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Abstract. Yoneyama et al. introduced Leaky Random Oracle Model
(LROM for short) at ProvSec2008 in order to discuss security (or inse-
curity) of cryptographic schemes which use hash functions as building
blocks when leakages from pairs of input and output of hash function-
s occur. This kind of leakages occurs due to various attacks caused by
sloppy usage or implementation. Their results showed that this kind of
leakages may threaten the security of some cryptographic schemes. How-
ever, an important fact is that such attacks would leak not only pairs
of input and output of hash functions, but also the secret key. There-
fore, LROM is rather limited in the sense that it considers leakages from
pairs of input and output of hash functions alone, instead of taking into
consideration other possible leakages from the secret key simultaneously.
On the other hand, many other leakage models mainly concentrate on
leakages from the secret key and ignore leakages from hash functions for
a cryptographic scheme exploiting hash functions in these leakage mod-
els. Some examples show that the above drawbacks of LROM and other
leakage models may cause insecurity of some schemes which are secure
in the two kinds of leakage model.

In this paper, we present an augmented model of both LROM and some
leakage models, which both the secret key and pairs of input and out-
put of hash functions can be leaked. Furthermore, the secret key can be
leaked continually during the whole life cycle of a cryptographic scheme.
Hence, our new model is more universal and stronger than LROM and
some leakage models (e.g. only computation leaks model and bounded
memory leakage model). As an application example, we also present a
public key encryption scheme which is provably IND-CCA secure in our
new model.

Keywords: Leakage Resilient Cryptography, Leaky Random Oracle Mod-
el, Public Key Cryptography, Cramer-Shoup cryptosystem.



1 Introduction

Hash functions are one of the most important building blocks of cryptograph-
ic schemes. For example, public key encryption scheme, digital signature, au-
thenticated key exchange etc. On one hand, hash functions can be exploited
to construct cryptographic schemes in the standard model (SM). For example,
Cramer-Shoup cryptosystem [9] is a public key encryption scheme which is based
on universal one-way hash function family in SM. On the other hand, for a cryp-
tographic scheme in the random oracle model [1] (ROM), the random oracle is
usually instantiated with hash functions.

If possible, a cryptographic scheme will be implemented on some device in
practice. A fact that cannot be neglected is that any implementation of a cryp-
tographic scheme can be threatened by attacks caused by sloppy usage or im-
plementation (For example, physical attacks such as side-channel attacks [6,7,8]
and cold boot attacks [4]). These attacks may leak sensitive information in the
cryptographic scheme. In [5], Yoneyama et al. applied this view to hash function-
s. They considered the situation that all contents of pairs of input and output of
hash functions used by a cryptographic scheme can be leaked to an adversary.
These leakages may also caused by sloppy usage or implementation. A possible
example of sloppy usage is that pairs of input and output of hash functions may
remain in some insecure area of the memory for reusing of hash values in order
to reduce computational costs or for failing to release temporary memory area,
then contents of the memory may be revealed without advanced implementa-
tion attacks [5]. If a cryptographic scheme is implemented without any sloppy
usage, an adversary can also try to attack the implementation and may obtain
pairs of input and output of hash functions by side-channel attacks [6,7,8], cold
boot attack1 [4], and malicious Trojan Horse programs etc. Thus, even if we
successfully developed exceedingly secure hash functions, such kind of leakages
might be possible. In [5], Yoneyama et al. formulated Leaky Random Oracle
Model (LROM) capturing this kind of leakages in order to discuss security (or
insecurity) of cryptographic schemes which use hash functions as building blocks
when such kind of leakages occurs. Yoneyama et al. have analyzed the security
of five prevailing cryptographic schemes in LROM including Full Domain Hash
[1], Optimal Asymmetric Encryption Padding [17], Cramer-Shoup cryptosystem,
Kurosawa-Desmedt cryptosystem [18] and NAXOS [19].

1.1 Motivation

An important fact is that an adversary can obtain not only leakages from pairs
of input and output of hash functions, but also leakages from the secret key of a
cryptographic scheme from attacks caused by sloppy usage or implementation.
For example, most side channel attacks target the secret key of a cryptographic
scheme because the secret key is fixed in every invocation and can be revealed
easier than pairs of input or output of hash functions. In addition, Halderman

1 The intermediate computation result will be stored in memory.
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et al. [4] put forward cold boot attack in which an adversary can learn a (noisy)
version of the entire memory1 even if no computation is going on. What’s more,
malicious Trojan Horse programs can be designed to obtain both the secret key
and pairs of input and output of hash functions by an adversary easily. In these
scenarios, an adversary can obtain both leakages from the secret key and leakages
from hash functions.

On one hand, LROM only considers leakages from hash functions and as-
sumes that the secret key of a cryptographic scheme that is secure in LROM
will not be leaked to an adversary. However, in many real world settings, leakages
from the secret key completely compromise the security of many cryptographic
schemes. The security of any cryptographic scheme that is secure in LROM may
not holds when the adversary can obtain additional leakages from the secret
key. For example, if an adversary obtains the stateless secret key of Cramer-
Shoup cryptosystem2 completely from continual leakages, he can easily break
the scheme. Therefore, LROM is very limited.

On the other hand, many other leakage models [2,3,10,11,13,15,16,20,27,28,29,
30] which mainly concentrate on leakages from the secret key are given out in
recent years. However, the result of the paper [5] shows that leakages from hash
functions used by a cryptographic scheme that is secure in these leakage models
may threaten its security. A specific example is the public key encryption scheme
in Section 4 of the paper [2] when the scheme is instantiated by a hash function3.
If all contents of pairs of input and output of the hash function are leaked, the
above scheme will not be secure any more. Therefore, this is a drawback of these
leakage models which ignore leakages from hash functions4.

In order to improve both LROM and other leakage models, we try to for-
mulate a new leakage model in which both the secret key and pairs of input
and output of hash functions can be leaked. We believe that our new model is
more universal and stronger than LROM due to leakages from the secret key
and some leakage models due to leakages from hash functions. We also try to
build provably secure cryptographic schemes in our new model.

1.2 Our Contribution

The main contributions of this paper are two-fold as follows. First, we introduce
a new leakage model which is more universal and stronger than LROM and some
other leakage models. Second, we give out a public key encryption scheme that
is provably secure in this new leakage model as an application example.
Our New Model For a cryptographic scheme which exploits hash functions,
our new model allows an adversary to obtain both leakages from the secret key

1 Note that the secret key must be stored in the memory.
2 Cramer-Shoup cryptosystem is secure in LROM [5].
3 Note that any family of pairwise independent hash functions is an average-case strong
extractor [14].

4 Here we assume the secret key is not an input or an output of hash functions used
by a cryptographic scheme in these leakage models.
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continually and leakages from pairs of input and output of the hash functions
in the same way as LROM. Any cryptographic scheme which is secure in our
new model will be also secure in LROM. However, any cryptographic scheme
which is secure in LROM may not be secure in our new model (For example, the
adversary can obtain the stateless secret key completely from continual leakages
to break the scheme.). Therefore, our new model is more universal and stronger
than LROM. Additionally, our new model is more universal and stronger than
some other leakage models [2,3,10,13] for cryptographic schemes in these leakage
models exploit hash functions (both in SM and ROM). Because these leakage
models ignore leakages from hash functions and only consider bounded leakages
from the secret key.
A Public Key Encryption Scheme in Our New Model We also construct
a public key encryption scheme which is IND-CCA secure in our new model
without any complex assumptions and cryptographic tools. Our new public key
encryption scheme is based on Cramer-Shoup cryptosystem, Hiding Subspaces
principle [11,12], and a new assumption which is equivalent to the Decisional
Diffie-Hellman assumption (DDH assumption). This new scheme is better than
some known practical leakage resilient public key encryption schemes because
the new scheme can tolerate more leakages and has higher security level. Fur-
thermore, the new scheme can be implemented easily in practice. Therefore, we
believe it can be used widely.

1.3 Related Work

Work on tolerating leakages was initiated by Rivest and Boyko [21,22] in the
context of increasing the cost of brute-force attacks on block ciphers and effi-
ciency issues. Then exposure-resilient cryptography [23,24,25] considers simple
leakage functions that reveal a subset of the bits of the secret key or the internal
memory of the cryptographic device. In contrast to these works, more powerful
leakage function (i.e. efficiently computable leakage function) that can perform
some global computation on the secret key are used to describe leakages from the
secret key. Micali et al. [26] proposed to construct and study formal models that
capture this general type of leakages. This study has led to two distinct strands
of work as follows.

Bounded Leakage Models This line of work considers the leakage models that
allow an adversary to obtain the output of any efficiently computable leakage
function f , of his choice, to the secret key SK. The unique restriction of f is that
the output f(SK) does not reveal the entire secret key. For example, Akavia et
al. [10] restricted the output length of f is bounded by the length of the secret
key, i.e. |f(SK)| ≪ |SK|. Many other papers can be found in these leakage
models [2,3,10,13,16,27,28,29].

Continual Leakage Models This line of work considers the case where leak-
ages are continual, i.e. a bounded amount of information about the secret key
is leaked in each time period, but the overall leakages in the whole life cycle of
a cryptographic scheme is unbounded. It is easy to see that to guarantee any
security in this kind of leakage models the secret key must necessarily be stateful
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which means that the secret key must be updated between time-periods while
the public key remains unchanged. Micali et al. [26] proposed to study securi-
ty against continual leakages under the “only computation leaks information”
axiom. Some papers [31,32] design leakage resilient cryptographic schemes un-
der this axiom. Furthermore, there exist several papers [11,20,30] in continual
leakage models without the “only computation leaks information” axiom.

However, none of the above work considers leakages from the secret key and
leakages from pairs of input and output of hash functions simultaneously.

1.4 Organization of This Paper

The remainder of this paper is organized as follows. In section 2, we introduce
some basic notations, concepts and backgrounds. We present our new leakage
model in section 3. Our provable secure public key encryption scheme in our new
model is introduced in section 4. In section 4, we also prove the security of this
scheme. We conclude this paper in section 5.

2 Preliminaries

In this section, we first present some notations and concepts used throughout the
paper. Second, we review LROM. Third, we introduce the security of Cramer-
Shoup cryptosystem in SM and LROM. Finally, we introduce the computational
assumption which is used in this paper.

2.1 Notations and Concepts

The statistical distance between two random variables X and Y over a common
domain S is defined by SD(X,Y ) = 1

2

∑
x∈S |Pr[X = x]− Pr[Y = x]|. We write

X
s≈ϵ Y to denote SD(X,Y ) ≤ ϵ and just plain X

s≈ Y if the statistical distance
is negligible in some security parameter. In the latter case, we say that X,Y are
statistically indistinguishable.

Let Gen denotes a probabilistic polynomial-time algorithm that takes as input
a security parameter and outputs a triple (G, q, g), where G is a group of order
q and is generated by g ∈ G.

Let v = (v1, v2, . . . , vn), vi ∈ Zq is a vector, we use gv to denote the vector
(gv1 , gv2 , . . . , gvn). If t = (t1, t2, . . . , tn) and s = (s1, s2, . . . , sn) are two vectors
in Zn

q , we use ⟨t, s⟩ = t1s1 + t2s2 + · · ·+ tnsn to denote the inner product of the
two vectors. For a random number r ∈ Zq, rt = (rt1, rt2, . . . , rtn) is also a vector
in Zn

q . Let vector 1n = (1, 1, . . . , 1), there exist n components in the vector.

If A ∈ Zn×m
p is a n ×m matrix of scalars, we use colspan(A) to denote the

subspaces spanned by the columns of A.
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2.2 Leaky Random Oracle Model

In order to concentrate on effects of leakages, LROM supposes that hash func-
tions are ideal as random oracle without considering any internal structure of
real hash functions but pairs of input and output of hash functions can be leaked
to an adversary [5]. In LROM, pairs of input and output of a hash function are
stored in a hash list. The hash list is a virtual notation and is just used for
describing leakages. The hash list is not kept in memory by an implementor
without any sloppy usage. However, an adversary can also obtain all contents
of the hash list by various attacks1. On the other hand, some sloppy usage of
hash functions (Please see the example in Section 1.) causes direct leakages of
the hash list. LROM is shown in the following.

Definition 1. (Leaky Random Oracle Model) LROM is a model assuming
the leaky random oracle. We suppose a hash function H : X → Y such that
xi ∈ X, yi ∈ Y (i is an index), and X and Y are both finite sets. Also, let LH

be the hash list of H. We say H is a leaky random oracle if H can be simulated
by the following procedure:

Initialization: LH ← ⊥
Hash query: For a hash query xi to H, behave as follows:
If xi ∈ LH , then find yi corresponding to xi and output yi as the answer to

the hash query. If xi /∈ LH , then choose yi randomly, add pair (xi, yi) to LH and
output yi as the answer to the hash query.

Leak hash query:2 For a leak hash query to H, output all contents of the
hash list LH .

If a cryptographic scheme is not secure in LROM, the cryptographic scheme
must not be secure against various attacks caused by sloppy usage or implemen-
tation when it uses any real hash functions. If a cryptographic scheme is secure in
LROM, it may still be insecure when it uses real hash functions against these at-
tacks. Therefore, Cramer-Shoup cryptosystem is considered whether it is secure
in LROM in [5].

2.3 The Security of Cramer-Shoup Cryptosystem

We ignore the description of Cramer-Shoup cryptosystem and only introduce its
security here. In [9], the security of Cramer-Shoup cryptosystem in SM stated
in the following lemma:

Lemma 1 (Security of Cramer-Shoup cryptosystem in SM). If the hash
function H is chosen from a family of universal one-way hash functions and the

1 The attacks include side-channel attacks, cold boot attack, and malicious Trojan
Horse programs etc.

2 The leak hash query is identical to the leak query in Definition 1 in [5]. We rename the
leak query as leak hash query here because we will define leakage query in Definition
2 in Section 3 of this paper.
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DDH assumption of the group G holds, then Cramer-Shoup cryptosystem satis-
fies IND-CCA secure.

In [5], the security of Cramer-Shoup cryptosystem in LROM is analyzed.
Cramer-Shoup cryptosystem is also secure in LROM.

Lemma 2 (Security of Cramer-Shoup cryptosystem in LROM). If the
DDH assumption of the group G holds, then Cramer-Shoup cryptosystem satisfies
IND-CCA secure where H is modeled as a leaky random oracle.

2.4 Computational Assumption

In this paper, we use an assumption which is equivalent to the DDH assumption
as follows.

The Generalized Diffie-Hellman assumption. The Generalized Decisional
Diffie-Hellman (GDDH) assumption is that the two ensembles

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}},

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}}

are computationally indistinguishable, where (G, q, g) ←Gen(1k), and the ele-
ments g1, g2, . . . , g2n ∈ G and r, r1, r2 ∈ Zq are chosen independently and uni-
formly at random.

The GDDH assumption is not mentioned in previous work. We show that
the GDDH assumption and the DDH assumption are equivalent in Theorem 1.
The proof of Theorem 1 is shown in Appendix A.

Theorem 1. The GDDH assumption and the DDH assumption are equivalent.

3 Our New Model

In this paper, we use the same notations and assumptions as LROM. In our new
model, we consider both leakages from the secret key and leakages from the hash
lists of hash functions.

The secret key is stateless means that it is stored in memory and remains
unchanged during the whole life cycle of a cryptographic scheme. It is well known
that if the secret key is leaked to an adversary entirely, no leakage resilient
cryptographic scheme can be designed. Therefore, for a leakage model where the
secret key is stateless, only a part of information of the secret key can be leaked
to the adversary during the whole life cycle of a cryptographic scheme in this
leakage model.

However, this leakage scenario about the secret key is not suitable for our new
model. During the whole life cycle of a cryptographic scheme, our new model
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allows the adversary can obtain all contents of the hash list as that in LROM. It
is unreasonable to assume the adversary can obtain only a part of information
of the secret key during the whole life cycle of the same cryptographic scheme.
But the adversary can not obtain the secret key entirely. Therefore, in our new
model, the secret key must be stateful (Like the schemes in Continual Leakage
Models) and be updated before the adversary obtains enough information about
the secret key to carry out various attacks. The amount of information about the
secret key leaked in each time period is bounded, but the overall leakages from
the secret key in the whole life cycle of a cryptographic scheme are unbounded.

In our new model, we use an efficiently computable leakage function Leak to
describe leakages from the secret key in each time period. The input of Leak is
the secret key SK. The only restriction of Leak is that the output length of it is
bounded by the length of the secret key (i.e. |Leak(SK)| ≪ |SK|). The leakage
function in LROM can be viewed as an identity function. If we use a simpler
leakage function f which can only output a subset of the bits of the secret key,
the leakage function about the secret key and the leakage function about the
hash list are unified. Clearly, the two kinds of leakage functions in our leakage
model are not only unified, but also more powerful than the above case. Because
the leakage function Leak is an efficiently computable leakage function which is
more powerful than the simpler leakage function f .

To sum up, the leakage pattern about the secret key and the leakage pattern
about the hash functions in our new model are unified.

We call our new model Continual Key Leakages and Hash Function Leakages
Model (KHLM for short). As an example, we consider a public key encryption
scheme which achieves IND-CCA security in KHLM. Similarly, we can define a
IND-CPA secure public key encryption scheme, a signature scheme which is ex-
istentially unforgeable under an adaptive chosen-message attack etc. in KHLM.
A public key encryption scheme in KHLM consists of the following algorithms:

– KeyGen(1k): Takes as input the security parameter k and outputs a public
key PK, a secret key SK (denoted by SK0) and an update key UK.

– Encrypt(PK,M): The input is a public key PK and a message M . The
output is a ciphertext CT .

– Decrypt(SKi, CT ): The input is a secret key SKi and a ciphertext CT .
The output is a decrypted message M .

– Update(UK,SKi): The input is an update key UK and an old secret key
SKi. The output is an updated secret key SKi+1.

Note that the output of Update(UK,SKi) (i.e. SKi+1) and SKi are corre-
sponding to the same public key PK. This means that for a ciphertext CT
which is encrypted by PK (CT =Encrypt(PK,M)), we have

Decrypt(SKi, CT )=Decrypt(SKi+1, CT )=M .

Moreover, the size of the secret key should be unchanged after the update process
(i.e. |SKi| = |SKi+1|). The secret key space of a public key should be large
enough. Let L(k) be a function of the security parameter and L(k)≪ |SKi|.
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Our new model is as follows. In Definition 2, we simply assume the scheme
Π uses one hash function. For a scheme uses more than one hash function, our
new model allows the hash lists of all hash functions can be leaked similarly.

Definition 2. We say that a public key encryption scheme Π is L(k)-IND-CCA
secure in KHLM if for any probabilistic polynomial time adversary A, it holds
that

AdvLCCA
Π,A (k) =

∣∣∣Pr[ExptLCCA
Π,A (0) = 1]− Pr[ExptLCCA

Π,A (1) = 1]
∣∣∣

is negligible in k, where ExptLCCA
Π,A (b) is defined as follows:

– Let LH denotes the hash list of a hash function H used by Π. Initialization:
LH ← ⊥

– Challenger chooses (PK,UK,SK0)← KeyGen(1k) and sends PK to A.
– The adversary A may ask for the following four queries:

Leakage query: Each such query consists of an efficiently computable leak-
age function Leak : {0, 1}|SK| → {0, 1}L(k) with L(k) bits output. On the ith

such query with Leaki, the challenger gives the value Leaki(SKi) to A and
computes the updated secret key SKi+1 ← Update(UK,SKi).
Hash query: For a hash query ai to H, behave as follows:
If ai ∈ LH , then find bi corresponding to ai from LH and output bi to A. If
ai /∈ LH , then choose bi randomly, add pair (ai, bi) to LH and output bi to
A.
Leak hash query: For a leak hash query to H, output all contents of the
hash list LH to A.
Decryption query: For a decryption query with a ciphertext CT , decrypt
CT with the current secret key SKi and output Decrypt(SKi, CT ) to A.

– At some point A gives the challenger two messages M0,M1 and |M0| = |M1|.
The challenger computes CT ∗ ← Encrypt(PK,Mb). Then the challenger
sends CT ∗ to A.

– The adversary A can not ask the leakage query after he gets CT ∗. The adver-
sary A can also ask the hash query, the leak hash query, and the decryption
query. But he can not ask the decryption query with CT ∗.

– The adversary A outputs a bit b′. If b′ = b, then the experiment outputs 1,
otherwise, the experiment outputs 0.

In KHLM, we assume the update process of the secret key is leak-free. We
note that this security property may be motivated in practice, by thinking of a
device storing the secret key SKi as being used “in the field” for some amount
of time, during which the secret key can leak up to L(k) bits, but then always
being brought back to a “secure base” where the secret key SKi is updated to
SKi+1 using an update key UK which is stored securely and externally. In [12]
and [33], the same assumption was introduced.

Note that, the adversary in KHLM is not allowed to ask the leakage query
after the challenge phase. This restriction is necessary as many other leakage
models [2,10,11,13,20,30]: the adversary can encode the decryption algorithm,
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the challenge ciphertext, and the to messages M0 and M1 into a leakage function
that outputs the bit b. Additionally, in KHLM, we assume the randomness used
by the challenger to compute CT ∗ ← Encrypt(PK,Mb) can not be leaked to
the adversary even if a part of information of it. Otherwise, the adversary can
break the security easily1 and no leakage resilient cryptographic scheme can be
designed in this leakage model. As far as we know, no leakage model allows
leakages from this randomness occur.

In KHLM, the adversary can get not only leakages from hash functions, but
also continual leakages from the secret key. Hence, our new model is more uni-
versal and stronger than both LROM and some leakage models in [2,10,13] (In
KHLM, the adversary asks the leakage query non-adaptively (See [10] for the
definition and more details.). For a chosen-plaintext attack adversary, the securi-
ty definition of a public key encryption scheme in our new model is equivalent to
a security definition in which the adversary can ask the leakage query adaptive-
ly [10]. However, it is not clear that whether the same equivalence holds when
we extend the definition to consider a chosen-ciphertext attack adversary. If the
equivalence holds, KHLM is also stronger than the leakage models in [2,10,13]
where a chosen-ciphertext attack adversary is considered.).

In the next section, we will present a public key encryption scheme which is
L(k)-IND-CCA secure in our new model.

4 A Provably Secure Public Key Encryption Scheme in
Our New Model

In this section, we first introduce our public key encryption scheme in KHLM
and then prove the security of it. Our public key encryption scheme in KHLM
is denoted by PKE and is based on Cramer-Shoup cryptosystem. The PKE is
shown in the following.

KeyGen: The key generation algorithm runs as follows. It generates a k bit
prime q where k is the security parameter. Let G is a group of prime order
q. The generator of G is g. It chooses A1,A2 uniformly and independently

at random from Zn×(n−1)
q (denoted by A1,A2

∗← Zn×(n−1)
q ) and two random

vectors t = (t1, t2, . . . , tn), ti ∈ Zq, i = 1, 2, . . . , n and s = (s1, s2, . . . , sn), si ∈
Zq, i = 1, 2, . . . , n satisfying ker(t) = colspan(A1) and ker(s) = colspan(A2).
This requirement can be satisfied easily without negligible probability. Let t =∑n

i=1 ti mod q and s =
∑n

i=1 si mod q and g1 = gt, g2 = gs. It generates five
vectors x1,x2,y1,y2, z uniformly and independently at random from Zn

q . Let
x1, x2, y1, y2, z be five numbers in Zq. The five numbers satisfy ⟨t,x1⟩ mod q =
tx1 mod q, ⟨s,x2⟩ mod q = sx2 mod q, ⟨t,y1⟩ mod q = ty1 mod q, ⟨s,y2⟩ mod
q = sy2 mod q, and ⟨t, z⟩ mod q = tz mod q. The group elements c = gx1

1 gx2
2 ,

d = gy1

1 gy2

2 , h = gz1 are computed. A hash function H is chosen from the family
of universal one-way hash functions.

1 For example, the adversary can obtain a part of information of Encrypt(PK,M0; r)
(r is the randomness.) which can be used to determine b.
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It chooses β1,β3,β5 ∈ ker(t) and β2,β4 ∈ ker(s) uniformly and inde-
pendently at random. Let matrix UP = [β1,β2,β3,β4,β5]

⊤ denotes a n × 5
matrix. The public key PK is (gt, gs, c, d, h,H). The secret key SK (i.e. SK0) is
a n×5 matrix and SK = [x1,x2,y1,y2, z]

⊤+UP . The update key UK is (t, s).

Remark 1. The values t, s, x1, x2, y1, y2, z should be deleted after the key gener-
ation algorithm so that the adversary can not obtain them by attacks caused by
sloppy usage or implementation.
Remark 2. For convenience, we use the same symbol [x1,x2,y1,y2, z]

⊤ to de-
note every secret key SKi, (i = 0, 1, 2, . . .). Note that, for any i ̸= j, we have
SKi ̸= SKj except negligible probability.

Encrypt: The encryption algorithm runs as follows. For an input message
M ∈ G, it chooses r ∈ Zp at random. It computes u1 = gr⟨t,1n⟩ = gr1,
u2 = gr⟨s,1n⟩ = gr2, e = hrM , α = H(u1, u2, e) and v = crdrα. It outputs a
ciphertext (grt, grs, e, v).

Decrypt: The decryption algorithm runs as follows. Given a ciphtertext (grt, grs,
e, v), it computes u1 = g⟨rt,1n⟩, u2 = g⟨rs,1n⟩, α = H(u1, u2, e) and verifies
whether g⟨rt,x1⟩+α⟨rt,y1⟩+⟨rs,x2⟩+α⟨rs,y2⟩ = v holds or not by using [x1,x2,y1,y2].
If the verification holds, then it outputs the message M = e/g⟨rt,z⟩ by using z.
Else if, it rejects the decryption as an invalid ciphertext ⊥.

Update: The update algorithm runs as follows. Given an old secret key SKi =
[x1,x2,y1,y2,z]

⊤, it chooses β1,β3, β5 ∈ ker(t) and β2,β4 ∈ ker(s) uniform-
ly and independently at random. Let matrix UP = [β1,β2,β3,β4,β5]

⊤ be a
n × 5 matrix. The new updated secret key is SKi+1 = SKi + UP . It outputs
SKi+1.

Since we have g⟨rt,x1⟩+⟨rs,x2⟩ = grx1
1 grx2

2 = cr, g⟨rt,y1⟩+⟨rs,y2⟩ = gry1

1 gry2

2 =
dr, and g⟨rt,z⟩ = grz1 = hr. The test performed by the decryption algorithm will
pass and the output will be e/hr = M . Therefore, the correctness of PKE can
be verified. Second, we verify that the updated secret key can also decrypt a
ciphertext correctly. For example, let’s consider the vector x1. It is clear that

g
⟨t,x1+β1⟩
1 = g⟨t,x1⟩+⟨t,β1⟩ = g⟨t,x1⟩, because β1 ∈ ker(t). Similarly, x2,y1,y2, z
can be updated correctly.

Theorem 2 establishes the security of the scheme PKE. We show the proof of
Theorem 2 in Appendix B.

Theorem 2. If the hash function H is chosen from a family of universal one-
way hash functions and the GDDH assumption of the group G holds, then the
PKE is L(k)-IND-CCA secure in KHLM, as long as L(k) < (n − 4)log(q) −
ω(log(k)).

Our scheme PKE is much stronger than the scheme in Section 4 of the paper
[2] because our scheme can tolerate more leakages and has higher security lev-
el. If the equivalence of adaptive leakages and non-adaptive leakages holds for
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a chosen-ciphertext attack adversary, our scheme PKE is still better than the
scheme in Section 6.3 of the paper [3] because our scheme can tolerate continual
leakages from the secret key and has higher tolerance leakage rate.

5 Conclusion and Future Work

In this paper, we introduce a new leakage model in which both the secret key
and the hash lists of hash functions can be leaked. Moreover, the secret key can
be leaked continually and refreshed. Therefore, our new model is more universal
and stronger than the LROM and some other leakage models [2,10,13]. We also
present a new public key encryption scheme PKE which is L(k)-IND-CCA secure
in this new model. In future work, one may try to consider additional leakages
from the key generation process and/or the update process. Leakage resilient
signature scheme in KHLM is also expected.
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Appendix A: The Proof of Theorem 1

Proof. We will prove Theorem 1 by the following two claims.

Claim 1.1 The GDDH assumption implies the DDH assumption.
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Proof. Let A be an adversary who can break the DDH assumption. We can
construct an adversary B who can break the GDDH assumption using A. The
adversary B is as follows. When B gets an input ensemble S1:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}},

he sends {G, g1, gn+1, g
r
1, g

r
n+1} to A and runs A as a subroutine. When A out-

puts b ∈ {0, 1}, then B outputs b. When B gets an input ensemble S2:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}},

he sends {G, g1, gn+1, g
r1
1 , gr2n+1} to A and runs A as a subroutine. When A

outputs b ∈ {0, 1}, then B outputs b. Clearly, we have

Pr[B(S1) = 1] = Pr[A(G, g1, gn+1, g
r
1, g

r
n+1) = 1],

Pr[B(S2) = 1] = Pr[A(G, g1, gn+1, g
r1
1 , gr2n+1) = 1].

Due to A can break the DDH assumption, then B can break the GDDH assump-
tion. Therefore, Claim 1.1 holds. 2
Claim 1.2 The DDH assumption implies the GDDH assumption.
Proof. Let A be an adversary who can break the GDDH assumption. We can
construct an adversary B who can break the DDH assumption using A. The
adversary B is as follows. When B gets an input ensemble {G, g1, g2, g

r
1, g

r
2} (r is

chosen uniformly at random from Zq), he chooses ai, bi ∈ Zq, i = 1, 2, . . . , n− 1
independently and uniformly at random and computes η1 = g1, ηi = g

ai−1

1 , ηri =

g
rai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηrn+1 = gr2, η
r
n+i = g

rbi−1

2 , i = 2, . . . , n. Thus, B
has the ensemble S1:

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr1, . . . , ηrn}, {ηrn+1, . . . , η
r
2n}}

and sends it to the adversary A. B runs A as a subroutine. When A out-
puts b ∈ {0, 1}, then B outputs b. Similarly, when B gets an input ensemble
{G, g1, g2, g

r1
1 , gr22 } (r1, r2 are chosen uniformly at random from Zq), he choos-

es ai, bi ∈ Zq, i = 1, 2, . . . , n − 1 independently and uniformly at random and

computes η1 = g1, ηi = g
ai−1

1 , ηr1i = g
r1ai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηr2n+1 =

gr22 , ηr2n+i = g
r2bi−1

2 , i = 2, . . . , n. Thus, B has the ensemble S2:

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr11 , . . . , ηr1n }, {η
r2
n+1, . . . , η

r2
2n}}

and sends it to the adversary A. B runs A as a subroutine. When A outputs
b ∈ {0, 1}, then B outputs b. Clearly, we have

Pr[B(G, g1, gn+1, g
r
1, g

r
n+1) = 1] = Pr[A(S1) = 1],

Pr[B(G, g1, gn+1, g
r1
1 , gr2n+1) = 1] = Pr[A(S2) = 1].

Due to A can break the GDDH assumption, it is clearly that B can break the
DDH assumption. Therefore, the Claim 1.2 holds. 2

This concludes the proof of the theorem. 2
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Appendix B: The Proof of Theorem 2

Proof. We define a new experiment ExptRLCCA
Π,A (b) for a public key encryp-

tion Π and any probabilistic polynomial time adversary A. The experiment
ExptRLCCA

Π,A (b) is identical to the experiment ExptLCCA
Π,A (b) except that the chal-

lenger chooses random numbers (denoted by URi) which has the same size as
the secret key and sends Leaki(URi) to the adversary in every leakage query.
The real secret key SK is updated normally. For our scheme PKE, it holds that

AdvLCCA
PKE,A (k) =

∣∣∣Pr[ExptLCCA
PKE,A (0) = 1]− Pr[ExptLCCA

PKE,A (1) = 1]
∣∣∣

≤
∣∣∣Pr[ExptLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (0) = 1]

∣∣∣
+
∣∣∣Pr[ExptRLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (1) = 1]

∣∣∣
+
∣∣∣Pr[ExptRLCCA

PKE,A (1) = 1]− Pr[ExptLCCA
PKE,A (1) = 1]

∣∣∣.
We will prove this theorem by the following three claims.
Claim 2.1 If the GDDH assumption of the group G holds and L(k) < (n −
4)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (0) = 1]

∣∣∣ < µ1(k)

, where µ1(k) is negligible in k.
Proof. By the following lemma, as long as L(k) < (n−4)log(q)−ω(log(k)), the
leakages from the real secret key SKi is distinguishable with the leakages from
URi for any leakage function Leaki.
Lemma 3 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X1 ∈ Zn×l1

q , X2 ∈ Zn×l2
q be ar-

bitrary matrixes. For randomly sampled A1
∗← Zn×m

q , E1
∗← Zm×l1

q , UR1
∗←

Zn×l1
q , A2

∗← Zn×m
q , E2

∗← Zm×l2
q , UR2

∗← Zn×l2
q we have:

(Leak(A1E1 +X1,A2E2 +X2),A1,A2)
s≈ (Leak(UR1,UR2),A1,A2),

as long as (m − max{l1, l2})log(q) − L(k) = ω(log(k)), n = poly(k), and q =
kω(1).
Proof. This lemma can be proved based on Corollary 8 in the paper of S.
Agrawal et al. [12]. We prove the lemma by the following two lemmas.
Lemma 4 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X1 ∈ Zn×l1

q , X2 ∈ Zn×l2
q be ar-

bitrary matrixes. For randomly sampled A1
∗← Zn×m

q , E1
∗← Zm×l1

q , UR1
∗←

Zn×l1
q , A2

∗← Zn×m
q , E2

∗← Zm×l2
q we have:

(Leak(A1E1+X1,A2E2+X2),A1,A2)
s≈ (Leak(UR1,A2E2+X2),A1,A2),
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as long as (m− l1)log(q)− L(k) = ω(log(k)), n = poly(k), and q = kω(1).
Proof. We first prove that

(Leak(A1E1 +X1,A2E2 +X2),A1)
s
≈ (Leak(UR1,A2E2 +X2),A1).

Now we assume that there is some function Leak and an (unbounded) dis-
tinguisher D that has a non-negligible distinguishing advantage for the two dis-
tributions

(Leak(A1E1 +X1,A2E2 +X2),A1)
s≈ (Leak(UR1,A2E2 +X2),A1).

Then we can define a function Leak′ and a distinguisher D′ which breaks the
problem of Corollary 8 in [12]. The matrixes X2, A2, and E2 are chosen uni-
formly and independently at random and satisfy the requirement of Lemma 4.
Let A2E2 +X2 be a fixed matrix. Given C = A1E1 +X1 or C = UR1, the
function Leak′ outputs ans := Leak(C,A2E2 + X2). The distinguisher D′ is
given (ans,A1) and outputs D(ans,A1). The distinguisher D

′ has the same dis-
tinguishing advantage as D. Therefore, indistinguishability holds as long as L(k)
satisfies the requirement. Then, using the fact that applying the same function
to two distributions cannot increase their statistical distance, we obtain

(Leak(A1E1+X1,A2E2+X2),A1,A2)
s
≈ (Leak(UR1,A2E2+X2),A1,A2).

2

Similarly, we can prove the following lemma and we ignore the proof here
due to space reason.
Lemma 5 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X2 ∈ Zn×l2

q be an arbitrary matrix.

For randomly sampled UR1
∗← Zn×l1

q , A1
∗← Zn×m

q , A2
∗← Zn×m

q , E2
∗← Zd×l2

q ,

UR2
∗← Zn×l2

q we have:

(Leak(UR1,A2E2 +X2),A1,A2)
s≈ (Leak(UR1,UR2),A1,A2),

as long as (m− l2)log(q)− L(k) = ω(log(k)), n = poly(k), and q = kω(1).
From Lemma 4 and Lemma 5, we can see that Lemma 3 holds. 2
Note that, in our scheme, the matrixes A1 and A2 in the key generation

algorithm are chosen uniformly and independently at random from Zn×(n−1)
q .

In the update algorithm, the old secret key SKi = [x1,x2,y1,y2,z]
⊤. The new

secret key SKi+1 is generated by A1E1 + [x1,y1, z]
⊤ and A2E2 + [x2,y2]

⊤,

where E1
∗← Zm×l1

q and E2
∗← Zm×l2

q . Furthermore, similar to the situation of
Cramer-Shoup cryptosystem, the secret key can not be leaked from the decryp-
tion query except negligible probability and can not be obtained from the public
information and leakages from hash lists. Therefore, by Lemma 3, the leakages
from the real secret key SKi and the leakages from a random matrix URi in
Zn×5
p can not be distinguished as long as L(k) < (n − 4)log(q) − ω(log(k)),

(i = 0, 1, . . .). In this way, Claim 2.1 is proved.2
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Claim 2.2 If the GDDH assumption of the group G holds, we have∣∣∣Pr[ExptRLCCA
PKE,A (0) = 1]− Pr[ExptRLCCA

PKE,A (1) = 1]
∣∣∣ < µ2(k)

, where µ2(k) is negligible in k.
For space reason, the details of the proof of Claim 2.2 is shown in Appendix

C. The crucial reasons of success of the proof are as follows. On one hand, the
leakage query in the two experiments does not leak the real secret key SKi and
only leaks URi. For a random matrix URi = [ur1, . . . ,ur5]

⊤, the probability
of ⟨t,ur1⟩ mod q = tx1 mod q equals to 1/q which is negligible in k. Therefore,
the adversary obtains even a part of leakage information about the real secret
key with negligible probability 1− (1−1/q)5. On the other hand, the leaky hash
query in KHLM cannot be advantage of the adversary. 2
Claim 2.3 If the GDDH assumption of the group G holds and L(k) < (n −
4)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLCCA

PKE,A (1) = 1]− Pr[ExptRLCCA
PKE,A (1) = 1]

∣∣∣ < µ3(k)

, where µ3(k) is negligible in k.
Proof. The proof of Claim 2.3 is similar to the proof of Claim 2.1. 2

Therefore, our new scheme PKE is L(k)-IND-CCA secure in KHLM. 2

Appendix C: The Proof of Claim 2.2

Proof. Assume that AdvRLCCA
PKE,A (k) is non-negligible and the hash family is uni-

versal one-way. Then there exists an adversaryA that can break the scheme PKE.
We will show how to use the adversary A to construct an adversary B for the
GDDH assumption. Define the set D as follows {({g1, . . . , gn}, {gn+1, . . . , g2n},
{gr1, . . . , grn}, {grn+1, . . . , g

r
2n})|g1, . . . , g2n

∗← G, r
∗← Zq} and the set R as follows

{({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n})|g1, . . . , g2n

∗← G,

r1, r2
∗← Zq}. If the input of the adversary B comes from D, the simulation

of B will be nearly perfect, and so the adversary A will have a non-negligible
advantage in guessing the hidden bit b. If the input of B comes from R, then the
adversary A’s view is essentially independent of b, and therefore the adversary
A’s advantage is negligible. Therefore, B can distinguish D from R with non-
negligible advantage which contradicts with the GDDH assumption.

We now give the details of B. The input to B is

(G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

The adversary B chooses vectors x1 = (x11, . . . , x1n) ∈ Zn
q ,x2 = (x21, . . . , x2n) ∈

Zn
q , y1 = (y11, . . . , y1n) ∈ Zn

q ,y2 = (y21, . . . , y2n) ∈ Zn
q , z1 = (z11, . . . , z1n) ∈

Zn
q , z2 = (z21, . . . , z2n) ∈ Zn

q independently and uniformly at random. Then the
adversary B computes c = gx11

1 gx12
2 · · · gx1n

n gx21
n+1g

x22
n+2 · · · g

x2n
2n , d = gy11

1 gy12

2 · · · gy1n
n

gy21

n+1g
y22

n+2 · · · g
y2n

2n , h = gz111 gz122 · · · gz1nn gz21n+1g
z22
n+2 · · · g

z2n
2n . The adversary B also
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chooses a hash functionH at random. The adversary B sends {(g1, . . . , gn), (gn+1,
. . . , g2n), c, d, h,H} as the public key to A. And the secret key is the matrix
[x1,x2,y1,y2,z1, z2]

⊤. Note that the adversary B’s key generation algorithm is
slightly different from the key generation algorithm of the actual cryptosystem.
In the latter, we essentially fix z2 = 0.

The adversary B answers the leakage query as follows: chooses URi ∈ Zn×5
q

uniformly at random, and sends Leaki(URi) to A. Note that, the matrix URi

is sampled uniformly at random from Zn×5
q . Therefore, Leaki(URi) leaks no

information about the actual secret key [x1,x2,y1,y2,z1,z2]
⊤ except negligible

probability.
The adversary B can answer the hash query and the leaky hash query nor-

mally. Note that the leaky hash query in KHLM cannot be advantage of the
adversary. The reason is that all input and output of the hash function H are
publicly known to the adversary because a ciphertext contains (u1, u2, e) which
is the input to the hash function.

The adversary B answers the decryption query as follows: For a decryp-

tion query ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′) from A, asks the hash query

(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′, v′) to H, obtains α′ (the output of H) and
verifies whether

g
r′1x11

1 · · · gr
′
1x1n

n g
α′r′1y11

1 · · · gα
′r′1y1n

n g
r′2x21

n+1 · · · g
r′2x2n

2n g
α′r′2y21

n+1 · · · gα
′r′2y2n

2n = v′

holds or not by using [x1,x2,y1,y2]. If the verification holds, then output the

message m = e′/(g
r′1z11
1 g

r′1z12
2 · · · gr

′
1z1n

n g
r′2z21
n+1 g

r′2z22
n+2 · · · g

r′2z2n
2n ) by using [z1,z2].

Else if, reject the decryption as an invalid ciphertext ⊥.
When the adversary B obtains two message M0 and M1 from A, he chooses

b ∈ {0, 1} at random, and computes

e = gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g
r2z2n
n+2 Mb,

α = H(gr11 gr12 · · · gr1n , gr2n+1g
r2
n+2 · · · g

r2
n+2, e),

v = gr1x11
1 · · · gr1x1n

n gαr1y11

1 · · · gαr1y1n
n gr2x21

n+1 · · · g
r2x2n
2n gαr2y21

n+1 · · · gαr2y2n

2n ,

and sends ({gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}, e, v) as the challenge ciphertext to A.

Let g denotes the generator of the group G. We know that there exist ti ∈
Zq such that gi = gti , i = 1, . . . , n. There exist si ∈ Zq such that gn+i =
gsi , i = 1, . . . , n. Let

∑n
i=1 ti mod q = t and

∑n
i=1 si mod q = s, there also exist

x1, x2, y1, y2, z1, z2 ∈ Zq such that

t1x11+ t2x12+ · · ·+ tnx1n ≡ tx1 mod q, s1x21+ s2x22+ · · ·+ snx2n ≡ sx2 mod q
t1y11 + t2y12 + · · ·+ tny1n ≡ ty1 mod q, s1y21 + s2y22 + · · ·+ sny2n ≡ sy2 mod q
t1z11 + t2z12 + · · ·+ tnz1n ≡ tz1 mod q, s1z21 + s2z22 + · · ·+ snz2n ≡ sz2 mod q.

The adversary B does not know t1, . . . , tn, s1, . . . , sn, t, s, x1, x2, y1, y2, z1, z2.
However, these values are really existent. Due to the vectors x1,x2,y1,y2, z1, z2
are chosen independently and uniformly at random, the values x1, x2, y1, y2, z1, z2
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are chosen independently and uniformly at random from Zq. The adversary B
can answer A’s all queries correctly without knows these values.

When the input of the adversary B comes from D, the challenge ciphertext
is a perfectly legitimate ciphertext; however, when the input of the adversary B
comes from R, the challenge ciphertext will not be legitimate, in the sense that
r1 ̸= r2. Claim 2.2 now follows immediately from the following two lemmas.
Lemma 6 When the adversary B’s input comes from D, the joint distribution
of the adversary A’s view and the hidden bit b is statistically indistinguishable
from that in the actual attack.
Proof. Consider the joint distribution of the adversary A’s view and the bit b
when the input comes from D. In this case, the challenge ciphertext is correct,
because grx11

1 · · · grx1n
n grx21

n+1 · · · g
rx2n
2n = cr, gry11

1 · · · gry1n
n gry21

n+1 · · · g
ry2n

2n = dr, and
grz111 · · · grz1nn grz21n+1 · · · g

rz2n
2n = hr; indeed, these equations imply that e = hrMb

and v = crdrα, and α itself is already of the right from. To complete the proof,
we will show that the output of the decryption oracle has the right distribution.

We call C = ((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n ), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′) a valid ciphertext
if and only if r′1 = r′2. We call C is a type 1 invalid ciphertext if r′1 ̸= r′2.
Other possible invalid ciphertexts are called type 2 invalid ciphertext. Note that
if a ciphertext is valid, with (gr

′

1 , gr
′

2 , . . . , gr
′

n ) and (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), then

hr′ = gr
′z11

1 gr
′z12

2 · · · gr′z1nn gr
′z21

n+1 gr
′z22

n+2 · · · g
r′z2n
2n ; therefore, the decryption oracle

outputs e/hr′ , just as it should. Consequently, the lemma follows immediately
from the following:
Claim C.1 The decryption oracle in both an actual attack against the cryptosys-
tem and in an attack against simulator B rejects all invalid ciphertexts, except
with negligible probability.
Proof. We now prove this claim by considering the distribution of the point
P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on the adversary’s view. We know that
there exists w ∈ Zq such that gs = gwt. Let log() denote loggt(). From the
adversary’s view, P is a random point on the plane P formed by intersecting the
hyperplanes log(c) = x1+wx2 (1) and log(d) = y1+wy2 (2). These two equations
come from the public key. The challenge ciphertext dose not constrain P any
further, as the hyperplane defined by log(v) = rx1 + wrx2 + αry1 + αwry2 (3)
contains P. Now suppose the adversary A submits a type 1 invalid ciphertext

((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n ), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′)

to the decryption oracle, where r′1 ̸= r′2. The decryption oracle will reject, unless
P happens to lie on the hyperplane H defined by log(v′) = r′1x1 + wr′2x2 +

α′r′1y1+α′wr′2y2 (4) where α′ = H(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′). Note that
the equations (1), (2), and (4) are linearly independent, and so H intersects the
plane P at a line. It follows that the first time the adversary submits a type 1
invalid ciphertext, the decryption oracle rejects with probability 1 − 1/q. This
rejection actually constrains the point P, puncturing the H at a line. Therefore,
for i = 1, 2, . . . , the ith invalid ciphertext submitted by the adversary will be
rejected with probability at least 1− 1/(q− i+ 1). From this it follows that the

19



decryption oracle rejects all type 1 invalid ciphertexts, except with negligible
probability. For the case of type 2 invalid ciphertext, we can prove the lemma
similarly and space doesn’t permit to show the proof. 2
Lemma 7 When adversary B’s input comes from R, the distribution of the
hidden bit b is (essentially) independent from the adversary A’s view.
Proof. The input of the adversary B is

({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

We may assume that r1 ̸= r2, because this occurs except with negligible
probability. The lemma follows immediately from the following two claims.
Claim C.2 If the decryption oracle rejects all invalid ciphertexts during the
attack, then the distribution of the hidden bit b is independent of the adversary’s
view.
Proof. To see this, consider the point Q = (z1, z2) ∈ Z2

q. At the beginning
of the attack, this is a random point on the line log(h) = z1 + wz2, (5) de-
termined by the public key. Moreover, if the decryption oracle only decrypts
valid ciphertext ((gr

′

1 , gr
′

2 , . . . , gr
′

n ), (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), e
′, v′), then the adver-

sary obtains only linearly dependent relations r′log(h) = r′z1 + r′wz2. Thus,
no further information about Q is leaked. Consider now the challenge cipher-
text sent by adversary B to adversary A. We have that e = γ ·Mb, where γ =
gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g

r2z2n
n+2 . Now, consider the equation log(γ) =

r1z1+wr2z2 (6). Clearly, equation (5) and equation (6) are linearly independent,
and so the conditional distribution of γ conditioning on b and everything in the
adversary’s view other than e is uniform. In other words, γ is a perfect one-time
pad. It follows that b is independent of the adversary A’s view.
Claim C.3 The decryption oracle will reject all invalid ciphertexts, except with
negligible probability.
Proof. We study the distribution of P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on
the adversary A’s view. From the adversary A’s view, this is a random point
on the line L formed by intersecting the hyperplanes (1), (2), and log(v) =
r1x1 + wr2x2 + αr1y1 + αwr2y2 (7). Now assume that the adversary submits a
type 1 invalid ciphertext

((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e, v),

where r′1 ̸= r′2. Let α
′ = H(g

r′1
1 · · · g

r′1
n , g

r′2
n+1 · · · g

r′2
2n, e

′).
There are three cases we should consider.

Case 1. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) = ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e)

In this case, the hash values are the same, but v′ ̸= v implies that the
decryption oracle will certainly reject.

Case 2. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e)

and α′ ̸= α.
The decryption oracle will reject unless the point P lies on the hyperplane

H defined by (4). However, the equations (1), (2), (7), and (4) are linearly
independent. Thus, H intersects the line L at a point, from which it follows
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(as in the proof of Lemma 4) that the decryption oracle rejects, except with
negligible probability.

Case 3. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e)

and α′ = α. We argue that if this happens with non-negligible probability, then
in fact, the family of hash functions is not universal one-way. Therefore, there
exists a contradiction. For the case of type 2 invalid ciphertext, we can prove
the lemma similarly and space doesn’t permit to show the proof. 2

Therefore, Claim 2.2 holds. 2
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