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Abstract. Since the introduction of side channel attacks in the nineties,
a large amount of work has been devoted to their effectiveness and ef-
ficiency improvements. On the one side, general results and conclusions
are drawn in theoretical frameworks, but the latter ones are often set in
a too ideal context to capture the full complexity of an attack performed
in real conditions. On the other side, practical improvements are pro-
posed for specific contexts but the big picture is often put aside, which
makes them difficult to adapt to different contexts. This paper tries to
bridge the gap between both worlds. We specifically investigate which
kind of issues is faced by a security evaluator when performing a state
of the art attack. This analysis leads us to focus on the very common
situation where the exact time of the sensitive processing is drown in
a large number of leakage points. In this context we propose new ideas
to improve the effectiveness and/or efficiency of the three considered
attacks. In the particular case of stochastic attacks, we show that the
existing literature, essentially developed under the assumption that the
exact sensitive time is known, cannot be directly applied when the latter
assumption is relaxed. To deal with this issue, we propose an improve-
ment which makes stochastic attack a real alternative to the classical
correlation power analysis. Our study is illustrated by various attack
experiments performed on several copies of three micro-controllers with
different CMOS technologies (respectively 350, 130 and 90 nanometers).

1 Introduction

Since the seminal Differential Power Analysis of Kocher et al. [18], various Side
Channel Attacks (SCA) have been proposed and improved (e.g. [8, 9, 11, 12, 36]).
In order to to compare and classify them, theoretical frameworks have then
been introduced [11, 23, 40, 44]. Their main purpose is to identify the attacks
similarities and differences, and to exhibit contexts where one is better than
another. They have laid the foundation stones for a general comparison and
evaluation framework. In parallel, several practical works have addressed issues
arising when applying an SCA in the real world (e.g. in an industrial context)
[2, 5, 17, 25, 42]. Those works essentially attempt to fill the gap between the
theoretical analysis of the attacks and their application in non-idealized contexts.
However, whereas the published theoretical analyses usually tend towards generic



and formal statements (sometimes at the cost of too simple models), many of
the practical analyses only focus on a particular attack specificity and often
put the big picture aside. The latter analyses are indeed usually dedicated to
one specific attack running against a specific target device, which makes them
hard to generalize. This paper tries to be at the intersection of both worlds:
we study practice-driven issues while keeping a generic approach w.r.t. attacks
mechanisms and targeted platforms. This approach and our final purpose are
close to those in the works of Standaert et al. [38] and Renauld et al. [33].

The starting observation of our study is that side channel traces are never
reduced to one point in practice, even when they rely on the manipulation of a
single variable. In contrary, those traces are often composed of a large number of
points (typically several thousands). In spite of the evidence of this observation,
it is rarely taken into account when analysing the effectiveness of a side chan-
nel attack. Such an analysis is indeed frequently done under the assumption,
sometimes implicit, that a small number of points of interest (POI) has already
been extracted from the traces either by pattern matching [22], or by dimension
reduction [1,6, 7, 37] or thanks to a previous successful attack [10,33]. However,
the two first categories of techniques are not yet perfect and, after reduction,
the traces are often still composed of several points in practice. And, what is
more important, the risk of information loss during the reduction process leads
most of attack practitioners to not apply them. The third technique (performing
a first attack to identify the POI) allows for interesting analyses, but it does not
correspond to a real attack context. Moreover, the best POI for one attack type
may not be so good for another one. Eventually, we come to a situation where
attacks are analysed in a (uni-dimensional) context which does not fit with the
(multi-dimensional) reality faced by the attack practitioners.

We argue in this paper that the state-of-the-art uni-dimensional analyses
cannot be straightforwardly adapted to multi-dimensional contexts, which raises
new interesting issues. The selection of the most likely candidate among the re-
sults of several instantaneous attacks is one of them. Indeed when the leakage
traces are composed of several points, a side channel attack against the targeted
sensitive variable must be performed for each point (a.k.a time index) in the
traces. Then, the adversary must apply a strategy to select the most likely can-
didate among the different instantaneous attacks results. A classical method is
to select the one with the highest score (e.g. the highest correlation coefficient
in a Correlation Power Analysis – CPA– [8]). Nevertheless we argue that this
strategy can be ineffective for some attack categories, including the case of the
Linear Regression Analysis (LRA) [11,35,36]. For the latter one, we propose a new
strategy to select the most likely candidate and we demonstrate its effectiveness
in practice.

Another interesting issue when dealing with a large number of high dimen-
sional traces is the reduction of the computational complexity. Here again, some
works have investigated the use of parallel computing to decrease the data pro-
cessing time [4,20] but their goal was not to diminish the algorithmic complexity
of the attacks. This work studies the CPA, the LRA and the Template Attacks (TA)



with this goal in mind. A common structure in their algorithmic description is
exhibited and then used to propose a new general modus operandi which en-
ables to significantly reduce the computation time when the number of traces is
non-negligible.

Finally, to make sure that our analysis is consistent with the reality, we
completed our investigations by several experiments performed on three micro-
controllers based on different CMOS technologies (350, 130 and 90 nanometers
process). We report here on these experiments results. We moreover use them
to confirm and complete the interesting behaviours observed in [33]: (1) the
leakage seems to diverge from the classical Hamming weight model as the CMOS
technology tends to the nanometer scale, which makes LRA a promising tool for
side channel evaluations of nano-scale devices and (2) TA is effective in practice,
even when the templates are built on one copy of the device and the attack is
done on another copy.

The paper is organized as follows. In Section 2, we introduce the theoretical
background for our study and we present the outlines of our proposal. Then, three
sections are dedicated to the application of our ideas to the LRA, CPA and TA re-
spectively.

2 SCA: Practical Issues

In this section, we introduce some basics and we get into the specifics of the
problematic focused in this paper.

2.1 Notations

Throughout this paper, random variables are denoted by large letters. A real-
ization of a random variable, said X, is denoted by the corresponding lower-
case letter, said x. A sample of several observations of X is denoted by (xi)i.
It will sometimes be viewed as a vector defined over the definition set of X.
The notation (xi)i ←↩ X denotes the instantiation of the set of observations
(xi)i from X. The mean of X is denoted E [X], its standard deviation by σ[X]
and its variance by var[X]. The latter equals E

[
(X − E [X])2

]
. The covari-

ance of two random variables X and Y is denoted by cov(X,Y ) and satisfies
cov(X,Y ) = E [(X − E [X])(Y − E [Y ])]. When we will need to specify the vari-
able on which statistics are computed, we will write the variable in subscript
(e.g. EX [Y ] instead of E[Y ]).

The notation
−→
X will be used to denote column vectors and

−→
X [u] will denote

its uth coordinate. Calligraphic letters will be used to denote a matrix. The
elements of a matrix M will be denoted by M[i][j]. Classical additions and
multiplications (over real values, vectors or matrices) are denoted by + and ×
respectively. Scalar-vector operations are denoted by · and / (all the coordinates
of the vector are multiplied, respectively divided, by the scalar). When applied
to vectors or matrices, the symbols ·2 and

√
· denote the operation consisting in

computing the square (resp. the square root) of all the vector/matrix coordinates.
Eventually, a function from Fn2 to Fm2 will be called a (n,m)-function.



2.2 General Attacks Framework

In this paper, the attacks framework is described by considering that the adver-
sary targets the manipulation of a single sensitive variable Z, but the study and
results directly extend to contexts where several variables are targeted in par-
allel. The variable Z is supposed to functionally depend on a public variable X
and a secret sub-part k such that Z = F (X, k) where F is a (n+ n,m)-function
(which implies X, k ∈ Fn2 and Z ∈ Fm2 ). The bit-lengths n and m depend on the
cryptographic algorithm and the device architecture1.

The attacks are described under the assumption that the adversary owns N

side channel traces
−→
` 0, ...,

−→
` N−1, each of them containing information about

Z. Namely, the ith leakage trace
−→
` i ←↩

−→
L corresponds to the processing of

a public value xi ←↩ X and contains information on the value zi ←↩ Z such
that zi = F (xi, k). The dimension of the traces (i.e. the number of different

instantaneous leakage points) is denoted by d. By definition, we have d
.
= dim

−→
L .

When little information is known about the implementation and the device
(which is usually the case in practice), the exact manipulation time of zi cannot
be precisely determined a priori. Also, precision in the observation often comes at
the cost of a high sampling rate2. As a consequence, the dimension of the traces is
usually high (from several thousand of points up to millions) and the attack must
be repeated on all of their coordinates independently (as e.g. in CPA and LRA)
or must consider huge traces chunks globally (as e.g. for TA). Although bearing
differences, the three latter attacks follow a common process flow (see Algorithm
1 below). Starting from this generic description, this paper studies, in Sections 3,
4 and 5 respectively, the effectiveness and efficiency of the CPA, LRA and TA at-
tacks. The core ideas of those analyses are presented in the two next sub-sections.

1. Pre-processing on the observations
−→
` i.

↪→ extract statistics from the traces.
2. Pre-processing on the predictions F (xi, k̂) for all k̂.

↪→ extract statistics from the predictions based on a model and/or
an estimation of the leakage statistics conditioned by the values of
the manipulated data.

3. Processing on the predictions and observations.
↪→ compute a distinguishing value for each key hypothesis and each
instantaneous leakage time of each observation.

4. Return a key candidate.
↪→ select the key candidate with the maximum distinguishing value
over all the instantaneous leakages times.

Algorithm 1: Generic Attack Flow

1 An example of function F is the function that applies a so-called sbox transformation
to the bitwise addition between k and X.

2 especially in the case of Electro-Magnetic side channel measurements



2.3 Effectiveness Discussions

A part of our study is dedicated to the distinguisher value definition and, more
precisely its relevance when considering side channel traces with a large number
of points. This study was motivated by the observation that the classical LRA dis-
tinguisher value for one leakage time is not comparable as such to that computed
for another leakage time. Figure 1(a) illustrates this claim for an LRA targeting
the device B described in Section 2.5: when directly applying the protocol given
in [11, 36], the correct key candidate does not maximize the distinguisher value
globally but only in a local area, which makes the attack unsuccessful unless this
area is known by the adversary (which is not assumed here). This observation
led us to study the handling of distinguishing values in SCA attacks. We for in-
stance show that by normalizing the LRA distinguishing values, the correct key
candidate becomes clearly distinguishable even when considering the full vector
of instantaneous attack results (as depicted on Figure 1(b)).
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Fig. 1. Instantaneous LRA scores computed over 10000 traces (scores for the correct
key in black)

More generally, our study relies on a well studied problem which is the com-
parison of the results of two different instantaneous attacks [11,21,38,39,41,43].
For the LRA, it will lead to a modification of the candidate selection rule.

2.4 Algorithmic Complexity Improvements Proposals

The other important issue an evaluator faces when performing SCA, is the com-
putational complexity of the attack when the number of traces N and their
dimension grows to millions. Indeed, the execution time of naive attack imple-



mentations can easily reach several days of processing and this is not compatible
with standard evaluation processes3.

We show in Sections 3, 4 and 5 that the three considered attacks may be re-
written in a partitioning fashion that can be exploited to significantly decrease
the algorithmic complexity. Roughly speaking, the basic idea is to lower the im-
pact of the heavy computations (i.e. Algorithm 1, Step 3) so that its complexity
does no longer depend on the traces number N but on the dimension n of the
targeted data. To that purpose, we propose to modify the attack first step so
that it processes separately the traces with respect to their input value xi. As a
result, the algorithmic complexity of the attacks Step 3 is divided by N

2n making
the algorithmic improvement interesting when N � 2n (which is often the case
in practice). The improved generic attack flow is summed up in Algorithm 2.

1. Partitioning of the N observations
−→
` i according to the values xi.

↪→ extract statistics for each of the 2n partitions.
2. Pre-processing on the predictions F (xi, k̂) for all k̂.

↪→ extract statistical data from the key hypothesis and plaintext based on
the function F and a model and/or an estimation of the leakage
statistics.

3. Processing on the predictions and traces statistics.
↪→ compute a distinguishing value for each key hypothesis and
instantaneous leakage based on the pre-processed statistics.

4. Return a key candidate.
↪→ select the key candidate with the best distinguishing value over all the
instantaneous leakages

Algorithm 2: Improved Generic Attack Flow

Almost every SCA may be rewritten as a combination of tests on statistics
estimated on leakage partitions. Some of them (e.g. the DPA [18] or the multi-bit
DPA [24]) were actually originally written as such, whereas the other ones were
developed in a partitioning way after their introduction (see e.g. [19] for the
CPA, [10] for the LRA and [38] for the MIA). To the best of our knowledge, this
property has however never been exploited to improve the attacks efficiency.

2.5 Experimental Setup

For each studied SCA, practical experiments were performed on three Micro-
Controller Units (MCUs for short) with different CMOS technologies (350, 130
and 90 nanometers processes). The observed processing was that of an AES128
encryption handling one byte at a time. Each attack was performed against 4

3 In Common Criteria evaluations applied on hardware security devices, all penetra-
tion tests (including invasive and non-invasive attacks) have usually to be performed
in 3 months, leaving only few weeks for the whole side channel evaluation.



sbox outputs of the first round. Furthermore, to measure the variability of our
experiments, we used three different copies for each MCU (called copy 1, 2 and
3 in the sequel). This choice enabled us to perform the TA profiling step on one
copy and to use the results to attack other ones. Also, it gives more credit to our
experimental results as the templates consistency was checked on three different
versions of the same MCU.

The side channel observations were obtained by measuring the electromag-
netic (EM) radiations emitted by the device. To this aim, several sensors were
used, all made of several coils of copper (the diameters of the coils were respec-
tively of 1mm, 500µm and 250µm for the 350, 130 and 90nm MCUs), and were
plugged into a low-noise amplifier. To sample measurements, a digital oscillo-
scope was used with a sampling rate of 1G samples per second for the 350nm
MCU and 10G samples per second for the others, whereas the MCUs were run-
ning at few dozen of MHz.

We insist on the fact that the temporal acquisition window was set to record
the first round of the AES only. This synchronization has been done thanks to
simple electromagnetic analysis [30]. As the MCU clocks were not stable, we had
to resynchronize the measurements. This process is out of the scope of this work,
but we emphasize that it is always needed in a practical context and it impacts
the measurements noise.

We sum-up the specificities of the three experimental campaigns hereafter:

– Device A (3 copies): 90nm CMOS technology with MCU based on a 8-bit
8051 architecture. EM traces composed of 12800 points each after resynchro-
nization. Highest Signal to Noise Ratio (SNR) over the full traces equals to
0.09.

– Device B (3 copies): 130nm CMOS technology with MCU based on a 8-bit
8051 architecture. EM traces composed of 16800 points each after resynchro-
nization. Highest SNR equals to 0.6.

– Device C (3 copies): 350nm CMOS technology with MCU based on a 8-bit
AVR architecture. EM traces composed of 51600 points each after resyn-
chronization. Highest SNR equals to 0.3.

3 Practical Evaluation of Linear Regression Attacks

Linear regression attacks (a.k.a. stochastic attacks) have been introduced by
Schindler et al. in 2005 [36]. Initially, they were presented with a profiling step
and were viewed as an alternative to the template attacks [13]. In [11], the
authors have shown how to express the linear regression attacks such that the
profiling stage is no longer required. They also argued that the LRA can be
applied in the same context as the CPA, but with weaker assumption on the device
behavior. Subsequently, these results of Doget et al. have been extended in [10] to
apply against masked implementations. In parallel, linear regression attacks have
been used to analyse/model the deterministic part of the information leakage for
complex circuits [15,16]. As a matter of fact, all those analyses assume that the
side-channel traces are composed of a single leakage point: the issue raised in



Section 2.3 is thus put aside. Moreover, the question of the efficient processing of
the attack, when applied against high dimensional leakage traces, is not tackled.
The rest of this section aims at dealing with two issues.

3.1 Attack Description

In LRA, the adversary chooses a so-called basis of functions4 (mp)16p6s with the
only condition that m1 is a constant function (usually m1 = 1). Then, for each

xi and each sub-key hypothesis k̂, the prediction ẑi = F (xi, k̂) is calculated.
The basis functions mp are then applied to the ẑi independently, leading to the

construction of a (N × s)-matrix Mk̂

.
= (mp(F (xi, k̂))i,p. The comparison of

this matrix with the set of d-dimensional leakages (
−→
` i)i6N ←↩

−→
L is done by

processing a linear regression of each coordinate of
−→
` i in the basis formed by the

row elements ofMk̂. Namely, a real-valued (s×d)-matrix Bk̂ with column vectors
−→
β1, · · · ,

−→
β d is estimated in order to minimize the error when approximating

−→
` >i

by (m1(F (xi, k̂)), · · · , ms(F (xi, k̂)))× Bk̂. The matrix Bk̂ is defined such that:

Bk̂ =
(
M>

k̂
×Mk̂

)−1 ×M>
k̂︸ ︷︷ ︸

Pk̂

×L , (1)

where L denotes the (N×d)-matrix with the
−→
` >i as row vectors. In the following,

the uth column vector of L (composed of the uth coordinate of all the
−→
` i) is

denoted by
−→
L [u]. Moreover, the (s × N)-matrix

(
M>

k̂
×Mk̂

)−1 ×M>
k̂

, which
does not depend on the leakage values, is denoted by Pk̂.

To quantify the estimation error, the goodness of fit model is used and the
correlation coefficient of determination R2 is computed for each u. The latter
is defined by R2 = 1 − SSR/SST, where SSR and SST respectively denote
the residual sum of squares (deduced from Bk̂) and the total sum of squares5

(deduced from L). We give in Algorithm 3 the pseudo-code corresponding to a
classical LRA attack processing.

3.2 On the LRA Effectiveness

Let us focus on the best candidate selection step in a classical LRA. Each sub-key
hypothesis k̂ is first associated with a score which is the greatest instantaneous
coefficient of determination when testing it for all temporal coordinates u. It is
denoted by maxuR[k̂][u] in Alg. 3. The second phase of the selection consists

in the processing of the maximum argmaxk̂(maxuR[k̂][u]). The purpose of the
latter step is to identify the candidate that maximises the greatest instantaneous
coefficient. Implicitly, such a classical approach by total maximisation of the
distinguisher value assumes that the most likely candidate corresponds to the

4 The basis choice and its impact are not a trivial matter, see [10] for a detailed study.
5 for their exact definitions, see their construction in Alg. 3



Algorithm 3: LRA - Linear Regression Analysis

Input : a set of d-dimensional leakages (
−→
` i)i6N and the corresponding plaintexts

(xi)i6N , a set of model functions (mp)p6s

Output: A candidate sub-key k̂

/* Processing of the leakage Total Sum of Squares (
−−→
SST) */

1 for i = 0 to N − 1 do

2 µ−→
L

= µ−→
L

+
−→
` i

3 σ−→
L

= σ−→
L

+
−→
` 2
i

4
−−→
SST = σ−→

L
− 1/N · µ2−→

L

/* Processing of the 2n predictions matrices Mk̂ and Pk̂ */

5 for k̂ = 0 to 2n − 1 do
/* Construct the matrix Mk̂ and Pk̂ */

6 for p = 1 to s do
7 for i = 0 to N − 1 do

8 Mk̂[i][p]← mp[F (xi, k̂)]

9 Pk̂ = (M>
k̂
×Mk̂)

−1 ×M>
k̂

10 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ for all leakage coordinates */
11 for u = 0 to d− 1 do

/* Instantaneous attack (at time u) */

12
−→
β = Pk̂ ×

−→
L [u]

/* Compute an estimator
−→
E of

−→
L [u] = (

−→
` 0[u], · · · ,

−→
` N−1[u])

> */

13
−→
E =Mk̂ ×

−→
β

/* Compute the estimation error (i.e. the SSR) */
14 SSR = 0
15 for i = 0 to N − 1 do

16 SSR = SSR +
(−→
E [u]−

−→
` i[u]

)
2

/* Compute the coefficient of determination */

17 R[k̂][u] = 1− SSR/
−−→
SST[u]

/* Most likely candidate selections */

18 candidate = argmaxk̂(maxuR[k̂][u])

19 return candidate



greatest value taken by the distinguisher not only over all sub-key hypotheses
but also over all the leakage times. This assumption relies on another one, often
done in the embedded security community, which states that the value of a
distinguisher computed between wrong hypotheses (i.e. computed for a wrong
sub-key value or a wrong time) and the leakage values tends toward its minimum
value (often 0) when the sample size N increases (see e.g. [21]). However, as
already noticed in several papers (e.g. by Messerges in [24], Brier et al. in [8] or
by Whitnal et al. in [45]), both assumptions are often not verified in practice,
where the adversary must for instance deal with the ghost peaks phenomenon.
The situation is even worst for the LRA attacks since the vector of coefficients−→
β (and thus the set of predictions) depends not only on k̂ but also on the
attack time 6 u. The strength of the LRA, namely its ability to adapt to the
instantaneous leakage, is also its weakness as it makes it difficult to compare the
different instantaneous attacks results.

To illustrate the issue raised in the previous paragraph, we experimented
a LRA against an AES sbox processing running on Device B (see Section 2.5).
The full leakage traces were composed of 16800 points. We performed the attack
on the full trace length and, for each time coordinate, we recorded the scores
of all the 256 key-candidates after N = 1000 observations. For clarity reasons,
we present in Figure 2 the results only for a temporal window of size 250 points
where the targeted variable was known to occur. In the top of the figure, the rank
of the correct key is plotted and it can yet be observed that it is 0 for few times.
In the second trace of Figure 2, the instantaneous maximum scores comprised in
[0.9982, 0.999] are plotted7: it may be checked that the maximum among those
scores corresponds to a time (t = 238) when the correct key is not ranked first.
This explains why the total maximisation approach fails in returning the correct
key candidate in this case.

To build a better rule than the total maximisation test, we respectively plot-
ted in the third and fourth traces of Figure 2 the mean (plain green trace)
and the variance (plain red trace) of the instantaneous scores (i.e. the values

µ(u) = 2−8
∑
k̂R[k̂][u] and σ(u) = 2−8

∑
k̂(R[k̂][u] − µ(u))2 with u denoting

the time coordinate in abscissa). For each time, we also plotted in black dashed

line, the maximum score max(u) = maxk̂(R[k̂][u]). It may be observed that the
correct key is ranked first at the time u when the distance max(u) − µ(u) is
large and σ(u) is small. The third (red) trace and the fourth (gray) trace aim at
supporting this claim. Eventually, they suggest us the following pre-processing
before comparing the instantaneous attack results: for each leakage coordinate,
center the maximum of the coefficients of determination and divide it by their
standard deviation. The resulting scoring is plotted in the fifth (magenta) trace,
where it can been checked that the maximum is indeed achieved for the correct
key.

6 As recalled in Section 4, it is not the case for the CPA as the predictions m(F (x, k̂))
are the same for each instantaneous attack

7 For visibility purpose, we chose to not plot the scores lower than 0.9982



50 100 150 200 250

0

100

200

ra
n

k

50 100 150 200 250
0.9982
0.9984
0.9986
0.9988
0.999

m
a

x
 &

 m
e

a
n

0 50 100 150 200 250
0

2

4
x 10

−9

v
a

ri
a

n
c
e

0 50 100 150 200 250
0

2

4
x 10

−4

m
a

x
−

m
e

a
n

0 50 100 150 200 250
0

5

10
x 10

5

time points

(m
a

x
−

m
e

a
n

)/
v
a

r

Fig. 2. LRA on Device B (over 1000 traces): Scores Statistics

As a conclusion, and in the light of our analysis, we propose to replace the
candidate selection step of the LRA by the following ones8:

18 for u = 0 to d− 1 do

19 attackRes[u] = {argmaxk̂
(
R[k̂][u]

)
,
max

k̂

(
R[k̂][u]

)
−E
k̂

[
R[k̂][u]

]
σ
k̂

[
R[k̂][u]

] }

20 candidate = arg1max2
(
attackRes

)

In Section 3.4, our scores pre-processing technique is applied to attack sam-
ples of Device A and Device C in order to test whether our observations, about
(1) the ineffectiveness of the classical LRA and (2) the soundness of the new
pre-processing, stay valid for other devices than Device B.

3.3 On the LRA Efficiency

The construction of the prediction matrices in Alg. 3 implies, for each k̂, the
processing of 3 products of matrices with one dimension equal to s (number
of basis functions) and the second dimension equal to N (number of leakage
traces). The processing of the instantaneous attacks also requires two such matrix

products for each pair (k̂, u) with u 6 d. This makes the application of a linear
regression attack as depicted in Alg. 3 difficult to perform (and even impossible)

8 where arg1max2 is a function returning the first coordinate of the maximum of an
array of 2-dimensional elements, the maximisation being computed with respect to
the second coordinate of the array elements.



when the number N of leakage traces and/or the number d of attack times are
large. Fortunately this complexity can be significantly reduced. It can indeed

be easily shown (see [10]) that the processing of the vectors
−→
β is unchanged if

performed for the set of averaged leakages ( 1
#{i:xi=x}

∑
i,xi=x

−→
` i)x∈Fn2 instead of

(
−→
` i)i. Actually, this amounts to change the definition of the matricesMk̂ and L

in (1) such thatMk̂

.
= (mp(F (x, k̂))x∈Fn2 ,p6s and L is a (2n×d)-matrix whose xth

row vector
−→
L>[x] equals 1

#{xi=x}
∑
i,xi=x

−→
` i. This improvement essentially lets

the first 9 steps of Alg. 3 unchanged except the loop 7-8 which is now computed
over x ∈ Fn2 instead of over i ∈ [0;N − 1]. Then, before Step 10, the following
processing is done to compute the elements of the matrix L:

for i = 0 to N − 1 do
−→
L>[xi] =

−→
L>[xi] +

−→
` i

count[xi] = count[xi] + 1

for x = 0 to 2n − 1 do
−→
L>[x] =

−→
L>[x]/count[x]

Eventually, Steps 10-17 are replaced by the following ones where we recall

that
−→
L [u] denotes the uth column vector of L.

for k̂ = 0 to 2n − 1 do

/* Test hypothesis k̂ for all leakage coordinates */
for u = 0 to d− 1 do

/* Instantaneous attack (at time u) */
−→
β = Pk̂ ×

−→
L [u]

/* Compute an estimator
−→
E of

−→
L [u] = (L[0][u], · · · ,L[2n − 1][u])> */

−→
E =Mk̂ ×

−→
β

/* Compute the estimation error (i.e. the residual sum of squares) */
SSR = 0
for x = 0 to 2n − 1 do

SSR = SSR +
(−→
E [x]− L[x][u]

)
2

/* Compute the coefficient of determination */

R[k̂][u] = 1− SSR/
−−→
SST[u]

The efficiency improvements proposed here for the LRA attack allows for a
significant time/memory gain. First, it replaces the (N × s)-matrix products at
Step 13 by (2n × s)-matrix products. More globally, the complexity is reduced
from O(s × d × N) to O(s × d × 2n). A detailed counting of the elementary

operations for each attack is given in Appendix A. If the
−→
β values are not

needed (i.e. the weights of the linear regression is of no interest to the attacker),



the matrix products Mk̂ × Pk̂ can also be pre-processed. This enables to save

one matrices product per loop iteration (over k̂ and u).

3.4 Experiments

We experimented the classical and improved LRA against against three copies
of Devices A, B and C (see Section 2.5). The attacks target four bytes of the
AES state after the first SubBytes operation and they are applied on the full
side channel traces. Each attack has been performed 10 times against each of the
three copies. The average rank over the four correct sub-keys is plotted in Figure
3 for each device. We recall that the rank of a sub-key k is here defined as the
position of maxuR[k][u] in the vector (maxuR[k̂][u])k̂ after sorting (see Section
2.2 for a discussion about this choice). The experiments reported in Figure 3(a)-
(c) are done with a linear basis (i.e. the functions mi were chosen such that m0 is
constant equal to 1 and mi, with i 6 8, returns the ith bit of its inputs). It may
be observed that the classical attack always failed whereas the improved one
succeeded with less than 2500 observations (and even less than 800 for Device
B). After noticing that the attack was less efficient on Device A (90nm) than that
on Device B (130nm), we chose to perform a new attack campaign against the
former, but this time with a quadratic basis (i.e. the functions corresponding
to the product of two input bits were added to the linear basis). Results are
given in Appendix C (Fig. 9) and it can be noticed that we did not witness any
effectiveness improvement.
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(c) LRA on Device C

Fig. 3. LRA campaign – Rank evolution versus number of observations

A LRA as described in Alg. 3 does not only return a candidate but also,
for the time when the attack succeeds, a regression of the leakage as a linear
combination of the basis functions. We chose to exploit this particular feature
and to extract, for the linear basis, the weights of each bit returned by the LRA for
each of the four targeted sbox outputs (i.e. these weights are the coordinates

of the four vectors
−→
β related to the correct targeted sub-keys and the leakage

time for which the attack succeeds more efficiently). The weights are plotted
(after normalization) in Figure 4 for the second copy of Device A, B and C. For



comparison, we also plotted in blue dashed line the value corresponding to the
normalized weight (i.e. 1

8 ) of a bit in a Hamming Weight model. For Devices A
and C, it may be noticed that the first and fourth sbox output manipulations
leak closely to the Hamming weight model (normalized weights are more or less
balanced). This is not the case of the weights of the second and third sbox
outputs, which are very unbalanced. For Device B, one can observe that at least
two bits leak significantly less than the others.
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Fig. 4. LRA weights for each of the 3 devices

4 Practical Evaluation of Correlation Power Analysis

Correlation Power Analysis was proposed by Brier et al. [8] in 2004. The idea is
to use Pearson’s correlation coefficient as a distinguisher instead of the difference
of means test originally proposed by Kocher et al. [18]. CPA is certainly nowa-
days the most popular side channel technique as it proved itself (combined with
classical leakage models like the Hamming weight and Hamming distance) very
efficient on an overwhelming majority of hardware architectures9. The naturally
good effectiveness of CPA was already mentioned in Brier et al. paper as the use

9 which amount to say that, for classical embedded technologies, the HW and HD
models are close to real leakage functions up to a linear factor.



of CPA allows to reduce the presence of ghost peaks compared to classical DPA.
Subsequent works on CPA effectiveness essentially consisted in applying signal
filtering techniques or pre-processing on the leakage traces (see e.g. [6,26] for re-
cent works on this subject). We do not propose amelioration here on this topic.
About the attack efficiency, very few works dealt with this problem at the algo-
rithmic level. In fact, published works on this subject have essentially addressed
the issue of processing the CPA on multicore CPU or graphic processor unit (see
e.g. [4]). We show in this section that re-writing the CPA as in a partitioning way
allows for a significant efficiency gain. This re-writing has already been proposed
in [19] but, to the best of our knowledge, it has never been used for efficiency
improvement purpose10.

4.1 Attack Description

In a correlation power analysis attack, the adversary computes, for each plaintext
xi and each sub-key hypothesis k̂, an hypotheses tuple ẑi such that ẑi = F (xi, k̂).
Then, he chooses a so-called model function m(·) from Fm2 into R and applies it
to each hypothesis which leads to the construction of a new set of so-called

predictions (hi)i6N ←↩
−→
H = m(F (X, k̂)). This latter set of hypotheses is then

compared to the set of leakages (
−→
` i)i6N ←↩

−→
L to assess on the likelihood of

k̂ as a candidate for one of the sub-keys k. The core principle of a CPA is to

make the comparison by estimating the linear correlation between
−→
H and each

coordinate of
−→
L independently. We give in Alg. 4 the pseudo-code corresponding

to the CPA attack discussed previously. A brief description of it may also be found
in Appendix B.

4.2 On the CPA Effectiveness

Based on the discussion conducted in Section 3.2 and the success of the experi-
mental validation of the new selection strategy, this may seem natural to try it in
the CPA context. However, the fact that the same constant model m(·) is used for
each instantaneous attack (which was not the case for the LRA) implies that two
correlation coefficients corresponding to two different coordinates of the vectors−→
` i are directly comparable (since they are quantifying the linear correlation be-

tween the leakages and a common model). Therefore the most likely hypothesis
corresponds to the greatest value of the correlation coefficient/score when the
set of hypotheses (ẑi)i is tested with respect to each coordinate u of the vectors
−→
` i. We actually checked that the normalizing strategy applied in Section 3.2

indeed does not enable to improve the CPA efficiency.

10 One may note that, in [38], CPA is listed as a comparison distinguisher by opposition
to the partition distinguishers like the MIA.



Algorithm 4: CPA - Correlation Power Analysis

Input : a set of d-dimensional leakages (
−→
` i)i6N and the corresponding

plaintexts (xi)i6N , a model function m(·)
Output: A candidate sub-key k̂

/* Leakage mean and variance processing */

1 for i = 0 to N − 1 do

2 µ−→
L

= µ−→
L

+
−→
` i

3 σ−→
L

= σ−→
L

+
−→
` 2

i

4 µ−→
L

= 1/N · µ−→
L

5 var−→
L

= 1/N · σ−→
L
− µ−→

L
2

/* Hypotheses mean and variance processing */

6 for k̂ = 0 to 2n − 1 do
7 for i = 0 to N − 1 do

8 z ← m(F (xi, k̂))
9 µk̂ = µk̂ + z

10 σk̂ = σk̂ + z2

11 µk̂ = µk̂/N
12 vark̂ = σk̂/N − µk̂

2

/* Correlations processing */

13 for k̂ = 0 to 2n − 1 do

/* Test hypothesis k̂ for all leakage coordinates */

14 for u = 0 to d− 1 do
/* Instantaneous attack (at time u) */

15 cov = 0
16 for i = 0 to N − 1 do

17 cov = cov + m(F (xi, k̂))×
−→
` i[u]

18 cor[k̂][u] = (1/N × cov − µk̂ × µ−→L [u])/
√

vark̂ × var−→
L

[u]

/* Most likely candidate selections */

19 candidate = argmaxk̂(maxu cor[k̂][u])

20 return candidate



4.3 On the CPA Efficiency

The law of total expectation implies:

cov(X,Y ) = E
[
E
[(
X − E [X]

)(
Y − E [Y ]

)
| X
]]

,

where the conditional means are viewed as random variables that functionally
depend on X. Due to the linearity of the mean, this latter equation is also equiv-
alent to cov(X,Y ) = E

[
(X − E[X])E

[
(Y − E[Y ]) | X

]]
. When applied in the

context of the correlation coefficients computation in Algorithm 4, this equa-
tion leads to a significant efficiency improvement. Prior to Steps 13-18 in Alg.
4 (instantaneous attacks), we propose to insert the following pre-processing in

order (1) to partition the leakage traces
−→
` i according to the corresponding in-

put values xi and (2) to compute the mean for each partition. We denoted by
A−→

L
the matrix whose xth column vector equals the mean of the elements in

{
−→
` i;xi = x}.

/* Conditional Leakage Averaging for each possible x */

Erase A−→
L

for i = 0 to N − 1 do

A−→
L

[xi] = A−→
L

[xi] +
−→
` i

count[xi] = count[xi] + 1

for x = 0 to 2n do
A−→

L
[x] = A−→

L
[x]/count[x]

Eventually, Steps 18-28 in Alg. 4 are replaced by the following ones where,
for each of the 2n instantaneous attacks, the proposed efficiency improvement
essentially allows for the replacement of N − 1 additions and multiplications by
2n ones. Taking the leakage conditional averaging step into account, this gives
a replacement of d × 2n × (2N + 6) elementary operations11 by 2N + 2n plus
d × 2n × (2n + 6). A detailed counting of the elementary operations for each
attack is given in Appendix A.

4.4 Experiments

We experimented the classical and normalized CPA against the same targets as
those used in Section 3.4. For both attacks, we used the classical Hamming
weight function for m(·). Similarly as in Section 3.4, average ranks have been
computed. They are plotted in Figure 5 for each device. It may first be noticed
that the CPA is very efficient against Devices B and C as it respectively succeeds,
on average, in less than 400 and 300 traces. The same attack against Device A

11 i.e. on n-bit words or real values



/* Correlations processing */

for k̂ = 0 to 2n − 1 do

/* Test hypothesis k̂ for all leakage coordinates */

for u = 0 to d− 1 do
/* Instantaneous attack (at time u) */

cov = 0
for x = 0 to 2n − 1 do

cov = cov + m(F (x, k̂))×A−→
L

[x][u]

cor[k̂][u] = (1/N × cov − µk̂ × µ−→L [u])/
√

vark̂ × var−→
L

[u]

is much less efficient (it requires around 9000 traces to succeed). This is a conse-
quence of the low measurements SNR and the fact that the leaking information
is not always well captured by the Hamming weight model (see Fig. 4(a)). Also,
and as expected from our analysis in Section 4.2, the normalized CPA is, on aver-
age, not better than the classical CPA. The relative ineffectiveness of the former
with respect to the CPA seems to be all the more important than the SNR is
small. Confirming this in other contexts could be of interest for further research.
Eventually, the CPA on device A is less efficient than the LRA attack on the same
device.

In the following two figures, we detail the evolution of the ranks of the four
different targeted sub-keys in function of the number N of observations. For each
of them we only consider the rank at the time coordinate where the CPA finally
succeeds.

Figure 6(a) must be studied together with the LRA experiments reported in
Figure 4(a). It may indeed by observed that the CPA attack is particularly efficient
against the manipulations that leak close to the Hamming weight (bytes 0 and
3) and lose efficiency for the two other bytes (1 and 2). Surprisingly (at a first
glance), this phenomenon cannot be observed for Figures 6(b) and 4(c). Actually,
this is a consequence of the fact that CPA and the LRA do not always succeed
for the same time coordinate. The unbalancedness observation made for 4(c) is
therefore not relevant to interpret the results in 6(b). This is a consequence of
the fact that the CPA sub-keys ranking evolution and the leakage characterisation
correspond to different leakage times (in other words, the best leakage time for
the LRA and the CPA do not equal for Device C).

5 Practical Evaluation of Template Attacks

Template attacks have been introduced in 2002 by Chari et al. [9]. Subse-
quent works have then been published which either show how to apply them
against particular implementations (e.g. AES, RSA or ECDSA) or propose ef-
ficiency/effectiveness improvements [1, 3, 31, 33]. In [31], the authors reduce the
complexity of template attacks by first applying a pre-processing on the mea-
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Fig. 5. CPA campaign – Rank evolution versus number of observations
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Fig. 6. CPA campaign – Rank evolution versus number of observations for the four sbox
outputs

surements (to go from time domain to frequency domain) and then by applying
dimension reduction techniques (e.g. PCA). The latter idea is also followed in [1]
and [3]. In all those papers, the improvement of the template attacks efficiency
is not studied at the algorithmic level. Moreover, the reported template attack
experiments involve the same device for the profiling and matching phases of
the attacks, which strongly reduces the practical significance of the argumen-
tations. Indeed, as the profiling phase requires a full access to the device (and
in particular the ability to chose the secret parameter), the latter experiments
do not fit with the large majority of real attack/evaluation contexts where the
adversary has no (or very few) control on the target device. In a more realis-
tic attacker model the profiling phase is conducted on a different device. For
such a model, we have the following well known question about the efficiency
of template attack: how sound/relevant is a profiling done on a device A when
attacking another device B ?12 The first work, and to the best of our knowledge,
the single one reporting on template attacks in such context is due to Renauld
et al. [33]. On the latter article, the two devices used for the experiments are test
chips implementing an AES s-box and made in 65-nanometer CMOS technology.

The results presented in the rest of this section improve the state-of-the-art
recalled previously on two points. First, the efficiency improvement is done at
the algorithmic level. It can hence be combined with the previous improvements
which essentially correspond to measurements traces pre-processing. Secondly,
the reported experiments concern a full AES implementation running on 3 differ-
ent samples of 3 different technologies. This allowed us to complete the analyses
done in [33] and to draw, for the first time, conclusions about the template attack
efficiency for realisitic scenarios.

12 This question is sometimes also related to the statistical problem of pdf estimations
robustness [29].



5.1 Attack Description

A template attack (TA for short) assumes that a preliminary profiling step has
been performed on an open copy of the targeted device. During this phase, the

adversary has measured N ′ leakage traces
−→
` i
′

for which he knows exactly the
values taken by the corresponding sensitive value Z (which also implies that
he knows the corresponding sub-key k). Those leakages have then been used to

compute estimations fz(·) of the probability density function of (
−→
L | Z = z) for

all possible z (which imposes N ′ � 2m). The pdf estimations fz(·) will play in
a template attack, a similar role as the model functions in a CPA or LRA.

Once the adversary has the set of pdf estimations (fz(·))z∈Fm2 in hand, a

TA against the set of traces (
−→
` i)i6N (for which the secrets are unknown) follows

essentially the same outlines as the CPA or the LRA: the hypothesis k̂ is tested by
first computing the predictions ẑi = F (xi, k̂) and then by calculating the product∏
i6N fẑi(

−→
` i). Usually, the pdf of the variables (

−→
L | Z = z) is estimated by a

multivariate normal law, which implies that fz can be developed s.t.:

fz(
−→
` i) =

1

(2π)ddet
(
Σz
)exp

(
− 1

2

(−→
` i −−→µ z

)>
Σ−1z

(−→
` i −−→µ z

))
, (2)

where Σz denotes the (d× d)-matrix of covariances of
−→
L | Z = z and where the

(d)-dimensional vector −→µ z denotes its mean.

To minimize approximation errors induced by the processing of the product
of exponential values, one usually prefers, in practice, a log-maximum likelihood
processing to the classical maximum likelihood13. Together with (2), this leads

to the following computation to test the hypothesis k̂:

ML[k̂] = −
∑
i6N

(−→
` i−−→µ ẑi

)>
Σ−1ẑi

(−→
` i−−→µ ẑi

)
−
∑
i6N

log((2π)d+1det
(
Σẑi)

)
. (3)

We give in Alg. 5 the pseudo-code corresponding to the TA attack discussed
previously.

13 The two processes discriminate equivalently.



Algorithm 5: TA - Template Attacks

Input : a set of d-dimensional leakages (
−→
` i)i6N and the corresponding plaintexts

(xi)i6N , a set of pdf estimations (−→µ z, Σz)z∈Fm2
Output: A candidate sub-key k̂

/* Pre-Processing of the 2m log-determinants log(2πd+1Σz) and inverse-matrices Σ−1
z

*/
1 for z = 0 to 2m − 1 do

2 logDetz = log(2πd+1Σz)

3 invCovz = Σ−1
z

/* Instantaneous TA attacks Processing */

4 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ */

5 ML[k̂] = 0
6 for i = 0 to N − 1 do

7 ẑ = F (xi, k̂)

8 ML[k̂] =ML[k̂]−
(−→
` i −−→µ ẑ

)> × invCovẑ ×
(−→
` i −−→µ ẑ

)
− logDetẑ

/* Most likely candidate selections */

9 candidate = argmaxk̂(maxML[k̂])
10 return candidate

5.2 On the TA Effectiveness

The idea developed in previous sections to improve the selection of the best can-
didate among the results of several instantaneous attacks is not relevant here.
Indeed, for both the profiling and attack phases, a template attack exploits,

by nature, all the leakage coordinates of the
−→
` i simultaneously. There is con-

sequently no need to compare the results of several (different) instantaneous
attacks.

5.3 On the TA Efficiency

Applying the same idea as for the CPA and the LRA, we propose hereafter an
alternative writing ofML[k̂] that leads to a much faster attack processing. For

such a purpose, we focus on the term
(−→
` i −−→µ ẑi

)>
Σ−1ẑi

(−→
` i −−→µ ẑi

)
in (3).

After denoting by Li each (d × d)-matrix (
−→
` i[u]

−→
` i[u

′])u,u′ , we get the fol-
lowing rewriting of the latter term:

∑
u,u′

(
Li[u][u′]×Σ−1ẑi [u][u′]

)
−−→µ >ẑi ×

(
Σ−1ẑi +Σ−1ẑi

>)×−→` i +−→µ >ẑi ×Σ
−1
ẑi
×−→µ ẑi .

After recalling that ẑi equals F (xi, k̂) and after denoting F (x, k̂) by ẑ and

#{i, xi = x} by Nx, we deduce that the sum
∑
i

(−→
` i − −→µ ẑi

)>
Σ−1ẑi

(−→
` i − −→µ ẑi

)
may be rewritten:



∑
x∈Fn2

∑
u,u′

( ∑
i,xi=x

Li
)
[u][u′]×Σ−1ẑ [u][u′]

−−→µ >ẑ ×
(
Σ−1ẑ +Σ−1ẑ

>)× ( ∑
i,xi=x

−→
` i
)

+Nx ×−→µ >z ×Σ−1z ×−→µ z

 .

As a consequence, if the 2n possible sums
∑
i,xi=x

Li and
∑
i,xi=x

−→
` i have

been precomputed, then the complexity of evaluating (3) for each k̂ goes from
O(Nd2) to O(2nd2). Algorithm 6 describes the improved TA attack.

Algorithm 6: TA - Template Attacks (Improved Version)

Input : a set of N leakages (
−→
` i)i and the corresponding plaintexts (xi)i, a set of pdf

estimations (−→µ z, Σz)z∈Fm2
Output: A candidate subkey k̂

/* Pre-Processing of the predictions data */
1 for z = 0 to 2m − 1 do

2 logDetz = log(2πd+1Σz); invCovz = Σ−1
z ; meanCovz =

−→µ>z × invCovz ×−→µ z ; sumMeanCovz = −→µ>z × (Σ−1
z +Σ−1

z
>
)

/* Pre-Processing of the leakage data14 `x =
∑
i,xi=x

−→
` i,Lx =

∑
i,xi=x

Li and

N [x] = #{i; xi = x}. */
3 for i = 0 to N − 1 do

4 x = xi; N [x] = N [x] + 1; Lx = Lx +
−→
` i
−→
` >i ; `x = `x +

−→
` i

/* Instantaneous TA attacks Processing */

5 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ */

6 ML[k̂] = 0
7 for x = 0 to 2n − 1 do

8 ẑ = Fj(x, k̂)
9 for u = 0 to d− 1 do

10 for u′ = 0 to d− 1 do

11 ML[k̂] =ML[k̂]− Lx[u][u′]× invCovẑ [u][u
′]

12 ML[k̂] =ML[k̂] + sumMeanCovz × `x −N [x]× (meanCovẑ + logDetẑ)

/* Most likely candidate selections */

13 candidate = argmaxk̂(maxML[k̂])
14 return candidate

5.4 Experiments

To study the effectiveness of TA attacks in practice (and to confirm the observa-
tions reported in [33]) we experimented them against the families of devices A,
B and C for three different scenarios. In the first scenario (referred to as ”copy



1 → copy 1”), the profiling and the attacks are performed on the same device
copy. In the second and third scenarios (respectively referred to as ”copy 1 →
copy 2” and ”copy 1 → copy 3”), the profiling made for copy 1 is used to attack
the second and third copies. For each of these 9 attacks frameworks, we plot
in Figure 7 the average rank of the correct sub-key (in color) with respect to
both the number of traces used for the profiling (in ordinate) and the number of
traces used for the attack (in abscissa). The rank averaging has been done over
10 attacks.

In the first scenario, a profiling done on 15000 (resp. 47000) traces on Device
B (resp. Device C) allows for a very efficient attack phase (the correct sub-key
ranked first with less than ten traces). Moreover, it may be observed that a
profiling on 8000 traces for Devices B and C is sufficient to have a successful
attack in less than 23 (resp. 90) traces for device B (resp. C). For Device A, the
TA attack in Scenario 1 is one order of magnitude less efficient (roughly speaking
the values are multiplied per ten w.r.t. the traces for devices B and C).

Attacks on Devices B (resp. C) perform quite similarly in Scenarios 2 and 3.
For Device A, a profiling performed on copy 1 for 18000 traces is sufficient to
successfully attack copies 2 and 3 with less than 10 traces. Moreover, a profiling
on 8000 traces enables successful attacks for less than 30 traces. For Device C, it
may be observed that, even for a profiling performed on 50000 traces, the attacks
on copies 2 and 3 require at least 80 traces to succeed. However, a profiling on
9000 traces is sufficient to have the TA succeeding in less than 130 traces.

As expected, we may observe a significant variability for the attack results in
Scenarios 2 and 3 for Device A: templates done on copy 1 are almost as efficient
to attack copy 2 than they were to attack copy 1 itself. They are however much
less informative on the copy 3 behaviour since the profiling on copy 1 must be
performed on at least 130000 traces to see the attack working on copy 3 with
less than 700 traces. This observation is in-line with those done in [32] about the
high variability of nano-scale technologies (we recall that Device A is made in a
90nm CMOS technology).

In Appendix C, we report on similar experiments results when only the leak-
age means (and not the covariance matrices) are involved in the templates. This
approach indeed seems to be a natural alternative to the attacks described here
since the traces contain instantaneous leakages. Our results actually confirm this
feeling and it can even be noticed that it leads to improve the TA efficiency for
Scenario 3 on Device A15. Another general remark on these simplified templates
is that they perform much better than the full ones when the number of traces
used for the profiling is small (around 4000).

6 conclusion

In this paper, we have studied the effectiveness and efficiency of the CPA, the
LRA and the TA attacks when performed in a context where the exact time of

15 This could be explained by the fact that the technology variability has more impact
on the electromagnetic leakage variances than it has on the means.
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(a) Dev. A: copy 1→copy 1
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(b) Dev. A: copy 1→copy 2
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(c) Dev. A: copy 1→copy 3
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(d) Dev. B: copy 1→copy 1
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(e) Dev. B: copy 1→copy 2
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(f) Dev. B: copy 1→copy 3
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(g) Dev. C: copy 1→copy 1
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(h) Dev. C: copy 1→copy 2
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Fig. 7. TA campaigns – Rank evolution vs. nb. of traces for the attack phase (x-axis)
and the profiling (y-axis)



the sensitive computations is not known. In this situation, and even after the
application of pattern matching or resynchronization techniques, the exploited
leakage traces may be composed of several thousands of points and the same
attack must be processed for each of those points. We noticed that the study
of the side channel attacks effectiveness and efficiency in this multivariate con-
text is an over-estimated problem. Most of the time, it is indeed assumed that
the adversary succeeded in significantly reducing the traces size (e.g. by priorly
processing a SNR, or a test attack, or even a dimension reduction). However,
as argued in this paper, those techniques are either unrealistic or may lead to a
significant loss of useful information (a dimension reduction technique like the
PCA may be sound for one attack – e.g. the CPA – and not for another one – e.g.
the MIA or the LRA –). As a consequence, there was no work discussing about the
rule to apply in order to select a candidate among all of those returned by a same
attack performed against several time coordinates. To the best of our knowledge,
the de facto rule was hence to simply choose the key candidate maximising all
the attacks scores. In this paper, we have shown that this rule does not work for
a LRA attack and we have conducted a statistical analysis to deduce a new selec-
tion rule that renders it effective in practice, even when the traces are composed
of huge number of points. By following the same approach for the multivariate
CPA, we have observed that the classical total maximisation selection rule was
indeed very effective in practice and that the normalization did not led to any
improvement. In this paper, we have also tackled out the efficiency problem for
the multivariate CPA, LRA and TA attacks. For each of them, we have followed a
similar approach which led us to significantly reduce their complexity when the
number of traces and their dimension are high. Eventually, all our results and
analyses have been illustrated by several attack experiments on three different
copies of three different technologies. In particular, the latter experiments have
enabled us to confirm the practicability of template attacks when the profiling
phase and the attack are performed on different copies of the same device.
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A Detailed Complexities of the LRA and CPA attacks

Method Operations Complexity16 Memory Complexity
classical LRA 2ndN(2sd+ 2s+ 3) d+ 2n ∗N ∗ s+ 2n ∗N ∗ s+N ∗ d

LRA with improvement N(d+ 1) + 2nd(2n(sd+ 2s+ 3) + 3) d+ 22n ∗ s+ 22n ∗ s+ 2n ∗ d
Number of operations w.r.t. the number of traces N , the dimension d of the traces and the size s of

the regression basis.

Method Operations Complexity16 Memory Complexity

classical CPA d× 2n × (2N + 6) 2n+1 + 2d
CPA with improvement 2N + 2n × (1 + d× (2n + 6)) 2n(d+ 4))

Number of operations w.r.t. the number of traces N and the dimension d of the traces.

B Brief Description of Algorithm 4

Steps 1-5 process the (sampling) mean and the (sampling) variance of each co-
ordinates of the leakage vectors. It results in two vectors µ−→

L
and σ−→

L
with same

dimension as
−→
L . Steps 6-12 process the (sampling) mean and the (sampling) vari-

ance of the hypotheses sample (m(F (xi, k̂)))i for each key candidate k̂. When N

grows, those latter mean and variance quickly tend toward E
[
(m(F (X, k̂))

]
and

var[(m(F (X, k̂))], which can be directly deduced from m(·) and F (e.g. if F is an

16 in terms of elementary n-bit words operations



sbox and m(·) is the Hamming weight function, we have E
[
(m(F (X, k̂))

]
= m/2

and var[(m(F (X, k̂))] = m/4 assuming X is uniform). Eventually, Steps 13-18

process, for each key candidate k̂, the correlation between (m(F (xi, k̂)))i and

each sample (
−→
` i[u])i where u denotes the uth coordinate of the leakage vectors.
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(b) Dev. A: copy 1→ copy
2
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(c) Dev. A: copy 1 → copy
3
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Fig. 8. TA campaigns with mean templates only – Rank evolution vs. nb. of observations
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