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Università di Salerno, 84084 Fisciano (SA), Italy.
Email: [robdep,ads]@dia.unisa.it.

December 4, 2013

Abstract

Visual cryptography is a special type of secret sharing. Two models of visual cryptography
have been independently studied: deterministic visual cryptography, introduced by Naor and
Shamir, and random grid visual cryptography, introduced by Kafri and Keren. In the context of
the deterministic model, Yang has introduced a third model, the probabilistic visual cryptography
model. The connection between the probabilistic and the deterministic models have been explored.

In this paper we show that there is a strict relation between the random grid model and the
deterministic model. More specifically we show that to any random grid scheme corresponds a
deterministic scheme and viceversa. This allows us to use results known in a model also in the
other model. In fact, the random grid model is equivalent to the probabilistic model with no
pixel expansion. Exploiting the (many) results known in the deterministic model we are able to
improve several schemes and to provide many upper bounds for the random grid model. Exploiting
some results known for the random grid model, we are also able to provide new schemes for the
deterministic model. A side effect of this paper is that future new results for any one of the two
models (random grid and deterministic) should not ignore, and in fact be compared to, the results
known in the other model.

1 Introduction

Visual cryptography is a special type of secret sharing in which the secret is an image and the
shares are random-looking images printed on transparencies. The captivating peculiarity of this type
of secret sharing is that the reconstruction of the secret is performed without any computational
machinery: it is enough to superpose the shares (transparencies) in order to reconstruct the secret.
Visual cryptography has been introduced by Naor and Shamir [26]. Kafri and Keren [21] have
introduced a similar technique, called random grid encryption.

Roughly speaking, deterministic visual cryptography works as follows. A secret image, known by
a trusted party called the dealer, has to be shared among a set of participants in such a way that
some subsets of participants, called qualified sets are able to visually recover the images while others,
called forbidden sets, do not have any information about the secret image. In order to share the
image, the dealer creates a share for each participant. In a share each single pixel of the secret image
is represented with a set of m, m ≥ 2, pixels. Parameter m is the pixel expansion: the recovered
secret image will be m times bigger than the original secret image. Limiting our discussion to black
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and white images, the shares are such that when we superpose shares of a qualified set of participants,
among the m pixels that represent a secret pixels s, we will find at most ` black pixels if s is white
and at least h black pixels if s is black, with 0 ≤ ` < h ≤ m. That is, in the recovered secret image,
white secret pixels are reconstructed with at most ` black pixels out of m pixels, while black secret
pixels are reconstructed with at least h black pixels. This difference makes up the contrast, which is
a measure of the quality of the reconstructed image.

With random grids, instead, there is no pixel expansion, that is to say, if we want still to use
the parameter m, that we have m = 1. Clearly, with no pixel expansion, a secret pixel corresponds
to one pixel in the reconstructed image, and obviously we will consider it white if the pixel is white
and black if it is black. Using the thresholds ` and h, we have that for random grids we must use
` = 0 and h = 1. It is not surprising that we cannot achieve such a reconstruction in a deterministic
way. Indeed reconstruction in visual sharing based on random grids is guaranteed only with some
probability: the average light transmission (white pixels) in the area of the reconstructed image that
corresponds to the white area of the secret image is bigger than the average light transmission in
the area of the reconstructed image that corresponds to the black area of the secret image. Such a
difference makes up the contrast.

We will talk about deterministic visual cryptography to refer to the model introduced by Naor
and Shamir and about random grid visual cryptography to refer to the model introduced by Kafri
and Keren.

Deterministic visual cryptography has been widely studied. Many papers have explored various
aspects: minimal pixel expansion (e.g., [5, 6, 18]), optimal contrast (e.g., [23, 19, 9, 7]), general
access structures (e.g., [2, 25]), perfect reconstruction of black pixels (e.g., [8, 29, 6]) color images
(e.g. [1, 13, 14, 17, 20, 22, 30, 35]), and other issues (e.g. [4, 33, 34]). We remark that the above
citations are not comprehensive. We refer the interested reader to [16] for more pointers to the
literature.

The probabilistic visual cryptography model with no pixel expansion has been introduced by
Yang [32]. This model is very similar to the random grid model. In fact, in this paper, we prove
that they are equivalent. The probabilistic model is strictly related to the deterministic model and
such a relation has been explored in [15]: the probabilistic model is generalized to consider also pixel
expansion and it is shown that the probabilistic factor β of a scheme, which is a measure of the
quality of the reconstructed image and thus is the counterpart of the contrast, can be traded with
the pixel expansion. That is, it is possible to use the probabilistic model using any pixel expansion
m. For m = 1 we have the model of Yang, for m big enough we have the deterministic model of
Naor and Shamir.

In recent years many researchers have focused their attention on the random grid model. Kafri
and Keren [21] provided (2, 2)-threshold schemes for black and white secret images and suggested a
generalization of the method to gray-level images. Shyu provided a generalization to color images [27]
and a generalization to (n, n)-threshold schemes [28]. Chen and Tsao [11] provided (2, n)-threshold
schemes and again (n, n)-threshold schemes [11] and also (k, n)-threshold schemes [12]. Chen and
Lin [10] provided improved (2, n)-threshold schemes. Wu and Sun study random grid schemes with
the xor operation for the decryption. In [31] “incremental” schemes are provided.

In this paper we show that there is a close relation between the random grid model and the
deterministic model. More specifically we show that to any random grid scheme corresponds a
deterministic scheme and viceversa. This allows us to use results known in a model also in the other
model. Exploiting the (many) results known in the deterministic model we are able to improve
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New results for the random grid model

(2, n) (3, n) (k, n) (n− 1, n) (n, n)

Bounds γrg ≤ dn/2ebn/2cn(n−1) γrg ≤ f(k, n) γrg ≤ 1
2n−1

Schemes - γrg = f ′(n) ≥ 1
(n−1)2 - γrg = 1

(n−2)2n−2+1
-

New results for the deterministic model

(2, n) General Access Structures

Bounds - -
Schemes see Construction 5.2 see Section 6

Table 1: Summary of implications. Function f is defined in Theorem 5.9 and function f ′ is defined in
Theorem 5.4 Section 6 provides a construction of random grid schemes for general access structures.

several schemes and to provide many upper bounds for the random grid model. Exploiting some
results known for the random grid model, we are also able to provide new schemes for the deterministic
model. A side effect of this paper is that future new results for any one of the two models (random
grid and deterministic) should not ignore, and in fact be compared to, the results known in the other
model.

We remark that the main result could have been stated also differently by proving that the
random grid model is equivalent to the probabilistic model. However we preferred to make explicit the
connection between the random grid model and the deterministic model, without “passing through”
the probabilistic model, because we are interested in using results known for the deterministic model
in the random grid model (and viceversa). Moreover passing through the probabilistic model would
have caused also added difficulties in the formalization of the results.

Summary of results. The main result of this paper is the identification of a strong relation
between random grid visual cryptography and deterministic visual cryptography. Such a strong
relation could also be seen as an equivalence between the random grid model and the probabilistic
model for which the strong relation with the deterministic model has been already studied. The main
result has many implications in the sense that it allows to use results known for the deterministic
model in the random grid model and viceversa. Table 1 summarizes the implications that we have
analyzed in this paper.

Road map of the paper. In Section 2 we describe the formal model, providing the necessary defi-
nitions. Then we recall some relevant known results in Section 3 both for the random grid model and
for the deterministic model. In Section 4 we provide the theorems that show the connection between
the random grid model and the deterministic model. Sections 5 and 6 provide some consequences of
the relationship established by the main results. Finally, in Section 7 we provide concluding remarks
and directions for future work.
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2 The Model

The secret image consists of black and white1 pixels. We will use the symbols • and ◦ to denote,
respectively, black and white pixels. In order to share the secret image amongst a set of participants
P = {1, 2, . . . , n}, the owner of the secret, called the dealer, provides each of the n participants with
a share, which is an image printed on a transparency.

An important parameter of a scheme is the pixel expansion m: each share is m times the size of
the secret image, that is, each pixel of the secret image is expanded into m pixels. The deterministic
model requires m ≥ 2. For the random grid model there is no pixel expansion, that is, m = 1. For
the probabilistic model we have that m ≥ 1, allowing both schemes with no pixel expansion (m = 1)
and schemes with pixel expansion (m ≥ 2).

An access structure (Q,F) is a specification of the qualified subsets of participants and of the
forbidden subsets of participants. Qualified sets of participants have to be able to visually recover
the secret image by superposing their shares. Forbidden sets of participants must not have any
information about the secret image from the shares. In many cases, the forbidden sets of participants
are those with strictly less than k participants, while the qualified sets are those with at least k
participants. In such cases the access structure is a (k, n)-threshold access structure. The case of
(k, n)-threshold schemes is the most widely studied one.

To reconstruct the secret image, participants superpose their shares, carefully aligning them.
We will denote with sup(P ) the superposition of the shares of the participants in P ⊆ P. In the
reconstructed image a pixel is white if and only if all the superposed pixels aligned to that pixel are
white and black otherwise (that’s an or operation if we represent white as 0 and black as 1). Since
each pixel is expanded into m ≥ 1 pixels, we have to infer the color of the secret pixel by the colors
of the corresponding m pixels in the reconstruction.

For m ≥ 2, the reconstruction relies on two thresholds, ` and h, with 0 ≤ ` < h ≤ m, such that
when the secret pixel is white, we will have at most ` black pixels amongst the corresponding m
pixels in the reconstructed image, and when the secret pixel is black, we will have at least h black
pixels amongst the corresponding m pixels in the reconstructed image. For m = 1 the reconstruction
relies on the the average light transmission, which we will define shortly, over the white and the
black area of the secret image. The average light transmission is closely related to the above two
thresholds. The case of schemes with no expansion is a special case for which m = 1. To use the
thresholds ` and h also in this case, we must set ` = 0 and h = 1.

In deterministic schemes the reconstruction must be always correct. In probabilistic and random
grid schemes the reconstruction of some pixels can be wrong as long as, on average, there are not
too many pixels erroneously reconstructed.

In all the cases (with and without pixel expansion), the quality of the reconstructed image depends
on the scheme and is based on the fact that, on average, the areas of the reconstructed image that
correspond to white areas in the secret image will contain less black pixels than those corresponding
to the black areas of the secret image, making up the contrast.

For the deterministic and the probabilistic models the contrast is a function of both the thresholds
` and h and of the pixel expansion m. For the random grid model the contrast is defined by means
of the average light transmissions which is the amount of light that a given region let pass through.
More formally, given a region G of an image I, that is, a subset of the pixels of the image I, the

1Notice that, for the shares, white should really be interpreted as transparent. So we use white as a synonymous
for transparent.
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average light transmission λ(G) is

λ(G) =
#white-pixels(G)

#pixels(G)

that is, the number of pixels in G that are white, divided by the total number of pixels in G. We
remark that, in order for this measure to be meaningful, the distribution of the white pixels in G
(and consequently also the distribution of the black pixels) has to be random. We will implicitely
make this assumption when using the average light transmission.

Let I be a secret image and let WI and BI denote, respectively, the entire white area and the
entire black area of I. Given another image R, with the same dimension of I, the notation WI(R)
(resp. BI(R)) denotes the area of R that corresponds to the white (resp. black) area of I, where the
correspondence is given by the position of the pixels: pixel in position (i, j) of I corresponds to pixel
in position (i, j) of R, for all i and j.

The random grid model evaluates schemes by assessing λ(WI(R)) and λ(BI(R)) where R is
the reconstructed image. Clearly, the use of the average light transmission is not restricted to
reconstructions obtained with a random grid scheme but can be used also to evaluate schemes with
pixel expansion. In fact the thresholds ` and h are just a different way of evaluating the average
light transmission.

Rational probabilities. The construction of visual cryptography schemes involves the use of
random choices. We assume that the random values used are rational numbers. This is not a big
restriction since if a random choice has to be made with an irrational probability pi, we can use a
rational approximation pr, as close as we wish to pi.

2.1 The random grid model

In the random grid model we have m = 1, and thus a share is an image having the same dimensions of
the secret image I. To ease the notation we will use λ◦(P ) (resp. λ•(P )) to denote λ(WI(sup(P )))
(resp. λ(BI(sup(P )))), for a given set of participants P . Next we provide a formal definition of
random grid schemes.

Definition 2.1 A random grid scheme for a secret image I, a set of participants P = {1, 2, . . . n},
and an access structure (Q,F), defines n shares, one for each participant, satisfying the following
conditions.

1. (Contrast property) For any qualified set Q ∈ Q of participants, we have that λ◦(R) > λ•(R),
where R = sup(Q).

2. (Security property) For any forbidden set F ∈ F of participants, we have that λ◦(R) = λ•(R),
where R = sup(F ).

The first property is the contrast condition, which guarantees that the secret image will be visible
when superposing the shares of a qualified set of participants. The second property is the security
property: from a single share or from the superposition of (or any other computation on) the shares
of a forbidden set of participants, we cannot infer any information about the secret image. Notice
that the security property relies also on the implicit assumption that black and white pixels are
uniformly distributed and thus the condition λ◦(R) = λ•(R) is sufficient to say that the (secret)
white area is indistinguishable from the (secret) black area.
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Average light transmission parameters. Notice that the definition allows each reconstruction,
which depends on the qualified set of participants Q that is used, to have its own contrast. In many
schemes, it happens that for any qualified set of participants Q we have that λ◦(sup(Q)) ≥ λ◦ =
minQ∈Q{λ◦(sup(Q))} and λ•(sup(Q)) ≤ λ• = maxQ∈Q{λ•(sup(Q))}. In such cases, we will call the
thresholds λ◦ and λ•, the average light transmission parameters of the scheme.

Uniform and generalized random grids. In [21] and in the formalization given in [27] it is
also required that each share be a random grid where each pixel is chosen at random between white
and black with uniform probability (1/2 for white and 1/2 for black). However this property is not
necessary and only poses unnecessary limitations on the constructions of the schemes. What we
really need, is that a single share does not provide any information on the secret and clearly this is a
consequence of the fact that the share is a (uniform) random grid. However the fact that a single share
does not give any information on the secret is also guaranteed by the security property2; hence there
is no reason to require that a random grid be uniform. For example, a share might be the random
distribution of white and black pixels where white appears with probability 2/3 and black with
probability 1/3. To avoid confusion we will talk about uniform random grids when the distribution
of white and black pixels is uniform and of generalized random grids when the distribution is not
uniform. Some papers that deal with random grids, indeed, use generalized random grids, e.g. [12].

Contrast. The goodness of the reconstruction depends on the difference of the average light trans-
mission between the white and the black areas of the secret image. Papers that have considered
random grid schemes have used the following definition of contrast. Given a random grid scheme S,
with average light transmission parameters λ◦ and λ•, the contrast of S is:

γrg(S) =
λ◦ − λ•
1 + λ•

. (1)

If the scheme does not have the average light transmission parameters because the contrast
depends on the specific qualified set Q ∈ Q used for reconstruction then the definition of contrast
can be generalized as follows:

γrg(S) = min
Q∈Q

γrg(Q) = min
Q∈Q

λ◦(Q)− λ•(Q)

1 + λ•(Q)
. (2)

2.2 The deterministic model

In this section we provide the formal definition of a deterministic visual cryptography scheme. To
achieve a deterministic reconstruction we must expand the secret image: in the shares (and thus
in the reconstructed image) each pixel of the secret image will be represented as a collection of m
pixels, m ≥ 2. Parameter m is called the pixel expansion of the scheme. Deterministic schemes are
described by means of two multisets of n ×m distribution matrices, one for black secret pixels and
one for white secret pixels. Each single element of the distribution matrices represents a pixel in a
share. Each row in a distribution matrix represents a particular share, i.e., the m subpixels of the
share. Each matrix represents a set of n shares, one per participant (row i represents the shares for
participant i). Given a matrix M of n rows and a set of participants P ⊆ P, we will denote by M |P
the restriction of M to the rows corresponding to participants in P . In the following we will denote
with w•(X) the number of black pixels in X, where X is an array of pixels.

2A singleton cannot be qualified. Indeed if a singleton Q = {i} is qualified, then participant i knows the secret and
it does not make sense that i “shares” the secret with other participants.
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Definition 2.2 A deterministic scheme for a secret image I, a set of participants P = {1, 2, . . . n},
and an access structure (Q,F), defines n shares, one for each participant, by means of two collections
C◦ and C• of n×m distribution matrices satisfying the following conditions.

1. (Contrast property) For any qualified set Q ∈ Q, there exists two integers `(Q) and h(Q), with
0 ≤ `(Q) < h(Q) ≤ m, such that: for any M ∈ C◦, we have that w•(sup(M |Q)) ≤ `(Q) and
for any M ∈ C•, we have that w•(sup(M |Q)) ≥ h(Q).

2. (Security property) For any forbidden set F ∈ F , the two collections of |F | × m matrices,
D◦ = {M |F, for each M ∈ C◦} and D• = {M |F, for each M ∈ C•}, are indistinguishable in the
sense that they contain the same matrices with the same frequencies.

Contrast parameters. Notice that the definition allows each reconstruction, which depends on
the qualified set of participants Q that is used, to have its own contrast. For many schemes, it
happens that there exists two thresholds ` and h, 0 ≤ ` < h ≤ m, such that `(Q) ≤ ` and h ≤ h(Q)
for any qualified set of participants. If more than one value is possible for ` and h we will choose the
smallest possible value for ` and the largest possible value for h. When the thresholds ` and h exist,
we will call them the contrast parameters of the scheme.

Cardinality parameters. In some cases, we will be interested in the cardinality of the distribution
collections C◦ and C•. Hence we define the cardinality parameters of a scheme as m◦ = |C◦| and
m• = |C•|.

Base matrices. In many schemes the collection C◦ (resp. C•) consists of all the matrices that can
be obtained by permuting all the columns of a matrix B◦ (resp. B•). For such schemes, the matrices
B◦ and B• are called the base matrices of the scheme.

Columns multiplicities. In some cases, it is possible to describe the base matrices in a very
convenient way by means of column multiplicities. This is possible when a base matrix that contains
a specific column, consisting of i black pixels and n− i white pixels, with a multiplicity µ, contains
also all the other possible columns that have exactly i black pixels and n − i white pixels, each of
them with the same multiplicity µ. When the above holds, the base matrices can be described simply
by listing the multiplicities µi of the columns that have exactly i black pixels. The white base matrix
will be specified by µ◦0, µ

◦
1, . . . , µ

◦
n. The black base matrix will be specified by µ•0, µ

•
1, . . . , µ

•
n.

Contrast. Various definitions of the contrast have been used for the deterministic model. In the
original model by Naor and Shamir [26] the contrast of a scheme S with contrast parameters ` and
h and pixel expansion m is defined as:

γns(S) =
h− `
m

(3)

while Eisen and Stinson [18] have proposed

γes(S) =
h− `

2m− h
. (4)
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Yet another different definition of contrast has been given in [30]. We refer the reader to [18]
for a discussion about the definition of contrast. Notice that the definition of the thresholds ` and
h that we use in this paper is different from that used in [18, 30]. If we denote with ˆ̀ and ĥ the
thresholds of [30, 18] we have that ˆ̀= m− h and ĥ = m− `. Thus the definition of contrast of [18],

namely ĥ−l̂
m+l̂

, becomes (4).

If the scheme does not have the contrast parameters, because the contrast depends on the specific
qualified set used for reconstruction, then the definition of contrast γ(S) (both for γ = γns and for
γ = γes) can be generalized by letting:

γ(S) = min
Q∈Q

γ(Q). (5)

2.3 The probabilistic model

The probabilistic model allows both schemes having no pixel expansion and schemes with pixel expan-
sion. In a probabilistic scheme the correct reconstruction is guaranteed only with some probability.
We refer the reader to [32, 15] for a formal definition. Here we recall only some basic notions.

Let pw|w(Q), where Q is a qualified set of participants, be the probability of correctly recon-
structing a white (secret) pixel when superposing the shares of Q, and pb|b(Q) be the probability
of correctly reconstructing a black (secret) pixel. Clearly, we have pb|w(Q) = 1 − pw|w(Q) and
pw|b(Q) = 1 − pb|b(Q). A probabilistic scheme is called β-probabilistic if for any qualified set Q it
holds that

pb|b(Q)− pb|w(Q) ≥ β

and
pw|w(Q)− pw|b(Q) ≥ β.

Parameter β is a measure of the quality of the scheme and, roughly speaking, is the counterpart of
the contrast.

Probabilistic schemes are important for the result of this paper. Indeed the main results presented
in Section 4 could be also restated in terms of probabilistic schemes and roughly speaking they would
state that a random grid scheme is equivalent to a probabilistic scheme with no pixel expansion.
However since using a formal treatment of probabilistic schemes would introduce a lot of unnecessary
details we directly relate random grid schemes to deterministic schemes. Moreover the formalism
used for the probabilistic model would cause also some difficulties with the handling of the contrast
parameters. Finally the choice of not using the probabilistic model is also motivated by the fact that,
since the connections established in this paper allow to use results known for a given model in the
other, our main goal is to use bounds and schemes for the random grid model in the deterministic
model and viceversa, because for these two models many results are known.

2.4 On the use of the various definitions of contrast

Although the contrast for random grid schemes is defined as a function of the average light trans-
mission and the contrast of deterministic schemes is defined as a function of the thresholds ` and
h, it is not difficult to see that there is a strict correlation between the average light transmissions
parameters and the contrast parameters. In Section 4 the exact relation will be assessed. Here
we only point out that one can use γns and γes also in the random grid model and γrg also in the
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deterministic model. We will see in Section 4, that, in fact, γrg = γes. Eisen and Stinson [18] provide
a discussion about the definition of contrast.

2.5 Shares description

In order to visually share a secret the dealer constructs the shares starting from the secret image and
making random choices. In other words, the dealer uses a randomized algorithm A(I) that takes as
input the secret image I, and gives in output n shares, where n is the number of participants.

The algorithm used to construct shares for schemes in the deterministic and probabilistic models,
has a specific form: it uses two multisets of n × m distribution matrices C• and C◦, one for black
secret pixels and one for white secret pixels. Each matrix is a particular way of distributing the
shares and given a matrix, each row represents one share. The algorithm A for the generation of the
shares simply selects uniformly at random a distribution matrix from the multiset.

The shares construction algorithms for random grid schemes do not have a specific form and are
usually described with pseudocode.

Clearly, the method used to describe the algorithm A is an aesthetic matter. Just to make formal
this statement, we state the following facts.

Fact 2.3 Any scheme given by means of two collections of distribution matrices, can be described as
pseudocode.

Proof: Trivial (The pseudocode is: if the secret pixel is black then select uniformly at random a
matrix from C• while if the secret pixel is white then select uniformly at random a matrix from C◦.)

It might seem that using pseudocode for the description of A is more general. But in fact using
distribution matrices one can describe any algorithm for the generation of the shares, as stated in
the following fact.

Fact 2.4 Any scheme given by means of an algorithm specified as pseudocode can be described by
means of two collections of distribution matrices.

Proof: Let A be the algorithm that constructs the shares. For each pixel s of the secret image,
algorithm A has to produce n shares as a function of the color of pixel s. The output of algorithm
A, beside depending on the secret pixel s depends also on random choices. The output of A can
be represented as a n×m matrix with entries in {◦, •}. Let v1, v2, . . . , vz be all possible outputs of
A(◦) and let pi, 1 ≤ i ≤ z, be the probability with which matrix vi is given as output by A(◦). Let
w be the smallest integer such that w · p1, . . . , w · pz are all integers. Notice that w exists since all
the probabilities are rational numbers. Let C◦ be the multiset of matrices where vi appears w · pi
times. In a similar way define C• using A(•). The scheme described by C◦ and C• is the same scheme
constructed by algorithm A.

2.6 Examples

In this section we provide some examples. We consider the random grid schemes of Kafri and Keren:
there are 3 random grid (2, 2)-threshold schemes defined in [21]. Let us call these 3 schemes RG1,
RG2 and RG3.
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Scheme RG1. Scheme RG1 constructs the first share as a uniform random grid and the second
share by assigning to pixel (i, j) the same color of the pixel (i, j) in the first share, if the secret pixel
(i, j) is white, and the “opposite” color if the secret pixel (i, j) is black. The representation with
distribution matrices of RG1, that is, the equivalent scheme in the probabilistic model, is described
by the following collections:

C◦ =

{[
◦
◦

]
,

[
•
•

]}

C• =

{[
◦
•

]
,

[
•
◦

]}

Secret image Share 1 Share 2 Superposition of

(random grid) (random grid) Shares 1 and 2

170x170 px 170x170 px 170x170 px 170x170 px

Figure 1: Example of shares and superposition for scheme RG1.

Figure 1 shows the shares, and the superposition of the two shares that reveals the secret image.
The shares are uniform random grids, hence the average light transmission over each single share is
1/2. In the reconstructed image R, the area that corresponds to black pixels of the secret image I,
that is BI(R), is reconstructed as a completely black area. Thus λ•(RG1) = 0. Hence, with RG1,
black pixels are reconstructed in a perfect way. Instead WI(R) consists of white and black pixels
uniformly distributed over the region WI(R), and thus λ◦(RG1) = 1/2. Hence, γrg = 0.5. If we see
the scheme as a probabilistic scheme with m = 1, we have that pw|w = 1/2 and pb|b = 1 and thus
β = 0.5.

Scheme RG2. Scheme RG2 generates again the first share as a uniform random grid. The second
share is equal to the first when the secret pixel is white but if the secret pixel is black then also the
second share is chosen at random. Scheme RG2 is described by the following collections:

C◦ =

{[
◦
◦

]
,

[
•
•

]}

C• =

{[
◦
◦

]
,

[
◦
•

]
,

[
•
◦

] [
•
•

]}
.

Figure 2 shows the shares and the superposition. The shares are again uniform random grids.
However this time we have λ◦(RG2) = 0.5 and λ•(RG2) = 0.25 and thus the contrast is γrg =
(0.5 − 0.25)/1.25 = 0.2. The white area WI(R) is reconstructed as in the previous example, but
the black area BI(R) is not reconstructed perfectly but with, in average, 3 black pixels out of four
pixels. If we see the scheme as a probabilistic scheme with m = 1, we have that β = 0.25. Indeed
when the secret pixel is white the reconstruction provides either black or white with probability
1/2, hence pw|w = pb|w = 1/2, while when the secret pixel is black the reconstruction provides black
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Secret image Share 1 Share 2 Superposition of

(random grid) (random grid) Shares 1 and 2

170x170 px 170x170 px 170x170 px 170x170 px

Figure 2: Example of shares and superposition for scheme RG2.

with probability 3/4, that is pb|b = 3/4, and white with probability 1/4, that is pw|b = 1/4. Thus
pb|b − pb|w = 1/4.

Scheme RG3. In this scheme the first share is again generated at random while the second one is
also generated at random if the secret pixel is white, and is the “opposite” of the first share if the
secret pixel is black. Scheme RG3 is:

C◦ =

{[
◦
◦

]
,

[
◦
•

]
,

[
•
◦

]
,

[
•
•

]}

C• =

{[
◦
•

]
,

[
•
◦

]}
.

Secret image Share 1 Share 2 Superposition of

(random grid) (random grid) Shares 1 and 2

170x170 px 170x170 px 170x170 px 170x170 px

Figure 3: Example of shares and superposition for scheme RG3.

Figure 3 shows the shares and the reconstruction. Again the shares are uniform random grids.
This time we have λ◦(RG3) = 0.25 and λ•(RG3) = 0 and thus the contrast is γrg = 0.25. The white
area WI(R) is reconstructed with, in average, 3 black pixels out of four pixels while the black area
BI(R) is reconstructed perfectly. If we see the scheme as a probabilistic scheme with m = 1, we have
that β = 0.25.

Scheme RG4. Finally we present another example of a random grid (2, 2)-threshold scheme that
uses generalized (non-uniform) random grids. Scheme RG4 is described by the following collections:

C◦ =

{[
◦
◦

]
,

[
◦
◦

]
,

[
•
•

]}

C• =

{[
◦
◦

]
,

[
◦
•

]
,

[
•
◦

]}
.
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Secret image Share 1 Share 2 Superposition of

(random grid) (random grid) Shares 1 and 2

170x170 px 170x170 px 170x170 px 170x170 px

Figure 4: Example of shares and superposition for scheme RG4.

Figure 3 shows the shares and the reconstruction. This time the shares are not unifrom random
grids but they are generalized random grids, since each single share has more white pixels (2/3) than
black pixels (1/3). Although the shares have a non-uniform distribution of white and black pixels,
each single share does not provide any information about the secret. The superposition of the shares
produces a reconstructed image R with λ◦(RG4) = 2/3 and λ•(RG4) = 1/3 and thus the contrast is
γrg = 1/4. The white area WI(R) is reconstructed with, in average, 2 white pixels and 1 black pixel
out of 3 pixels while the black area BI(R) is reconstructed with 1 white pixel and 2 black pixels out
of 3 pixels. If we see the scheme as a probabilistic scheme with m = 1, we have that β = 1/3.

3 Previous results

In this section we recall some known results that will be used later in the paper.

3.1 Deterministic VCS

In this section we recall some (relevant to this paper) results known for the deterministic visual
cryptography model.

Theorem 3.1 [9, 19] In any deterministic (2, n)-threshold scheme we have that γns ≤ dn/2ebn/2cn(n−1) .

We can construct (2, n)-threshold schemes that achieve optimal γns contrast by using a black base
matrix whose columns are all the binary vectors of weight bn/2c and a white base matrix consisting
of n equal rows each with weight

(
n−1
bn/2c−1

)
. The pixel expansion is m =

(
n
bn/2c

)
.

Theorem 3.2 [26] In any deterministic (n, n)-threshold scheme we have that γns ≤ 1
2n−1 and m ≥

2n−1.

We can construct (n, n)-threshold schemes that achieve optimal γns contrast by using a black base
matrix whose columns are all the binary vectors with an even weight (that is, µ•2i = 1 and µ•2i+1 = 0
for i = 0, 1, . . . bn/2c) and a white base matrix whose columns are all the binary vectors with an odd
weight (that is, µ◦2i = 0 and µ◦2i−1 = 1 for i = 0, 1, . . . dn/2e). The pixel expansion is m = 2n−1.

Bounds on γns for (3, n)-threshold schemes and (n−1, n)-threshold schemes are provided in Blundo
et al. [7]. Krause and Simon [23] have provided a general (for any k) formula:

Theorem 3.3 [23] For any deterministic (k, n)-threshold scheme we have that

γns ≤ 4−(k−1)
nk

n(n− 1) · · · (n− (k − 1))
.

12



A number of papers have considered the problem of finding schemes for which the reconstruction
of black pixels is perfect, that is schemes for which h = m. In particular we recall the following two
constructions of (3, n)-threshold schemes.

Construction 3.4 [8] The white base matrix is described by µ◦0 = 1 and µ◦n−1 = n − 2 (and the

remaining µ◦s are equal to 0). The black base matrix is described by µ•n = (n−1)(n−2)
2 and µ•n−2 = 1

(and the remaining µ•s are equal to 0).

Theorem 3.5 [8] Construction 3.4 yields deterministic (3, n)-threshold scheme with m = (n− 1)2,
` = m− 1 and h = m and thus γns = 1

n2−1 .

Construction 3.6 [7] The white base matrix is described by

µ◦0 =

(
n− 1

bn+1
4 c

)
−
(

n− 1

bn+1
4 c − 1

)
, µ◦

n−bn+1
4
c = 1

and all remaining µ•s are 0. The white base matrix is described by

µ•n =

(
n− 1

bn+1
4 c

)
−
(

n− 1

bn+1
4 c − 1

)
, µ◦bn+1

4
c = 1

and all remaining µ◦s are 0.

Theorem 3.7 [7] Construction 3.6 (see Section 4.2 and Theorem 4.7 of [7]) yields a deterministic

(3, n)-threshold scheme with that m = 2
( n−1
bn+1

4
c
)

ands γns =
(n−2)bn+1

4
cbn+1

4
c

2(n−1)(n−2) .

Finally we recall the following construction of (n− 1, n)-threshold schemes.

Construction 3.8 [8] The white base matrix is described by µ◦0 = 1 and µ◦2i+1 = 2i, for 1 ≤ i ≤
(n− 1)/2 (and the remaining µs are equal to 0). The black base matrix is described by µ•2i = 1, for
1 ≤ i ≤ n/2 (and the remaining µs are equal to 0).

Theorem 3.9 [8] Construction 3.8 yields deterministic (n− 1, n)-threshold schemes with m = (n−
2)2n−2 + 1, ` = m− 1 and h = m, and thus γns = 1

(n−2)2n−2+1
.

3.2 Random Grid VCS

In this section we recall some (relevant to this paper) results for the random grid model. The
following result has been proved by Shyu [28].

Construction 3.10 [28] There exists random grid (n, n)-threshold schemes with λ• = 0 and λ◦ =
1

2n−1 (thus with γrg = 1
2n−1 ).

The following has been proved by Chen and Lin [10].

Construction 3.11 [10] There exists random grid (2, n)-threshold schemes with contrast γrg =
c/n−(c/n)2

1+(c/n)2−1/n(1+c/n)
, where c ∈ {bn(

√
2− 1)c, dn(

√
2− 1)e} is the integer that maximizes γrg.

13



Moreover in [10] it is proved (Theorem 4 of [10]) that the schemes of Construction 3.11 are such that

γrg ≤ 3−2
√
2

−2+2
√
2−1/n . Notice that this bound applies only to the schemes that have a particular form

(the one used by Construction 3.11).
Moreover [10] provides an extension of the (2, n)-threshold schemes yielding a (2,∞)-threshold
scheme with γrg = (

√
2 − 1)/2 ' 0.2071. Among the schemes with the same form of Construc-

tion 3.11, the (2,∞)-threshold scheme is asymptotically optimal because

lim
n→∞

3− 2
√

2

−2 + 2
√

2− 1/n
= (
√

2− 1)/2.

Chen and Tsao [12] provide constructions of random grid (k, n)-threshold schemes whose contrast is
given in the next theorem.

Construction 3.12 [12] There exists (k, n)-threshold random grid schemes with contrast3

γrg =
2

(2k + 1)
(
n
k

)
− 1

.

4 The connection between the random grid and the deterministic
model

In this section we present the main results of this paper. We prove that there is a strong connection
between the random grid model and the deterministic model: for every random grid scheme there
exists a corresponding deterministic scheme with similar characteristics and viceversa. This allows
us to use results known in a model in the other model. As we have already pointed out it would
have been possible to cast the same result by stating that the random grid model is equivalent to
the probabilistic model with no pixel expansion. We have explained in Section 2.3 why we preferred
not to pass through the probabilistic model.

Theorem 4.1 Every random grid scheme S with average light transmissions parameters λ◦ and
λ• and cardinality parameters m◦ and m•, can be transformed into a deterministic scheme S ′ with
m = LCM(m◦,m•), ` = m(1− λ◦) and h = m(1− λ•).

Proof: By Fact 2.4 we have that scheme S can be described by two distribution collections C◦ and
C•. Let m◦ and m• be the cardinality parameters of S. Construct scheme S ′ with the following
base matrices. Let m be the least common multiple LCM(m◦,m•) of m◦ and m•. Base matrix B◦ is
obtained by concatenating m/m• copies of each of the vectors in C◦ while base matrix B• is obtained
by concatenating m/m◦ copies of each of the vectors in C•.

Since S ′ is obtained by concatenating matrices of S, the security property of S ′ derives directly
from the security property of S. Moreover, by the definition of λ◦ and λ• we have that ` = m(1−λ◦)
and h = m(1− λ•).

3In [12] it is proved that when superposing t ≥ k shares the contrast is γrg =
2·(t

k)
(2t+1)(nk)−(t

k)
. We have to consider

the worst case contrast which is obtained with the minimum number of shares which is t = k.
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Theorem 4.2 Every deterministic scheme S with pixel expansion m and contrast parameters ` and
h, can be transformed into a random grid scheme S ′ with average light transmission parameters
λ◦ = 1− `

m and λ• = 1− h
m .

Proof: Let C◦ and C• be the distribution collections of S. Construct C′◦ from C◦ by taking all the
columns that appear in any of the matrices of C◦. Notice that C′◦ is a multiset if there are repeated
columns. Similarly construct C′• from C•. Scheme S ′ is the random grid scheme described by C′◦ and
C′• (see Fact 2.3).

Let Q be a forbidden set of participants. Then by the security property of S we have that the
sets D◦ = {M |X, for each M ∈ C◦} and D• = {M |X, for each M ∈ C•} are indistinguishable in
the sense that they contain the same matrices with the same frequencies. This implies that the sets
D′◦ = {M |X, for each M ∈ C′◦} and D′• = {M |X, for each M ∈ C′•} are equal. Hence we have that
λ◦(Q) = λ•(Q).

Let Q be a qualified set of participants. Then by the contrast property, for any M ∈ C◦, we
have that w•(sup(M |Q)) ≤ ` and for any M ∈ C•, we have that w•(sup(M |X)) ≥ h. Since C′◦ (resp.
C′•) has been obtained by simply concatenating (a number of copies of) the matrices M ∈ C◦ (resp.
M ∈ C•) we have that λ◦(Q) ≤ (m−m`)/m (resp. h ≥ (m−mh)/m). Hence we can set λ◦ = 1− `

m

and λ• = 1− h
m for scheme S ′.

What Theorems 4.1 and 4.2 say is that there is a strong correspondence between the random
grid model and the deterministic model.

Given a random grid scheme S and a deterministic scheme S ′ related by Theorem 4.1 (or by
Theorem 4.2, swapping the names), we have that

γes(S ′) =
h− `

2m− h
=
m(1− λ•)−m(1− λ◦)

2m−m(1− λ•)
=
λ◦ − λ•
1 + λ•

= γrg(S) (6)

and

γns(S ′) =
h− `
m

=
m(1− λ•)−m(1− λ◦)

m
= λ◦ − λ•. (7)

Theorems 4.1 and 4.2 allow us to prove also the following results.

Theorem 4.3 Let f(n) be an upper bound on γns in the deterministic model (resp. random grid
model). Then we have that f(n) is un upper bound on γns also in the random grid model (resp.
deterministic model).

Proof: Assume that f(n) is an upper bound on γns in the deterministic model and assume by
contradiction that the theorem does not hold and thus that there exists a random grid scheme
S with γns(S) > f(n). Then by Theorem 4.1 we can construct a deterministic scheme S ′ with
γns(S ′) = γns(S) > f(n). This contradicts the fact that f(n) is an upper bound on γns in the
deterministic model.

Similarly, assume that f(n) is an upper bound on γns in the random grid model. The proof is
as before swapping “random model” with “deterministic” and using Theorem 4.2 instead of Theo-
rem 4.1.

Theorem 4.4 Let f(n) be an upper bound on γes (resp. γrg) in the deterministic model (resp.
random grid model). Then we have that f(n) is un upper bound on γrg (resp. γes) also in the random
grid model (resp. deterministic model).
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Proof: Assume that f(n) is an upper bound on γes in the deterministic model and assume by
contradiction that the theorem does not hold and thus that there exists a random grid scheme
S with γrg(S) > f(n). Then by Theorem 4.1 we can construct a deterministic scheme S ′ with
γes(S ′) = γrg(S) > f(n). This contradicts the fact that f(n) is an upper bound on γes in the
deterministic model.

Similarly, assume that f(n) is an upper bound on γrg in the random grid model. The proof is as
before swapping “random model” with “deterministic”, swapping es with rg and using Theorem 4.2
instead of Theorem 4.1.

Notice that, by the definitions, we have that γes ≤ γns hence an upper bound on γns is also an
upper bound on γes (and on γrg, since γrg = γes). This observation can be used to prove the following
theorem.

Theorem 4.5 Let f(n) be an upper bound on γns in the deterministic model then we have that f(n)
is un upper bound on γrg also in the random grid model.

Proof: Assume that f(n) is an upper bound on γns in the deterministic model and assume by
contradiction that the theorem does not hold and thus that there exists a random grid scheme
S with γrg(S) > f(n). Then by Theorem 4.1 we can construct a deterministic scheme S ′ with
γes(S ′) = γrg(S) > f(n). Since γes(S ′) ≤ γns(S ′) we have that γns(S ′) > f(n). This contradicts the
fact that f(n) is an upper bound on γns in the deterministic model.

5 Threshold schemes

In this section we focus the attention on (k, n)-threshold schemes and provide new results in the
random grid model (resp. in the deterministic model) starting from known results in the deterministic
model (resp. random grid model).

5.1 (2, n)-threshold schemes

Theorem 5.1 For any random grid (2, n)-threshold scheme S we have that γrg(S) ≤ dn/2ebn/2cn(n−1) .

Proof: Immediate consequence of Theorems 3.1 and 4.5.

Notice that the bound of Theorem 5.1 is general while the bound of Chen and Lin (see paragraph
after Construction 3.11), applies only to a particular classs of schemes.

Figure 5 shows the bound of Theorem 5.1 and the contrast of the schemes of Construction 3.11.
For n = 2, 3 the value of the contrast of the scheme matches the upper bound, hence the (2, 2)-
threshold and the (2, 3)-threshold schemes are optimal with respect to γrg. It remains an open
problem to either find schemes with an improved contrast γrg or to prove a sharper uppen bound
(for example proving that the bound of of Chen and Lin in fact holds for any type of scheme and
not just for those that have the same form of the schemes of Construction 3.11).
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Figure 5: Upper bound on γrg (thick line) and value of contrast of schemes of Costruction 3.11 (thin
line).

5.1.1 Schemes.

We can exploit the random grid (2, n)-threshold schemes of [10] to obtain new deterministic schemes
that improve the contrast γes. First we give a construction very similar to that of [10].

Construction 5.2 Let c ∈ {bn(
√

2−1)c, dn(
√

2−1)e}. A random grid share for a black secret pixel
is chosen at random in the set of all possible

(
n
c

)
vectors having c elements equal to ◦ and n − c

elements equal to •. Instead, a random grid share for a white secret pixel is chosen at random in the
multiset of vectors consisting of

(
n−1
c−1
)

vectors with all elements equal to ◦ and
(
n
c

)
−
(
n−1
c−1
)

vectors
with all elements equal to •. Among the two possible values for c, choose the one that maximizes γes.

Notice that this construction is slightly different from that of [10]. Our construction ensures that
the cardinality parameters are equal, that is m◦ = m•. This helps in constructing deterministic
schemes with a smaller pixel expansion.

Example. Let us consider an example. For n = 5 we have that c = 2 and

C• =




◦
◦
•
•
•

 ,

◦
•
◦
•
•

 ,

◦
•
•
◦
•

 ,

◦
•
•
•
◦

 ,

•
◦
◦
•
•

 ,

•
◦
•
◦
•

 ,

•
◦
•
•
◦

 ,

•
•
◦
◦
•

 ,

•
•
◦
•
◦

 ,

•
•
•
◦
◦
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C◦ =




◦
◦
◦
◦
◦

 ,

◦
◦
◦
◦
◦

 ,

◦
◦
◦
◦
◦

 ,

◦
◦
◦
◦
◦

 ,

•
•
•
•
•

 ,

•
•
•
•
•

 ,

•
•
•
•
•

 ,

•
•
•
•
•

 ,

•
•
•
•
•

 ,

•
•
•
•
•


 .

Construction 5.2 (see Theorem 1 of [10]) gives a random grid (2, n)-threshold scheme and (by the
proof of Theorem 2 in [10]) we have that the parameters are λ◦ = c/n and λ• = c

n
c−1
n−1 .

By Theorem 4.1, starting from schemes obtained with Construction 5.2, we can construct deter-
ministic schemes, that we denote with An. We have that for scheme An

m =

(
n

c

)
,

` = m
(

1− c

n

)
,

and

h = m

(
1− c(c− 1)

n(n− 1)

)
.

Hence we have

γes(An) =
h− `

2m− h
=

c
n

(
1− c−1

n−1

)
1 + c

n
c−1
n−1

In the deterministic model optimal contrast schemes have been studied only with respect to γns.
Thus the best comparison we can make is with the schemes that are optimal with respect to γns (see
Theorem 3.1 and the subsequent paragraph). Denote with Bn such schemes. Obviously we have to
compare the contrast γes = γrg of such schemes. For schemes Bn we have:

m =

(
n

bn/2c

)
,

` =

(
n− 1

bn/2c − 1

)
,

and

h =

(
n

bn/2c

)
−
(
n− 2

bn/2c

)
.

Hence we have

γes(Bn) =
h− `

2m− h
=

(
n−1
bn/2c

)
−
(

n
bn/2c

)(
n
bn/2c

)
+
(
n−2
bn/2c

) .
Figure 5.1.1 shows a comparison of of the contrast γes(An) (thick line) with γes(Bn) (thin line).

As can be seen from the figure, the contrast γes of the schemes of Construction 5.2 is better that the
contrast γes of the schemes that have optimal contrast γns.
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Figure 6: Comparison of the contrast γes(An) (thick line) with γes(Bn) (thin line).

5.2 (3, n)-threshold schemes

We provide two constructions for new random grid schemes based on two different deterministic
(3, n)-threshold schemes. The first construction allows an easy analytical comparison with previous
random grid schemes. The comparison shows that the new schemes have a better contrast. The
second construction gives better schemes but the analytical comparison becomes more complicated.
We provide empirical evidence that this second construction provides an improved contrast.

Theorem 5.3 The random grid (3, n)-threshold schemes obtained by using Construction 3.4 and the
transformation of Theorem 4.2 has contrast

γrg =
1

(n− 1)2
.

Proof: By Theorem 3.5 we have that Construction 3.4 gives a deterministic (3, n)-threshold scheme
with m = (n− 1)2, h = m and ` = m− 1. By Theorem 4.2 we can transform such a scheme into a
random grid scheme with λ◦ = 1

(n−1)2 and λ• = 0.

The contrast provided by the schemes of Theorem 5.3 is better than the contrast of the schemes
of Construction 3.12. Indeed the (3, n)-threshold scheme of Chen and Tsao [12] have contrast

2
(23+1)(n3)−1

. A simple algebra shows that 1
(n−1)2 is always bigger than 2

(23+1)(n3)−1
for n ≥ 3. Indeed

the condition 1
(n−1)2 >

2
(23+1)(n3)−1

is equivalent to 3n3 − 10n2 + 8n− 3 > 0, which is true for n ≥ 3.

Next we provide another construction with an improved contrast.
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Theorem 5.4 The random grid (3, n)-threshold scheme obtained using Construction 3.6 and Theo-
rem 4.2 has contrast

γrg =
(n− 1)(n− 2)(n− 2α)− (n− α)(n− α− 1)(n− α− 2) + α(α− 1)(α− 2)

2(n− 1)(n− 2)(n− α) + (n− α)(n− α− 1)(n− α− 2)

where α = bn+1
4 c.

Proof: By Theorem 3.7 we have that Construction 3.6 yields a deterministic (3, n)-threshold scheme

with m = 2
( n−1
bn+1

4
c
)

and γns =
(n−2)bn+1

4
cbn+1

4
c

2(n−1)(n−2) . Unfortunately, Theorem 3.7 does not explicitly provide

the value of ` and h.
In order to evaluate γrg we need to find ` and h. Let Q be a qualified set of three participants.

Parameter ` (resp. h), that is the number of black pixels in sup(B◦|Q) (resp. sup(B•|Q)) is given
by m minus the number of the 3-white-pixel columns in B◦|Q (resp. B•|Q).

To find ` notice that in B◦ we have µ◦0 all-white columns and thus these columns will count
for µ◦0 3-white-pixel columns in B◦|Q. In the remaining part of B◦ we have all the columns with
exactly n−bn+1

4 c black pixels. Hence among these columns in B◦|Q, there will be exactly
( n−3
n−bn+1

4
c
)

3-white-pixel columns. Since ` is equal to m minus the number of 3-white-pixel columns, we have
that ` = m− µ◦0 −

( n−3
n−bn+1

4
c
)
.

To find h notice that in B• we have µ•n all-black columns and thus among these columns in B•|Q
there will be no 3-white-pixel columns. In the remaining m − µ•n columns of B• we have all the
columns with exactly bn+1

4 c black pixels. Hence among these columns in B•|Q, there will be exactly( n−3
bn+1

4
c
)

3-white-pixel columns. Since h is equal to m minus the number of 3-white-pixel columns of

B◦|Q, we have that h = m−
( n−3
bn+1

4
c
)
.

Now we have `,h and m so we can assess γrg = h−`
2m−h and, recalling that µ◦0 =

( n−1
bn+1

4
c
)
−
( n−1
bn+1

4
c−1
)

we get

γrg =

( n−1
bn+1

4
c
)
−
( n−1
bn+1

4
c−1
)
−
( n−3
bn+1

4
c
)

+
( n−3
n−bn+1

4
c
)

2
( n−1
bn+1

4
c
)

+
( n−3
bn+1

4
c
) .

To provide a closed form for the above expression, let us recall some well-known equalities involving
binomial coefficients. The simmetry relation(

a

b

)
=

(
a

a− b

)
, (8)

the addition formula (
a

b

)
=

(
a− 1

b− 1

)(
a− 1

b

)
, (9)

the equalities (
a

b

)
=
a

b

(
a− 1

b− 1

)
, (10)

and (
a

c

)(
a− c
b

)
=

(
a

b

)(
a− b
c

)
. (11)
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From (9) used with a = n, b = bn+1
4 c, we have that(

n− 1

bn+1
4 c

)
−
(

n− 1

bn+1
4 c − 1

)
=
n− 2bn+1

4 c
n

(
n

bn+1
4 c

)
(12)

From (11) used with a = n, b = bn+1
4 c and c = 1, we have that(
n− 1

bn+1
4 c

)
=
n− bn+1

4 c
n

(
n

bn+1
4 c

)
(13)

Again from (11) used with a = n, b = bn+1
4 c and c = 3, we have that(

n− 3

bn+1
4 c

)
=

(n− bn+1
4 c)(n− b

n+1
4 c − 1)(n− bn+1

4 c − 2)

n(n− 1)(n− 2)

(
n

bn+1
4 c

)
(14)

From (8) used with a = n− 3, b = n− bn+1
4 c we have that(

n− 3

n− bn+1
4 c

)
=

(
n− 3

bn+1
4 c − 3

)
while using three times (10) we have that(

n

bn+1
4 c

)
=

n(n− 1)(n− 2)

bn+1
4 c(b

n+1
4 c − 1)(bn+1

4 c − 2)

(
n− 3

bn+1
4 c − 3

)
.

Combining the previous two equalities we get(
n− 3

n− bn+1
4 c

)
=
bn+1

4 c(b
n+1
4 c − 1)(bn+1

4 c − 2)

n(n− 1)(n− 2)

(
n

bn+1
4 c

)
(15)

Using Equations(12)-(15), with a few algebraic transformations and cancelling out the common term(
n

bn+1
4
c
)
, we have that

γrg =

n−2bn+1
4
c

n − (n−bn+1
4
c)(n−bn+1

4
c−1)(n−bn+1

4
c−2)

n(n−1)(n−2) +
bn+1

4
c(bn+1

4
c−1)(bn+1

4
c−2)

n(n−1)(n−2)

2
n−bn+1

4
c

n +
(n−bn+1

4
c)(n−bn+1

4
c−1)(n−bn+1

4
c−2)

n(n−1)(n−2)

(16)

from which the theorem follows by taking the least common multiple both for the numerator and
the denominator and cancelling it out.

Corollary 5.5 The random grid (3, n)-threshold scheme obtained using Construction 3.6 and The-
orem 4.2 has contrast

γrg =



2(n2−1)
41n2−138n+109

if n = 3 mod 4

2(n+2)
41n−38 if n = 2 mod 4

2(n+1)
41n−85 if n = 1 mod 4

2n2

41n2−132n+96
if n = 0 mod 4
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Proof: By Theorem 5.4 we have that

γrg =
(n− 1)(n− 2)(n− 2α)− (n− α)(n− α− 1)(n− α− 2) + α(α− 1)(α− 2)

2(n− 1)(n− 2)(n− α) + (n− α)(n− α− 1)(n− α− 2)

where α = bn+1
4 c. Observing that for n = 3 mod 4 we have α = n+1

4 , that for n = 2 mod 4 we have
α = n−2

4 , that for n = 1 mod 4 we have α = n−1
4 , and that for n = 0 mod 4 we have α = n

4 , it will
be enough to substitute the appropriate value in the above formula for γrg, and after some tedious
but simple algebraic transformations we get the corollary.

From the above corollary it is evident that for n→∞ the value of γrg approaches 2/41.

Example. Next we provide an example that will clarify the construction of the random grid schemes
of Theorem 5.4. Let n = 4. Construction 3.6 gives the scheme where the non-zero µ’s are µ◦0 =
2, µ◦3 = 1, µ•1 = 1, µ•4 = 2. Hence the base matrices are:

B◦ =


◦◦•••◦
◦◦••◦•
◦◦•◦••
◦◦◦•••

 B• =


•••◦◦◦
••◦•◦◦
••◦◦•◦
••◦◦◦•


By using Theorem 4.2 we can transform such a scheme into a random grid scheme which is given by

C◦ =



◦
◦
◦
◦

 ,

◦
◦
◦
◦

 ,

•
•
•
◦

 ,

•
•
◦
•

 ,

•
◦
•
•



◦
•
•
•




C• =



•
•
•
•

 ,

•
•
•
•

 ,

•
◦
◦
◦

 ,

◦
•
◦
◦

 ,

◦
◦
•
•



◦
◦
◦
•


 .

The contrast provided by the schemes of Theorem 5.4 improves on that of the schems of The-
orem 5.3. Figure 5.2 shows empirical evidence. The figure includes also the contrast of schemes of
Construction 3.12.

5.3 (n− 1, n)-threshold schemes

Theorem 5.6 The random grid (n−1, n)-threshold schemes obtained by using Construction 3.8 and
the transformation of Theorem 4.2 has contrast γrg = 1

(n−2)2n−2+1
.

Proof: By Theorem 3.9 we have that Construction 3.8 gives a deterministic (n − 1, n)-threshold
scheme with m = (n− 2)2n−2 + 1, h = m and ` = m− 1. By Theorem 4.2 we can transform such a
scheme into a random grid scheme with λ◦ = 1

(n−2)2n−2+1
and λ• = 0.
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Figure 7: Comparison of the contrast for (3, n) schemes.

The contrast provided by the schemes of Theorem 5.6 is better than the contrast of schemes
of Construction 3.12. Indeed the (n − 1, n)-threshold scheme of Chen and Tsao [12] have contrast

2
(2n−1+1)( n

n−1)−1
. If we compute the difference we can easily see that it is always positive. Indeed

1

(n− 2)2n−2 + 1
− 2

(2n−1 + 1)
(

n
n−1
)
− 1

> 0

is equivalent to

(2n−1 + 1)

(
n

n− 1

)
− 1− 2((n− 2)2n−2 + 1) > 0

and a simple algebra shows that the above is true for all n ≥ 2.

5.4 (n, n)-threshold scheme

In this section we focus the attention on (n, n)-threshold schemes.

Theorem 5.7 For any random grid (n, n)-threshold scheme S we have that γrg(S) ≤ 1/2n−1.

Proof: Immediate consequence of Theorems 3.2 and 4.5.

The bound of Theorem 5.7 matches the contrast of the random grid (n, n)-threshold schemes of
Shyu [28], hence:

Corollary 5.8 The random grid (n, n)-threshold scheme by Shyu is optimal with respect to the con-
trast γrg (and also with respect to γns since the schemes have perfect reconstruction of black pixels
and thus γrg = γns).
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The optimal (n, n)-threshold schemes by Shyu are the same as the ones we can get starting from
the deterministic (n, n)-threshold schemes of Naor and Shamir.

Roughly speaking, the construction of Shyu [28] is as follows: the first n− 1 shares S1, . . . , Sn−1
are generated as independent random grids. The last share Sn is a function of S1, . . . , Sn−1. Although
cast with a different formalism, this function sets the pixel of the last share in such a way that the
total number of black pixels in the n shares is even if the secret bit is white and odd if the secret
pixel is black. Hence Shyu’s random grid (n, n)-threshold scheme is in fact the same as the random
grid (n, n)-threshold scheme that can be obtained by taking as possible distribution vectors all the
vectors of the base matrices of the Naor and Shamir’s (n, n)-threshold scheme.

Example. Consider the case n = 3. The base matrices of Naor and Shamir (3, 3)-threshold schemes
are.

B◦ =

 ◦◦••◦•◦•
◦••◦

 B• =

 •◦◦•◦•◦•
◦◦••


The corresponding random grid (3, 3) scheme is

C◦ =


 ◦◦
◦

 ,
 ◦•
•

 ,
 •◦
•

 ,
 ••
◦


C• =


 •◦
◦

 ,
 ◦•
◦

 ,
 ◦◦
•

 ,
 ••
•

 .

The above scheme is the same one that is constructed by the construction of Shyu [28].

5.5 (k, n)-threshold schemes

Finally we give an upper bound on γrg valid for any value of k.

Theorem 5.9 For any random grid (k, n)-threshold scheme we have that

γrg ≤ 4−(k−1)
nk

n(n− 1) · · · (n− (k − 1))
.

Proof: Immediate consequence of Theorems 3.3 and 4.5.

We have already considered upper bounds for the cases k = 2, n (Theorems 5.1 and 5.7). The
general form provided above does not improve on the specific cases k = 2 and k = n. However it
gives bounds for the other values of k for which no bounds on γrg were known.

6 General Access Structure

Theorems 4.1 and 4.2 apply also to schemes with general access structures. Hence we can construct
new random grid schemes for general access structures starting from deterministic schemes. Paper [2]
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shows a general technique that can be used to construct deterministic schemes for non-connected
access structures. The same technique can be applied to random grid schemes.

Let A1 = (Q1,F1) and A2 = (Q2,F2) be two access structures on disjoint sets of participants.
Let A = (Q,F) be the sum of A1 and A2, given by

Q = Q1 ∪Q2

and
F = {X ∪ Y |X ∈ F1, Y ∈ F2}.

Given a scheme S1 = {C1◦ , C1•} for A1 and a scheme S2 = {C2◦ , C2•} for A2, Theorem 5.5 of [2]
shows that there exists a scheme S = {C◦, C•} with access structure A. The scheme is obtained by
letting

C◦ =

{[
M ′

M ′′

]
: M ′ ∈ C1◦ ,M ′′ ∈ C2◦

}
and

C• =

{[
M ′

M ′′

]
: M ′ ∈ C1• ,M ′′ ∈ C2•

}
.

For the construction of Theorem 5.5 of [2] it is shown that one can assume, without loss of
generality, that both scheme S1 and S2, have cardinality parameters that are equal, that is for each
Si, |Ci◦| = |Ci◦|. Although this assumption is without loss of generality, because we can replicate
matrices in each collection in order to have distribution collections of the same size, it increases the
total number of matrices to consider and consequently the amount of randomness needed. It is not
hard to see that the construction works even if we relax this requirement.

To clarify the technique let us see an example. Consider the (2, 2)-threshold random grid scheme
S1 =RG1:

C◦ =

{[
◦
◦

]
,

[
•
•

]}

C• =

{[
◦
•

]
,

[
•
◦

]}
and the (2, 3)-threshold random grid scheme S2 given by the following collections

C◦ =


 ◦◦
◦

 ,
 ◦◦
◦

 ,
 ••
•


C• =


 •◦
◦

 ,
 ◦•
◦

 ,
 ◦◦
•

 .

The random grid scheme for A, with qualified sets

Q = {{1, 2}, {3, 4}, {3, 5}, {4, 5}},

is described by the following collections:
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C◦ =




◦
◦
◦
◦
◦

 ,

◦
◦
◦
◦
◦

 ,

◦
◦
•
•
•

 ,

•
•
◦
◦
◦

 ,

•
•
◦
◦
◦

 ,

•
•
•
•
•




C• =




◦
•
•
◦
◦

 ,

◦
•
◦
•
◦

 ,

◦
•
◦
◦
•

 ,

•
◦
•
◦
◦

 ,

•
◦
◦
•
◦

 ,

•
◦
◦
◦
•


 .

7 Conclusions

In this paper we have shown that random grid visual cryptography is strictly related to deterministic
visual cryptography. As a consequence many results known for the deterministic model can be used
in the random grid model and viceversa. In the current literature papers that deal with random grid
ignore results known for the deterministic model and viceversa. A consequence of the results of this
paper is that future work on visual cryptography in the random grid model should be compared to
known results for the deterministic model and viceversa.

Although the connection established in this paper allows to re-use many known results, it also
opens up new directions. For example, given the fact that the measure of contrast γrg used in the
random grid model corresponds to the measure of contrast γes given in [18] for the deterministic
model, it becomes interesting to further study γes in the deterministic model. Almost all the papers
that studied the contrast in the deterministic model have used the definition of contrast γns given
in [26] and little is known for γes.

Many problems remain open. For example it is possible to find better random grid (k, n)-threshold
schemes? For k = n we have proved that the known random grid schemes are optimal with respect
to γrg. However for the other cases there is still a gap between the contrast of known schemes and
the upper bound. For the case of k = 2, the schemes match the upper bound only for n = 2, 3.
Clearly the same question can be recast in the deterministic model: which is the optimal contrast
γes? Which are the optimal, with respect to γes, schemes?

Given the connection established in this paper, it will be enough to solve any of these open
problems either in the random grid model with respect to γrg, or in the deterministic model with
respect to γes.
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