
Improved Authenticity Bound of EAX, and Refinements
(full version of a paper presented at ProvSec 2013 [13])

Kazuhiko Minematsu1, Stefan Lucks2, and Tetsu Iwata3

1 NEC Corporation, Japan, k-minematsu@ah.jp.nec.com
2 Bauhaus-Universität Weimar, Germany, stefan.lucks@uni-weimar.de

3 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp

Abstract. EAX is a mode of operation for blockciphers to implement an authenticated encryption.
The original paper of EAX proved that EAX is unforgeable up to O(2n/2) data with one verification
query. However, this generally guarantees a rather weak bound for the unforgeability under multiple
verification queries, i.e., only (2n/3) data is acceptable.
This paper provides an improvement over the previous security proof, by showing that EAX is
unforgeable up to O(2n/2) data with multiple verification queries. Our security proof is based on
the techniques appeared in a paper of FSE 2013 by Minematsu et al. which studied the security of
a variant of EAX called EAX-prime. We also provide some ideas to reduce the complexity of EAX
while keeping our new security bound. In particular, EAX needs three blockcipher calls and keep
them in memory as a pre-processing, and our proposals can effectively reduce three calls to one call.
This would be useful when computational power and memory are constrained.

Keywords: Authenticated encryption, EAX, security bound.

1 Introduction

EAX [5] is a mode of operation for blockciphers proposed by Bellare, Rogaway and Wagner at
FSE 1994. It implements an authenticated encryption with associated data, AEAD for short.
EAX has been standardized by ISO/IEC [2] and included in some popular software libraries
[1,8,9]. In FSE 2013, Minematsu, Lucks, Morita, and Iwata [14] investigated a variant of EAX
defined by ANSI C12.22, called EAX-prime. They showed that EAX-prime is totally broken if
the ‘cleartext’ part of the input is as short as a single block or shorter. At the same time, the
authors proved EAX-prime is secure if cleartexts are required to be longer than a single block.

In this paper, we study the implications of [14] to the original EAX. Though the original
EAX has already been proved to be secure, the security bound provided by [5], in particular the
authenticity bound, does not show the standard birthday-type security when the adversary is
allowed to make multiple verification queries. More formally, the original bound is O(σ2/2n +
1/2τ) where σ denotes the total input blocks, n denotes the block size, and τ denotes the tag
length, if the number of verification queries is one. From the well-known result of [3], this bound
generally implies O(qvσ

2/2n + qv/2
τ) when the number of verification queries is qv ≥ 1, hence

the provable security is degraded, roughly from 2n/2 to 2n/3, assuming qv ≈ σ. We note that,
since many systems in practice do accept multiple verification queries, the analysis for this case
is relevant. Based on the idea of [14], we provide an improved authenticity bound for EAX,
namely O(σ2/2n + qv/2

τ), hence the security up to 2n/2 data. When n = 128, this means that
the provable security is improved from 43 bits to 64 bits. In addition, we prove our new bound in
a slight more general setting than the original specification, in the sense that the empty header
is acceptable, which is plausible in practice.

We note that the technical difficulty in handling the multiple verification queries comes from
the fact that the reject symbol returned from the decryption oracle may leak some information
about the secret key, and hence this may have impact on the choice of the subsequent encryp-
tion and decryption queries. Furthermore, nonces used in encryption queries can be reused for

decryption queries, or vice versa. In this case, we may not have “fresh” randomness in order to
show that the success probability of the last decryption query is small.

We also provide ideas to reduce the computation overhead of EAX, which we assume the
primal goal of EAX-prime. In EAX, three blockcipher calls are required in advance to the actual
processing, and this may make it less attractive to constrained devices. In our proposals, the
overhead is reduced to one blockcipher call while keeping the security bound that we proved for
the original EAX. This also achieves a more memory-efficient, faster operation than the original.
In this respect our proposal can be seen as a provably-secure alternative to EAX-prime having
no input-length restriction.

The main technical point in our proposals is the generation of five mask values, originally
generated from three blockcipher calls. We propose three mask-generation methods, where the
first one is based on the constant Galois field multiplication similar to [15], and the second
and third ones are based on the word permutation and XOR. The underlying problem has a
relationship to word-oriented LFSR [19] discussed by Chakraborty and Sarkar [7] and by Krovetz
and Rogaway [12].

2 Preliminaries

Notations. For a binary string X, |X| denotes the bit length of X. For a positive integer n we

define |X|n
def
= max{1, ⌈|X|/n⌉}. The first s bits of X for |X| ≥ s is written as msbs(X). Let ε

denote the empty string, which is a binary string of length 0. Thus we have |ε| = 0 and |ε|n = 1.
The set of all finite-length binary strings, including ε, is denoted by {0, 1}∗. Let N = {0, 1, . . . }.
If X ∈ X is uniformly chosen from X we write X

$← X . For X,Y ∈ {0, 1}∗, their concatenation
is denoted by X∥Y or XY . A sequence of a zeros (ones) is denoted by 0a (1a). Following [5], let
[i]n denote a standard n-bit encoding of integer i ≥ 0, e.g., [2]n denotes 0n−210. Let ({0, 1}n)>0

denote the set of strings of length n, 2n, We also define {0, 1}≥k and ({0, 1}n)≥k analogously.
For X,Y ∈ {0, 1}n, X + Y or X − Y is defined as an addition or a subtraction modulo 2n.

For X ∈ {0, 1}∗, let X[1]∥X[2]∥ . . . ∥X[m]
n← X denote the partition into n-bit blocks, i.e.,

we have m = |X|n and |X[i]| = n for i < m and |X[m]| ≤ n. For X,Y ∈ {0, 1}∗, let X⊕end Y be
the XOR of the shorter variable into the end of the longer one: i.e. X⊕end Y = (0|Y |−|X|∥X)⊕Y
if |Y | ≥ |X| and otherwise X ⊕end Y = X ⊕ (0|X|−|Y |∥Y).
Random Function. The set of all functions {0, 1}n → {0, 1}m is denoted by Func(n,m).
We will write Func(n) to mean Func(n, n). The set of all permutations over {0, 1}n is denoted
by Perm(n). Following [14], we define a uniform random function (URF) as a random function
uniformly distributed over Func(n,m) for some n and m. A URF is denoted by R, assuming n
and m are clear from the context. In a similar manner we define a uniform random permutation
(URP) as a random permutation uniformly distributed over Perm(n) for some n. A URP is
denoted by P.
Field with 2n Points. We may view X ∈ {0, 1}n as a coefficient vector of the polynomial
of GF(2n), yielding a one-to-one mapping. By writing 2X we mean the multiplication of the
generator of GF(2n) and X over GF(2n). Here, 2(2L) is denoted by 4L or 22L. The operation
2X is called doubling, and is efficiently implemented by one-bit shift with constant XOR, see
e.g. [10].

3 Provable Security of EAX

3.1 Specification of EAX

We first define the authenticated encryption, AE in short (or more formally, AE with associated
data (AEAD)). The encryption function of an AE scheme accepts the nonce N , the header (also

2

Algorithm EAX-EK,τ (N,H,M)

1. N ← CMAC
(0)
K (N)

2. H ← CMAC
(1)
K (H)

3. C ← CTRK(N,M)

4. T ← N ⊕H ⊕ CMAC
(2)
K (C)

5. T ← msbτ (T)
6. return (C, T)

Algorithm EAX-DK,τ (N,H,C, T)

1. N ← CMAC
(0)
K (N)

2. H ← CMAC
(1)
K (H)

3. T ← N ⊕H ⊕ CMAC
(2)
K (C)

4. T̂ ← msbτ (T)

5. if T̂ ̸= T return ⊥
6. else M ← CTRK(N,C)
7. return M

Algorithm CMAC
(i)
K (M) (for i ∈ {0, 1, 2})

1. L← EK([0]n), L′ ← EK([1]n), L′′ ← EK([2]n)
2. D ← 2L, Q← 4L
3. if M = ε return EK([i]n ⊕D)
4. else
5. if i = 0 return CBCK(L, pad(M ;D,Q))
6. if i = 1 return CBCK(L′, pad(M ;D,Q))
7. if i = 2 return CBCK(L′′, pad(M ;D,Q))

Algorithm CTRK(N,M)

1. m← |M |n
2. S ← EK(N)∥EK(N + 1)∥ · · · ∥EK(N +m− 1)
3. C ←M ⊕msb|M|(S)
4. return C

Algorithm CBCK(I,M)

1. M [1]∥M [2]∥ · · · ∥M [m]
n←M

2. C[0]← I
3. for i← 1 to m do

C[i]← EK(M [i]⊕ C[i− 1])
4. return C[m]

Algorithm pad(M ;B1, B2)

1. if |M | ∈ {n, 2n, 3n, . . . , }
2. then return M ⊕end B1

3. else return
(M∥10n−1−(|M| mod n))⊕end B2

Fig. 1. (Upper) The encryption and decryption algorithms of EAX[E, τ]. Here H and M can be the empty
string, ε, while H ̸= ε was originally required in [5]. (Lower) Component algorithms of EAX[E, τ]. For CBCK ,
|M | ∈ {n, 2n, . . . }.

called associated data) H, and the plaintext M and generates the ciphertext C and the tag T .
The decryption (verification) function accepts N , H, C, and T , and generates the decrypted
plaintext M if (N,C, T) is valid, or the flag ⊥ if invalid.

The specification EAX is shown in Fig. 1. EAX is based on an n-bit blockcipher, E, where
the key of E is written as K. EAX taking a blockcipher E and using the τ -bit tag for τ ≤ n is
denoted by EAX[E, τ]. The encryption and decryption functions are written as EAX-EK,τ and
EAX-DK,τ , or EAX-EK and EAX-DK if τ is clear from the context.

In EAX[E, τ], we assume that N,H,M ∈ {0, 1}∗ with N ̸= ε. In the original specification,
N and H are assumed to be non-empty (see Section 6 of [4]). However, this paper slightly
generalizes the setting, allowingH to be empty4. The plaintextM can be empty, and in that case
the corresponding C is also empty. The ciphertext C has the same length as the corresponding
plaintext, M , and the tag T is τ bits.

In [5] the definition of CMAC
(i)
K (M) is simpler than ours, i.e. it is defined as CMAC

(i)
K (M)

def
=

CMACK([i]n∥M). Here, CMACK(M) denotes the original CMAC defined as CMACK(M) =
CBCK(pad(M ;D,Q)). Our definition is equivalent and we employ it to emphasize the three

redundant EK calls, L, L′, and L′′, and make explicit the computation of CMAC
(i)
K (ε) with

them.

3.2 Security Notions

The security of AE can be defined by two notions, privacy and authenticity [5,16]. In defining
them, let AO1,O2,...,Oc denote the adversary A accessing c oracles, O1, . . . , Oc, in an arbitrarily

4 This setting allows (N,H,M) with H = ε and M = ε as a valid, though artificial, input to the encryption
function.

3

+1

EK EKEK

+1

N

M [1]

M [2]

·
·
·

M [m]

C[1] C[2] · · ·

msb

CTRK

C[m]

EK EK EK

bp

· · ·

D/Q

C[1] C[2] C[m]

L

CMAC
(2)
K

(C = ε)

0n−210

EK

D

CMAC
(2)
K

(C = ε)

N

H
msb T

EK EK EK

bp

N [1] N [2] · · · N [b]

D/Q

N

L

CMAC
(0)
K

0n−11

CMAC
(1)
K

(H= ε)

CMAC
(1)
K

(H= ε)

EK EK EK

bp

D/Q

EK

D

H[1] H[2] H[h]· · ·

L

H

Fig. 2. The encryption algorithm of EAX. The specification is extended to accept H = ε. In the figure, bp(x) = x
if |x| = n and bp(x) = x∥10n−1−(|x| mod n) if |x| < n.

order. If Oi and Oj are oracles having the same input and output domains, we say they are
compatible. Let AE[τ] be an AE compatible with EAX having τ -bit tag. The encryption and
decryption algorithms are AE-Eτ and AE-Dτ . If A is a CPA-adversary against AE[τ], it accesses
AE-Eτ . The encryption queries made by A are written as (N1,H1,M1), . . . , (Nq,Hq,Mq), where

the number of queries, q, is a parameter of A. We also consider σX
def
=

∑q
i=1 |Xi|n for X ∈

{N,H,M}, and assume a parameter list (q, σN , σH , σM) to define the resource of A.
Let $ denote the random-bit oracle, which takes (N,H,M) and returns (C, T)

$← {0, 1}|M |×
{0, 1}τ . Then the privacy of AE for CPA-adversary A is defined as

Adv
priv

AE[τ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1].

Here, A is nonce-respecting, i.e., all Nis chosen by A are distinct.
To define the authenticity, we assume a CCA-adversary A against AE[τ]. It accesses AE-Eτ

and AE-Dτ . The set of encryption queries is denoted by (N1,H1,M1), . . . , (Nq,Hq,Mq), and the

set of decryption queries is denoted by (Ñ1, H̃1, C̃1, T̃1), . . . , (Ñqv , H̃qv , C̃qv , T̃qv). We assume a pa-
rameter list (q, qv, σN , σH , σM , σ

Ñ
, σ

H̃
, σ

C̃
) to define the attack resource, where σY =

∑qv
i=1 |Yi|n

for Y ∈ {Ñ , H̃, C̃}, in addition to σN , σH , and σM . The authenticity of AE is defined as

AdvauthAE[τ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges],

whereA forges if it receives a bit string (not ⊥) from AE-Dτ for a non-trivial query (Ñi, H̃i, C̃i, T̃i)
for some 1 ≤ i ≤ qv. Here (Ñi, H̃i, C̃i, T̃i) is non-trivial if any encryption query-response pair

4

(Nj ,Hj ,Mj , Cj , Tj) obtained before satisfies (Ñi, H̃i, C̃i, T̃i) ̸= (Nj , Hj , Cj , Tj). We remark that
CCA-adversary is always nonce-respecting with respect to encryption queries. This implies that,
we can have Ni = Ñj or Ñi = Ñj for some i and j. In the security proofs we use the following
notion. Let FK and GK′ be two compatible keyed functions with K ∈ K and K ′ ∈ K′. Then

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′
$← K′ : AGK′ ⇒ 1].

Note that this definition can be naturally extended when GK′ is substituted with the random-
bit oracle compatible to FK . In addition when FK and GK′ are compatible with AE-Eτ , we
define Adv

cpa-nr
F,G (A) as the same function as Adv

cpa
F,G(A) but CPA-adversary A is restricted to be

nonce-respecting. Also, let F = (F e
K , F d

K) and G = (Ge
K′ , Gd

K′) be the pairs of functions that are
compatible with (AE-Eτ ,AE-Dτ). We define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,F d

K ⇒ 1]− Pr[K ′
$← K′ : AGe

K′ ,G
d
K′ ⇒ 1],

where the underlying A is assumed to be nonce-respecting for encryption queries. Note that we
have Adv

priv

AE[τ](A) = Adv
cpa-nr

AE-Eτ ,$(A) for any nonce-respecting CPA-adversary A.

3.3 Security Bounds

Original Bounds. We denote EAX using an n-bit URP as a blockcipher by EAX[Perm(n), τ]
and the corresponding encryption and decryption functions by EAX-EP and EAX-DP. Similarly,

the subscript K in the component algorithms is substituted with P, e.g. CMAC
(i)
P . We focus on

the security bounds for EAX[Perm(n), τ] as the computational counterparts for EAX[E, τ] are
trivial.

In [5], Bellare et al. introduced data complexity denoted by σ, which is slightly different from
our parameters5. The provided bounds are as follows. Note that these theorems assume H ̸= ε.

Theorem 1 ([5]). Fix τ ∈ {1, . . . , n}. Let A be the CPA-adversary against EAX[Perm(n), τ]
with data complexity σ. Then the privacy is bounded as Adv

priv

EAX[Perm(n),τ](A) ≤ 9.5σ2/2n.

Theorem 2 ([5]). Fix τ ∈ {1, . . . , n}. Let A be the CCA-adversary against EAX[Perm(n), τ]
with data complexity σ and qv = 1. Then the authenticity is bounded as AdvauthEAX[Perm(n),τ](A) ≤
11σ2/2n + 1/2τ .

Our Bounds. The privacy bound of Theorem 1 is the standard birthday bound security. The
bound is tight in the sense that there is an adversary that meets the stated security bound up
to a constant factor. However, the authenticity bound of Theorem 2 is not satisfactory as it
requires qv = 1. There is a known result [3] proving that, if authenticity bound of a scheme for
one verification query is ϵ, authenticity bound for c verification queries is bounded by cϵ, for any
c > 1. Applying this result to Theorem 2, we have AdvauthEAX[Perm(n),τ](A) ≤ 11qvσ

2/2n+ qv/2
τ for

qv ≥ 1, implying that the security is guaranteed up to 2n/3 data when qv ≈ σ. Now we show an
improved authenticity bound for EAX that provides security up to 2n/2 data even for qv ≥ 1,
with an extended specification allowing H = ε.

Theorem 3. Fix τ ∈ {1, . . . , n}. Let A be the CCA-adversary against EAX[Perm(n), τ] with
parameter list (q, qv, σN , σH , σM , σ

Ñ
, σ

H̃
, σ

C̃
). Let σauth = σN +σH +σM +σ

Ñ
+σ

H̃
+σ

C̃
. Then

we have

AdvauthEAX[Perm(n),τ](A) ≤
18.5σ2

auth + 4.5

2n
+

qv
2τ

.

5 According to [5], σ is defined as “the sum of the lengths of all strings encoded in the adversary’s oracle queries,
plus the total number of all of these strings”.

5

Note that σauth is largely the same as the plain σ of Theorems 1 and 2. Theorem 3 shows that
EAX preserves birthday-type security in the authenticity notion for any qv ≥ 1, rather than for
qv = 1, only.

As we extended the specification to allow H = ε, a corresponding privacy bound should also
be given in principle. For completeness we show the privacy bound in this extended specification.

Theorem 4. Fix τ ∈ {1, . . . , n}. Let A be the CPA-adversary against EAX[Perm(n), τ] who has
parameter list (q, σN , σH , σM). Let σpriv = σN +σH +σM . Then we have Adv

priv

EAX[Perm(n),τ](A) ≤
(18.5σ2

priv + 4.5)/2n.

The proofs of the above theorems are provided in Section 5.1.

4 Refinements of EAX

EAX needs three blockcipher calls in advance to the actual processing, namely L = EK([0]n),
L′ = EK([1]n), and L′′ = EK([2]n). They are used as masks for the initial block of CMAC.
In addition, CMAC itself needs two masks for the last block, namely 2L and 4L, hence five
mask values in total. To achieve the fastest operation, these mask values, at least the first three
ones, must be kept in memory while processing. This fact implies that EAX is not ultimately
optimized, in particular for short messages, when the amount of pre-processing is critical. This
is possible due to some practical reasons, e.g., a huge number of keys, or frequent key changes.
In addition retaining many mask values in memory may not be desirable for constrained devices,
such as low-end micro-controllers or tiny hardware.

We propose a refinement of EAX, which we call EAX+, to minimize these drawbacks. We
note that EAX seems to have a design philosophy for keeping the algorithm of CMAC intact,
and our proposal does not follow this design philosophy in return for the efficiency gain.

Specifically, EAX+ changes the definitions of five mask values so that they are simple func-
tions of L = EK([0]n). EAX+ also sets some initial counter bits off to suppress carry bit propa-
gation. This is the technique used by SIV [17] and EAX-prime to simplify the implementation
of the counter mode. These changes affect the definitions of two internal components, CMAC(i)

and CTR. EAX+ uses CMAC+(i)
and CTR+, as shown in Fig. 3, instead of CMAC(i) and CTR

of Fig. 1. For simplicity Fig. 3 assumes n = 128 for fixing the constant adjusting the initial

counter, however other values of n are possible. In CMAC+(i)
, the five mask values are denoted

by A(0), A(1), A(2), D, and Q, and they are functions of L = EK([0]n) denoted by gA(0), gA(1),
and so on. In the following, we give three concrete masking schemes.
Scheme 1: Use GF Doubling. The first scheme, which we call EAX+

1 , uses the following
masks. Here, 3L denotes 2L⊕ L.

A(0) = 3L, A(1) = 2 · 3L, A(2) = 22 · 3L,
D = 2L, Q = 22L

This keeps the definitions of CMAC masks for the last blocks (D and Q). Note that we have
A(0) = 2L⊕ L, A(1) = 22L⊕ 2L, and A(2) = 23L⊕ 22L. Any mask is efficiently computed by
holding X = L and Y = 22L, as we have A(0) = 2X⊕X, A(1) = Y⊕2X, A(2) = 2Y⊕Y, D = 2X,
and Q = Y. Each mask computation requires at most one doubling and one XOR.
Scheme 2: Use Sum of Four Quarters of L. The second scheme, which we call EAX+

2 ,
assumes that n is divisible by 4, and uses operations over GF((2n/4)4). Let L = (L1, L2, L3, L4),
where Li ∈ GF(2n/4). The masks are as follows.

A(0) = (L1, L2, L3, L4), A(1) = (L∗, L1, L2, L3), A(2) = (L4, L∗, L1, L2),

D = (L3, L4, L∗, L1), Q = (L2, L3, L4, L∗),

6

Algorithm CMAC+(i)
K (M)

1. L← EK([0]n)
2. for i = 0, 1, 2 do A(i)← gA(i)(L)
3. D ← gD(L), Q← gQ(L)
4. if M = ε return EK([i]n ⊕D)
5. else return

CBCK(A(i), pad(M ;D,Q))

Algorithm CTR+
K(N,M)

1. m← |M |n
2. N∧ ← N ∧ (1n−64∥0131∥0131)
3. S ← EK(N∧)∥EK(N∧ + 1)∥
· · · ∥EK(N∧ +m− 1)

4. C ←M ⊕msb|M|(S)
5. return C

Fig. 3. Our refinement of EAX, EAX+. Here, CMAC+(i)
for i ∈ {0, 1, 2} and CTR+ are used instead of CMAC(i)

and CTR, and other functions are not changed. The definitions of gA(i), gD, and gQ are written in Section 4,
yielding the three versions.

where L∗ = L1 ⊕ L2 ⊕ L3 ⊕ L4. The scheme is efficient, in particular for software, since it is
merely a combination of n/4-bit word permutations and XORs. Specifically, any mask can be
efficiently computed by holding L and L∗, which are 5n/4 bits in total.
Scheme 3: Use Two Sums. The third scheme, which we call EAX+

3 , is another instance using
word permutation and XOR. The masks are;

A(0) = (L1, L2, L3, L4), A(1) = (L2, L♯, L4, L♭), A(2) = (L♯, L1, L♭, L3),

D = (L3, L♭, L2, L1), Q = (L4, L3, L♯, L2),

where L♯ = L1 ⊕ L2 and L♭ = L3 ⊕ L4. The mask generation is a simple word permutation by
holding L, L♯, and L♭. Even if we only hold L, each mask is computed by at most 2 XORs of
words and a permutation, and the number of word XORs required for generating all masks from
L is 6.

The following theorem shows the security of these schemes.

Theorem 5. For j ∈ {1, 2, 3}, let EAX+
j [Perm(n), τ] be EAX+

j using n-bit URP. For any j we
have

Adv
priv

EAX+
j [Perm(n),τ]

(A) ≤
15σ2

priv

2n
, and

Advauth
EAX+

j [Perm(n),τ]
(A) ≤

15σ2
auth

2n
+

qv
2τ

.

The core part of the proof of Theorem 5 is given in Section 5.2. We can build variants of these
schemes by applying a permutation P that commutes with respect to XOR, i.e. P(x) ⊕ P(y) =
P(x⊕ y), to all masks. An example is a regular matrix over GF(2n/a)a for a being a factor of n,
and a variant using such masks will have the same bounds as Theorem 5.

We note that [14] suggested some variants of EAX-prime that are provably secure without
input-length restriction. However the proposals of [14] focuses on the black-box usage of EAX-
prime. As a result the proposals of [14] are not as efficient as ours, or require a stronger security
assumption on the blockcipher.

5 Security Proofs

5.1 Proofs of Theorem 3 and Theorem 4

OMAC-extension. In proving Theorems 3 and 4, we observe that the most part are quite the
same as those given for EAX-prime [14], which is based on the original proof of EAX [5] with
extensions taken from [10].

7

Algorithm OMAC-e[P] :
Initialization
00 L← P([0]n), L′ ← P([1]n), L′′ ← P([2]n)
On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N
10 X[1]∥X[2]∥ · · · ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0
12 if t = 0
13 if 1 ≤ |X| ≤ n then Y ← P(bp(X)⊕ L⊕ 2w+1L); return Y
14 else Y [1]← P(L⊕X[1])
15 for i = 1 to m− 2 do Y [i+ 1]← P(Y [i]⊕X[i+ 1])
16 Y ← P(Y [m− 1]⊕ bp(X[m])⊕ 2w+1L)
17 if d = 0 return Y
18 for j = 0 to d− 1 do S[j + 1]← P(Y + j)
19 return Y ∥S[1]S[2] · · ·S[d]
20 if t = 1
21 if |X| = 0 then Y ′ ← P(2L⊕ [1]n); return Y ′

22 if 1 ≤ |X| ≤ n then Y ′ ← P(bp(X)⊕ L′ ⊕ 2w+1L); return Y ′

23 else Y ′[1]← P(L′ ⊕X[1])
24 for i = 1 to m− 2 do Y ′[i+ 1]← P(Y ′[i]⊕X[i+ 1])
25 Y ′ ← P(Y ′[m− 1]⊕ bp(X[m])⊕ 2w+1L)
26 return Y ′

27 if t = 2
28 if |X| = 0 then Y ′′ ← P(2L⊕ [2]n); return Y ′′

29 if 1 ≤ |X| ≤ n then Y ′′ ← P(bp(X)⊕ L′′ ⊕ 2w+1L); return Y ′′

30 else Y ′′[1]← P(L′′ ⊕X[1])
31 for i = 1 to m− 2 do Y ′′[i+ 1]← P(Y ′′[i]⊕X[i+ 1])
32 Y ′′ ← P(Y ′′[m− 1]⊕ bp(X[m])⊕ 2w+1L)
33 return Y ′′

Fig. 4. OMAC-extension using an n-bit URP, P.

We start with the most involved part: the pseudorandomness of OMAC-extension. OMAC-
extension is a set of functions obtained by decomposing EAX [5,14]. Formally, we define OMAC-
extension6 as a set of three functions using an n-bit URP, P, obtained from EAX[Perm(n), τ].
It is denoted by OMAC-e[P] = (OMAC-e[P](0),OMAC-e[P](1),OMAC-e[P](2)). See Figs. 4 and
7. Here, OMAC-e[P](0) is a function that takes (N, d), where d = |M |n (d = |C|n) for en-
cryption (decryption), and produces N and the d-block keystream before truncation, i.e., S of
Fig. 1. Similarly, OMAC-e[P](1) takes H, and OMAC-e[P](2) takes C. We may view OMAC-e[P]
as single function taking (t,X, d) as input and outputs OMAC-e[P](t)(X, d) when t = 0 and
OMAC-e[P](t)(X) when t = 1, 2, assuming d is a default value.

Similarly to Proposition 1 of [14], we have the following proposition.

Proposition 1. For any fixed τ , there exist deterministic procedures, fe(·) and fd(·), that use
OMAC-e[P] as a black-box and perfectly simulate EAX-EP and EAX-DP. That is, we have
EAX-EP ≡ fe(OMAC-e[P]) and EAX-DP ≡ fd(OMAC-e[P]).

Here, F ≡ G means the equivalence of the output probability distribution functions for F and
G, i.e. Pr[F (x1) = y1, . . . , F (xq) = yq] = Pr[G(x1) = y1, . . . , G(xq) = yq] for any fixed possible
x1, . . . , xq and y1, . . . , yq. Proposition 1 can be verified by comparing Figs. 2 and 7.

Then we need to evaluate the indistinguishability between OMAC-e[P] and a set of three ran-
dom functions RND = (RND(0),RND(1),RND(2)), where RND(i) is compatible with OMAC-e[P](i).

Here RND(0)(X, d) samples Y
$← ({0, 1}n)dmax+1 and outputs msbn(d+1)(Y) if X is new, where

dmax is the largest possible value of d determined by the game we consider.

To bound the indistinguishability, we further break down OMAC-e[P] into a set of 19 small
functions, Q = {Qi}i=1,...,19.

6 Our OMAC-extension does not need the auxiliary output mask as in the proof of EAX-prime [14]. This is
because of the difference in the processing for one-block inputs.

8

Definition 1. Let Qi : {0, 1}n → {0, 1}n for i ∈ {1, 2, . . . , 19}\{3, 4, 5, 6} and let Qj : {0, 1}n×
N→ ({0, 1}n)>0 for j = 3, 4, 5, 6. We define

Q1(x)
def
= P(L⊕ x)⊕ Rnd1, Q2(x)

def
= P(Rnd1 ⊕ x)⊕ Rnd1,

Q3(x, d)
def
= GP(P(2L⊕ Rnd1 ⊕ x), d), Q4(x, d)

def
= GP(P(4L⊕ Rnd1 ⊕ x), d),

Q5(x, d)
def
= GP(P(L⊕ 2L⊕ x), d), Q6(x, d)

def
= GP(P(L⊕ 4L⊕ x), d),

Q7(x)
def
= P(L′ ⊕ x)⊕ Rnd2, Q8(x)

def
= P(Rnd2 ⊕ x)⊕ Rnd2,

Q9(x)
def
= P(2L⊕ Rnd2 ⊕ x), Q10(x)

def
= P(4L⊕ Rnd2 ⊕ x),

Q11(x)
def
= P(L′ ⊕ 2L⊕ x), Q12(x)

def
= P(L′ ⊕ 4L⊕ x),

Q13(x)
def
= P(L′′ ⊕ x)⊕ Rnd3, Q14(x)

def
= P(Rnd3 ⊕ x)⊕ Rnd3,

Q15(x)
def
= P(2L⊕ Rnd3 ⊕ x), Q16(x)

def
= P(4L⊕ Rnd3 ⊕ x),

Q17(x)
def
= P(L′′ ⊕ 2L⊕ x), Q18(x)

def
= P(L′′ ⊕ 4L⊕ x),

Q19(x)
def
= P(2L⊕ x),

where P is an n-bit URP, and L = P([0]n), L
′ = P([1]n), and L′′ = P([2]n). Also, Rnd1, Rnd2

and Rnd3 are independent n-bit random sequences, and GP(v, d) is v if d = 0 and (v∥P(v)∥P(v+
1)∥ · · · ∥P(v + (d − 1))) if d > 0. The sampling procedures for P, Rndj for j = 1, 2, 3 are shared
for all Qis.

We treat Q as a tweakable function with tweak t ∈ {1, . . . , 19} by writing Q(t, x, d) =
Qt(x, d) when t ∈ {3, 4, 5, 6} and otherwise Q(t, x, d) = Qt(x). We observe that OMAC-e[P]
can be simulated with black-box accesses to Q. For example, when we want to simulate the
computation of OMAC-e[P](0, N, 2) for |N | = 3n, we first parse N into n-bit blocks, i.e.,
N [1]∥N [2]∥N [3]

n← N and then proceed as Y [1] ← Q1(N [1]), and Y [2] ← Q3(N [2] ⊕ Y [1]),

and Y [3]∥S[1]S[2]← Q5(N [3]⊕Y [2], 2). Note that, Q19 is only used to simulate CMAC
(1)
K given

H = ε, or CMAC
(2)
K given C = ε, i.e., to compute P(2L⊕ [1]n) or P(2L⊕ [2]n).

We next define Q̃ = {Q̃i}i=1,...,19. For all i = 1, . . . , 19, Q̃i is compatible to Qi.

Definition 2. Let Pi for i = 1, 2, 7, 8, 13, 14 be six independent n-bit URPs, and let Rj for
j ∈ {9, . . . , 19} \ {13, 14} be nine independent n-bit URFs, and let Rj for j = 3, 4, 5, 6 be four
independent URFs with n-bit input and (dmax + 1)n-bit output. Using them we define

Q̃i(x)
def
= Pi(x), for i = 1, 2, 7, 8, 13, 14

Q̃j(x, d)
def
= Rd+1

j (x), for j = 3, 4, 5, 6

Q̃h(x)
def
= Rh(x), for h = 9, . . . , 12, 15, . . . , 19,

where Rd+1
i (x) = msbn(d+1)(Ri(x)) for i = 3, 4, 5, 6. Here dmax is the maximum possible value of

queried d, which will be determined by the underlying game and adversary’s parameter.

A function compatible to Q is said to have Q profile. An adversary querying a function of Q
profile is characterized by the number of queries, q, and the number of total output n-bit blocks
for t ∈ {3, 4, 5, 6}, σout. The next lemma shows the CPA-advantage in distinguishing Q and Q̃.

Lemma 1. Let A be the adversary querying a function of Q profile with parameter list (q, σout).
Then we have

Adv
cpa

Q,Q̃
(A) ≤ (4.5q2 + 10σoutq + σ2

out + 4.5)

2n
.

9

Algorithm CBC (given dmax):
Initialization
00 for i = 1, 2, 7, 8, 13, 14 do Pi

$← Perm(n)

01 for j = 3, 4, 5, 6 do Rj
$← Func(n, dmax)

02 for k = 9, 10, 11, 12, 15, 16, 17, 18, 19 do Rk
$← Func(n)

On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N
10 X[1]∥X[2]∥ · · · ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0
12 if t = 0
13 if m = 1 and d = 0 return Y ← R1

5+w(bp(X))

14 if m = 1 and d > 0 return Y ∥S[1]∥S[2]∥ · · · ∥S[d]← Rd+1
5+w(bp(X))

15 Y [1]← P1(X[1])
16 for i = 1 to m− 2 do Y [i+ 1]← P2(Y [i]⊕X[i+ 1])
17 if d = 0 then Y ← R1

3+w(Y [m− 1]⊕ bp(X[m])); return Y

18 else Y ∥S[1]∥S[2]∥ · · · ∥S[d]← Rd+1
3+w(Y [m− 1]⊕ bp(X[m]))

19 return Y ∥S[1]∥S[2]∥ · · · ∥S[d]
20 if t = 1
21 if X = ε then Y ′ ← R19([1]n); return Y ′

22 else if m = 1 then Y ′ ← R11+w(bp(X)); return Y ′

23 else Y ′[1]← P7(X[1])
24 for i = 1 to m− 2 do Y ′[i+ 1]← P8(Y ′[i]⊕X[i+ 1])
25 Y ′ ← R9+w(Y ′[m− 1]⊕ bp(X[m]))
26 return Y ′

27 if t = 2
28 if X = ε then Y ′′ ← R19([2]n); return Y ′′

29 else if m = 1 then Y ′′ ← R17+w([2]n); return Y ′′

30 else Y ′′[1]← P13(X[1])
31 for i = 1 to m− 2 do Y ′′[i+ 1]← P14(Y ′′[i]⊕X[i+ 1])
32 Y ′′ ← R15+w(Y ′′[m− 1]⊕ bp(X[m]))
33 return Y ′′

Fig. 5. Modified CBC-MAC.

The proof is in Appendix A.

The remaining part of the proof is almost the same as the proof of EAX-prime. We define the
Modified CBC-MAC, CBC, which is compatible with OMAC-e[P] and consists of three functions
taking t = 0, 1, 2, written as CBC(t). A combined form of CBC is shown in Fig. 5. Here, Ri

j(X)
for j = 3, 4, 5, 6 denotes msbn·i(Rj(X)). Then, we obtain the following proposition and lemma
as counterparts of Proposition 2 and Lemma 2 of [14]. Proof of Proposition 2 is almost the same
as [14]. Proof of Lemma 2 is given in Appendix B.

Proposition 2. There exists a procedure h(·) that uses Q as a black box and perfectly simulates
OMAC-e[P], i.e. h(Q) ≡ OMAC-e[P]. Moreover, we have h(Q̃) ≡ CBC for this h(·).

Lemma 2. Let A be an adversary querying a function of OMAC-e profile, and let σin denote
the number of total blocks of queries made by A. Then, AdvcpaCBC,RND(A) ≤ 3σ2

in/2
n.

Our PRIV bound is derived by combining Propositions 1 and 2 and Lemma 2 in the
same manner to [14]. Formally, let A be the CPA-adversary against AE with parameter list
(q, σN , σH , σM). Then there exist adversary B querying to a function of OMAC-e profile with 3q
queries, σin = (σN +σH +σM) input blocks, and σout = σM +3q output blocks, and adversary C
querying to a set of 19 functions with Q profile, using σN +σH +σM queries and σM + q output
n-bit blocks for queries with t = 3, 4, 5, 6, such that

10

Adv
priv

EAX[Perm(n),τ](A)

= Adv
cpa-nr

EAX-EP,$(A)

= Adv
cpa-nr

fe(OMAC-e[P]),$(A) (from Proposition 1)

≤ Adv
cpa-nr

fe(OMAC-e[P]),fe(CBC)(A) + Adv
cpa-nr

fe(CBC),fe(RND)(A) + Adv
cpa-nr

fe(RND),$(A)︸ ︷︷ ︸
=0

≤ Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B)

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) (from Proposition 2)

≤ Adv
cpa

Q,Q̃
(C) + 3(σN + σH + σM)2

2n
(from Lemma 2)

≤ 4.5(σN + σH + σM)2 + 10(σM + q)(σN + σH + σM) + (σM + q)2 + 4.5

2n

+
3(σN + σH + σM)2

2n
(from Lemma 1)

≤ 18.5(σN + σH + σM)2 + 4.5

2n

≤
18.5σ2

priv + 4.5

2n
.

Here, Adv
cpa-nr

fe(RND),$(A) = 0 holds because when A queries (N,H,M) to fe(RND) the output is

a subsequence of RND(0)(N, |M |n) with the first n bits XORed by the output of RND(1) and
RND(2) (whose input is a part of RND(0)(N, |M |n)). As N is always fresh, the output is always
random. This concludes the proof of Theorem 4.

In proving AUTH bound, let EAX be the AE algorithm compatible to EAX[Perm(n)] using
fe(RND) and fd(RND) for the encryption and decryption algorithms. We let A be the CCA-
adversary with parameter list (q, qv, σN , σH , σM , σ

Ñ
, σ

H̃
, σ

C̃
). Then we have

AdvauthEAX(A) ≤
qv
2τ

(1)

with almost the same proof as Eq. (14) of [14]. For completeness the proof is given in Appendix C.
In the same way as Eq. (15) to (22) of [14], we assume adversary B querying to a function of
OMAC-e profile with 3(q+qv) queries with σin = σN+σH+σM+σ

Ñ
+σ

H̃
+σ

C̃
and σout = σM+

3q+σ
C̃
+3qv, and adversary C querying to a function ofQ profile with σN+σH+σM+σ

Ñ
+σ

H̃
+σ

C̃
queries and σM+q+σ

C̃
+qv output blocks for queries with t = 3, 4, 5, 6. Then using Proposition 1

and Eq. (1) we have

AdvauthEAX[Perm(n)](A) ≤ Advcca-nr(EAX-EP,EAX-DP),(fe(RND),fd(RND))(A) + AdvauthEAX(A)

≤ Advcca-nr(fe(OMAC-e[P]),fd(OMAC-e[P])),(fe(RND),fd(RND))(A) +
qv
2τ

≤ Adv
cpa

OMAC-e[P],RND(B) +
qv
2τ

.

11

The right hand side of the last equation is bounded by

Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B) +

qv
2τ

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) +

qv
2τ

(from Proposition 2)

≤ Adv
cpa

Q,Q̃
(C) +

3(σN + σH + σM + σ
Ñ
+ σ

H̃
+ σ

C̃
)2

2n
+

qv
2τ

(from Lemma 2)

≤
4.5(σN + σH + σM + σ

Ñ
+ σ

H̃
+ σ

C̃
)2

2n

+
10(σM + q + σ

C̃
+ qv)(σN + σH + σM + σ

Ñ
+ σ

H̃
+ σ

C̃
)

2n

+
(σM + q + σ

C̃
+ qv)

2 + 4.5

2n
+

3(σN + σH + σM + σ
Ñ
+ σ

H̃
+ σ

C̃
)2

2n
+

qv
2τ

(from Lemma 1)

≤
18.5σ2

auth + 4.5

2n
+

qv
2τ

,

since σM + q + σ
C̃
+ qv ≤ σN + σM + σ

Ñ
+ σ

C̃
. This concludes the proof of Theorem 3.

5.2 Proof of Theorem 5

As the proof of Theorem 5 is quite the same as those of Theorem 3 and Theorem 4, we only show
the differences. The main difference is in Lemma 1. We in fact need to change the definitions of
OMAC-e[P] and Q, and evaluate the indistinguishability of Q from Q̃, where the definition of
Q̃ does not change, to have a counterpart of Lemma 1. We define Q′ as follows.

Definition 3. Let Q′ = {Q′i}i=1,...,19 be a set of 19 functions defined as

Q′1(x)
def
= P(A(0)⊕ x)⊕ Rnd1, Q′2(x)

def
= P(Rnd1 ⊕ x)⊕ Rnd1,

Q′3(x, d)
def
= GP(P(D ⊕ Rnd1 ⊕ x), d), Q′4(x, d)

def
= GP(P(Q⊕ Rnd1 ⊕ x), d),

Q′5(x, d)
def
= GP(P(A(0)⊕D ⊕ x), d), Q′6(x, d)

def
= GP(P(A(0)⊕Q⊕ x), d),

Q′7(x)
def
= P(A(1)⊕ x)⊕ Rnd2, Q′8(x)

def
= P(Rnd2 ⊕ x)⊕ Rnd2,

Q′9(x)
def
= P(D ⊕ Rnd2 ⊕ x), Q′10(x)

def
= P(Q⊕ Rnd2 ⊕ x),

Q′11(x)
def
= P(A(1)⊕D ⊕ x), Q′12(x)

def
= P(A(1)⊕Q⊕ x),

Q′13(x)
def
= P(A(2)⊕ x)⊕ Rnd3, Q′14(x)

def
= P(Rnd3 ⊕ x)⊕ Rnd3,

Q′15(x)
def
= P(D ⊕ Rnd3 ⊕ x), Q′16(x)

def
= P(Q⊕ Rnd3 ⊕ x),

Q′17(x)
def
= P(A(2)⊕D ⊕ x), Q′18(x)

def
= P(A(2)⊕Q⊕ x),

Q′19(x)
def
= P(D ⊕ x),

where P is an URP, and A(i) = gA(i)(L) for i = 0, 1, 2, D = gD(L) and Q = gQ(L) with
L = P([0]n). The set of g functions are one of the schemes in Section 4. Rndi is independently
random, and GP(v, d) is v if d = 0 and (v∥P(v ∧ α)∥P((v ∧ α) + 1)∥ · · · ∥P((v ∧ α) + (d− 1))) if
d > 0, with α = (1n−64∥0131∥0131).

The indistinguishability between Q′ and Q̃ is bounded as follows.

Lemma 3. For Q′ of Definition 3, and Q̃ of Definition 2, and for any A with parameter list
(q, σout), we have

Adv
cpa

Q′,Q̃
(A) ≤ 3q2 + 6.5σoutq + 2.5σ2

out

2n
.

12

The proof of Lemma 3 is largely the same as that of Lemma 1. We obtain the mask function
corresponding to Eq. (3) of Appendix A by the substitution of masks, i.e., (L,L′, L′′, 2L, 4L) is
now (A(0), A(1), A(2), D,Q), while omask function does not change.

LetM1 = {A(0), A(1), A(2)} andM2 = {D,Q} andM =M1∪M2. With these definitions,
we need to prove counterparts of Eqs. (4) and (5) of Appendix A. As masks inM are functions
of L, when the equation contains an XOR of Rndi for some i, the probability is always 1/2n.
Consequently, we only need to see if the masks satisfy the following conditions7;

1. maxX∈M,c∈{0,1}n Pr[L
$← {0, 1}n : X = c] ≤ 1/2n

2. maxX,X′∈M,X ̸=X′,c∈{0,1}n Pr[L
$← {0, 1}n : X ⊕X ′ = c] ≤ 1/2n

3. maxX,X′∈M1,X ̸=X′,c∈{0,1}n Pr[L
$← {0, 1}n : X ⊕X ′ ⊕D = c] ≤ 1/2n

4. maxX,X′∈M1,X ̸=X′,c∈{0,1}n Pr[L
$← {0, 1}n : X ⊕X ′ ⊕Q = c] ≤ 1/2n

5. maxX,X′∈M1,X ̸=X′,c∈{0,1}n Pr[L
$← {0, 1}n : X ⊕X ′ ⊕D ⊕Q = c] ≤ 1/2n

In fact, for any instance of EAX+
j , we observe that all five conditions are satisfied.

Proposition 3. For any j = 1, 2, 3, the mask-generation of EAX+
j satisfies the above 5 condi-

tions.

Here is the rough proof sketch. For EAX+
1 , the first and second conditions hold true, as

X and X ⊕ X ′ (for X ̸= X ′) can be written as an element of GF(2n), c · L, with a non-
zero constant c. For the third to fifth conditions, we observe that A(0) ⊕ A(1) = 22L ⊕ L,
A(0) ⊕ A(2) = 23L ⊕ 22L ⊕ 2L ⊕ L, and A(1) ⊕ A(2) = 23L ⊕ 2L. Any of these sums is not
included in {D,Q,D ⊕ Q}, which is {2L, 22L, 22L ⊕ 2L}. This shows that the third to fifth
conditions are satisfied.

For EAX+
2 and EAX+

3 , each mask generation function can be defined as a matrix-vector
multiplication with a binary 4× 4 matrix, where each element is in GF(2n/4). For instance, the
sequence of gA(0), gA(1), gA(2), gD, gQ of EAX+

2 is represented by the following five matrices.
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 0 0 1
1 1 1 1
1 0 0 0
0 1 0 0

 ,


0 0 1 0
0 0 0 1
1 1 1 1
1 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

 .

Then we observe that the five conditions are decomposed into the following 24 cases with
ϵ = 1/2n.

Pr[A(0) = c] ≤ ϵ

Pr[A(1) = c] ≤ ϵ

Pr[A(2) = c] ≤ ϵ

Pr[D = c] ≤ ϵ

Pr[Q = c] ≤ ϵ

Pr[A(0)⊕A(1) = c] ≤ ϵ

Pr[A(0)⊕A(2) = c] ≤ ϵ

Pr[A(0)⊕D = c] ≤ ϵ



Pr[A(0)⊕Q = c] ≤ ϵ

Pr[A(1)⊕A(2) = c] ≤ ϵ

Pr[A(1)⊕D = c] ≤ ϵ

Pr[A(1)⊕Q = c] ≤ ϵ

Pr[A(2)⊕D = c] ≤ ϵ

Pr[A(2)⊕Q = c] ≤ ϵ

Pr[D ⊕Q = c] ≤ ϵ

Pr[A(0)⊕A(1)⊕D = c] ≤ ϵ



Pr[A(0)⊕A(2)⊕D = c] ≤ ϵ

Pr[A(1)⊕A(2)⊕D = c] ≤ ϵ

Pr[A(0)⊕A(1)⊕Q = c] ≤ ϵ

Pr[A(0)⊕A(2)⊕Q = c] ≤ ϵ

Pr[A(1)⊕A(2)⊕Q = c] ≤ ϵ

Pr[A(0)⊕A(1)⊕D ⊕Q = c] ≤ ϵ

Pr[A(0)⊕A(2)⊕D ⊕Q = c] ≤ ϵ

Pr[A(1)⊕A(2)⊕D ⊕Q = c] ≤ ϵ

We can verify Proposition 3 by computing the rank (modulo 2) of the sums of the matrices,
and seeing that the rank is full, for all of the above 24 cases. For EAX+

2 and EAX+
3 , we confirmed

7 The proof can be generalized to the case that these probabilities are bounded by a small number not restricted
to 1/2n.

13

this by software. Lemma 2, Proposition 2 and Eq. (1) can be used without a change, including
function h(∗). Using Lemma 3, Adv

priv

EAX+
j [Perm(n),τ]

(A) can be bounded as

Adv
priv

EAX+
j [Perm(n),τ]

(A) ≤ Adv
cpa

h(Q′),h(Q̃)
(B) + Adv

cpa
CBC,RND(B)

≤ Adv
cpa

Q′,Q̃
(C) + 3(σN + σH + σM)2

2n

≤
2.5σ2

priv + 6.5σ2
priv + 3σ2

priv

2n
+

3σ2
priv

2n
=

15σ2
priv

2n
,

for any j = 1, 2, 3, by defining appropriate adversaries B and C. In a similar manner, we derive
the AUTH bound as

Advauth
EAX+

j [Perm(n),τ]
(A) ≤ Adv

cpa

h(Q′),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) +

qv
2τ

≤ Adv
cpa

Q′,Q̃
(C) +

3(σN + σH + σM + σ
Ñ
+ σ

H̃
+ σ

C̃
)2

2n
+

qv
2τ

≤
2.5σ2

auth + 6.5σ2
auth + 3σ2

auth

2n
+

qv
2τ
≤

15σ2
auth

2n
+

qv
2τ

for any j = 1, 2, 3.

6 Conclusion

In this paper, we have presented an improved authenticity bound for EAX, an authenticated
encryption mode proposed by Bellare, Rogaway and Wagner. While the original bound guar-
antees the standard birthday-type security in the case of one verification query, we proved the
birthday-type security in the case of multiple verification queries. We also showed refinements of
EAX for reducing the amounts of pre-processing blockcipher calls and working memory, which
will be useful for constrained devices.

Acknowledgments. The authors thank the anonymous reviewers for helpful comments. A part
of the work by Tetsu Iwata was carried out while visiting Nanyang Technological University,
Singapore.

References

1. Bouncy Castle, http://www.bouncycastle.org/
2. Information technology - Security techniques - Authenticated encryption. ISO/IEC 19772:2009 (2009)
3. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and

Authenticated Encryption. Cryptology ePrint Archive, Report 2004/309 (2004), http://eprint.iacr.org/
4. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation (A Two-Pass Authenticated-Encryption

Scheme Optimized for Simplicity and Efficiency), www.cs.ucdavis.edu/∼rogaway/papers/eax.pdf
5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy and Meier [18], pp. 389–407
6. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. In: Bellare,

M. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1880, pp. 197–215. Springer (2000)
7. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and different modes of opera-

tions. IEEE Transactions on Information Theory 54(5), 1991–2006 (2008)
8. Dai, W.: Crypto++ Library, http://www.cryptopp.com/
9. Gladman, B.: http://www.gladman.me.uk/

10. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE. Lecture Notes in Com-
puter Science, vol. 2887, pp. 129–153. Springer (2003)

11. Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 2904, pp. 402–415. Springer (2003)

14

http://www.bouncycastle.org/
http://eprint.iacr.org/
www.cs.ucdavis.edu/~rogaway/papers/eax.pdf
http://www.cryptopp.com/
http://www.gladman.me.uk/

12. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In: Joux, A. (ed.)
FSE. Lecture Notes in Computer Science, vol. 6733, pp. 306–327. Springer (2011)

13. Minematsu, K., Lucks, S., Iwata, T.: Improved Authenticity Bound of EAX, and Refinements. In: Susilo, W.,
Reyhanitabar, R. (eds.) ProvSec. Lecture Notes in Computer Science, vol. 8209, pp. 184–201. Springer (2013)

14. Minematsu, K., Lucks, S., Morita, H., Iwata, T.: Attacks and Security Proofs of EAX-Prime. Pre-proceedings
of Fast Software Encryption 2013 (2013), full-version available at http://eprint.iacr.org/2012/018

15. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.
In: Lee, P.J. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004)

16. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy and Meier [18], pp. 348–359
17. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: Vaudenay, S. (ed.)

EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer (2006)
18. Roy, B.K., Meier, W. (eds.): Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,

February 5-7, 2004, Revised Papers, Lecture Notes in Computer Science, vol. 3017. Springer (2004)
19. Zeng, G., Han, W., He, K.: High Efficiency Feedback Shift Register: σ-LFSR. Cryptology ePrint Archive,

Report 2007/114 (2007), http://eprint.iacr.org/

A Proof of Lemma 1

Let Qr = {Qr
i }i=1,...,19 be the set of 19 functions defined in the same way as Q but the internal

n-bit URP, P, is substituted with n-bit URF, R. From the PRF/PRP switching lemma (e.g. [6]),
we have

Adv
cpa
Q,Qr(A) ≤ (q + σout + 3)2/2n+1, (2)

for any adversary A with parameter list (q, σout). Let R = {Ri}i=1,...,19 be defined in the

same way as Q̃, except that Ri for i = 1, 2, 7, 8, 13, 14 are independent n-bit URFs. That is,
each Ri is compatible to Qi and outputs are completely random. We consider the advantage
in distinguishing between Q and R. Then, let mask(i, L, L′, L′′, Rnd1, Rnd2, Rnd3) be the input
masking value used by Qi. The value of mask(i, L, L′, L′′, Rnd1, Rnd2, Rnd3) for each i is defined
as follows.

mask(i, L, L′, L′′, Rnd1, Rnd2, Rnd3) =



L if i = 1

Rnd1 if i = 2

2L⊕ Rnd1 if i = 3

4L⊕ Rnd1 if i = 4

L⊕ 2L if i = 5

L⊕ 4L if i = 6

L′ if i = 7

Rnd2 if i = 8

2L⊕ Rnd2 if i = 9

4L⊕ Rnd2 if i = 10

L′ ⊕ 2L if i = 11

L′ ⊕ 4L if i = 12

L′′ if i = 13

Rnd3 if i = 14

2L⊕ Rnd3 if i = 15

4L⊕ Rnd3 if i = 16

L′′ ⊕ 2L if i = 17

L′′ ⊕ 4L if i = 18

2L if i = 19

(3)

15

http://eprint.iacr.org/2012/018
http://eprint.iacr.org/

Similarly let omask(t, Rnd1, Rnd2, Rnd3) be the outer masking value, defined as Rnd1 if t ∈
{1, 2} and Rnd2 if t ∈ {7, 8} and Rnd3 if t ∈ {13, 14}, and otherwise 0n, that is,

omask(i, Rnd1, Rnd2, Rnd3) =


Rnd1 if i ∈ {1, 2}
Rnd2 if i ∈ {7, 8}
Rnd3 if i ∈ {13, 14}
0n otherwise

We may abbreviate mask(i, L, L′, L′′, Rnd1, Rnd2, Rnd3) to mask(i), and omask(j, Rnd1, Rnd2,
Rnd3) to omask(j). Here, P(mask(i)⊕x)⊕omask(i) corresponds to Qi(x) when i ̸= 3, 4, 5, 6 and
msbn(Qi(x, d)) when i = 3, 4, 5, 6. From the property of Galois field it is easy to see that

max
1≤i<j≤19,δ∈{0,1}n

Pr[mask(i)⊕mask(j) = δ] ≤ 1/2n (4)

max
1≤i≤19,δ∈{0,1}n

Pr[mask(i) = δ] ≤ 1/2n (5)

where both probabilities are defined by the independent uniform samplings of L, L′, L′′, and
Rndi for i = 1, 2, 3.

For any adversary querying Qr or R, let (ti, Xi, di) be the i-th query. Without loss of gen-
erality, we assume di is fixed to 0 whenever ti ̸∈ {3, 4, 5, 6}, and all queries are distinct, i.e.
(ti, Xi, di) ̸= (tj , Xj , dj) for any 1 ≤ i < j ≤ q, and when ti = 19, Xi is fixed to [1]n or [2]n. For
query (t,X, d), we define XE = X⊕mask(t) which is an actual input to the underlying random
function when Qr is queried.

Fig. 6 defines two games, GameQr and GameR, and it is easy to observe that GameQr per-
fectly simulates Qr. Note that GameR behaves identically to R, as Y is V ⊕omask(t, Rnd1, Rnd2,
Rnd3) and V is uniform and independent of Rnd1, Rnd2. Because a collision in (t,X, d) is not al-
lowed the output of GameR is always independent and uniformly random. We define the flag
bad and set it when two inputs with input maskings collide. Then both games are identical until
bad gets set to true, thus Adv

cpa
Qr,R(A) is bounded by

Pr[AGameQr

⇒ 1]− Pr[AGameR ⇒ 1] ≤ Pr[AGameR sets bad]. (6)

That is, what we need is to bound the last probability.

We first focus on bad at line 13. The probability of this event is not increased by an adaptive
choice of queries, since outputs are completely random and independent of XE for both games
until bad sets. The existence of omask(t) in the output does not help, since it is XORed to a
perfectly random value. Thus we fix all queries and measure the probability of bad .

Let us assume bad first occurs at line 13 with the i-th query, (ti, Xi, di). We define XEi

and Yi,h
def
= Yi + h as the corresponding internal variables appeared in the i-th run of the game

(where the latter only appears when ti ∈ {3, 4, 5, 6} and di ≥ 1). We must have one of the three
sub-events,

– XEi = XEj for i ≤ q, j < i, or

– XEi ∈ {[0]n, [1]n, [2]n} for i ≤ q or

– XEi = Yj + h for i ≤ q and j < i and 0 ≤ h ≤ dj − 1.

From Eqs. (4) and (5) the first and the last sub-events occur with probability at most 1/2n, and
the middle one with probability at most 3/2n. We next focus on bad at line 18, which implies
the occurrence of one of the three sub-events (when ti, tj ∈ {3, 4, 5, 6}),

16

– Yi + h = XEj for some i ≤ q, j ≤ i, 0 ≤ h ≤ di − 1 or
– Yi + h ∈ {[0]n, [1]n, [2]n} for some i ≤ q and 0 ≤ h ≤ di − 1, or
– Yi + h = Yj + h′ for some (i, h) ̸= (j, h′), i, j ≤ q and 0 ≤ h ≤ di − 1 and 0 ≤ h′ ≤ dj − 1.

As Yi is random and independent of all previous variables, we have

Pr[Yi + h = Xj] = max
δ

Pr[Yi = δ − h] = 1/2n.

Now we have Pr[Yi + h ∈ {[0]n, [1]n, [2]n}] ≤ 3/2n and Pr[Yi + h = Yj + h′] ≤ 1/2n. By counting
the number of sub-events, we have

Pr[AGameR sets bad] ≤
(
q

2

)
1

2n︸ ︷︷ ︸
XEi=XEj

+
3q

2n︸︷︷︸
XEi∈{[0]n,[1]n,[2]n}

+
σoutq

2n︸ ︷︷ ︸
XEi=Yj+h

for both i < j and j ≤ i

+
3σout
2n︸ ︷︷ ︸

Yi+h∈{[0]n,[1]n,[2]n}

+

(
σout
2

)
1

2n︸ ︷︷ ︸
Yi+h=Yj+h′

≤ (0.5q2 + 6σoutq + 0.5σ2
out)

2n
. (7)

We also need to evaluate the distinguishing advantage of R and Q̃. The difference between
them is that R uses n-bit URFs when t is in {1, 2, 7, 8, 13, 14} while Q̃ uses n-bit URPs. For
other values of t their behaviors are identical and independent of the responses obtained when
t = 1, 2, 7, 8, 13, 14. Combining this observation and the PRP/PRF switching lemma we have

Adv
cpa

R,Q̃
(A) ≤ q2/2n+1. (8)

Combining Eqs. (2), (8), (7), and (6), we have

Adv
cpa

Q,Q̃
(A) ≤ Adv

cpa
Q,Qr(A) + Adv

cpa
Qr,R(A) + Adv

cpa

R,Q̃
(A)

≤ (q + σout + 3)2

2n+1
+

0.5q2 + 6σoutq + 0.5σ2
out

2n
+

q2

2n+1

≤ 4.5q2 + 10σoutq + σ2
out + 4.5

2n
,

which concludes the proof.

B Proof of Lemma 2

First we define CBCG,G′ : ({0, 1}n)>0 → {0, 1}n for any n-bit (keyed) permutations, G and G′.
It is defined as

CBCG,G′(X[1]∥ . . . ∥X[m]) =

{
G(X[1]) if m = 1

CBCG′(G(X[1])∥X[2]∥ . . . ∥X[m]) if m ≥ 2,

where CBCG′ is the standard CBC-MAC using permutation G′. For convenience we also define
CBC⊕G,G′ : ({0, 1}n)≥2 → {0, 1}n as CBC⊕G,G′(X[1]∥ . . . ∥X[m]) = CBCG,G′(X[1]∥ . . . ∥X[m −
1]) ⊕ X[m] for m ≥ 2, i.e. CBCG,G′ without the final application of G′. Let us focus on the
case t = 1. Then CBC can be seen as an information-theoretic variant of Carter-Wegman
MAC, that is, CBC(1) : {0, 1}∗ → {0, 1}n is a composition of two functions, where the first one

17

Initialization
00 L← ρ([0]n)

$← {0, 1}n, L′ ← ρ([1]n)
$← {0, 1}n, L′′ ← ρ([2]n)

$← {0, 1}n

01 Rnd1
$← {0, 1}n, Rnd2

$← {0, 1}n, Rnd3
$← {0, 1}n

On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N
10 XE ← mask(t, L, L′, L′′, Rnd1, Rnd2, Rnd3)⊕X

11 Y
$← {0, 1}n

12 V ← Y ⊕ omask(t, Rnd1, Rnd2, Rnd3)

13 if XE ∈ Dom(ρ) then bad← true, V ← ρ(XE), Y ← V ⊕ omask(t, Rnd1, Rnd2, Rnd3)

14 else ρ(XE)← V
15 if t ̸∈ {3, 4, 5, 6} or t ∈ {3, 4, 5, 6} and d = 0 then return Y
16 for i = 0 to d− 1 do

17 S[i+ 1]
$← {0, 1}n

18 if V + i ∈ Dom(ρ) then bad← true, S[i+ 1]← ρ(V + i)

19 else ρ(V + i)← S[i+ 1]
20 return Y ∥S[1]∥S[2]∥ · · · ∥S[d]

Fig. 6. GameQr contains the boxed arguments, while GameR does not.

(called hashing) takes an input to hash it into n bits, and the second one (called finalizing)
takes that hashed value to compute the n-bit output. The hashing function applies CBCP7,P8

with bp(∗) for the final input block, or just applies bp(∗) to the input itself if the input is
at most n bits. The finalizing function applies one of the 4 independent n-bit URFs, R9 to
R12, depending on the input length, or R19 if input is empty. For a pair of distinct inputs to
CBC(1), let X = X[1]∥X[2]∥ . . . ∥X[m] and X ′ = X ′[1]|∥X ′[2]∥ . . . ∥X ′[m′], let Z and Z ′ be the
corresponding hash values and Rκ and Rκ′ be the URFs for the finalizing function. From the
definition of CBC a simultaneous collision (Z, κ) = (Z ′, κ′) occurs only if both X and X ′ are
more than n bits (and non-empty), and therefore (Z, κ) = (Z ′, κ′) implies

CBC⊕P7,P8
(X[1]∥ . . . ∥X[m− 1]∥bp(X[m])) = CBC⊕P7,P8

(X ′[1]∥ . . . ∥X ′[m− 1]∥bp(X ′[m′]))

satisfying X[1]∥ . . . ∥X[m− 1]∥bp(X[m]) ̸= X ′[1]∥ . . . ∥X ′[m− 1]∥bp(X ′[m′]) and m,m′ ≥ 2.
For a keyed function F : X → Y, let CollF (q, σ) be the maximum collision probability of F ’s

outputs when accessed via q non-adaptive chosen-plaintext queries with total σ n-bit blocks.
Now, from the above observation and (a slight generalized version of) Lemma 2 of [6],we have

Adv
cpa

CBC(1),RND(1)(A) ≤ CollCBC⊕
P7,P8

(q, σin),

for any (possibly adaptive) A that has parameter list (q, σin, σout).
Moreover, Lemma 4.2 of Iwata and Kurosawa [11] (called MOMAC-E Collision Bound) proves

CollCBC⊕
P7,P8

(q, σin) ≤
(σin − q)2

2n
.

Thus we have

Adv
cpa

CBC(1),RND(1)(A) ≤
(σin − q)2

2n
. (9)

Similarly, we have

Adv
cpa

CBC(0),RND(0)(A) ≤
(σin − q)2

2n
, and (10)

Adv
cpa

CBC(2),RND(2)(A) ≤
(σin − q)2

2n
, (11)

as CBC(0) and CBC(2) have the same structure as CBC(1). For CBC(0) having input X, it applies
Rd+1
5 or Rd+1

6 when |X| ≤ n, and when |X| > n it uses CBC⊕P1,P2
for hashing and Rd+1

3 or Rd+1
4

18

+1 +1

bp

D/QL

S[1] S[2] S[d]

X[1] X[2] · · · X[m]

· · ·

Y

Y

OMAC-e[P](0)

P P P P P P

bp

· · ·

D/Q

0n−210

D

X[1] X[2] X[m]

· · ·P P P P

L

OMAC-e[P](2)

(X = ε)

OMAC-e[P](2)

(X = ε)

Y

bp

· · ·

D/Q D

Y

X[1] X[2] X[m]

· · ·P P P P

L

OMAC-e[P](1)

(X = ε)

OMAC-e[P](1)

(X = ε)

0n−11

Fig. 7. OMAC-extension in the proofs of Theorems 3 and 4.

for finalization, where the input length determines which URF is to be used. The finalization is
done by URF of variable-output length, however this apparently does not gain the advantage in
distinguishing it from RND(0). For CBC(2), the difference from CBC(1) is that it can accept the
empty string, which is processed by an independent URF (R19).

Note that the internal URP/URFs of CBC(0), CBC(1), and CBC(2) have no overlap, thus
their probability spaces are independent. Here, an exception is R19 for case t = 1 and t = 2,
however in these cases R19 takes distinct inputs, hence the outputs are independent and random.
Therefore, using the hybrid argument and Eqs. (9) to (11) we have

Adv
cpa
CBC,RND(A) = Adv

cpa

(CBC(0),CBC(1),CBC(2)),(RND(0),RND(1),RND(2))
(A)

≤ Adv
cpa

(CBC(0),CBC(1),CBC(2)),(RND(0),CBC(1),CBC(2))
(A)

+ Adv
cpa

(RND(0),CBC(1),CBC(2)),(RND(0),RND(1),CBC(2))
(A)

+ Adv
cpa

(RND(0),RND(1),CBC(2)),(RND(0),RND(1),RND(2))
(A) ≤ 3(σin − q)2

2n
≤ 3σ2

in

2n
.

This completes the proof.

19

C Proof of Eq. (1)

For fe and fd appearing at Proposition 1, we observe that, if fe(RND) given (N,H,M) outputs
(C, T), then T can be written as

T = msbτ (msbn(RND(0)(N, |M |n))⊕ RND(1)(H)⊕ RND(2)(C))

= msbτ (RND(0)(N, |C|n))⊕msbτ (RND(1)(H)⊕msbτ (RND(2)(C)).

Note that C can be ε and RND(2) treats ε as an input (i.e. outputs random n bits).
We first consider the case qv = 1. Without loss of generality we assume that the single de-

cryption query, (Ñ , H̃, C̃, T̃), is issued after obtaining q pairs of encryption queries and answers,
((N1,H1,M1, C1, T1), . . . , (Nq,Hq,Mq, Cq, Tq)). Now, the success probability of a forgery is 1/2τ

when Ñ ̸= Ni for all i = 1, . . . , q. Otherwise, we have a unique j ∈ {1, . . . , q} such that Ñ = Nj

and the successful forgery corresponds to the event that

[T̃ = msbτ (RND(0)(Ñ , |C̃|n))⊕msbτ (RND(1)(H̃))⊕msbτ (RND(2)(C̃))]

⇔ [T̃ = msbτ (RND(0)(Nj , |Cj |n))⊕msbτ (RND(1)(H̃))⊕msbτ (RND(2)(C̃))]

⇔ [T̃ ⊕ Tj = msbτ (RND(1)(Hj)⊕ RND(2)(Cj)⊕ RND(1)(H̃)⊕ RND(2)(C̃))]. (12)

As (H̃, C̃, T̃) ̸= (Hj , Cj , Tj) holds true, the probability of Eq. (12) is at most 1/2τ . Here, note

that the choice of H̃ and C̃ (e.g. choosing C̃ = Cj′ for some j′ ̸= j) and the distribution of
H1, . . . , Hq and C1, . . . , Cq, which can contain collisions on Cis or His, do not contribute to
gaining the probability since the transcript obtained by the encryption queries completely hides
the information on RND(1)(∗) and RND(2)(∗) no matter what H1, . . . , Hq and C1, . . . , Cq are, as
N1, . . . , Nq are unique. This implies that AdvauthEAX(A) = 1/2τ , when qv = 1.

From Theorem B.2 of [3], any AE scheme having the maximum forgery probability being ϵ
when qv = 1 has the maximum forgery probability ϵ · qv when qv ≥ 1. Combining this with the
above analysis of the case qv = 1, the proof is completed.

20

