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ABSTRACT
Wireless Sensor Networks (WSNs) pose a number of unique
security challenges that demand innovation in several areas
including the design of cryptographic primitives and proto-
cols. Despite recent progress, the efficient implementation
of Elliptic Curve Cryptography (ECC) for WSNs is still a
very active research topic and techniques to further reduce
the time and energy cost of ECC are eagerly sought. This
paper presents an optimized ECC implementation that we
developed from scratch to comply with the severe resource
constraints of 8-bit sensor nodes such as the MICAz and
IRIS motes. Our ECC software uses Optimal Prime Fields
(OPFs) as underlying algebraic structure and supports two
different families of elliptic curves, namely Weierstraß-form
and twisted Edwards-form curves. Due to the combination
of efficient field arithmetic and fast group operations, we
achieve an execution time of 5.8 · 106 clock cycles for a full
158-bit scalar multiplication on an 8-bit ATmega128 micro-
controller, which is 2.78 times faster than the widely-used
TinyECC library. Our implementation also shows that the
energy cost of scalar multiplication on a MICAz (or IRIS)
mote amounts to just 19 mJ when using a twisted Edwards
curve over a 160-bit OPF. This result compares fairly well
with the energy figures of two recently-presented hardware
designs of ECC based on twisted Edwards curves.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public Key Cryptosystems;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection
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1. INTRODUCTION
In recent years, Wireless Sensor Networks (WSNs) have

found widespread adoption in such areas as environmental
monitoring, military surveillance, industrial control, home
automation, and health care [1]. Many of said applications
collect or process sensitive information, which initiated an
extensive body of research on security and privacy aspects
of WSNs. The special adversary models and threat scenar-
ios of WSNs pose a multitude of unique research problems
(see e.g. [22] for an overview), including some that are still
not properly solved and, hence, need further consideration
[16]. Wang et al [23] identify the following building blocks
as essential for the design and implementation of a secure
WSN: cryptography, key management, secure routing, se-
cure data aggregation, and intrusion detection. One of the
open research issues mentioned in [23] is to further improve
the efficiency of Public-Key Cryptography (PKC) on small
sensor nodes with limited computational power. They state
that “public key cryptography can greatly ease the design
of security in WSNs” [23, p. 19], but perceive overheads in
execution time and energy consumption as limiting factors
for the widespread deployment of PKC.

The benefits and drawbacks of using PKC in WSNs have
been widely researched in the past ten years. Early work on
the feasibility of PKC in WSNs includes that of Carman
et al [6], who analyzed and compared the computation time
and energy requirements of RSA, DSA, Diffie-Hellman and
a few other public-key algorithms. The first really practical
RSA implementation for an 8-bit sensor node, namely the
prevalent MICAz mote [9], was presented by Gura et al in
2004 [13]. They also introduced highly-optimized software
for Elliptic Curve Cryptography (ECC) on 8-bit AVR mi-
cro-controllers and reported an execution time of less than
6.5 ·106 clock cycles for a 160-bit scalar multiplication. This
result set a new speed record for ECC on an 8-bit platform
and has since then been generally regarded as the ultimate
proof that strong PKC is feasible on resource-constrained
sensor nodes. One of the most widely used ECC implemen-
tations for WSNs is TinyECC [19], whose first version was
released in the late 2007. TinyECC is a highly configurable
ECC library for wireless sensor nodes running TinyOS and
supports Weierstraß curves over arbitrary prime fields. To
increase efficiency, TinyECC contains special optimizations
for standardized 128, 160, and 192-bit fields.

In this paper, we describe a carefully-optimized software
implementation of ECC for 8-bit AVR-based sensor nodes
like the MICAz and IRIS motes. The aim of our work is to
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advance the state-of-the-art in lightweight ECC for WSNs
by exploring the potential of new families of elliptic curves
and prime fields with special arithmetic properties. In con-
trast, most existing ECC libraries for 8-bit AVR processors
(in particular TinyECC) are optimized for curves and fields
that have been standardized by such bodies as the Natinal
Institute of Standards and Technology (NIST) [21]. These
so-called NIST curves were specified some 15 years ago and
do not reflect the current state-of-the-art of ECC in terms
of efficiency. Our implementation “departs” from these old
standards and puts forward a novel approach for ECC on
small sensor nodes that combines twisted Edwards curves
(which provide very fast point arithmetic [4]) with so-called
Optimal Prime Fields (which allow for efficient modular re-
duction [24]). Besides achieving high performance, we also
aim for a “lightweight” implementation with low RAM and
ROM footprint. Therefore, we use the conventional double-
and-add method for scalar multiplication, even though one
could reach better execution times at the cost of additional
memory for storing multiples of the base point. Our results
show that an 8-bit sensor node, such as the MICAz mote, is
able to perform a full 160-bit scalar multiplication in some
5.8 · 106 clock cycles, which is about 2.78 times faster than
the widely-used TinyECC library.

2. OPTIMAL PRIME FIELDS
The specific field we use for our implementation belongs

to the family of Optimal Prime Fields (OPFs), which were
originally introduced in [11]. These fields are represented by
“low-weight” primes of the form p = u · 2k + v, where u and
v are relatively small compared to 2k; in our case, u has a
length of 16 bits so that it fits into two 8-bit registers of an
AVR processor, and v is equal to 1. A concrete example is
p = 65356 · 2144 + 1, which is a 160-bit prime that looks as
follows when written in hex notation.

0xFF4C000000000000000000000000000000000001

Primes of such a form are characterized by a low Hamming
weight because only the two most significant bytes and the
least significant byte are non-zero; all other “middle” bytes
are zero. The low weight of p allows for optimization of the
modular arithmetic as only the non-zero bytes of p need to
be processed in the reduction operation. For example, the
Montgomery multiplication [20] can be optimized for these
special primes so that the modular reduction operation has
linear complexity, similar to generalized-Mersenne primes
like the 192-bit NIST prime p = 2192 − 264 − 1 that is used
in Lederer et al’s ECC implementation for WSNs [18].

Zhang et al introduce in [24] an efficient OPF arithmetic
library for 8-bit AVR processors end explain how to speed
up modular reduction for low-weight primes. They perform
the Montgomery multiplication according to the so-called
“Finely Integrated Product Scanning” (FIPS) method (see
e.g. [17, 12]) and take the low weight of primes of the form
p = u · 2k + 1 into account. The ECC implementation we
present in this paper uses Zhang et al’s OPF library [24] as
a building block for low-level field arithmetic. However, we
had to write the Assembly code for inversion in OPFs from
scratch since it was not part of the library. Our inversion
is based on the binary version of the extended Euclidean
algorithm [14] and features certain low-level optimizations
like e.g. multi-bit shifting. All other arithmetic operations
of the OPF library are described in full detail in [24].

3. TWISTED EDWARDS CURVES
In July 2007, Harold Edwards introduced a normal form

for elliptic curves along with a simple, symmetric addition
law [10]. Bernstein and Lange [5] established the relevance
of Edwards’ work for elliptic curve cryptography and came
up with more efficient formulas for point addition and dou-
bling using standard projective coordinates [14]. They also
extended Edwards’ curve definition to a more general form
that covers a much larger class of elliptic curves. In formal
terms, a so-called Edwards curve over a prime field Fp can
be described by the equation1

E : x2 + y2 = 1 + dx2y2 (1)

with d ∈ Fp \ {0, 1}. Edwards curves have some attractive
properties for practical use, most notably efficiency of the
point arithmetic and completeness of the addition law when
d is not a square in Fp. Completeness means the addition
formula is valid for all P, Q ∈ E(Fp), including the special
cases P = Q, P = −Q, P = O, and Q = O. Bernstein and
Lange [5] also showed that every Edwards curve contains a
point of order 4 and, thus, has a co-factor of h ≥ 4.

In 2008, Bernstein et al [4] introduced twisted Edwards
curves as a generalization of Edwards curves. Formally, a
twisted Edwards curve over a prime field Fp is defined via
the equation

E : ax2 + y2 = 1 + dx2y2 (2)

where a and d are distinct, non-zero elements of Fp. Bern-
stein et al observed empirically that the twisted Edwards
form covers much more curves than the “original” Edwards
form2 based on Equation 1. Furthermore, as demonstrated
in [4], every twisted Edwards curve over a non-binary field
Fq is birationally equivalent over Fq to a Montgomery curve
(i.e. every twisted Edwards curve can be transformed to a
Montgomery curve, and vice versa). Bernstein et al [4] also
presented explicit formulas for addition and doubling on a
twisted Edwards curve; these formulas are complete if a is
a square and d a non-square in the underlying field.

3.1 Curve Generation
The security of elliptic curve cryptosystems relies on the

computational intractability of the Elliptic Curve Discrete
Logarithm Problem (ECDLP) [14]. In order to ensure the
hardness of the ECDLP, the elliptic curve E and the base
point P ∈ E(Fp) must satisfy certain properties. First and
foremost, the elliptic curve group E(Fp) needs to contain a
large subgroup of prime order n [14]. More precisely, when
writing the order of E over Fp as product of a prime n and
a co-factor h, i.e. #E(Fp) = h · n, then n has to have a bit-
length of roughly 160 (or above) and h should be small; in
the ideal case h = 1. Another important requirement is to
avoid certain classes of curves that are “weak” in the sense
that the ECDLP can be solved in relatively short time even
if n is a 160-bit prime. A famous example are anomalous
curves, i.e. curves over Fp with #E(Fp) = p for which the
ECDLP has just linear complexity [7]. Furthermore, curves
having a “small” embedding degree need to be excluded to

1Note that Bernstein and Lange originally defined Edwards
curves more generally over non-binary fields. However, in
this paper we only consider prime fields.
2Of course, the conventional Edwards curves from [5] are a
subset of twisted Edwards curves since an Edwards curve is
nothing else than a twisted Edwards curve with a = 1.
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prevent the Menezes-Okamoto-Vanstone (MOV) attack and
other attacks based on the Weil and Tate pairing.

Determining whether a random curve E satisfies all the
criteria mentioned above requires to find #E(Fp), which, in
turn, means to count the number of Fp-rational points on
E. There exist several computer algebra systems, such as
Magma or Sage, that provide functions for calculating the
order of an elliptic curve E given by a Weierstraß equation
of the form y2 = x3 + ax + b over Fp. Using Magma, the
generation of a cryptographically strong Weierstraß curve is
fairly easy. A straightforward approach is to fix the curve
parameter a to −3, initialize the parameter b with 1, and
increment b until a suitable curve is found. Fixing a to −3
(i.e. a = p− 3) benefits implementation efficiency by reduc-
ing the computational cost of point doubling as explained
in [14, page 90]. We took this approach to generate secure
Weierstraß curves over the 160-bit field given in Section 2
(i.e. the OPF defined by p = 65356 · 2144 + 1). One of the
curves we got is E : y2 = x3 − 3x + 9048 (i.e. a = p− 3 and
b = 9048), which is suitable for cryptographic applications
because it has a prime group order (i.e. h = 1) and satisfies
all other security requirements discussed above.

Finding a “good” curve in twisted Edwards form is more
complicated than the generation of a Weierstraß curve. As
mentioned previously, our implementation is based on the
prime field Fp with p = 65356 · 2144 + 1, which belongs to
the family of OPFs [24] and has a size of 160 bits. Magma
provides an extensive pool of functions for computations on
elliptic curves given in both short and long (non-simplified)
Weierstraß form, but does not directly support the twisted
Edwards from. However, a twisted Edwards curve with the
parameters a, d ∈ Fp can be expressed via a non-simplified
Weierstraß equation as follows.

a2 = 2(a + d), a4 = (a− d)2, and a1 = a3 = a6 = 0 (3)

The above formulas were derived by simply exploiting the
fact that any twisted Edwards curve over a non-binary field
Fq is birationally equivalent to a Montgomery curve, which
was formally proven in [4]. The Magma script we wrote to
generate a twisted Edwards curve contains a simple loop in
which the parameter d (initially set to 1) gets incremented
each iteration until a suitable curve is found. We fixed the
parameter a to −1 (i.e. a = p− 1) to take advantage of the
fast formulas for point addition and doubling presented in
[15]. Furthermore, our Magma script only considers values
of d that are non-square in Fp so as to ensure completeness
of the addition formula. In each iteration of the loop, three
main steps are carried out. First, the twisted Edwards curve
defined by a and d is transformed into a Weierstraß curve
via Equation (3). Next, we determine the number of Fp-ra-
tional points on this curve using Magma’s Order function
and check whether it is four times a prime (i.e. whether its
co-factor h is 4). If this is the case then the final step is to
carry out some further checks to guarantee the ECDLP is
hard. Following the outlined approach, we eventually found
the curve E : −x2 + y2 = 1 + 31145x2y2 (i.e. a = p− 1 and
d = 31145), which has an order of #E(Fp) = h · n =

4 · 364371875798791851509551807137352597688979500323,

whereby the latter factor is a 158-bit prime. In addition to
the already-mentioned requirements for the hardness of the
ECDLP, we also checked a couple of other criteria such as
“twist security.” The quadratic twist E′ of our curve E has

a small co-factor of 8, which helps to prevent certain forms
of implementation attack [3].

3.2 Point Arithmetic
The most efficient way of performing point arithmetic on

a twisted Edwards curve is to use the extended coordinates
proposed by Hişil et al in [15]. When using this coordinate
system, a point P = (x, y) is represented by the quadruple
(X : Y : T : Z) where x = X/Z, y = Y/Z, xy = T/Z, and
Z 6= 0. Such extended twisted Edwards coordinates can be
seen as homogenous projective coordinates (X : Y : Z), aug-
mented with a fourth coordinate T that corresponds to the
product xy in affine coordinates. The point at infinity O is
represented by (0 : 1 : 0 : 1) and the negative of a point in
extended coordinates is (−X : Y : −T : Z). A point given
in affine coordinates as (x, y) can be converted to extended
coordinates by simply setting X = x, Y = y, T = xy, and
Z = 1. The re-conversion is done in the very same way as
for homogenous projective coordinates through calculation
of x = X/Z and y = Y/Z, which costs an inversion in the
underlying field.

In the following, we briefly explain the dedicated addition
and doubling formulas using extended coordinates as given
by Hişil et al in [15, Section 3.2 and 3.3]. Let P1 and P2 be
two distinct points on a twisted Edwards curve represented
in extended coordinates of the form (X1 : Y1 : T1 : Z1) and
(X2 : Y2 : T2 : Z2) with Z1 6= 0, Z2 6= 0. When a = −1 (as
is the case for our curve from Subsection 3.1), a dedicated
addition P3 = P1 + P2 = (X3 : Y3 : T3 : Z3) consists of the
following sequence of operations.

A← (Y1 −X1) · (Y2 + X2), B ← (Y1 + X1) · (Y2 −X2),
C ← 2Z1 · T2, D ← 2T1 · Z2, E ← D + C,
F ← B −A, G← B + A, H ← D − C,

X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G

(4)

The computational cost of this point addition amounts to
eight multiplications (8M) and some less costly operations
like field additions. When P2 is given in affine coordinates
(i.e. Z2 = 1), the addition (which is then actually a mixed
addition) can be performed with only seven multiplications
(7M) in Fp. Hişil et al also introduced a fairly fast formula
for doubling a point P1 = (X1 : Y1 : T1 : Z1) such that the
result P3 = 2P1 is in turn a point in extended coordinates
[15]. For twisted Edwards curves with a =−1, the sequence
of operations to perform a point doubling is as follows.

A← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← −A,

E ← (X1 + Y1)
2 −A−B,

G← D + B, F ← G− C, H ← D −B,
X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G

(5)

A point doubling via Equation (5) costs four multiplications
(4M) and four squarings (4S) in the underlying field. Unlike
to the complete addition formula from [4] and [15, Section
3.1], the doubling via Equation (5) and the point addition
formula quoted above do not use the curve parameter d as
input. The main disadvantage of the 7M addition formula
is that it is not complete, even when a is a square and d a
non-square in Fp, i.e. there exist some exceptional cases as
explained in [15, Section 2]. However, exceptional cases can
only occur in scalar multiplication if the base point P does
not have a prime order, which normally never happens in
an ECDH protocol for sensor nodes. Of course, a malicious
node could try to use a public ECDH key that triggers an
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Algorithm 1. Point addition on a TED curve with a = −1

Input: Projective point P1 = (X1 : Y1 : E1 : H1 : Z1) with
E1H1 = T1, and affine point P2 = (U2 : V2 : W2) with
U2 = Y2 + X2, V2 = Y2 −X2, W2 = 2T2 = 2X2Y2.

Output: Sum P3 = P1 + P2 = (X3 : Y3 : E3 : H3 : Z3).
1: T1 ← E1 ·H1

2: E3 ← Y1 −X1

3: H3 ← Y1 + X1

4: X3 ← E3 · U2

5: Y3 ← H3 · V2

6: E3 ← Z1 ·W2

7: Z3 ← 2T1

8: T1 ← Y3 + X3

9: Y3 ← Y3 −X3

10: H3 ← Z3 − E3

11: E3 ← Z3 + E3

12: X3 ← E3 · Y3

13: Z3 ← Y3 · T1

14: Y3 ← T1 ·H3

15: return (X3 : Y3 : E3 : H3 : Z3)

exception; in this case, the scalar multiplication produces a
wrong result and no shared secret is established.

As noted in Section 4.3 of [15], it is possible to save one
multiplication in the doubling formula by mixing extended
with “conventional” (i.e. non-extended) coordinates. This
cost reduction is simply based on the observation that the
auxiliary coordinate T1 of P1 is only used in the point ad-
dition, but not in the point doubling described by Equation
(5). Therefore, the computation of T3 in Equation (5) can
be omitted if a point doubling is followed by another point
doubling. Something similar holds for point addition since
T3 in Equation (4) does not need to be computed when the
subsequent operation is a point doubling. A straightforward
realization of this idea requires the scalar multiplication to
take the next operation into account and to incorporate the
computation of T3 into an if-then clause that is executed
only when needed. Both makes scalar multiplication more
complicated and also increases (binary) code size, which is
undesirable for resource-constrained embedded devices.

In order to optimize the point doubling without sacrific-
ing code size, we omit the multiplication that produces the
auxiliary coordinate T3 in Equation (5) and output the two
factors E, H it is composed of instead. When doing so, the
resulting point P3 = 2P1 comprises five coordinates instead
of four, which means P3 is actually represented in the form
of a quintuple (X3 : Y3 : E3 : H3 : Z3). In other words, the
auxiliary coordinate T is split up into factors E and H so
that EH = T = XY/Z, thereby saving a multiplication in
the point doubling. The subsequently-executed operation
can recover T3, when needed, by simply multiplying E and
H. Of course, this optimization of the doubling requires to
adapt the point addition accordingly. We implemented the
addition formula shown in Equation (4) to output the two
factors E = D + C and H = D−C instead of T3 = EH. In
this case, when executing an addition using P1 represented
by (X1 : Y1 : E1 : H1 : Z1) as input, the auxiliary coordinate
T1 = E1H1 has to be computed first since it is needed as
operand. However, this modification has no impact on the
overall cost of the point addition because the computation
of coordinate T3 = E3H3 is simply replaced by forming the
product T1 = E1H1. Putting it all together, our optimized

Algorithm 2. Point doubling on a TED curve with a = −1

Input: Projective point P1 = (X1 : Y1 : E1 : H1 : Z1) with
E1H1 = T1.

Output: Double P3 = 2 · P1 = (X3 : Y3 : E3 : H3 : Z3).
1: E3 ← X1

2

2: H3 ← Y1
2

3: T1 ← E3 −H3

4: H3 ← E3 + H3

5: X3 ← X1 + Y1

6: E3 ← X3
2

7: E3 ← H3 − E3

8: Y3 ← Z1
2

9: Y3 ← 2Y3

10: Y3 ← T1 + Y3

11: X3 ← E3 · Y3

12: Z3 ← Y3 · T1

13: Y3 ← T1 ·H3

14: return (X3 : Y3 : E3 : H3 : Z3)

implementation of point doubling takes 3M and 4S in the
underlying field, while a point addition still needs 7M.

Algorithm 1 details the sequence of field operations for a
mixed addition, whereby P1 is given in extended projective
coordinates of the form (X1 : Y1 : E1 : H1 : Z1) so that the
product E1H1 = T1 = X1Y1/Z1. We derived this sequence
of field operations directly from Equation (4) and made an
effort to minimize the amount of temporary storage needed
in the course of the computation of point P3. In fact, since
we use X3, Y3, E3, H3, Z3 to store intermediate results, we
only need a single temporary variable to accommodate the
extra coordinate T1 = E1H1. Equation (4) contains three
factors that depend solely on the coordinates of P2; these
are Y2 + X2, Y2 −X2, and 2T2 = 2X2Y2. Since P2 is often
fixed (e.g. the base point of a scalar multiplication), we can
pre-compute these factors to save an addition, a subtrac-
tion, and a multiplication by 2 in Fp. Our implementation
represents P2 using extended affine coordinates of the form
(U2 : V2 : W2) whereby U2 = Y2 + X2, V2 = Y2 −X2, and
W2 = 2T2 = 2X2Y2. Algorithm 2 is derived from Equation
(5) and specifies the sequence of operations in Fp needed to
double a point P1 given in extended projective coordinates
as a quintuple (X1 : Y1 : E1 : H1 : Z1). Again, we aimed to
minimize the memory requirements so that we just need a
single temporary variable. Note that both Algorithm 1 and
Algorithm 2 are specifically optimized for twisted Edwards
curves with parameter a = −1 and do not work for curves
with arbitrary a. On the other hand, both algorithms are
independent of the second curve parameter d.

There exist a variety of algorithms for computing a sca-
lar multiplication using point additions and doublings; see
e.g. [14] for a general overview. The most basic technique is
the well-known double-and-add method, which requires to
perform n point doublings and about n/2 point additions
for a scalar k consisting of n bits. The number of additions
can be reduced to roughly n/3 when k is represented in
Non-Adjacent Form (NAF). Of course, there exist several
faster methods for computing k · P , but they either rely on
the pre-computation of multiples of P (which costs RAM)
or can only be used if P is fixed and known a-priori. Since
we aim for a lightweight implementation with low memory
footprint, we decided to adopt the double-and-add method
along with a NAF-representation of the scalar k.
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4. IMPLEMENTATION RESULTS
We implemented scalar multiplication using a Weierstraß

curve and twisted Edwards curve for 8-bit AVR processors
such as the ATmega128. In this section we summarize the
results for curves over 160 and 192-bit OPFs and compare
them with TinyECC [19]. However, our implementation is
fully parameterized and can also process fields and curves
of larger order. We used Atmel’s AVR Studio 4 to compile
source codes and build an executable binary file, which we
simulated to obtain cycle-accurate execution times for field
and group (i.e. curve) operations. The ATmega128 serves
as target device for our experiments and simulations since
several 8-bit sensor nodes, including the MICAz and IRIS
motes [9], are equipped with this specific processor.

When using a 160-bit OPF, the scalar multiplication on
the twisted Edwards curve occupies roughly 1037 bytes in
RAM. The size of the binary executable file is 18.4 kB.

4.1 Execution Time
We firstly simulated the main field arithmetic operations

of our implementation and TinyECC for 160-bit as well as
192-bit operands. Our timings for the OPF operations are
(up to a few cycles) the same as that given by Zhang et al
in [24]. The execution time of addition, subtraction, multi-
plication, and squaring are listed in Table 1, along with the
cycle count of OPF inversion, which we implemented from
scratch since it was not included in Zhang et al’s original
library. Moreover, the timings of the arithmetic operations
of TinyECC are also summarized in Table 1.

160-bit operands 192-bit operands
Operation

OPF Lib TinyECC OPF Lib TinyECC

mod add 531 637 632 832

mod sub 531 682 632 786

mod mul 3588 6098 4845 8152

mod sqr 3032 5725 4052 7493

mod inv 356650 861901 476055 1305616

Table 1: Execution time (in cycles) of major arith-
metic operations in 160 and 192-bit prime fields

As specified in Table 1, a multiplication (including mod-
ular reduction) in a 160-bit OPF takes exactly 3588 cycles
on an ATmega128. OPF-squaring is about 15% faster than
multiplication in an OPF, while addition and subtraction
need only one sixth of the multiplication cycles. Inversion is
more than 100 times slower than multiplication. Compared
with the field arithmetic of TinyECC (which uses pseudo
and generalized Mersenne primes), our OPF multiplication
and squaring is 1.7 and 1.9 times faster, respectively.

Next, we determined the timings of the point arithmetic
operations of our two implementations, one of which uses
a Weierstraß curve and the other a twisted Edwards curve
(both over the same 160-bit OPF). The cycle counts for a
single point addition and point doubling are given in Table
2, along with the simulation results of TinyECC. Our Wei-
erstraß implementation employs the same formulae for the
point arithmetic as TinyECC, namely the ones specified in
Algorithm 3.21 (doubling) and Algorithm 3.22 (addition)
of [14]. Yet, our addition/doubling on the Weierstraß curve
outperforms TinyECC significantly, which is primarily due
to faster field arithmetic thanks to using an OPF instead

Operation WEI curve TED curve TinyECC

Point addition 40222 28792 59070

Point doubling 31536 25994 48483

Table 2: Execution time (in cycles) of addition and
doubling on a Weierstraß (WEI) curve and twisted
Edwards (TED) curve over a 160-bit OPF

Scalar k WEI curve TED curve TinyECC

Min. weight k 5528120 4359765 11104238

Random integer 7384579 5837612 16241387

Max. weight k 8409321 6658934 22952117

Table 3: Best-case, average, and worst-case execu-
tion time (in cycles) of 158-bit scalar multiplication

of a Mersenne-like prime field. The performance advantage
of our work becomes even more apparent when we compare
the results on the twisted Edwards curve with TinyECC. In
detail, the point addition function on our twisted Edwards
curve outperforms TinyECC by a factor of 2.05, while the
point doubling is about 1.87 times faster.

To evaluate the timings of scalar multiplication k · P , we
simulated our implementations (and TinyECC) using three
different 158-bit values for the scalar. Our twisted Edwards
implementation over the 160-bit OPF operates in a cyclic
subgroup of E(Fp) of order n, where n is the 158-bit prime
from Section 3.1. When using the double-and-add method
the number of point additions is not constant but depends
on the non-zero digits in the NAF representation of k. In
the first simulation we used k = 2157 = 0x200...00, which is
the 158-bit scalar of minimal Hamming weight, yielding the
best possible execution time. The second simulation was
performed with a random 158-bit value of k such that the
number of point additions is approximately one third of the
bitlength of k, which allows one to determine the average
execution time. Finally, we used k = 0x2aa...aa (which is
a k < n of maximum NAF weight) as scalar to assess the
worst-case time. All results are listed in Table 3.

Our simulation results show that, on average, the twisted
Edwards implementation is roughly 2.78 times faster than
TinyECC, whereby it must be taken into account that the
evaluated version of TinyECC represents k in conventional
(i.e. binary) form instead of NAF. Apparently, this overall
improvement is bigger than the gain in performance due to
the underlying field arithmetic. Consequently, not only the
Fp-arithmetic but also the point arithmetic on our twisted
Edwards curve is more efficient than that of the Weierstraß
curve used by TinyECC. The timings in Table 2 can serve
as benchmark for the field arithmetic and show a difference
by a factor of roughly 2.0 between our OPF library and the
field-operations of TinyECC. Consequently, the field arith-
metic contributes a factor of 2.0 (or 71.94%) to the overall
performance gain of 2.78. The remaining 28.06% are due to
more efficient scalar multiplication on the twisted Edwards
curve (i.e. faster point addition and doubling).

4.2 Energy Consumption
The MICAz mote from Crossbow [9] is equipped with an

ATmega128 processor clocked at 7.3728 MHz and powered
by two 1.5 V batteries. As per [9], this processor draws an
average current of 8 mA if the supply voltage is 3 V. Given
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these figures, we can easily assess the energy consumption
of our ECC implementation. A scalar multiplication on the
twisted Edwards curve over a 160-bit OPF takes 5837612
clock cycles and, consequently, requires 19.0 mJ energy. We
also simulated an implementation using a 192-bit OPF and
got an execution time of 9341379 cycles, which corresponds
to an energy consumption of 30.4 mJ. This result compares
fairly well with recent hardware designs of 192-bit ECC on
Edwards curves. For example, Baldwin et al [2] describe an
FPGA implementation that consumes 1.623 mJ for a full
192-bit scalar multiplication when using a single ALU. The
hardware/software co-design reported by Coyette [8] has an
energy consumption of 119 mJ per scalar multiplication.

5. CONCLUSIONS
We introduced a highly-optimized ECC implementation

for 8-bit AVR processors such as used in the MICAz mote
and several other sensor nodes. Our software is able to per-
form a 158-bit scalar multiplication in 5.8 · 106 clock cycles
on average (i.e. 0.79 seconds on a MICAz mote), which is
roughly 2.78 times faster than TinyECC. We achieved this
execution time by combining fast Fp arithmetic (thanks to
using an OPF) with very efficient group arithmetic (made
possible by using a twisted Edwards curve). TinyECC, on
the other hand, is based on standardized fields and curves
that were devised some 15 years ago and do not reflect the
state-of-the-art. More than two third of the speed-up is due
to the faster field arithmetic and about 28% is contributed
by the more efficient point addition and doubling formulae
of twisted Edwards curves. Going along with this massive
performance gain is a reduction of the energy cost of ECC
by the same factor. For example, an ECDH key exchange
using our ECC software would require only one third (36%
to be precise) of the energy of the ECDH implementation
contained in TinyECC. As a consequence, our work makes
ECDH key exchange much more attractive for WSNs since
high energy consumption is generally considered to be the
most significant drawback of ECDH and other ECC-based
key establishment techniques.
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