
Safe enclosures: towards cryptographic
techniques for server protection

Sergiu Bursuc1 and Julian P. Murphy2

1 School of Computer Science, University of Bristol
2 Centre for Secure Information Technologies, Queen’s University of Belfast

Abstract. Cryptography is generally used to protect sensitive data from
an untrusted server. In this paper, we investigate the converse question:
can we use cryptography to protect a trusted server from untrusted data?
As a first step in this direction, we propose the notion of safe enclosures.
Intuitively, a safe enclosure is a cryptographic primitive that encapsu-
lates data in a way that allows to perform some computation on it, while
at the same time protecting the server from malicious data. Furthermore,
a safe enclosure should come equipped with a dedicated protocol that im-
plements the enclosing function with unconditional integrity. Otherwise,
unguarded data may reach the server. We discuss the novelty of these
concepts, propose their formal definition and show several realizations.

1 Introduction

There is a pattern that can be generally noticed when security breaches arise:
data on a small device, usually belonging to an employee of a company, is first
corrupted and serves as a ladder step for malware to penetrate into a bigger
system. Such infection is difficult to prevent, especially when it is based on zero-
day vulnerabilities and hence invisible to any antivirus. Obviously, encloistering
the server with a barrier that does not let anything in would work, but it is not
a realistic option.

Based on the insight of the ongoing work on fully homomorphic encryption
[1–3], we ask the question: can computation on “encrypted” data serve as a
paradigm for protecting the server from data that is possibly infected by mal-
ware? The purpose of this paper is to propose initial ideas and set the stage
for further research in this area. Crucially, we are looking for an appropriate
crypographic notion, and encryption may be only an instance of it.

We are looking for a way to cryptographically enclose a message inside a secu-
rity perimeter. The enclosure can be transparent and may not hide the message
at all. At the same time, it is important that enclosed data can not go outside
the cryptographic perimeter and leak unguarded into the server. Furthermore,
an attacker who can choose the message to be enclosed, shoud not be able to
influence any part of the resulting enclosure. Otherwise, the security perimeter
itself could be used to carry malicious content. In section 3 we provide further
motivation and definitions for the desired cryptographic primitive. In section 4

we discuss why current cryptographic notions, although related, are inadequate
for the considered problem.

One particular challenge that arises from the definition of a safe enclosure is
the need for an enclosing protocol that functions with unconditional integrity (in
fact, a weaker notion of unconditional enclosure will be sufficient). Indeed, we
can not rely on untrusted clients to enclose the data before it is being uploaded
to the server. Neither can we upload the data first and then safely enclose it,
because the server may be compromised by that time. In section 5, we propose
a generic solution for unconditional enclosure based on two notions:

– homomorphic recomposability, which means that small basic enclosed mes-
sages can be combined into the enclosure of a bigger message.

– enclosing transducer, which is a program that can receive as input only basic
requests and can output only basic enclosed messages.

In section 6, we present the design of an enclosing transducer based on trusted
computing: a trusted CPU, a trusted TPM, dynamic measurement of programs
and sealed storage. Putting all these elements together, we instantiate our frame-
work in section 7. In particular, we use homomorphic encryption to implement
an enclosure function. As we argue in conclusion, this is only an instance, which
may offer an unnecessarily high level of protection. In general, our paper opens
new questions both about the appropriate security definitions and about the
appropriate cryptographic primitives for server protection.

2 Preliminaries

We briefly present some high-level aspects of encryption schemes and of trusted
computing, that are sufficient for understanding the paper.

Encryption schemes. A public key encryption scheme is defined by a triple
(K, E ,D), where K is a key generation algorithm, E is an encryption algo-
rithm, and D is a decryption algorithm. We write (pk , sk) ∈ K if (pk , sk) is
a public/private key pair returned by K. Then, for all message m, we have
D(E(m, pk), sk) = m. E(m, pk) will be called a ciphertext and m is the corre-
sponding plaintext. To keep the notation simple, we leave implicit the random
element of encryption schemes, but use the notation E(m, pk , r) when the ran-
dom r is important.

For an algorithm A, we denote by A[m] the result of applying A on input m.

Trusted computing. A trusted platform module (TPM) is a piece of hardware
that offers some protected computational capabilities. It can store the measure-
ment of loaded programs and provide evidence about the state of the platform.
Private information can be sealed against the measurment of a specific pro-
gram P , and can be unsealed by the TPM only when its registers attest that
P is loaded. In this way, no matter what is the initial software configuration, a

trusted program can be loaded and given access to private data in a protected
environment [4, 5].

We denote the measurement of a program P by h(P). For instance, the
measurement of P can be obtained by applying a hash function to the code of
P . We denote the sealing of a value v against a measurement m by S(v,m).
Then, if the measurement of a program P is equal to m, P can have access to v
in an environment protected by trusted hardware.

3 Safe enclosures: motivation and definition

In terms of functionality, an enclosure scheme looks like a homomorphic encryp-
tion scheme, without keys:

Definition 1 (enclosure scheme). An enclosure scheme is given by a tuple
(E ,D,H), where

– E is an enclosing function: a function that associates a message E(m) to any
input message m

– D is a disclosing function: for all message m, D(E(m)) = m.
– H is a set of pairs of functions that specifies computation on enclosed data:

for all (F1,F2) ∈ H and all list of enclosed messages E(m1), . . . , E(mn), we
have:

F1(E(m1), . . . , E(mn)) = E(F2(m1, . . . ,mn))

Fig. 1. Server protection by data enclosure

In the context of the untrusted clients / trusted server scenario that we dis-
cussed in introduction, the use of an enclosure scheme is depicted in figure 1. The

idea is that data from clients is enclosed under the function E and computation
on the server can be performed relying on the homomorphic properties H.

In terms of security, a safe enclosure should ensure that enclosed data can
not affect the server. This requirement is modeled in definition 2 by a relation
on messages and is more abstract than the security requirement for an encryp-
tion scheme. Furthermore, we require a protocol that securely implements the
enclosure function, such that data can not reach unenclosed on the server. This
second requirement is more concrete and operational, but it is equally important
for the applicability of a safe enclosure:

Definition 2 (safe enclosure). We say that an enclosing scheme (E ,D,H) is
a safe enclosure with respect to a triple (UE , TE ,∼H), if the following hold:

– ∼H is a relation among messages that describes safety of enclosed messages:
for all messages E(m1) and E(m2), we have

E(m1) ∼H E(m2)

– UE and TE are algorithms that describe an enclosure protocol: for all message
m, we have

TE [UE [m]] = E(m)

– unconditional enclosure: for all algorithm U ′E and message m, we have

TE [U ′E [m]] = E(m′)

for some message m′.

Intuitively, the relation ∼H should be defined such that, even when a message
m1 carries malicious content, after being enclosed as E(m1) it is “indistinguish-
able” from any other (honest) message m2, being enclosed as E(m2). This notion
of indistinguishability may depend on the computation on enclosed messages that
is performed on the server, and that is why it may be parametrized by H.

Let us now explain the enclosing protocol (UE , TE), whose goal is to produce
E(m) from m. The role of UE is to specify any preprocessing of the message m
that can be performed in an untrusted environment. Even if the environment
where UE is executed is compromised, the point 3 of the definition ensures data
provided to the server will still be enclosed, although it may be compromised (i.e.
the message m′ may be different from m). On the other hand, the algorithm TE is
to be performed in a trusted environment on the server or on a proxy. Crucially,
the definition assumes that the TE can not be compromised in its interaction
with a malicious UE . This is a property that should be ensured by careful design
of UE , TE and of their interaction. We present a particular design in sections 5
and 6.

What security properties are not covered by safe enclosures. As discussed
above, it is out of our scope to ensure that data under the enclosure is not
compromised. Even more, it could be the case that some data from an honest
client may be compromised after it reaches the server. Indeed, enclosed honest

data E(mh) may be homomorphically combined with enclosed dishonest data
E(md), and there is no guarantee about the result E(mr). For instance, md may
trigger a malicious instruction to delete all records from an enclosed database. On
the other hand, a safe enclosure does guarantee that data on the server that is not
enclosed (or is enclosed with a different function E ′) can not be compromised
by malicious clients. In particular, malicious clients can not compromise the
software that runs the server.

4 Limitations of current methods

In the spectrum of current solutions for data security, there are two concepts
that one may relate to safe enclosures: verifiable computation and hardware-
based security. In this section we discuss why these notions alone are not enough
to implement safe enclosures. Mainly, the difficulty lies in the property of un-
conditional enclosure from definition 2: there should be a trusted algorithm TE
that ensures all its outputs are enclosed, no matter its execution environment.

4.1 The computation-verification dissociation

Verifiable computation, e.g. [6–9], allows a trusted party to check that a compu-
tation has been performed correctly. Then, given an enclosing scheme (E ,D,H),
we could:

– devise a verification protocol VE such that VE(m,π) = 1 if and only if π is a
valid proof of the fact that m represents an enclosed message, i.e. m = E(m′),
for some message m′.

– outsource the task to enclose incoming messages to a proxy, that is not
necessarily trusted.

– upon receiving messages from the proxy, verify that they are properly en-
closed, by relying on V.

However, in this scenario, the verification of the computation comes too late:
data from untrusted clients could compromize the proxy, which in turn could
compromize the server by providing a malicious proof. Formally, in order to
satisfy the requirement of unconditional enclosure, there should be a way to
confine the proof verification to a trusted execution environment that can not
be compromized. In fact, this brings us back to where we started.

4.2 The hardware-security association

Hardware-based security, e.g. [5, 10–13], could allow a form of unconditional
enclosure by relying on trusted hardware to perform secure computation, inde-
pendent of the software environment. The fact that secure processing is tightly
related to hardware opens two options:

– either the trusted hardware is specific for the computation that needs to be
performed, e.g. [13, 14]

– or else the hardware is generic, and it only allows to attest that some software
is running in a secure environment, e.g. [5, 10–12]

Specific hardware would work, but it is not realistic to assume a dedicated
processor for various enclosing functions. The second option - a mix of trusted
software and trusted hardware - seems more practical. However, the software-
hardware interaction, and the software itself, must be carefully designed to avoid
attacks. Our paper aims to minimize the amount of software that has to be
trusted in this context. Indeed, we would like to avoid the following trivial, but
dangerous, solution: simply take a program implementing an enclosing function
E and execute it on a trusted platform. This solution is no better than others,
because it still assumes that the program E can not be compromised after its
interaction with an untrusted input. That is why, in section 5 and 6, we aim for
a solution where the trusted software is minimalistic, and it does not process
any untrusted inputs.

5 A generic enclosure protocol

In this section we present a particular enclosure protocol that achieves uncondi-
tional enclosure, relying on a specific property of the enclosing function:

Definition 3 (homomorphic recomposability). We say that an enclosing
function E satisfies homomorphic recomposability if there is a set of messages
a1, . . . , ak and two algorithms Adec,Arec such that, for all message m, there are
{m1, . . . ,mn} ⊆ {a1, . . . , ak} such that

Adec(m) = (m1, . . . ,mn)
Arec(E(m1), . . . , E(mn)) = E(m)

For any m ∈ {a1, . . . , ak}, we let 〈m〉 = i if m = ai. The messages a1, . . . , ak
will also be called atomic messages. Thus, homomorphic recomposability states
that any message can be decomposed in atomic messages, relying on Adec, and
that its enclosure can be obtained by combining the enclosures of its atomic
components, relying on Arec.

Next, we give the specification of a program that can only output enclosed
atomic messages, and nothing else:

Definition 4 (enclosing transducer). We say that a program AE is an en-
closing transducer for messages a1, . . . , ak and enclosing function E if for all
i ∈ {1, . . . , k}, we have AE [i] = E(ai).

Furthermore, we say that AE is a safe enclosing transducer if for any input
i′, we have AE [i′] = E(m′), for some message m′.

Intuitively, given atomic messages a1, . . . , ak, an enclosing transducer simply
produces E(a) from 〈a〉. Additionaly, the safety requirement ensures that no mat-
ter what input is given to the transducer (possibly outside the set 〈a1〉, . . . , 〈ak〉),
its output is still an enclosed message.

Fig. 2. Safe enclosure based on homomorphic recomposability and atomic transducer

Enclosure protocol. According to definition 2, for an enclosure protocol we
have to provide an algorithm UE to be executed in an untrusted environment
and an algorithm TE to be executed in a trusted environment. As illustrated in
figure 2, the algorithm UE consists in decomposing the input message m into
a list of atomic messages (m1, . . . ,mn), according to Adec. For every mi, its
corresponding index 〈mi〉 is transmitted to TE for enclosure. The algorithm TE
consists in passing all message indices through the enclosing transducer and
recomposing its outputs in an enclosure E(m) of m, relying on the algorithm
Arec.

A safe enclosing transducer has to determine a way of securely receiving
〈a1〉, . . . , 〈an〉, of computing and of returning E(a1), . . . , E(ak). The fundamen-
tal observation here is that we have reduced the general problem of securely
computing E(m), for any message m, to the more specific problem of computing
E(a1), . . . , E(ak), for some fixed messages a1, . . . , ak. This reduction is formalized
in proposition 1:

Proposition 1. Let (E ,D,H) be an enclosure scheme such that E satisfies ho-
momorphic recomposability with respect to a1, . . . , ak,Adec,Arec. Let AE be an
enclosing transuducer and (UE , TE) be an enclosure protocol built from E and AE
as explained in figure 2. If:

– AE is a safe enclosing transducer and

– for all messages m1 and m2, we have E(m1) ∼H E(m2)

then (E ,D,H) is a safe enclosure scheme with respect to (UE , TE ,∼H).

Proof sketch: The first two points of the definition 2 follow immediately from the
definition 4 and from the assumptions of the proposition. We are left to show
unconditional enclosure. Assume by contradiction that there is U ′E and a message
m such that TE [U ′E [m]] 6= E(m′), for all message m′. From the properties of
Arec and from the design of TE , it follows then that there is an output m0 of AE
such that m0 6= E(m′), for all message m′. This contradicts the definition of a
safe enclosing transducer, and we can conclude. �

Now, to complete the specification of TE , we have to design a safe enclosing
transducer. We propose a design based on trusted computing in the next section.

6 A trusted enclosing transducer

In this section we consider the problem of designing a safe enclosing trans-
ducer, according to definition 4. In fact, we can frame the problem in a slightly
more general setting, without relation to an enclosing function: given a list of
messages E(a1), . . . , E(ak), we have to design a program that can only output
E(a1), . . . , E(ak), in any execution environment. In a normal execution, on input
i, the program has to output E(ai).

Private channel abstraction. We assume that the ability to output messages on
behalf of the system on a channel c is restricted to agents that have knowledge
of some private token tc. In a Dolev-Yao model (e.g. [15]), this amounts to a
private channel, whose implementation we assume to be secure [16].

Fig. 3. Enclosing transducer based on trusted computing

Transducer design. We assume given programs E1, . . . ,Ek such that, for all 1 ≤
i ≤ k, Ei outputs E(ai) without taking any input from the environment. For
instance, the value Ei(a) may be somehow hardcoded in the source code of the
program Ei. The design of the enclosing transducer is illustrated in figure 3 and
can be summarized as follows:

1. For every input i, the source code for the corresponding program Ei is passed
to a trusted CPU. The process of transmitting Ei to the CPU does not have
to be trusted and can be assumed to be in the control of the intruder. In
particular, the source code claimed to be that of Ei may be compromised.
Let us denote the actual program that is received by the CPU at this step

by E′i, which is equal to Ei in a honest execution, and may be different from
Ei in a dishonest execution.

2. The value of the private token tc is sealed into the TPM against the measure-
ment of each Ei, i.e. the values S(tc, h(E1)), . . . ,S(tc, h(Ek)) are stored on the
TPM. Crucially, these measurements correspond to the correct, uncorrupted
source code of the programs E1, . . . ,Ek.

3. The trusted CPU computes the measurement h(E′i) of the program E′i that
is supplied by the untrusted software environment at the step 1, and com-
municates it to the TPM.

4. E′i is executed by the CPU in a trusted environment and, if the measurement
provided by the CPU attests that Ei has not been compromised, i.e. E′i is
equal to Ei, the TPM can unseal the token tc for Ei, that can then forward
its output on c.

It is important to note that the programs E1, . . . ,Ek do not accept any input
from their execution environment, except the value tc that is received from the
TPM on a trusted channel.

Let us compare this design with the simple option of executing an enclosure
algorithm E in an environment protected by trusted hardware. The problem
with the latter version is that we can not trust the input of the enclosure al-
gorithm, and there is no way to anticipate it beforehand because the message
space is unbounded. Thus, a malicious input combined with an implementation
bug in the algorithm could lead to outputs that are not enclosed, breaking the
unconditional enclosure requirement of definition 2. On the other hand, the al-
gorithms E1, . . . ,Em are fixed and predetermined beforehand, and they accept
no inputs from outside. We can measure the “enclosure” program that is sup-
plied as input to the trusted execution environment and we can be sure that
only uncompromised programs have access to c. Indeed, we have the following
proposition:

Proposition 2. Assume that the following hold for the process AE described in
figure 3:

1. the TPM and the CPU are honest
2. the programs E1, . . . ,Ek correctly compute E(a1), . . . , E(ak) and output the

result on c. Furthermore, E(ai) is the only output of Ei.
3. the only way to output data from AE to the execution environment is to have

access to the token tc
4. the token tc is only used as described in the specification of AE

Then, AE is a safe enclosing transducer for a1, . . . , ak and E.

Proof sketch: The fact that AE is an enclosing transducer follows immediately
from its definition. In addition, we also have to show that it is a safe one. As-
sume by contradiction that AE is not safe, i.e. there is a message i′ such that
AE [i′] 6= E(m′), for all message m′. From asumption 3, it follows that AE [i′] has
been output on the channel c by a party who has access to tc. From the assump-
tions 1 and 4, it follows that the only processes that obtain tc are E1, . . . ,Ek.

Furthermore, the second part of assumption 2 ensures that the token tc is kept se-
cret by E1, . . . ,Ek. This means that the only way we can have ∀m′.AE [i′] 6= E(m′)
is an error in one of E1, . . . ,Ek. This is again ruled out by assumption 2, and we
obtain a contradiction. �

7 Safe enclosures: an instance

In this section we instantiate our framework by providing an enclosure scheme
(E ,D,H), based on homomorphic encryption, that is safe with respect to a triple
(UE , TE ,∼H), where ∼H is based on the IND-CPA security of encryption and
UE , TE are based on the generic constructions from sections 5 and 6.

Let (K, E0,D0) be a public-key encryption scheme and let us fix a key (pk , sk) ∈
K and a random number r. Now, for all message m, we define:

E(m) = E0(m, pk , r)
D(m) = D0(m, sk)

Furthermore, if the scheme is homomorphic with respect to addition [17], mul-
tiplication [18, 19] or both [1], we gather in the set H the pairs of functions that
implement the homomorphism. Concretely, in the case of fully-homomorphic en-
cryption [1], we let H = {(?E , ?), (+E ,+)}, where ? and + are multiplication and
addition, while ?E and +E are the functions that implement multiplication and
addition over encrypted data. In this setting, it is easy to see that (E ,D,H) is an
enclosure scheme according to definition 1. Next, we provide the elements that
make this scheme a safe enclosure according to definition 2.

7.1 Safety relation ∼H

Let us recall the IND-CPA (indistinguishability under chosen plaintext attacks)
notion of security:

Definition 5 (IND-CPA [20, 21]). An encryption scheme (K, E0,D0) is IND-
CPA secure if for any (pk , sk) ∈ K, any two messages m1,m2, and any polyno-
mial time algorithm A, the probability of the event A[m1,m2, E0(mi, pk)] = i is
negligibly close to 1

2 .

When interpreted as a definition of data privacy, IND-CPA says that an
adversary can not deduce any information about the plaintext given only the
ciphertext and the public key. Can we reinterpret IND-CPA as a definition of
server protection, by simply swapping the honest party and the adversary? In-
deed, the definition says that no matter how an untrusted client chooses the
plaintext, it does not make any difference to the server who only has access to
encrypted data, no matter what polynomial computation is performed by the
server. In particular, a plaintext that represents malware is indistinguishable
from an innocent plaintext, when it is under encryption.

Therefore, we consider the following safety relation ∼H for the enclosure
scheme of this section: for any two messages m1,m2, we let m1 ∼H m2 if

and only if for any polynomial time algorithm A, the probability of the event
A[m1,m2, E(mi)] = i is negligibly close to 1

2 .

7.2 Enclosure protocol (UE ,TE)

We rely on the generic enclosure protocol defined in section 5 and on the trusted
enclosing transducer defined in section 6. For that, we have to show that the
enclosure scheme satisfies homomorphic recomposability according to definition
3. In the role of atomic messages a1, . . . , ak we consider the bits 0 and 1 (alter-
natively, we could also consider the digits {0, 1, . . . , 9}).

Now, the algorithm Adec consists in decomposing a message m into his bi-
nary representation (m1, . . . ,mn). Conversely, given (E(m1), . . . , E(mn)), the al-
gorithm Arec consists in computing E(m1) ?E E(2n−1) +E . . .+E E(mn) ?E E(20).
Relying on the homomorphic properties of the underlying encryption scheme,
we deduce Arec(E(m1), . . . , E(mn)) = E(m1 ? 2n−1 + . . .+mn ? 20) = E(m).

Then, as explained in section 5, the protocol for UE consists in applying
Adec and sending the index 〈a〉 ∈ {0, 1} of atomic messages a ∈ {0, 1} to TE .
It happens that 〈a〉 = a in our case. In turn, TE consists in instantiating the
transducerAE from section 6 with inputs {0, 1} and outputs E(0), E(1), collecting
the outputs from the transducer and recomposing E(m) relying on Arec.

The following corollary is a direct consequence of propositions 1 and 2 and
of the fact that the encryption scheme underlying E is IND-CPA:

Corollary 1. (E ,D,H) is a safe enclosure scheme with respect to (UE , TE ,∼H).

8 Open problems and future work

Security definitions. More research should be devoted towards security defini-
tions that genuinely capture our adversarial model. We have instantiated the
relation ∼H from definition 2 with IND-CPA, for lack of better models at the
moment. One way in which the security can be relaxed is to notice that a de-
terministic encryption scheme would be sufficient to implement a safe enclosure.
Another thing that should be taken into account is the fact that the relation ∼H
should really depend on H.

Enclosing schemes. Similarly, the enclosure function that we discuss in section 7
is only a first step. For instance, fully homomorphic encryption schemes could be
revisited in this context and their efficiency could be improved in light of relaxed
security notions. Homomorphic recomposability and enclosing transducers as
defined in section 5 also deserve further research.

Abstraction refinement. The enclosing transducer that we propose in section 6
relies on a secure private channel abstraction. Obviously, the problem of a secure
private channel is long standing in computer security, but our application context
should open the way for new questions and solutions. Furthermore, there needs

to be more detail about how our framework would be actually implemented in
practice. For instance, we assume that the outputs of the enclosing protocol can
reach the server without being compromised. This protocol may be implemented
on the server, on a proxy or on the client. Depending on where it lies, other
questions can be asked. In any case, there needs to be a mechanism that separates
the enclosing process from the server process, maybe based on a virtual machine
monitor [22, 23].

Formal models and verification. Propositions 1 and 2 are proved at a rather high
level of abstraction. We need to develop formal models that allow realistic and
precise specifications of protocols and properties of interest. Ideally, we should be
able to adapt standard methods and tools of protocol analysis to our new context,
and rely on the significant progress in that area for automated verification [24].

References

1. Craig Gentry. Computing arbitrary functions of encrypted data. Communications
of the ACM, 53(3):97–105, 2010.

2. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
STOC, 2012.

3. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Henri Gilbert, editor, EUROCRYPT,
volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

4. Trusted Computing Group. TCG Architecture Overview, Specification revision
1.4, 2007. www.trustedcomputinggroup.org.

5. Trusted Computing Group. TPM main specification, 2011.
www.trustedcomputinggroup.org.

6. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

7. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new charac-
terization of np. J. ACM, 45(1):70–122, January 1998.

8. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Cynthia Dwork, editor, STOC, pages
113–122. ACM, 2008.

9. Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy,
2013.

10. Victor Costan, Luis Sarmenta, Marten Van Dijk, and Srinivas Devadas. The trusted
execution module: Commodity general-purpose trusted computing. Smart Card
Research and Advanced Applications, pages 133–148, 2008.

11. Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design
and implementation of a TCG-based integrity measurement architecture. In Pro-
ceedings of the 13th conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 16–16, Berkeley, CA, USA, 2004. USENIX Association.

12. Joan G Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert Van Doorn,
and Sean W Smith. Building the IBM 4758 secure coprocessor. Computer,
34(10):57–66, 2001.

13. Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei Skorobogatov. Crypto-
graphic processors - a survey. Proceedings of the IEEE, 94(2):357–369, 2006.

14. Ciaran Mclvor, Maire McLoone, and John V. McCanny. Fast montgomery modular
multiplication and RSA cryptographic processor architectures. In Thirty-Seventh
Asilomar Conference on Signals, Systems and Computers, volume 1, pages 379–
384. IEEE, 2003.

15. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In Chris Hankin and Dave Schmidt, editors, POPL, pages 104–115.
ACM, 2001.

16. Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions. Information and Computation, 174(1):37–83, 2002.

17. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

18. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO, volume
196 of Lecture Notes in Computer Science, pages 10–18. Springer, 1984.

19. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

20. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

21. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). J. Cryptology, 20(3):395, 2007.

22. Robert P Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–
45, 1974.

23. Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current technol-
ogy and future trends. Computer, 38(5):39–47, 2005.

24. Mart́ın Abadi, Bruno Blanchet, and Hubert Comon-Lundh. Models and proofs of
protocol security: A progress report. In Ahmed Bouajjani and Oded Maler, editors,
CAV, volume 5643 of Lecture Notes in Computer Science, pages 35–49. Springer,
2009.

