provide more tokens: For each level `, it gives the PRF
outputs PRFk`(w||0||op||cnt) and PRFk`(w||1||op||cnt) for
cnt = 0, 1, . . ., instead of O(logN) tokens that would
enable the server to compute such values. However the
drawback of this method is that the client needs to do more
computation now and also the client-server communication
increases.

Resizing the data structure. The example at the beginning
of Section V requires to store a data structure of size O(N),
although the actual number of documents, after the deletions
have taken place, is O(1). This causes a blow-up in the space
of our data structure. We however note that this problem can
be easily addressed: Whenever the number of deleted entries
equals N/2 (where N is the current total number of entries
in the data structure), the protocol rebuilds the data structure
from scratch, eliminating duplicate entries. This assures that
we always use O(N) space, where N is the actual number
of entries.
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Since the time to rebuild the data structure is
O(N logN), the bandwidth for the rebuild is O(N) and the
rebuild happens every at least N operations, it follows that
the asymptotic worst-case update time and the asymptotic
worst-case update bandwidth is not influenced.

VII. EXPERIMENTAL RESULTS

We implemented our sublinear construction (Section V)
in C# consisting of about 4000 lines of code. Our experi-
ments were performed on Amazon EC2 on a cr1.8xlarge
instance running Windows Server 2008 R2 containing two
Intel Xeon E5-2670 2.6GHz processors and 244GB of
RAM. All experiments were performed on the same machine
using inter-thread RPC with simulated network round-trip
latencies ranging from 25ms to 100ms.

Number of trials. Each data point in the graphs is an
average of 10 trials. We omitted error bars because the
variance was low enough that error bars are too small.

Client storage. In all of our experiments, we configured our
implementation to use less than 210 MB of client storage
at all times. All of the storage except for the level keys
is transient and is only needed to perform updates. The
transient storage can always be discarded if necessary and
level rebuilding can be restarted. Even many mobile clients
today can afford such client storage. It is also a tunable
parameter which can be adjusted in practice.

Dataset. The search performance of a query depends only
on the number of results of matching this query and the
number of keyword-document pairs of the database. It does
not depend on any other parameters, such as the contents
of the database (as should be the case to ensure privacy).
Hence, we describe the performance of our system in terms
of dataset content-independent metrics. We measure our
performance based on the size of the database, number of
results per query, and network latency. In our experiments,
the dataset and server data structures are stored in RAM on
our machine.

Deamortization. Our implementation uses the deamortized
Rebuild (not SimpleRebuild) algorithm and is constantly
”rebuilding”, to spread the rebuilding work over time and
avoid a large worst-case cost. Searches can occur at any
time and the client and server do not have to wait for a
rebuild to complete before performing a search.

A. Adding and Removing Documents

We now evaluate the performance of update operations
(i.e., adding and removing documents) in our scheme.

Update throughput. Because of our hierarchical data struc-
ture, the update time is proportional to O(log2N) where
N is the current size of the database (i.e., the number of
document-keyword pairs already in the database).

Figure 9 shows the maximum sustainable rate at which
our implementation can perform updates on the database.

Fig. 9: Update throughput of our sublinear construction.
The update time is specified in keyword-document pairs per
second. For example, adding or removing a document with
100 unique keywords results in 100 document-keyword pair
updates.

Fig. 10: Update Bandwidth. The bandwidth used to add or
remove a document-keyword pair from the database. Typical
network latencies have a small effect on throughput.

We are able to add or delete document-keyword pairs at the
rate from 100,000 pairs per second for an 800 million pair
database to over 300,000 pairs per second for a 50 million
pair database. Note that adding and removing a pair results
in the same kind of operation so the performance is the
same.

The rate at which documents can be added and removed
depends on the size of the documents. For example, adding
or removing a document with 100 unique keywords will
result in 100 document-keyword pair updates.

In the above throughput experiment, we assume a setup
with sufficient client-server bandwidth. The overhead is
therefore dominated by the client-side computation cost of
performing decryption and encryption, and sorting of the
entries. Below we measure how much bandwidth is required
for update operations.

Update bandwidth cost. Each update of a document-
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Fig. 11: Query throughput of our sublinear construction.
Our system is able to execute queries at a rate of up to
100,000 queries/second. For large result sets, the query
throughput depends inverse proportionally to the number of
results (note that both axis are log-scale).

keyword pair, triggers O(log2N) work on average for
rebuilding some of the existing levels in the database as
described in Sections IV and V. Even though the average
computation per update is O(log2N), the average amount
of bandwidth consumed per update is actually O(logN)
as mentioned in Section IV-D. Figure 10 shows our mea-
surements for the average update bandwidth cost for sev-
eral databases sizes. Note that since we use standard de-
amortization techniques [15], [16], [37], we are able to
perform a partial level rebuilds so that our worst case com-
putation and bandwidth update costs are within a constant
factor of the average costs.

Effect of network latency. We tested the throughput un-
der 25ms, 50ms, and 100ms simulated network round-trip
latencies. For large databases (e.g., larger than 400 million
keyword-document pairs), the throughput was only slightly
affected by network latency. For smaller databases (e.g., 20
million pairs) the throughput decreased by about 30 percent
as a result of increasing the latency from 25ms to 100ms.

B. Searching

In Figure 11, we measure the rate at which our database
can sustain different sized queries. For queries with less than
1,000 results, we can execute them at about 100,000 queries
per second. The rate is fairly constant for these small queries
because the search RPC cost dominates the running time.

For larger queries, our throughput is inversely propor-
tional to the number of results. We can achieve a rate of
9,000 queries per second each with 10,000 results per query
and over 100 queries per second with 1 million results per
query.

The search time for larger queries is mostly unaffected
by the database size because the work done is proportional
to the number of entries accessed regardless of how they are

Number of Keyword-Document Pairs DB Size (GB)
50,331,648 20
100,663,296 42
201,326,592 82
402,653,184 130
805,306,368 202

TABLE I: Database size. Measured while performing up-
dates. The ratio between the number of keyword-document
pairs and the size varies slightly as our de-amortized updater
is running.

distributed within the levels of the data structure. Because
every level must be accessed at least once, smaller queries
are slightly less efficient on larger databases as can be seen
in the Figure 11.

C. Database Size

As shown in Table I, our database sizes varied form
20GB to 202GB for databases with 50 million to 805 million
document-keyword pairs. The databases stores about 250
to 400 bytes per keyword-document pair. The number of
bytes varies throughout the lifetime of the system due to the
temporary storage allocated and deallocated for rebuilding
levels.

D. RAM vs. Disk

One interesting question to ask is that if we were to
support a desired throughput, whether RAM or disk will
be more economical as the storage medium for large-scale
searchable encryption systems like ours.

RAM is more economical. We found that in scenarios
where queries are frequent, a RAM based approach is several
orders of magnitude more economical than using disks for
the same query throughput. For example, we show that
using 244 GB RAM, we can sustain a search throughput
of 100, 000 queries per second.

We performed a back-of-the-envelope calculation on how
many disks are needed to sustain the same throughput, partly
based on the performance numbers reported by Cash et
al. [5] who implemented a static, conjunctive searchable en-
cryption scheme on enterprise-grade rotational hard-drives.
They are able to process about 1 query (with 10,000 results)
per second with 6 enterprise-grade disks [1]. In fact, in order
to get 1 query per second performance they use a document-
grouping trick which leaks additional information about key-
word frequencies in the database [1], [5]. Without resorting
to this extra leakage, one query would take about 10 seconds
to execute. In contrast, our RAM based implementation is
able to achieve over 9,000 queries per second (90,000 times
faster) without this extra leakage.

Cash et al.’s scheme is a conjunctive search scheme,
however, their disk performance is still indicative, since
they report that their performance is disk I/O bound for
searches. In particular, each query makes random disk seeks
proportional to the number of documents that match their
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s-term (i.e., the size of the result set if a single keyword is
searched). For large result sets, our schemes would require
a similar (in the ballpark) number of disk I/O operations per
search query, we anticipate similar search performance if we
implemented it on disk.

We can now do a back-of-the-envelope calculation to
see how many parallel disks are required to sustain the
throughput of our RAM-based implementation—in fact, this
would require about 500K (in the ballpark) enterprise-grade
disks. Hence using RAM when queries are frequent is more
economical.

Cash et al. also report their performance results under
RAM storage. Under a single keyword search, and a result
set of 1000, their RAM response time is 0.1s. For our
scheme, at 1000-sized result set, our throughput is more
than 50, 000 queries per second. Our system has a maximum
degree of parallelism at 32, with 16 cores (with hyper-
threading). This means that absent any queuing and network
delay, the (computational) response-time of our scheme is
under 1ms.

Practical considerations. One potential concern with stor-
ing the database in RAM is that power loss or system failure
could lead to data loss (because RAM is volatile memory).
New systems such as RAMCloud [26] have been proposed to
offer both persistent storage as well as the fast random access
of RAM. We can also address this issue as follows. Our level
rebuilding algorithm results in a highly sequential workload
when reading and writing entries in the levels (including the
oblivious sorts). Therefore we could efficiently perform the
updates on disk (with few seeks) while still caching an in-
memory copy of the database for processing search queries
(which would require many seeks if done on disk).

VIII. PROOF OF BASIC CONSTRUCTION

We now build a simulator S, which given the leakages
leaku(upd) leaks(wi) (as defined in Section III-B) for each
update and search operation respectively, simulates the in-
teractions with a real-world, semi-honest server A.

A. Simulation of the Update Protocol

1) SimpleRebuild Case: The simulator S learns only the
leakage leaku(upd) for each update upd, including the iden-
tifier of the added/deleted document, the type of operation,
the number |w| of keywords of the added/deleted document
as well as the time that the operation was performed.

For i ∈ {1, 2, . . . , |w|}, the simulator simulates the
Rebuild protocol |w| number of times.

For each Rebuild protocol, suppose level ` is being
rebuilt. The simulator simply creates a “random” level T`
as follows: for each entry in T`, the simulator creates
a “random” encoded entry := (hkey, c1, c2). Specifically,
the hkey and c1 terms of the entry will be generated at
random. The c2 term is a semantically-secure ciphertext, and
therefore can be simulated by simply encrypting the 0 string.

2) Rebuild Case: We now show that if there exists a
simulator that can simulate the SimpleRebuild case, then
we can build a simulator to simulate the Rebuild protocol.
We recall that in the oblivious sorting algorithm (the only
difference between SimpleRebuild and Rebuild), the client
downloads a small subsets of the entries (O(Nα)), sorts
them locally, and uploads them back to the server (possibly
to different locations). After several rounds of sorting subsets
of entires, the entire level becomes sorted. Therefore the
simulator for the Rebuild case calls the SimpleRebuild
simulator to simulate the processing of each O(Nα)-sized
subset. By the existence of a simulator for the SimpleRebuild
case and by the obliviousness of the sorting algorithm, it
follows the new simulator can successfully simulate the
Rebuild protocol.

B. Simulation of the Search Protocol

For the Search protocol for word wi, the simulator learns
leakage leaks(wi) as defined in Section III-B, that includes
the number of matching documents {id1, id2, . . . , idr}, as
well as when keyword wi was searched previously.

For each filled level `, the simulator computes a random
token` and sends it to the real-world adversary A—note
that due to the pseudorandomness of the PRF function,
the adversary cannot distinguish a random token from a
pseudorandom one.

For the server to be able answer the search query, we
need to program the random oracle as below.

Programming the random oracle. First, note that the
probability that the adversary queries the random oracle for
token` before token` is given to the adversary is negligible.

Second, for all random oracle queries that have been
made before, the simulator just returns the same answer.

After the adversary gets token` for a specific filled
level `, the adversary can query the random oracle for
Htoken`(0||op||cnt) and Htoken`(1||op||cnt) for various cnt
values.

Now, from the search leakage, the simulator knows the
matching set of document identifiers, the time that each
document was added and removed, and the number of
keywords in each document.

Given this information, for each matching document
id, the simulator must compute which level T` the tuple
(w, op, id) will appear, for both add and del operations.
Specifically, since, for all update operations it knows the
order of their execution and the number of unique keywords
contained in the document of every update, it can replay
these updates and figure out the levels that specific tuples
(w, id, op) occupy for the same (id, op) field. Specifically,
we have two cases:

1) All tuples (w, id, op) with the same (id, op) field oc-
cupy one level T`. Then, the simulator outputs level T`
as the level that id (contained in the search output) is
stored.
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2) All tuples (w, id, op) with the same (id, op) field span
multiple consecutive levels Tj ,Tj+1, . . . ,Tj+k such
that there are xi occurrences of such tuples in Ti for
i = j, . . . , j + k. Then, the simulator outputs level Tr
(j ≤ r ≤ j + k) as the level that id (contained in the
search output) is stored with probability

pr =
xr∑j+k
i=j xi

.

Note that the level computed above is indistinguishable from
the level of the real execution because all tuples (w, id, op)
with the same (id, op) are added with random order during
the update protocol, and therefore they can end up in the
different levels Tr with the probabilities pr shown above.

Therefore, the simulator can determine that for a specific
level `, the matching entries are:

[
(id, add, 0), (id, add, 1), . . . , (id, add, cntadd),
(id, del, 0), (id, del, 1), . . . , (id, del, cntdel)

]
In other words, for each (op, cnt) pair, the simulator knows
the appropriate document id.

Therefore, if the adversary queries Htoken`(b||op||cnt) for
some cnt > cntop, the simulator just returns random bit-
strings.

Suppose the adversary queries Htoken`(b||op||cnt) for
some 0 ≤ cnt ≤ cntop. The simulator knows the corre-
sponding id for (op, cnt) in level T`. The simulator picks a
random, “unassigned” entry in level T`—if it hasn’t already
done so for the tuple (w, op, cnt). This entry now is marked
as “assigned”, and will now be the entry associated with
the tuple (w, op, id, cnt). Suppose this selected entry is
entry := (hkey, c1, c2). The simulator returns hkey for the
random oracle query Htoken`(0||op||cnt), and id⊕ c1 for the
random oracle query Htoken`(1||op||cnt).

IX. PROOF OF THE FULL CONSTRUCTION

Given the proof of the basic construction, the proof for
the full scheme is straightforward.

Note that the only difference between the full and basic
scheme is the following:

• In the full scheme, we add a target level `∗ which is
encoded in the same way as the document identifier id.
• The full scheme releases the same token to the server

during each search operation, and no additional infor-
mation. The full scheme is more efficient only because
the server implements a more efficient algorithm to
locate the desired information—in terms of information
revealed to the server, there is no difference from the
basic scheme.
• The rebuild algorithm has to additionally compute the

new target levels.

Therefore, the simulation of the full scheme is almost
the same as the basic scheme. The only difference is that

the simulator needs to take the target level `∗ into account
when answering random oracle queries (i.e., the oracle does
not output only document identifiers).

Note again, that the chance that the adversary A makes a
random oracle query on some token before token is given to
A is negligible. Therefore, we can assume that the adversary
only makes a random oracle on some token after token is
given the A in a search query. At this moment, the matching
set of documents (both add and del entries) for the searched
keyword w is revealed to the simulator. The simulator also
knows when each document is added and/or deleted, and
how many keywords are in each document. Therefore, at this
moment, the simulator can emulate the (w, id, op) tuples in
each level T`—note that the simulator can do this after the
set of documents matching w is revealed to the simulator.
Therefore, the simulator can compute the target levels related
to the searched keyword w for every level, op ∈ {add, del},
and for all matching document identifiers (for existing or
removed documents).

Namely, given the identifiers of the documents matching
a keyword w (both add and delete entries)—which are
included in the leakage, the simulator can directly compute
the correct target levels and return those in the output of the
random oracle.
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