
Iterated group products and leakage resilience against NC1

Eric Miles

December 3, 2013

Abstract

We show that if NC1 6= L, then for every element α of the alternating group At,
circuits of depth O(log t) cannot distinguish between a uniform vector over (At)

t with
product = α and one with product = identity. Combined with a recent construction
by the author and Viola in the setting of leakage-resilient cryptography [STOC ’13],
this gives a compiler that produces circuits withstanding leakage from NC1 (assuming
NC1 6= L). For context, leakage from NC1 breaks nearly all previous constructions, and
security against leakage from P is impossible.

We build on work by Cook and McKenzie [J. Algorithms ’87] establishing the rela-
tionship between L = logarithmic space and the symmetric group St. Our techniques
include a novel algorithmic use of commutators to manipulate the cycle structure of
permutations in At.

1 Introduction

The interplay between group theory and computational complexity has been the source of a
number of elegant constructions and computational insights. A line of work [Bar89, CM87,
BT88, BC92, CL94, Cle91, IL95] in the late 1980s gave characterizations of various com-
plexity classes in terms of products over finite groups. A primary motivation of some of this
work was to obtain an efficient simulation of circuits by branching programs, such as in the
celebrated theorem of Barrington [Bar89]. Beyond this however, the underlying encoding of
computation by group products has proven to be a useful tool in other areas.

A typical encoding has the following form. Let G be a group with identity element id,
let f be a Boolean function, and let x be an input to f . Then the encoding E(f, x) is a
vector (g1, . . . , gt) ∈ G t such that

∏
i gi = id ⇔ f(x) = 0. For such encodings a number of

efficiency aspects are of interest, including the size of the group, the length of the encoding,
and the complexity of computing it. In some cases a short encoding can be computed with
much fewer resources than are needed to compute f , yielding the result that the decoding
problem, i.e. computing iterated products over G, is as hard as computing f .

Recently, the author and Viola [MV13] gave an application of these group encodings to
leakage-resilient cryptography. This area studies cryptographic models in which the adver-
sary obtains more information from an algorithm than just its input/output behavior. The

∗Supported by NSF grants CCF-0845003 and CCF-1319206. Email: enmiles@ccs.neu.edu.

1

extra information is commonly modeled by providing the adversary with the output of a
computationally restricted “leakage function” of its choosing, applied to (the bits carried
on) the wires of a circuit implementing the algorithm. A general goal in this area is to

compile any circuit C into a functionally equivalent circuit Ĉ such that any attack on Ĉ
exploiting this extra information can in fact be carried out just using input/output access,
and hence does not succeed under standard hardness assumptions.

The [MV13] construction provides a rather generic way to construct such a compiler, given
any group G satisfying the following property with respect to a set of leakage functions L.
This property says that for an element α ∈ G, functions in L cannot distinguish between
vectors with product = α and those with product = id.

Definition 1.1. Let G be a group. For α ∈ G and t ∈ N, the α-product problem over G t is
to decide, given (x1, . . . , xt) ∈ G t such that

∏
i xi ∈ {α, id}, which product it has.

Let Dα denote the uniform distribution over {(x1, . . . , xt) ∈ G t |
∏

i xi = α}. A set of
functions L is (ǫ, α)-fooled by G t if ∆(ℓ(Dα), ℓ(Did)) ≤ ǫ for every ℓ ∈ L.

The [MV13] construction obtains security against leakage classes that are (ǫ, α)-fooled
by G t for every α ∈ G. A key technical contribution there is to show that a number of well-
studied classes of functions have this property when G = A5, where Au denotes the group
of even permutations on u points. In particular they show that for every α ∈ A5, functions
including parity, majority, inner product, and communication protocols are (t−ω(1), α)-fooled
by (A5)

t, yielding a compiler that provides security against leakage from these functions.
They also make the following conjecture, whose proof would yield a compiler that provides

security against leakage from the class NC1 of log-depth, fan-in-2 circuits.

Conjecture ([MV13]). If NC1 6= L then for every α ∈ At, NC
1 is (t−ω(1), α)-fooled by (At)

t.

Some support for this conjecture comes from the work of Cook and McKenzie [CM87]
on the relationship between L = log-space and iterated group products. Their results can
be used to show that the following problem is L-complete: given x = (x1, . . . , xt) ∈ (At)

t,
determine if

∏
i xi = id. (The difference from Definition 1.1 is that x’s product is not

guaranteed to be in {α, id}.) If one could instead show that the α-product problem is L-
complete for every α ∈ At, the conjecture follows from the random self-reducibility of iterated
group products [Kil88]. However, it was not clear how to show this for even a single α.

1.1 Our results

We show that indeed the α-product problem is L-complete for every α ∈ At, and as a result
we prove the above conjecture.

Theorem 1.2. Assume that there is a circuit family C of depth O(log t) such that for
sufficiently large t, there exists α ∈ At such that C decides the α-product problem over (At)

t.
Then NC1 = L.

Corollary 1.3. If NC1 6= L, then NC1 is (t−ω(1), α)-fooled by (At)
t for infinitely many t and

all α ∈ At.
More precisely, if NC1 6= L then for all k, infinitely many t, and all α ∈ At, the class of

NC1 circuits with depth k log t and output length k log t is (t−k, α)-fooled by (At)
t.

2

In combination with [MV13], Corollary 1.3 yields a compiler that is secure against NC1

leakage. As noted in [MV13], even 1 bit of leakage from NC1 breaks nearly all previous
constructions [ISW03, FRR+10, JV10, DF12, GR12, Rot12] (in fact leakage from TC0 ⊆
NC1 is already enough to break these). Furthermore, securing circuits against arbitrary
polynomial-time leakage is known to be impossible, due to the impossibility of obfuscation
[BGI+01]. We note that, like some other compilers [FRR+10, GR10, JV10, DF12], in the
multi-query setting the [MV13] construction uses a so-called “secure hardware component”.
Specifically, the compiled circuits have a gate that produces a uniform sample from (At)

t

with product = id, and whose internal computation is not visible to the leakage function.

On the amount of leakage. The amount of NC1 leakage tolerated using Corollary 1.3
is logarithmic in the security parameter, which is smaller than one might wish (and smaller
than can be achieved against other leakage classes). This limitation seems to be inherent
when starting from an assumption such as NC1 6= L. One approach to circumventing this
is by instead starting from a compression bound, i.e. a bound on the correlation between
NC1 circuits with > 1 output bit and functions in L. Indeed, the compression bound due
to Dubrov and Ishai [DI06] against AC0 was used by [FRR+10, MV13] to achieve security
against a linear amount of AC0 leakage.

In this setting however, there is an issue which is that the proof of Theorem 1.2 gives
a Turing reduction to the α-product problem, as opposed to a many-one reduction. With
such a reduction it is not clear how to translate a (hypothetical) NC1 circuit compressing
the α-product problem into a circuit compressing an arbitrary language in L, and therefore
a generic assumption on the inability of NC1 to compress L does not immediately yield
improved leakage bounds. In light of this, it would be interesting to show that the α-
product problem is L-complete under many-one reductions. Jumping ahead, showing this
for any fixed α ∈ At would suffice to show it for all α via Theorem 2.1.

We refer the reader to [MV13] for further details on leakage-resilience, and now give an
overview of the proof of Theorem 1.2. The proof of Corollary 1.3 given Theorem 1.2 uses
straightforward techniques and appears in §4.

1.2 Techniques

The Cook-McKenzie construction. Our starting point is the work by Cook andMcKen-
zie [CM87] who show that a number of problems related to St, the group of all permutations
on t points, are complete for L. A key tool in their work is the following construction of a
permutation that encodes acceptance of a given branching program on a given input. (We
equate L with the set of polynomial-size branching programs.)

Theorem 1.4 ([CM87]). There exists t = O(s) and a circuit C of depth O(log s) such that,
on input (B, x) where B is a branching program of size s ≥ |x|, C outputs a permutation σ ∈
St such that B accepts x iff 1 and t are in the same cycle in σ’s disjoint cycle representation.

Recall that any permutation can be uniquely written as a product of disjoint cycles.
Throughout, when a permutation σ ∈ St is the input or output of an algorithm, it is given in
(t log t)-bit pointwise representation as (σ(1), . . . , σ(t)). Inversion and pairwise multiplication

3

in St can then be implemented in NC1, because each essentially amounts to indexing an
element from an array of length t.

Theorem 1.4 is proved by constructing a permutation σ that performs one step of a
depth-first search in B when projecting to the edges consistent with the input x. The nodes
are labeled by [t], and the labels of the start and accept nodes (1 and t wlog) are in the same
cycle of σ iff the accept node is reachable from the start node.

As observed to us by Eric Allender and V. Arvind (personal communication), Theo-
rem 1.4 can be used to show that the following very natural problem is L-complete: given
(x1, . . . , xt) ∈ (St)

t, decide if
∏

i xi = id. A simple embedding trick shows that this problem
remains L-complete even over the group At (see §3.1).

However it was not clear whether Theorem 1.4 could be used to show that the α-product
problem is L-complete, for every or even for a single α ∈ At. The issue is that the permutation
σ constructed in Theorem 1.4 depends on the structure of the branching program B when
projecting to the edges whose labels match the input x. So while the reduction to the

“product
?
= id” problem always produces a vector with product = id when B(x) = 0, when

B(x) = 1 the product can change depending on x, rather than being fixed to some α.
Before explaining how we overcome this, we briefly review some facts and terminology

about permutations that will be used; a more detailed discussion appears in e.g. [Wil09, §2].

Permutation groups. St is the group of all permutations on [t] = {1, . . . , t}. Any per-
mutation can be written as a product of transpositions, and the permutation is called even
or odd depending on whether the number of transpositions in this product is even or odd.
Thus the product of two permutations is even iff both are even or both are odd. At ⊂ St is
the group of all even permutations on [t].

A k-cycle (a1 · · · ak) is a permutation that maps ai 7→ ai+1 for i < k and ak 7→ a1. A
k-cycle is an even permutation iff k is odd, because any k-cycle can be written as a product
of k− 1 transpositions (a1 a2)(a1 a3) · · · (a1 ak). Every permutation can be uniquely written
as a product of disjoint cycles, and the list of these cycles’ lengths is the cycle type of the
permutation.

α, β ∈ G are conjugate if there exists γ ∈ G such that γ−1αγ = β. Conjugacy is an
equivalence relation and partitions G into its conjugacy classes. In St, two permutations
are conjugate iff they have the same cycle type. In At this continues to hold if that cycle
type contains either an even-length cycle or two cycles of the same length, but for cycle
types consisting of distinct odd lengths (including length 1) there are two distinct conjugacy
classes. For example, the two 5-cycles (1 2 3 4 5) and (1 2 3 5 4) are conjugate in S5 and S6

but not in A5 nor A6.
The commutator of two elements α, β ∈ G is denoted [α, β] and defined by [α, β] :=

αβα−1β−1. We will use the fact that for every α, [α, id] = [id, α] = id.

We now explain the proof of Theorem 1.2, which has two steps. We first show that if
NC1 can decide the α-product problem for any fixed α ∈ At, then it can do so for every
α ∈ At. Next we show that the α-product problem is L-complete for the specific choice of
α = (1 2)(3 4). The combination of these implies that if NC1 can decide the α-product
problem for any α, then NC1 = L. In light of the above discussion on the amount of leakage,
we remark that only the latter step uses a Turing reduction.

4

Mapping group products. We reduce the α-product problem to the β-product problem,
for any id 6= α, β ∈ At, by constructing an NC1 map

fα→β : (At)
m → (At)

O(tm)

that maps α-products to β-products while preserving id-products. Namely, this map satisfies
∏

i

xi = α ⇒
∏

i

fα→β(x)i = β and
∏

i

xi = id ⇒
∏

i

fα→β(x)i = id (1)

for every x = (x1, . . . , xm) ∈ (At)
m. (To prove Theorem 1.3 we choose m = t, but here we

keep them separate to make the blowup in output length clear.) Moreover fα→β has the nice
property that each output element depends on only 1 input element, i.e. it is 1-local.

If α and β are in the same conjugacy class, then there is a simple 1-local NC1 map with
no blowup in length that satisfies (1). This map is

(x1, . . . , xm) 7→ (γ−1x1, . . . , xmγ)

where γ ∈ At satisfies γ−1αγ = β. But because α and β are in the same conjugacy class
only if they have the same cycle type, to map between permutations of different cycle types
a different technique is needed.

Our idea is to use commutation to map between permutations of different cycle types,
and combined with conjugation as above this allows us to construct a map from any α to
any β. As noted previously commutation is identity-preserving, i.e. [γ, id] = [id, γ] = id for
every γ, which makes it a good candidate for maps satisfying (1). One limitation is that
commutation doubles the length of the vector, i.e. we compute

(x1, . . . , xm) 7→ (x1, . . . , xmγ, x−1
m , . . . , x−1

1 γ−1)

to map α-products to [α, γ]-products while preserving id-products. But by using ≤ log t +
O(1) commutations, here the total length increase is limited to a factor of O(t).

We note that our use of commutation is different than in Barrington’s construction
[Bar89]. There it is used to simulate AND, and each commutator is formed from two vectors
whose products are both unknown. Here we use it to manipulate cycle structure, and each
commutator is formed from a vector whose product is unknown and a fixed group element.

Our framework for using commutation to map between different cycle types has three
steps.

1. Reduce to a product of two disjoint transpositions. (Lemma 2.3)

We first convert any α 6= id into a product of two disjoint transpositions. For example
if α’s disjoint cycle representation contains a 4-cycle (a b c d), then commutating with
γ := (a b)(c d) yields [α, γ] = (a c)(b d).

2. Grow the number of transpositions. (Lemma 2.4)

From a product of disjoint transpositions, we use one commutation to double the num-
ber of transpositions, and log k commutations to convert from 2 to 2k disjoint transpo-
sitions. For example if α = (a b)(c d), then commutating with γ := (a e)(b f)(c g)(d h)
yields [α, γ] = (a b)(c d)(e f)(g h).

5

3. Combine transpositions into cycles. (Lemmas 2.5-2.6)

We finally convert products of disjoint transpositions into longer cycles. For example
if α = (a1 b1) · · · (ak bk), then commutating with γ := (a1 b1 a2 b2 · · · ak bk c) yields
the (2k + 1)-cycle [α, γ] = (a1 · · · ak bk · · · b1 c).

In total we use ≤ log t + O(1) commutations. This turns out to be tight for certain
starting and target permutations as shown in the following theorem, and thus for these
permutations a map satisfying (1) with smaller output length requires different techniques.
(The theorem also holds if both commutations and conjugations are allowed.)

Theorem 1.5. There exist α, β ∈ At such that α cannot be converted to β with fewer than
log(t)−1 commutations. That is, for every ℓ < log(t)−1 and every sequence γ1, . . . , γℓ ∈ At,
β 6= [[· · · [[α, γ1], γ2], · · ·], γℓ].

Proof. For α ∈ At, let M(α) := |{i ∈ [t] | α(i) 6= i}| denote the number of points moved (i.e.
not fixed) by α. We show that M([α, γ]) ≤ 2 ·M(α) for every α and γ, i.e. the number of
points moved by [α, γ] is at most twice the number of points moved by α. This implies the
theorem by choosing α = (1 2 3) and β = (1 2 · · · t), because M(α) = 3 and M(β) = t.

Pick γ ∈ At. Observe that γα−1γ−1 has the same cycle type as α because it is conjugate
to α in St. This implies M(γα−1γ−1) = M(α), and therefore [α, γ] = αγα−1γ−1 moves at
most 2 ·M(α) points because any such point must be moved by either α or γα−1γ−1.

Hardness for a single element. To prove that the (1 2)(3 4)-product problem is L-
complete, we reduce from the problem of deciding if x ∈ (At)

t has product = id. That is,
from any x ∈ (At)

t we compute a vector y ∈ (At)
t such that y has product = id if x does,

and otherwise y has product = (1 2)(3 4).
As in step 1 above, we first show that if

∏
i xi = α 6= id then there is some γ1 ∈ At (which

depends on α) such that [α, γ1] is a double-transposition, i.e. a product of two disjoint
transpositions. Then because all double-transpositions are conjugate in At there is some
γ2 ∈ At such that γ−1

2 · [α, γ1] · γ2 = (1 2)(3 4), and a vector with this product can be
computed from x in NC1 if we know γ1, γ2.

The problem of course is that we do not know γ1, γ2 without knowing α =
∏

i xi which we
cannot compute. We resolve this by showing that for any α 6= id, γ1 and γ2 as above can be
taken from the set of permutations that are fixed on all but ≤ 8 points in [t]. Since there are
<

(
t

8

)
· |A8| = tO(1) such permutations, we can thus construct a set of tO(1) vectors such that

if x has product = id then they all do, and otherwise some vector has product = (1 2)(3 4).
Then the proof is completed by applying an NC1 circuit deciding the (1 2)(3 4)-product
problem to each vector and a depth-O(log t) OR tree to the results.

Organization. The rest of the paper is organized as follows. In §2 we describe our mapping
between group products and construct the function fα→β defined above for any α and β.
In §3 we show that the (1 2)(3 4)-product problem is L-complete. Together these prove
Theorem 1.2, and in §4 we prove Corollary 1.3.

6

2 Mapping group products

In this section we prove the following theorem.

Theorem 2.1. Let t ≡ 2 (mod 4) and let id 6= α, β ∈ At. Then for all m there is a 1-
local function f : (At)

m → (At)
O(tm) computable in depth O(log t) that maps α-products to

β-products while preserving the identity, i.e. that satisfies ∀x = (x1, . . . , xm) ∈ (At)
m:

∏

i

xi = α ⇒
∏

i

f(x)i = β and
∏

i

xi = id ⇒
∏

i

f(x)i = id.

The function f is constructed by concatenating compositions of functions from the fol-
lowing two families, where the compositions are given by Lemma 2.2.

Conj = {Conjγ(α) := γ−1αγ | γ ∈ At} Comm = {Commγ(α) := αγα−1γ−1 | γ ∈ At}

Lemma 2.2. Let t ≡ 2 (mod 4) and let α, β ∈ At such that α 6= id and β is either a cycle
of odd length k or is the product of two disjoint even-length cycles of total length k. Then,
there is a sequence f1, . . . , fℓ ∈ (Conj ∪ Comm) such that f(α) = β, where f := fℓ ◦ · · · ◦ f1
and ℓ = log k +O(1).

Any function given by this lemma yields a 1-local function f : (At)
m → (At)

m·2ℓ com-
putable in depth O(log t) that maps α-products to β-products while preserving the identity.

Proof of Theorem 2.1. We prove the case m = 1, but the argument extends immediately
to any m. Fix α, β ∈ At, and consider the unique representation of β as a set of disjoint
cycles C = {σ1, . . . , σs} ⊂ St. (Here C contains only those cycles with length > 1.) The
idea is to apply Lemma 2.2 to each cycle σ ∈ C, obtaining f ′ : At → (At)

O(|σ|) such that∏
i f

′(α)i = σ. Then letting f output the concatenation of these f ′, the resulting function
maps α-products to β-products while preserving the identity. Further, its output length is∑

σ∈C O(|σ|) = O(t).
The only technical complication has to do with cycles of even length: if σ is a cycle of

even length then it is an odd permutation, and so there can be no composition of functions
from Conj and Comm that maps α 7→ σ. We handle this by pairing the cycles of even length,
which we can do because C must contain an even number of cycles of even length as each is an
odd permutation and β is an even permutation. So, for each such pair of even-length cycles
σ, σ′ ∈ C, we instead apply Lemma 2.2 to get a function f ′ such that

∏
i f

′(α)i = σ · σ′.

2.1 Proof of Lemma 2.2

To prove Lemma 2.2, we implement the procedure described in §1.2. Namely, we first use ≤ 2
commutations to convert a given α ∈ At to a double-transposition, then log k commutations
to convert to a product of roughly k/2 disjoint transpositions, and finally ≤ 2 commutations
and 1 conjugation to convert to either a cycle of odd length k or to the product of two
disjoint even-length cycles with total length k.

Lemma 2.3. Let t ≥ 4. For every id 6= α ∈ At, there exist γ1, γ2 ∈ At such that [[α, γ1], γ2]
is a double-transposition. Further, each γi is either a double-transposition or a 3-cycle.

7

Proof. We consider five cases based on α’s cycle structure. In all cases except the last, in
fact only one commutation is needed to obtain a double-transposition, but we can use two
by noting that [(a b)(c d), (a b c)] = (a d)(b c).

1. If α contains a double-transposition (a b)(c d), then [α, (a b c)] = (a d)(b c).

2. If α is a 3-cycle (a b c), then [α, (a b)(c d)] = (a d)(b c).

3. If α contains two 3-cycles (a b c)(d e f), then [α, (a d)(c f)] = (a d)(b e).

4. If α contains a 4-cycle (a b c d), then [α, (a b)(c d)] = (a c)(b d).

5. If α contains a (k ≥ 5)-cycle (a1 · · · ak), then [α, (a2 a3 a4)] = (a1 a4 a3) and apply
case 2.

Lemma 2.4. For every double-transposition α ∈ At and even k ≤ t/2, there exist γ1, . . . , γlog k ∈
At such that [[· · · [[α, γ1], γ2], · · ·], γlog k] is a product of k disjoint transpositions.

Proof. Given α = (a b)(c d), we can double the number of transpositions by commutating
with γ = (a e)(b f)(c g)(d h) to get [α, γ] = (a b)(c d)(e f)(g h). Repeating this log(k)− 1
times (with appropriate modifications to γ) grows the number of transpositions from 2 to k.
To handle k that is not a power of 2, note that any (a b)(c d) can be “maintained” rather
than doubled by instead commutating with (a b c) as in the proof of Lemma 2.3.

We now show how to commutate a product of disjoint transpositions to obtain either an
odd-length cycle (Lemma 2.5) or the product of two even-length cycles (Lemma 2.6).

Lemma 2.5. Let t be even and β ∈ At be any cycle of odd length 5 ≤ k ≤ t − 1. For
any α ∈ At that is the product of either (k − 1)/2 or (k − 3)/2 disjoint transpositions
(depending on which is even), there are γ1, γ2, γ3 ∈ At such that either [γ−1

1 αγ1, γ2] = β or
[[γ−1

1 αγ1, γ2], γ3] = β.

Proof. We first show that α can be converted to a k-cycle with ≤ 2 commutations. Af-
terwards we observe that by first using 1 conjugation, these commutations can be made to
produce the specific k-cycle β.

If (k − 1)/2 is even, then let α := (a1 b1) · · · (ak′ bk′) be any product of k′ := (k − 1)/2
disjoint transpositions. Choosing γ := (a1 b1 a2 b2 · · · ak′ bk′ c) ∈ At, where c is distinct
from all k − 1 points permuted by α, we get that

[α, γ] = (a1 · · · ak′ bk′ · · · b1 c)

is a k-cycle. (We only need one commutation in this case.)
If instead (k − 3)/2 is even (so k ≥ 7), then let α be any product of (k − 3)/2 disjoint

transpositions. First, commutate once as above to get a (k − 2)-cycle

µ := (a1 · · · ak−2).

8

We now show that there is another (k−2)-cycle π ∈ At such that µπ is a k-cycle. This implies
that we can convert µ to a k-cycle with one more commutation, namely by commutating
with γ ∈ At such that γµ−1γ−1 = π. (Such γ must exist because the set of (k − 2)-cycles
forms a conjugacy class in At when t ≥ k + 1.) Take the (k − 2)-cycle

π := (a1 c1 c2 c3 a3 a4 · · · ak−5 a2)

where c1, c2, c3 are distinct from the k − 2 ≤ t − 3 points permuted by µ. Then letting

ai
by 2
· · · aj denote the sequence ai ai+2 ai+4 · · · aj , we have that

µπ = (a2
by 2
· · · ak−5 ak−4 ak−3 ak−2 c1 c2 c3 a3

by 2
· · · ak−6)

is a k-cycle (permuting points a2, . . . , ak−2, c1, c2, c3).
Having converted α to a k-cycle with ≤ 2 commutations, one might hope to then use 1

conjugation to convert to the specific k-cycle β. However when k = t− 1, the k-cycles form
two distinct conjugacy classes in At so we cannot do this. We instead note that the points
permuted by the k-cycle depend directly on the points permuted by α (and the extra points
ci), and that products of an equal number of disjoint transpositions are conjugate in At. So
by first using 1 conjugation to modify α appropriately, the above commutations yield β.

Lemma 2.6. Let t ≡ 2 (mod 4) and β ∈ At be any product of two disjoint cycles of even
lengths k1, k2. Denote k = k1 + k2. For any α ∈ At that is the product of either k/2 or
k/2−1 disjoint transpositions (depending on which is even), there exist γ1, γ2 ∈ At such that
γ−1
2 · [α, γ1] · γ2 = β.

Proof. We first use one commutation to convert α to the product of a k1-cycle and a k2-cycle,
and then one conjugation to convert it to β (which here we can do without the complication
mentioned at the end of Lemma 2.5). We assume that k1, k2 ≥ 4, and at the end mention
how to handle the two cases k1 = k2 = 2 and k1 = 2, k2 = 4.

If k/2 is even, let

α := (a1 b1) · · · (ak′
1
bk′

1
)(c1 d1) · · · (ck′

2
dk′

2
)

be any product of k/2 = k′
1 + k′

2 disjoint transpositions, where k′
1 := k1/2 and k′

2 := k2/2.
We will show that there exists π ∈ At that is the product of k/2 disjoint transpositions such
that απ is the product of a k1-cycle and a k2-cycle. As in Lemma 2.5, this implies that we
can convert α to the desired form by commutating with γ ∈ At such that γα−1γ−1 = π.
Define

π :=

k′
1
−1∏

i=1

(ai+1 bi) ·

k′
2
−2∏

i=1

(ci+1 di) · (dk′
2
−1 e1)(ck′

2
dk′

2
)(c1 e2)

where e1, e2 ∈ [t] are distinct from each point permuted by α. (Such e1, e2 must exist because
4|k and t ≡ 2 (mod 4), and thus k ≤ t− 2.) Then we have that

απ = (a1 · · · ak′
1
bk′

1
· · · b1)(c1 · · · ck′

2
−1 e1 dk′

2
−1 · · · d1 e2)

is the product of two disjoint cycles of lengths 2k′
1 = k1 and 2k′

2 = k2.

9

If instead k/2− 1 is even, let

α := (a1 b1) · · · (ak′
1
bk′

1
)(c1 d1) · · · (ck′

2
−1 dk′

2
−1)

be any product of k/2− 1 = k′
1 + k′

2 − 1 disjoint transpositions. This time we define

π :=

k′
1
−1∏

i=1

(ai+1 bi) ·

k′
2
−3∏

i=1

(ci+1 di) · (c1 ck′
2
−1)(dk′

2
−2 e1)(dk′

2
−1 e2)

where again e1, e2 are distinct from each of the 2(k/2 − 1) ≤ t − 2 points permuted by α
(here we use k′

1 ≥ 2, k′
2 ≥ 3). Then we have that

απ = (a1 · · · ak′
1
bk′

1
· · · b1)(c1 · · · ck′

2
−2 e1 dk′

2
−2 · · · d1 ck′

2
−1 e2 dk′

2
−1)

is the product of two disjoint cycles of lengths 2k′
1 = k1 and 2k′

2 = k2.
Finally we handle the two cases k1 = k2 = 2 and k1 = 2, k2 = 4. If k1 = k2 = 2 then α and

β are both double-transpositions and can be made equal with a single conjugation. Otherwise
denote α = (a b)(c d), and note that there is another double-transposition π = (c e)(d f)
such that απ = (a b)(c f d e). Thus α can be commutated to the product of a 2-cycle and
a 4-cycle, and a conjugation can make it equal to β.

Lemma 2.2 follows immediately from Lemmas 2.3-2.6. The only cases not explicitly
covered by these are when t = 2 in which case Lemma 2.2 is vacuous, and when β is a
3-cycle (because Lemma 2.5 only handles (k ≥ 5)-cycles). For the latter, note that by
assumption we must have t ≥ 6. We first convert α to a 5-cycle (a1 · · · a5) using Lemmas
2.3-2.5, then use one commutation with (a2 a3 a4) to convert to (a1 a4 a3), and finally use
one conjugation to convert to β.

3 Hardness for a single element

In this section we show that the (1 2)(3 4)-product problem is L-complete.

Theorem 3.1. If for sufficiently large t there is a circuit of depth O(log t) that decides the
(1 2)(3 4)-product problem over (At)

t, then NC1 = L.

We use the following theorem which is proved afterwards and says that deciding if an
input vector has product = id is L-complete.

Theorem 3.2. If for sufficiently large t there is a circuit of depth O(log t) that decides if its
input in (At)

t has product = id, then NC1 = L.

To prove Theorem 3.1 from Theorem 3.2, we show how to construct a set of tO(1) vectors
from an input vector x ∈ (At)

t such that, if x has product = id then they all do, and
otherwise some vector has product = (1 2)(3 4). Then we apply the circuit deciding the
(1 2)(3 4)-product problem to each vector, and a depth-O(log t) OR tree to the outputs.
The vectors are constructed using commutation and conjugation via Lemma 2.3.

10

Proof of Theorem 3.1. Assume that there is a circuit C of depth O(log t) that decides the
(1 2)(3 4)-product problem. We construct a circuit C ′ of depth O(log t) that decides if its
input has product = id, which in combination with Theorem 3.2 proves the theorem.

Lemma 2.3 shows that for every id 6= α ∈ At, there exist γ1, γ2 ∈ At such that α′ :=
[[α, γ1], γ2] is a double-transposition and each γi is either a double-transposition or a 3-cycle.
We observe in the claim following this proof that for every double-transposition α′, there
exists γ3 ∈ At such that γ−1

3 · α′ · γ3 = (1 2)(3 4) and γ3 permutes ≤ 8 points.
For any such choice of γ := (γ1, γ2, γ3), let Cγ : (At)

t → (At)
t denote a circuit of depth

O(log t) that satisfies

∏

i

xi = α =⇒
∏

i

Cγ(x)i = γ−1
3 · [[α, γ1], γ2] · γ3

for every α ∈ At and x ∈ (At)
t. The crucial point is that if

∏
i xi 6= id then there exists γ

such that
∏

i Cγ(x)i = (1 2)(3 4), and otherwise
∏

iCγ(x)i = id for every γ.
Observe that the number of double-transpositions in At is

(
t

4

)
· 3, the number of 3-cycles

is
(
t

3

)
· 2, and the number of permutations that permute ≤ 8 points is <

(
t

8

)
· |A8|, all of

which are tO(1). Thus on input x, C ′ checks in depth O(log t) if any of these tO(1) choices of
γ = (γ1, γ2, γ3) satisfies C(Cγ(x)) = 1.

Claim. Let t ≥ 8. For every double-transposition α ∈ At, there exists γ ∈ At such that
γ−1αγ = (1 2)(3 4) and γ permutes ≤ 8 points.

Proof. Denote α = (a b)(c d). Any injective function φ : {1, 2, 3, 4} ∪ {a, b, c, d} → [8] maps
α and (1 2)(3 4) to two double-transpositions in A8. Since the latter are conjugate, and since
the γ ∈ A8 that “witnesses” this conjugacy necessarily permutes ≤ 8 points, applying φ−1

(suitably defined) to γ yields an element in At that permutes ≤ 8 points and witnesses the
conjugacy of α and (1 2)(3 4).

3.1 Proof of Theorem 3.2

Recall from §1 the following encoding of branching programs by permutations. The proof of
this theorem is implicit in [CM87, Prop. 1].

Theorem 1.4 ([CM87]). There exists t = O(s) and a circuit C of depth O(log s) such that,
on input (B, x) where B is a branching program of size s ≥ |x|, C outputs a permutation σ ∈
St such that B accepts x iff 1 and t are in the same cycle in σ’s disjoint cycle representation.

Next we use this to show that the problem of deciding if a vector over St has product = id

is L-complete. This proof is due to Eric Allender and V. Arvind (personal communication),
and we include it with their permission.

Theorem 3.3. If for sufficiently large t there is a circuit of depth O(log t) that decides if its
input in (St)

t has product = id, then NC1 = L.

Proof. Let a string x and a branching program B of size s = poly(|x|) be given. Let t = O(s)
be as in Theorem 1.4.

11

We first construct t vectors in (St)
t such that B accepts x iff the product of some vector

is a permutation that maps 1 7→ t. Let σ ∈ St be given by Theorem 1.4. Notice that 1 and t
are in the same cycle in σ’s disjoint cycle representation iff ∃k ≤ t such that σk maps 1 7→ t.
Thus for k = 1, . . . , t we construct the kth vector to have product σk, by concatenating k
copies of σ and t− k copies of id. (Up to now this construction appears in [CM87].)

Next we transform z ∈ (St)
t to z′ ∈ (St+1)

2t+2 satisfying

∏

i

zi maps 1 7→ t ⇐⇒
∏

i

z′i = id. (2)

This is done via the map

z′ := (z, (t t+ 1), z−1, (1 t+ 1))

where z−1 := (z−1
t , . . . , z−1

1) ∈ (St)
t and we embed St into St+1 in the canonical way. This is

computable in depth O(log t).
To see that (2) holds, denote π :=

∏
i zi and π′ :=

∏
i z

′
i. If π(1) 6= t, then π′(1) = t + 1

and so π′ 6= id. On the other hand if π(1) = t, then it can be checked that π′(1) = 1 and
π′(t+ 1) = t+ 1, and it is clear that π′(j) = j for 1 < j < t+ 1 since π(j) is not touched by
(t t + 1) and j is not touched by (1 t+ 1).

Thus we have constructed t vectors in (St+1)
2t+2 such that B accepts x iff some vector

has product = id. We can reduce the vectors’ length to t+1 in depth O(log t) by multiplying
adjacent permutations. Finally, applying the circuit in the assumption of the theorem and
an OR-tree yields a circuit of depth O(log t) that decides if B accepts x.

To conclude the proof of Theorem 3.2, we observe that there is an embedding M : St →
At+2 computable in NC1 that preserves the identity product. M is defined by M(α) := α
if α is even and M(α) := α · (t + 1 t + 2) if α is odd. It can be checked that this is a
homomorphism, and thus

∏
i xi = id ⇔

∏
i M(xi) = id. Computing M requires deciding if

α ∈ St is odd or even, which can be done in depth O(log t) by checking if there are an odd
or even number of pairs i < j ≤ t such that α(i) > j.

4 Proof of Corollary 1.3

Theorem 1.2 is immediate from Theorems 2.1 and 3.1. We now prove Corollary 1.3 from
Theorem 1.2 using the random self-reducibility of group products (cf. [MV13, Thm. 3.9]).

Theorem 1.2. Assume that there is a circuit family C of depth O(log t) such that for
sufficiently large t, there exists α ∈ At such that C decides the α-product problem over (At)

t.
Then NC1 = L.

Corollary 1.3. If NC1 6= L, then NC1 is (t−ω(1), α)-fooled by (At)
t for infinitely many t and

all α ∈ At.
More precisely, if NC1 6= L then for all k, infinitely many t, and all α ∈ At, the class of

NC1 circuits with depth k log t and output length k log t is (t−k, α)-fooled by (At)
t.

12

Proof of Corollary 1.3. Assume that there exists k such that for sufficiently large t, there
exists α ∈ At and a circuit C of depth k log t such that ∆(C(Dα), C(Did)) ≥ t−k, where
recall that Dg is the uniform distribution over {x ∈ (At)

t |
∏

i xi = g}.
Let S ⊆ {0, 1}k log t be the set that maximizes Pr[C(Dα) ∈ S]−Pr[C(Did) ∈ S], and note

that checking x ∈ S can be done in depth O(log t). Thus, there exists C ′ : (At)
t → {0, 1} of

depth O(log t) such that

Pr[C ′(Dα) = 1]− Pr[C ′(Did) = 1] ≥ t−k. (3)

Define ǫα := Pr[C ′(Dα) = 1] and ǫid := Pr[C ′(Did) = 1], and note that ǫα ≥ t−k.
Let C ′′ be the randomized circuit of depth O(log t) that computes as follows on input

x ∈ (At)
t. First for m := t3k+3/ǫα = tO(k), C ′′ samples z1, . . . , zm ∈ (At)

t independently from
Dg where g :=

∏
i xi ∈ {α, id}. This is done by choosing uniform r1, . . . , rt−1 ∈ At for each

i ≤ m and computing zi := (x1r1, r−1
1 x2r2, . . . , r−1

t−1xt). Then C ′′ outputs α if

(1− 1/(2tk)) ·mǫα ≤
m∑

i=1

C ′(zi) ≤ (1 + 1/(2tk)) ·mǫα

and otherwise outputs id.
We now prove the following claim.

Claim. For all x ∈ (At)
t such that

∏
i xi ∈ {α, id}, we have Pr[C ′′(x) =

∏
i xi] > 1− |At|

−t

over the random coins of C ′′.

This implies the theorem, as follows. By a union bound there is a way to fix the random
coins of C ′′ such that C ′′(x) =

∏
i xi for every x satsifying

∏
i xi ∈ {α, id}. This solves the

α-product problem in NC1, and thus by Theorem 1.2 we have NC1 = L.

Proof of Claim. Denote X :=
∑m

i=1C
′(zi), and µ := E[X]. Note that |At|

t = (t!/2)t < 2t
3

.
Fix x, and first assume

∏
i xi = α which means µ = mǫα = t3k+3. Then

Pr[C ′′(x) = α] = Pr
[
|X − µ| ≤ µ/(2tk)

]
≥ 1− 2e−µ·t−3k

≥ 1− 2−t3

by a Chernoff bound.
Now assume

∏
i xi = id. Then µ = mǫid, and since ǫα/ǫid ≥ 1 + 1/tk by (3), we have

(1− 1/(2tk)) ·mǫα ≥ µ(1 + 1/(3tk)). Then using another Chernoff bound, we have

Pr[C ′′(x) = id] ≥ 1− Pr[X ≥ µ(1 + 1/(3tk))] ≥ 1− e−µ·t−3k

≥ 1− 2−t3 .

This completes the proof of the theorem.

Acknowledgements. We are grateful to Eric Allender and V. Arvind for sharing the
proof of Theorem 3.3 and allowing us to include it here, and to Emanuele Viola for helpful
discussions and comments on a previous draft of this paper.

13

References

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. of Computer and System Sciences, 38(1):150–164,
1989.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Int. Cryptol-
ogy Conf. (CRYPTO), pages 1–18, 2001.

[BT88] David A. Mix Barrington and Denis Thèrien. Finite monoids and the fine structure of
NC1. J. ACM, 35(4):941–952, 1988.

[CL94] Jin-yi Cai and Richard J. Lipton. Subquadratic simulations of balanced formulae by
branching programs. SIAM J. on Computing, 23(3):563–572, 1994.

[Cle91] Richard Cleve. Towards optimal simulations of formulas by bounded-width programs.
Computational Complexity, 1:91–105, 1991.

[CM87] Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic
space. J. Algorithms, 8(3):385–394, 1987.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computa-
tional assumptions. In Theory of Cryptography Conf. (TCC), pages 230–247, 2012.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In
38th ACM Symposium on Theory of Computing (STOC), pages 711–720, 2006.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
Int. Conf. on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 135–156, 2010.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In Int. Cryptology Conf. (CRYPTO), pages 59–79, 2010.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage.
In IEEE Symp. on Foundations of Computer Science (FOCS), 2012.

[IL95] Neil Immerman and Susan Landau. The complexity of iterated multiplication. Inf.
Comput., 116(1):103–116, 1995.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Int. Cryptology Conf. (CRYPTO), pages 463–481, 2003.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage.
In Int. Cryptology Conf. (CRYPTO), pages 41–58, 2010.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In ACM Symp. on the Theory
of Computing (STOC), pages 20–31, 1988.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In ACM Symp. on the
Theory of Computing (STOC), 2013.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Int. Cryptology Conf. (CRYPTO), pages 552–569, 2012.

[Wil09] Robert A. Wilson. The Finite Simple Groups. Springer, 2009.

14

