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Abstract

The traditional notion of program obfuscation requires that an obfuscation Pofa program P
computes the exact same function as P, but beyond that, the code of P should not leak any informa-
tion about P. This strong notion of virtual black-box security was shown by Barak et al. (CRYPTO
2001) to be impossible to achieve, for certain unobfuscatable function families. The same work
raised the question of approximate obfuscation, where the obfuscated P is only required to approx-
imate P; that is, P only agrees with P with high enough probability on some input distribution.

We show that, assuming trapdoor permutations, there exist families of robust unobfuscatable
functions for which even approximate obfuscation is impossible. Specifically, obfuscation is impos-
sible even if the obfuscated P is only required to agree with P with probability slightly more than %,
on a uniformly sampled input (below %-agreement, the function obfuscated by P is not uniquely de-
fined). Additionally, assuming only one-way functions, we rule out approximate obfuscation where
P may output L with probability close to 1, but otherwise must agree with P.

We demonstrate the power of robust unobfuscatable functions by exhibiting new implications
to resettable protocols. Concretely, we reduce the assumptions required for resettably-sound zero-
knowledge to one-way functions, as well as reduce round-complexity. We also present a new simpli-
fied construction of a simultaneously-resettable zero-knowledge protocol, based on one-way func-
tions, and any simultaneously-resettable witness-indistinguishable protocol. Finally, we construct a
three-message simultaneously-resettable witness-indistinguishable argument of knowledge (with a
non-black-box knowledge extractor). Our constructions use a new non-black-box simulation tech-
nique that is based on a special kind of resettable slots. These slots are useful for a non-black-box
simulator, but not for a resetting prover.
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1 Introduction

The problem of program obfuscation concerns the task of rewriting programs in a way that makes
their code “unintelligible” without destroying its functionality. The rigorous study of the problem was
initiated in the work of Barak et al. [BGIT01], which formalize secure obfuscation according to the
virtual black-box notion. At high-level, this notion requires that whatever an efficient learner can deduce,
given an obfuscation Pofa program P, should also be learnable, given only black-box access to P.
The same work shows, however, that for some programs, this notion is not achievable. Concretely,
[BGIT01] show that there exists an unobfuscatable family of functions { f } for which any program P
that computes a function f leaks information that cannot be learned, given only black-box access to fi,
when k is chosen at random.

Approximate obfuscation. In light of the [BGIT01] impossibility, subsequent works studied notions
of obfuscation with relaxed security [AWO07, |GRO7, HMLSO07, HRSV07, BC10]. A different kind of
relaxation is to weaken the functionality (rather than security) requirement. In this context, Barak et
al. [BGIT01] put forth the notion of approximate obfuscation, where the obfuscated program P is not
required to perfectly compute P, but only to approximate P in some sense. Concretely, Barak et al. show
that obfuscation of general programs is impossible if P is required to approximate P in the following
sense: for every input, the obfuscation P is allowed to err only with negligible probability, over the coins
of the obfuscator algorithm that samples P.

However, the above notion of approximation is rather strong since it provides a correctness guaran-
tee for every input; in particular, if we allow the obfuscation P to err even on poly(n)-many inputs,
no impossibility is known. In fact, one may require that P only agrees with P, with high-enough prob-
ability, over inputs drawn from some specific distribution D, such as the uniform distribution. This
relaxation may suffice for many applications: e.g., protecting the secret key of a program that digitally
signs messages from a high-entropy distribution, or protecting the code of an algorithm that can factor
random integers. The existence of such approximate obfuscators was left by Barak et al. as an open
question.

1.1 The Impossibility Result

We show that approximate obfuscation of general programs is impossible. Concretely, we construct
error-robust unobfuscatable functions that rule out the above approximate obfuscation notion (where
P is only required to often agree with P on a uniformly random input, and may otherwise err). To
construct error-robust unobfuscatable functions, we first study a weaker notion of robust unobfuscatable
functions. Such function only rule out a stronger notion of obfuscation where P is limited to making
only detectable errors (e.g., output L). Although weaker than their error-robust counterparts, robust
unobfuscatable functions will play a significant role as a building block for error-robust functions, and
will allow reducing computational assumptions in some of our results.

Theorem 1.1 (existence of robust unobfuscatable functions - informal).
1. Assuming the existence of one-way functions, there exist robust unobfuscatable families.
2. Assuming the existence of trapdoor permutations, there exist error-robust unobfuscatable families.

We further discuss the two notions of robustness and the corresponding constructions in Section (1.3

1.2 Applications to Non-Black-Box Simulation and Resettable Cryptography

We demonstrate the power of robust unobfuscatable functions by exhibiting new implications to reset-
table protocols. Indeed, the recent work of [BP12] shows that the impossibility of obfuscation also has



positive implications to ZK protocols with non-black-box simulation. Specifically, they show a construc-
tion of resettably-sound ZK using unobfuscatable functions. Based on ideas from [BP12], and on our
construction of robust unobfuscatable functions, we present a new non-black-box simulation technique,
and use it to get simplified constructions of resettably-sound ZK and simultaneously-resettable ZK, with
weaker computational assumptions, and reduced round-complexity.

We now further discuss the model of resetting, explain the related challenges, and present the con-
crete improvements we obtain.

Background. Resettable cryptography deals with the problem of secure protocols in the presence of
malicious parties that can reset honest paries, forcing them to repeat the protocol’s execution from the
same initial state and random tape, whereas the malicious party may use different inputs and messages.
This setting is motivated by scenarios in which cryptographic protocols are run by parties that can-
not regenerate fresh randomness or keep a state between different executions, occurring after different
reset attempts. Common examples include: parties implemented on stateless hardware, inside virtual
machines, or parties that are required to engage in multiple consistent executions in a distributed envi-
ronment.

Resettable protocols were first studied by [CGGMO0] in the context of zero-knowledge (ZK). They
define and construct resettable ZK proof systems, requiring that the view of any malicious verifier in a
proof can be efficiently simulated, even if the verifier is allowed to reset the honest prover. [BGGLO1]
define and construct resettably-sound ZK protocols guaranteeing soundness, even against malicious
provers that can reset the honest verifier. [DGS09|| constructsimultaneously-resettable ZK protocols,
i.e., protocols that are both resettable ZK and resettably-sound. Resettable soundness and simultaneous
resettability subsequently played a major role in the construction of resettable secure computation proto-
cols for more general functionalities [GS09,(GM11]]. (Several works construct improved rZK and rsZK
protocols in the relaxed bare public-key model [CGGMO00, MRO1, DFG™11]; in this work, however, we
focus on the plain model.)

The challenge of resetting, in a nutshell. In standard (non-resetting) ZK protocols, simulation is, tradi-
tionally, performed by “rewinding” (or in other words, resetting) the verifier. By rewinding the verifier,
the simulator can extract from the verifier the required information for simulating a proof, without know-
ing a corresponding witness. As shown by [[CGGMO00], such rewinding techniques (concretely [RK99])
can also be extended to simulate resetting verifiers, yielding resettable ZK protocols; on the other side,
rewinding techniques alone are not enough for simulation in resettably-sound protocols. Indeed, any
rewinding strategy applied by the simulator can also be applied by a malicious resetting prover, in which
case soundness cannot be guaranteed. Thus, resettable soundness is impossible to achieve (for non-
trivial languages) with a simulator that only uses the verifier as a black-box [GK96b, BGGLO01]. Indeed
to construct resettably-sound protocols, [BGGLO1] rely on Barak’s non-black-box simulation technique
[BarO1].

Compared to black-box ZK protocols (e.g., [FS89]), Barak’s ZK protocol requires stronger assump-
tions (collision-resistant hashing vs. one-way functions), more rounds (eight messages vs. four mes-
sages), and rather heavy machinery (PCPs). The resettably-sound protocol of [BGGLO01] inherits all of
the above. Naturally, the challenge is even harder when trying to apply Barak’s technique to achieve si-
multaneous resettability; indeed, to obtain a simultaneous resettable protocol, [DGSQ9] provide a highly
non-trivial extension of Barak’s technique that is carefully combined with the rewinding techniques
required to obtain resettable ZK.

Resettable protocols via robust unobfuscatable functions. Extending [BP12], we show a new non-
black-box simulation technique yielding new and improved constructions of resettably-sound and simultaneously-
resettable protocols. The constructions are based on a unified paradigm that couples non-black-box
simulation with existing black-box simulation techniques. Moreover, our protocols rely on weaker as-
sumptions and have fewer rounds than previous protocols. More concretely, we obtain:



o A constant-round resettably-sound ZK protocol based on one-way functions. Such a protocol was
very recently, but previously to our work, demonstrated by Chung, Pass, and Seth [CPS13]; we
provide an alternative construction. Previous constructions relied on collision-resistent hashing or
oblivious transfer[BGGLO1, IBP12]. As an immediate corollary from the work of [BGGLO1]], we
also get a resettable ZK argument of knowledge based on one-way functions.

o A resettably-sound concurrent ZK protocol based on one-way functions. As a corollary, when
combining our protocol with the recently constructed simultaneously-resettable WI from one-
way functions [OV12, I(CP13]], and a general transformation of [DGS09], we obtain the first
simultaneously-resettable ZK protocol from one-way functions. The first such protocol [DGS09]
relied on trapdoor permutations and collision-resistant hashing. This was recently reduced to
collision-resistant hashing and one-to-one one-way functions [OV12], and then only to one-to-
one one-way functions [[CPS13||CP13].

e A six-message resettably-sound ZK protocol, based on trapdoor permutations, and a four-message
protocol based on fully homomorphic encryption. Previous constructions required eight messages
IBGGLOT)[]

o A three-message simultaneously-resettable WI argument of knowledge, based on trapdoor permu-
tations. Previous constructions relied also on collision-resistant hashing, and required at least ten
messages [COSV12].

An additional interesting feature is that our protocols do not make any use of heavy machinery, such as
PCPs and may thus be more efficient in practice. (PCPs were also circumvented in [BP12], but only for
resettable soundness.)

1.3 Constructing Robust Unobfuscatable Functions

Our first (and arguably harder) step is to construct robust unobfuscatable functions from one-way func-
tions. Our second step is to compile any robust unobfuscatable family into an error-robust family using
trapdoor permutations. We now give an overview of the ideas behind the constructions; we start with a
more precise presentation of robust and error-robust unobfuscatable functions.

Informally, a function family F is a(n) (error-)robust unobfuscatable family if:
1. Efficient learners, with black-box access to a random f, < F, cannot learn k.

2. There exists a samplable input distribution D, and an efficient extractor that extracts k from any
circuit C' that approximates fy in the following sense:

e If F is robust, C is required to agree with fy, on inputs drawn from D, with probability
m, but is only allowed to make detectable errors, i.e., it either outputs the correct answer
or L.

e If F is error-robust, C' is required to agree with fi, on inputs drawn from D, with proba-

bility % + m, but is allowed to err on the rest of the space.

Crucially, we require that the distribution D is efficiently (and publicly) samplable independently
of the key k; in particular, this implies that extraction succeeds even if a circuit fails to compute fi on
points that depend on the key k. Also, we shall consider a variant of the above definition where some
unlearnable property 7 (k) is extracted, rather than the entire key k; this will be sufficient for all of our
applications. Finally, we note that in the above definition we choose to only consider extractors that

1Recently, Ostrovsky and Visconti [OV12] showed how to compress the [BGGLO1]] protocol into six-messages.



output a unique key k from a given circuit C, and thus we require that C' approximates a single function
from the family. This is the reason that, for error-robustness, we require more than %—agreement (other-
wise, for any function family with more than a single function, there exist circuits that can approximate
two different functions, with probability % each). We also discuss more liberal definitions.

The starting point for our construction of robust unobfuscatable functions is the construction of (non-
robust) unobfuscatable functions from [BGI™01], and can be seen as a “random-self-reducible” version
of it. We start by describing the construction of [BGIT01], and then move on to describe the main
modifications that we introduce.

The construction of [BGIT01]. Barak et al. [BGIT01] construct a family F = { i} of unobfuscatable
functions as follows. The key k consists of two random strings (a,b) and a key sk for a symmetric
encryption scheme. For a simpler exposition, let us assume for now that the encryption scheme is fully
homomorphic. Later, we will explain how to modify the construction to rely on CCA-1 symmetric
encryption (that can be based on one-way functions). For simplicity, we describe fi = f,psk as a
randomized function; eventually, it is made deterministic using a pseudo-random function. The function
is defined as follows:

1. On input a, output b.
2. On input “Encrypt”, output an encryption of a.
3. On input that is an encryption of b, output b.

Notice that given black-box access to the function, the only way to learn b is to first learn a, which
will break the security of the encryption scheme, or produce an encryption of b, which is information
theoretically impossible without querying the function on a. On the other hand, given a circuit C' that
computes f,p sk, WE can obtain an encryption of a, evaluate the circuit C' homomorphically on this
encryption, and obtain an encryption of b. Then, we can learn b using another black-box application of
C.

Making the construction “random-self-reducible”. The latter construction is not robust: for example,
given a circuit C' that computes f, 3 s but only errs on the single input a, we can no longer extract b. At
high-level, to to overcome this problem, we use a pseudo-random function PRF to “encode” the relation
between ¢ and b in random inputs. Specifically, we add the seed s of the PRF to the key of f and modify
f to also evaluate the two functions G(z) = PRF¢(z) and G'(z) = b® PRFs(z @ a). Now, for a random
string 7, we can query G with r and G’ with » & a and obtain G(r) & G/'(r & a) = b. Still, without
knowing a, an efficient algorithm that gets black-box access to G and G’ cannot find any correlation
between the functions. The gain is that now each individual query is distributed uniformly and therefore
we can learn b from a, even if the function errs on, say, a %-fraction of inputs. To extract from circuits
that make more errors, we change f to evaluate G on many random inputs in parallel, amplifying the
probability of getting the correct answer on a single random input.

In order to successfully extract b, it is not sufficient to deal with circuits that err on a, but we should
also handle circuits that err given encryptions of b, i.e. they do not output b. We would like to use a
similar idea to the one described before; namely, include a function G”(c) that, on input c, decrypts c
to some plaintext x, and outputs b ® Gs(z @ b). However, given black-box access to such a function,
semantic security is not maintained. Indeed, two encryptions c; and ca most likely correspond to the
same plaintext if and only if G”(c;) = G”(cz), and hence it is possible to learn a and thus also b, in a
black-box way. We show that this can be solved by using a symmetric encryption scheme with public
randomness (where the encryption algorithm outputs its coins in the clear). Specifically, denoting the
public randomness in ¢ by pub(c), we redefine G”(c) = b & PRFs(z @ b||pub(c)), where z is the
decryption of c. Note that if ¢; # co, and 21 = x5, then pub(c;) # pub(cy); therefore, also G”(cp)
and G”(cz) are distributed (pseudo) independently at random, and we can show that semantic security is
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maintained. Additionally, given a random encryption c; of b, it is still possible to learn b by first sampling
a random string r and a random encryption cg of 7, then homomorphically computing an encryption cs
of b@ r, and finally, evaluating G”(c3) @ PRFs(r||pub(c3)) = b. Note that the input r||pub(c3) to PRFs
is distributed uniformly and independently of . (We note that the public randomness requirement can
be relaxed to a slightly more complicated “decomposability” requirement that can be obtained from any
encryption scheme).

Getting rid of homomorphic encryption. The construction of [BGIT01]] only uses a standard sym-
metric encryption, and homomorphic operations are performed gate by gate by fi: given two encrypted
input bits, fi decrypts them, evaluates the desired operation, and returns the result encrypted. Since
such queries consist of random encryptions, we may hope that a circuit C' that does not err too much
will correctly compute the extractor’s homomorphic operation with high probability. However, this is
not the case since in a long (a-priori unbounded) homomorphic computation, errors accumulate, and
there is no way of checking consistency along the way.

Here, we use the fact that, when constructing robust unobfuscatable functions, we can assume that
C only makes “detectable errors”; we show that this is enough in order to recover from errors during
the homomorphic computation. Specifically, when a single homomorphic operation fails (the circuit
outputs L), we would like the extractor to rerandomize the input encryptions and try again. This could
be achieved by relying on rerandomizable encryption. However, we wish to avoid this assumption and
provide a solution based on one-way functions. For this purpose, we modify fy to return many random
encryptions of the resulting bit, and show a procedure that assures that the extractor is always left with
enough “good” encryptions to continue the homomorphic evaluation. (Formally, we will need to use
“invoker randomizable” PRFs [BGIT01]; however, this is not needed for understanding the high-level
idea behind the construction.)

From several (key-dependent) distributions to one samplable independent distribution. The family
F described above corresponds to d = O(1) input distributions D1, ..., D4, where if a circuit C' ap-
proximates fi on every distribution D; with sufficient probability, extraction succeeds. Specifically, the
input distributions correspond to the different functions implemented by fy: G,G’, G” and the homo-
morphic evaluation functionality. In particular, for the homomorphic evaluation functionality, we need
a distribution for each configuration of possible gate and input plaintexts. The problem is that the latter
distributions may not be directly samplable without the secret encryption key. Indeed, in symmetric-key
encryption (based on one-way functions), we do not know how to sample encryptions of individual bits,
without the secret key.

Instead, we use an encryption scheme that supports sampling ciphers of random plaintexts, indepen-
dently of the secret key. At high-level, if the circuit does not abort given an encryption of a random bit,
with sufficiently high-probability, then it also does not abort for encryptions of specific bits, with some
related probability. To make sure that the probability is indeed high-enough, we use again parallel repe-
tition. (Note that, when emulating a homomorphic operation, the extractor queries fi on encryptions of
individual bits; however, it does not sample those encryptions on its own, but rather these encryptions
are obtained as the result of a previous homomorphic operation.) Eventually, we can bundle all of the
distributions in to one distribution that is samplable independently of the secret key for fy; furthermore,
for our construction, this distribution can simply be the uniform one.

Necessity of one-way functions. We show that one-way functions are not only sufficient, but also nec-
essary for robust unobfuscatable functions. (The function that maps (k, x1, ..., Z;,) to

(fu(xz1)y- -y fu(xm), x1,...,Tym) is one-way for m > |k|.) This should be contrasted with non-robust
unobfuscatable functions, where a similar implication is not known; in fact, [BGI"01]] construct (non-
robust) unobfuscatable Turing machine (rather than circuit) families without any computational assump-
tions, whereas robust unobfuscatable functions also imply one-way functions in the Turing machine
case.



Error-robust unobfuscatable functions. We show how to transform any robust unobfuscatable func-
tion family into an error-robust unobfuscatable family. Recall that, for an unobfuscatable function family
to be error-robust, we require that for any fy, it is possible to extract k (or some unlearnable property
(k) of k), from any circuit C' that agrees with fi with probability noticeably greater than 1/2. On inputs
where C and fi disagree, there are no restrictions on the output of C' (unlike the robust case, where the
output had to be _L).

The idea is to first construct a stronger type of robust unobfuscatable functions called verifiable ro-
bust unobfuscatable functions. Such functions also have a public verification key vk associated with the
secret key k. The function f is still black-box unlearnable, even given vk. Moreover, vk allows veri-
fying that an answer, given by a circuit C, is consistent with fx. We construct such functions based on
non-interactive commitments and two-message witness-indistinguishable proofs (ZAPs). Specifically,
the verification key, consists of a commitment to a robust unobfuscatable function f, and the outputs of
the verifiable function include a ZAP showing consistency with the committed f,. The actual construc-
tion is a bit more involved: to guarantee that the ZAP does not reveal the secret key k we evaluate two
functions in parallel with independent keys and prove that one of them was computed correctly. The
construction uses ideas from [FS90, COSV12].

Equipped with verifiable robust unobfuscatable functions, we can construct error-robust unobfus-
catable functions by appending the public verification key to each output. This allows an extractor to
identify the verification key vk returned with probability greater than half, and thus obtain a circuit that
either computes fi or outputs 1. Answers containing a verification key different from vk, or answers
that does not verify under vk are treated as 1.

Verifiable robust unobfuscatable functions will also set as a convenient abstraction in the construc-
tion of resettable protocols.

Verifiable robust unobfuscatable functions and digital signatures. Interestingly, verifiable robust
unobfuscatable functions are equivalent to a unique kind of signature schemes that have a weak unforge-
ability guarantee, but a strong extraction guaranty. Specifically, it is guaranteed that no adversary can
forge a signature on a random message m <— U, even if it is given access to a signing oracle prior to
receiving m; however, given the circuit of an adversary that manages to sign random messages with
noticeably probability, it is possible to efficiently extract the secret signing key. The transformation be-
tween the two is rather direct: the private signing key and public verification key are simply the secret key
k and public verification key vk of a verifiable robust unobfuscatable function; signing a message m is
simply done by computing fi(m), and the verification is identical to that of the verifiable unobfuscatable
function. Indeed, it is not hard to see that the non-black-box learnability and black-box unlearnability of
the verifiable robust family { fi }, are equivalent to the above extraction and unforgeability properties.

1.4 Applications to Resettable Protocols

In the world of black-box zero-knowledge, simulation is performed by “rewinding” the verifier. A
common paradigm for designing ZK with black-box simulation is using the notion of a “slot”. A slot
is a two message sub-protocol where the prover sends a query and the verifier sends a response. Slot-
based protocols are designed such that: (a) a rewinding simulator, which can get answers to different
queries in the slot, can use them to obtain a “trapdoor” that allows generating simulated proofs (without
the witness), and (b) a cheating prover, which participates in a slot interaction only once, cannot obtain
the trapdoor and cannot break the soundness of the protocol. Standard constructions of stand-alone ZK
protocols are based on a constant number of slots, whereas known concurrent or resettable ZK protocols
require a super-constant number of slots.

When constructing resettably-sound ZK, the idea of slots seems to lose its appeal since a resetting
prover can rewind a slot, learn the trapdoor, and thus break soundness. However, we show how to design
a special resettable slot that is useful for construction resettably-sound protocols. A resetting cheating



prover that can rewind the slot many times should not obtain the trapdoor, while a simulator can use
the code of the cheating verifier implementing the slot to obtain a trapdoor, and simulate a proof. This
motivation was already raised in the work of [DGS09|] while trying to construct a resettable slot to get
simultaneously-resettable ZK. Eventually, the techniques presented by [DGS09] achieved the goal of
simultaneously-resettable ZK, but diverged from the idea of a resettable slot.

Resettable slots from verifiable robust functions. Verifiable robust unobfuscatable functions provide a
natural and simple construction of a resettable slot. Given a public verification key vk for such a function
f«, the slot query ¢ is just a query to fi, and the slot answer is just fy(g). The trapdoor is defined to be
the key k of fi (or some unlearnable property of k). Since k is hard to learn given black box access to
a random fi, it follows that a resetting prover that rewinds the slot cannot obtain a trapdoor. However,
given the code of any verifier that provides valid answers in the slot with significant probability (where
validity can be checked using vk), the unlearnable trapdoor k can be obtained. Indeed, the resettable
slots we construct lead directly to resettably-sound ZK.

Comparison to [BP12]. In the work of [BP12]], unobfuscatable functions that are not robust are used
to get a resettably-sound ZK protocol. The problem with using non-robust functions is that a malicious
verifier evaluating the unobfuscatable function may introduce errors or simply refuse to compute the
function on specific inputs. [BP12] solved this problem by letting the prover and verifier execute a secure
Jfunction evaluation protocol in order to compute the function. However, constructing such protocols that
are secure in the resetting model turns out to be challenging and introduces more assumptions, rounds,
and complexity to the protocol. Relying on robust unobfuscatable functions, the above is no longer a
problem.

Round-efficient resettably-sound ZK. By plugging our resettable slot into the round-efficient ZK
protocol of Feige and Shamir [ES89]], we may hope to get a four-message resettably-sound ZK protocol.
However, as already observed in [BP12]], using only one slot requires that the ratio between the time
it takes to evaluate the slot, and the time it takes to extract from the slot, is a fixed polynomial in the
security parameter. To fix the problem, we can add a second slot to our protocol resulting in a six-
message protocol. Alternatively, assuming homomorphic encryption, we can construct a resettable slot
where extraction is only slower than evaluation up to a fixed poly(n) factor. Such a construction will
result in a four-message resettably-sound ZK protocol.

Resettably-sound ZK from minimal assumptions. Our constructions of error-robust unobfuscat-
able functions relies on non-interactive commitments and two-message witness indistinguishable proofs
(ZAPs [DNO7]); however, we show that, in order to construct a resettably-sound protocol, it suffices
to use robust (rather than error-robust) unobfuscatable functions, which can already be constructed
from one-way functions. Concretely, the corresponding protocol follows the transformation from ro-
bust to error-robust unobfuscatable functions, but uses two-message commitments [Nao91], instead of
non-interactive ones, and instance-dependent resettable witness-indistinguishable arguments based on
one-way functions, instead of ZAPs (see the full version of this paper for more details).

Our one-way function based protocol is an alternative to the very recent protocol by Chung, Pass, and
Seth [CPS13[], who show an elegant way of replacing collision-resistant hashing in Barak’s non-black-
box protocol [Bar0Q1] with strong digital signatures, and then apply the transformation of [BGGLO1]].

Simultaneously-resettable ZK from one-way functions. The resettable slots that we construct give a
new way of obtaining simultaneously-resettable ZK. Concretely, we can plug in our resettable slots into
the concurrent ZK protocol of Richardson and Kilian [RK99] to get a concurrent ZK protocol that is also
resettably-sound, based on one-way functions. This part of the construction diverges from the techniques
used in [DGS09, [CPS13], which seem to also require one-to-one one-way functions. As shown in
[DGSQ9], such a protocol can then be compiled into a simultaneously-resettable ZK protocol using
any simultaneously-resettable WI protocol. Recently, such a protocol was constructed from one-way



functions by Chung and Pass [[CP13]], by extending the soundness upgrade techniques of Ostrovsky and
Visconti [OV12]. Combining the above ingredients results in a simultaneously-resettable ZK protocol
based on one-way functions.

An open question in the context of simultaneously-resettable ZK, which we find fascinating , is to
construct protocols with a logarithmic round-complexity (matching the what is known for resettable ZK
[PRSO2]]). Unfortunately, we cannot plug our resettable slot into the concurrent ZK protocol of [PRS02]]
since this protocol requires that the ratio between the time it takes to evaluate the slot and the time it
takes to extract from the slot is constant. In our construction, the extraction time may be quadratic in
the evaluation time. This ratio can be improved to depend only on the security parameter assuming
homomorphic encryption; however, we still do not know how to construct unobfuscatable function for
which this ratio is constant.

Three-message simultaneously-resettable witness indistinguishability. We also construct a three-
message simultaneously-resettable WI argument of knowledge protocol. (Indeed, notice that while
ZAPs are two-message simultaneously-resettable WI, they are not known to also be an argument of
knowledge, without relying on non-standard “knowledge assumptions”.)

Previously, Cho et al. [COSV12] constructed a simultaneously-resettable WI argument of knowl-
edge based on trapdoor permutations and collision-resistant hashing. The round complexity of their
protocol is bounded from below by that of the Barak et al. protocol [BGGLO1], which is used as a
subroutine; overall the protocol requires more than ten messages. Our new protocol is based on robust
unobfuscatable functions and only assumes trapdoor permutations. The protocol has a non-black-box
knowledge extractor.

2 Robust Unobfuscatable Functions

In this section, we define the basic notion of robust unobfuscatable functions.

Definition 2.1 ((¢, D)-approximation). Let D be a distribution on {0, 1}". A circuit C' is said to (e, D)-
approximate a function f : {0,1}"™ — {0, 1}* if:

1. 1t partially agrees with f on inputs drawn from D:

qub [Clq) = f(@)] > ¢,

2. It only makes detectable errors on inputs from D:

Pr [Cla) ¢ {1, f(a)}] < negl(n) .
q<—

We say that C (e, D)-approximates f with errors if the second property is not guaranteed.

Remark 2.1 (The negligible detection probability). Formally, the definition is also parameterized by the
negligible function negl bounding the probability of undetectable errors (i.e., C(q) ¢ { fk(¢), L}); how-
ever, to lighten notation, we use (¢, D) rather than (e, negl, D). Accordingly, the following definitions
are also implicitly parameterized by a negligible function negl. Eventually, in our applications, we will
treat specific families of circuits C = {C,, }, each with an associated error function negl.

In addition, € and D may depend on n. To lighten notation, we shall often avoid explicitly writing
n in their description. In particular, whenever n is clear from the context, we may denote a distribution
D(1™) by its sampler D.

Definition 2.2 (Robust unobfuscatable functions). A function family F = { fi},c {0,1}7 neN IS a robust
unobfuscatable family, with respect to efficient relation R r and input sampler D, if it is:



1. Black-box unlearnable: For any poly-size learner L = {L,, } and all large enough n € N:

neN’

P k,z) € Rr:z < L] < negl(n) .
ke{()l:l}”[( z) € Rr 1z + Ly < negl(n)

R r is thus called “the unlearnable relation”.

2. Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion e(n) = n=9W | any large enough n € N, k € {0,1}", and every circuit C that (¢, D)-
approximates fy, E extracts z € R (k) from C:

Pr|(kz) € Ry : 2z E(C,1", 1Y) > 1 — negl(n) - poly(|C]) ,

where D = D(1"), € = €(n), and poly is a fixed polynomial that depends only on E.

We say that the family is e-robust, for a specific function € = e(n) if there exists an extractor E = E,,
such that for all large enoughn € N, k € {0, 1}", and circuit C that (e, D)-approximates fy:

PEr [(k,2) € Rr:z <+ E(C,1")] > 1 —negl(n) - poly(|C]) .

We next define error-robust unobfuscatable functions, which are defined analogously, only that ex-
traction should work for any circuit C' that sufficiently agrees with fi, even if C' makes undetectable
errors.

Definition 2.3 (Error-robust unobfuscatable functions). A family of functions F = { fu},c {0,117 neN S
an error-robust unobfuscatable family, with respect to efficient relation R r and input sampler D, if it is:

1. Black-box unlearnable: As in Definition

2. Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion € = €(n), all large enoughn € N, any k € {0,1}", E extracts z € R (k) from any circuit C
that (% + €, D)-approximates fy with errors:

P;r (k,z) € RF : z + E(C,1",1Y9)| > 1 — negl(n) - poly(|C|) ,
where D = D(1"), € = €(n), and poly is a fixed polynomial that depends only on E.

Remark 2.2 (The sampler D). In the above definitions, we allow the input sampler D to represent an
arbitrary samplable distribution, where sampling is independent of the key k for the unobfuscatable
function. We can consider a more strict (but natural) definition, where D(1™) represents the uniform
distribution over strings in {0, 1}". Indeed, our constructions also achieve this variant (see Remark.

Remark 2.3 (Uniquely determined functions). For the case of erroneous circuits, i.e. with non-detectable
errors (Definition[2.3), we naturally require that the circuit C' determines one specific function, and hence
we require more than %—agreemen‘[ (which already guarantees that C' cannot simultaneously approximate
two functions in the family, assuming that any two functions in the family have at most %—agreement.)
In principle, one may also consider alternative definitions of error-robustness where the circuit may
somewhat agree with several functions and the extractor is required to extract the keys of all the functions
whose agreement with C' crosses a given threshold. We restrict attention to the unique-function case,
although our techniques naturally extends to such alternative notions.

Remark 2.4 (Unique-witness unlearnable relations). A natural requirement regarding the unlearnable
relation R x of a family F is that, given k, there is a unique z € R z(k), and this z can be efficiently
computed; this property is satisfied by our constructions, and is required for some of our applications.



2.1 Robustness from Weaker Robustness

In this section, we discuss two natural relaxations of robust obfuscation that will be convenient to work
with, and show how to transform functions that are unobfuscatable according to these notions to func-
tions that are robust according to Definition We restrict attention to approximation without errors.
(Eventually, in Section [d|we show how to go from robust functions to error-robust ones.)

We show that, using parallel repetition, we can always amplify the robustness of an unobfuscatable
family (at the cost of blowing up the input and output size).

Lemma 2.1. Any (1 — %\/ﬁ) -robust G can be transformed to a robust F, where the input and output
size grows by a factor of n.
We describe the construction behind the lemma, followed by the analysis.

Construction 2.1 (Robustness from (1 — %ﬁ)—robusmess). Let G be a <1 — %ﬁ)—robust unobfuscat-

able family with respect to an unlearnable relation Rz, and an input distribution ensemble D; We
construct a new robust unobfuscatable family F with respect to the same relation Rz, and the n-fold
distribution ensemble D = D x --- x D. Any function fi : {0,1}"" — {0,1}"" is just the n-fold
version gk(q1, - -, qn) = (9x(q1), - - -, gk(gn)) of the function gy : {0,1}" — {0,1}".

Proof sketch of Lemma[2.1] Unlearnability of F follows directly from that of G, since any oracle call to
Jx € F can be simulated by n oracle calls to the corresponding gi. To show that the function is robust,
we describe its extractor E. For a noticeable function e(n) = n~?(!), the extractor E, is given as input
a circuit C that (e, ﬁ) -approximates fi (where D= 5(1”)) and the parameter 11/¢. E first constructs

from C a probabilistic circuit C’ that, with probability (1 — 4%/5>’ (1 - %ﬁ),D)—approximates Jk-

The circuit C’, given a random sample ¢ < D(1™), samples (¢}, ..., q,) + D(1™), replaces a random
coordinate ¢}. with ¢, and feeds the augmented n-fold sample to C. The circuit C’ repeats this procedure
% times (for the same ¢), and if it obtains an answer (ay, . .., ay) that is not L, it returns a;~. Then, after

producing the circuit C’, E chooses n random strings r1, ..., r, for C’, and runs the extractor E of gy,
on each C7. . If all executions output L, the extractor fails, and otherwise it produces k.

To show that E works as required, we show that the circuit C” is likely to approximates gy sufficiently
well. First, since C' is assumed to err with negligible probability, so does C’; we now show that C’
answers with high probability. For any sample ¢ € supp(D), let D|, denote the distribution that the

circuit C’ samples from (i.e., where a random sample is drawn from D, and then one of its random

coordinates is replaced by q). We say that q is good if Pr 7D, [C (q_7 ) # J_} > 5. We claim that an

input ¢ drawn from D is good with probability at least (1 — ﬁ) Indeed, if that was not the case,

then in any sample q7 — ﬁ(l”), there is some coordinate that is not good with probability at least
1-— <1 — ﬁ) ~ 1 — e~ V™; however, conditioned on this event, C' answers a random sample with

probability at most €/2, and thus overall it answers with probability at most €(n)/2 + negl(n) < €(n),
leading to a contradiction. Next, conditioned on ¢ being good, C’(q) # L with probability at least 1 —

(1—€/2)"¢ > 1—e~%") _Ttfollows that Pry. p ¢ [C"(q) # L] > (1 L negl(n)). In particular,

vn
for a (1 - 1+*\/gﬁl(n))—fracﬁon of the random coins 7 used by C’, it holds that Pr,.p [C}.(q) # L] >
— 4=). us, one of the n repeated extraction attempts from using different randomness, wi
1 \}H Th f th peated i pts f C’ using diff d ill
succeed, except with negligible probability. O

Further on, it will be convenient to also consider a notion where the circuit is required to approximate
the function on d distributions D1, . .., Dy, instead of one (in this work, it will always be the case that
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d is a constant). This definition will only serve us as an intermediate step towards constructing families
according to Definition[2.2] where d = 1. In particular, we will not require that each of these distribution
can be sampled independently of k, but rather we will only require that, when ¢* is chosen at random
from [d], it is possible to sample from D;«, independently of k. As we shall see later on, thelatter
weak sampling guarantee (combined with parallel repetition) will be sufficiently powerful to construct
an unobfuscatable function with a single distribution that is samplable independently of k.

We next present the definition. Since robustness can always be amplified, it will be sufficient and
more convenient to describe the notion for a constant approximation factor, e.g., 1/2.

Definition 2.4 (d-distribution robust unobfuscatable function). A family of functions F is a d-distribution
%-robust unobfuscatable family with respect to an efficient relation R r and input samplers D1, . .., Dy,
if it is:

1. Black-box unlearnable: as in Definition

2. Non-Black-box learnable: There exists an efficient extractor E such that for any large enough
n € N, any k € {0,1}", and every circuit C that (%,Di)-approximates fw foralli € [d], E
extracts z € Rr(k) from C':

PI’Er [(k,z) € RF:z+ E(C,1")] > 1 — negl(n) - poly(|C]) ,

where D; = D;(1™, k), and poly is a fixed polynomial depending only on E.
For any k € {0, 1}", consider the distribution
D*(k) = {q + Di(1",k) | i* + [d]}

We say that D1, . .., Dy are jointly key-independent, if there exists an efficient sampler D*, such that
for all k, D*(1™) £ D*(k).

We show that any d-distribution robust unobfuscatable family, where Dy, ..., Dy are jointly key-
independent, can be transformed in a robust unobfuscatable family according to Definition Specifi-
cally, we show a 5§ 2_robust family, but robustness can always be amplified using Lemma .

Lemma 2.2. If G is a d-distribution Q-robust unobfuscatable family, with samplers D1, . .., Dy that are
Jjointly key-independent, then G can be transformed to a -robustF (with a single dlstrlbutzon ).

We now describe the construction behind the lemma, followed by the analysis.

Construction 2.2 (f—Robustness from d-distribution f—robustness). Let G be a d-distribution %—robust
unobfuscatable family with samplers {D; }ze[d] (Each D; is possibly key-dependent, but {D; } | are
jointly key-independent). We construct a new robust unobfuscatable family F on a distribution ensemble
D* as follows. Each function fi : {0,1}"* — {0,1}" is just the n-fold version 9(q1,-- - qn) =
(9k(q1), - - -, gx(gn)) of the function g, : {0,1}" — {0,1}". The input distribution D* is the n-fold
D* x --- x D*, where D* is as defined above.

Proof sketch. Black-box unlearnability follows rather directly, from the fact that any oracle query to
fx can be perfectly simulated by n oracle queries to gx. We thus focus on showing non-black-box
learnability. First, note that since

Let C be a circuit that (%, ﬁ*)—approximates f«, we construct a new probabilistic circuit C' that,

with overwhelming probability, for all ¢ € [d], (% — ﬁ, D;)-approximates gi. For this purpose, we
describe another probabilistic circuit C” that, given a sample ¢, drawn from some D;, samples a random

i* € [d], and a random sample (¢}, ..., q,) from D*, replaces ;- with ¢, and feeds it to C. The circuit

11



C', given a sample g, simply chooses n sets of random coins 71, . .., 7, for C’, and runs each C;. (q);

if any one of the circuits does not output |, C outputs the same. The extractor E for F, then simply
chooses random coins for C” and feeds it to the extractor of g.

To show that the above works as required, we first show that, for any fixed j € [d], with (% -8 (\l/ﬁ))

probability, the circuit C’ (%, Dj)—approximates gk. First, since C' errs with negligible probability so
does C’; let us show that C” does not output L with the required probability. Let D’ be the distribution
that C’ forwards to C' (where sample ¢* is replaced by a sample from D;). We can compute the statistical
distance SD(ﬁ*7 D’) by comparing the number #; of samples taken from D; in each one of them; a
combinatorial calculation shows that this is bounded by:

. 1 . 1 d
B|n<k7n’d>B|n<k17n17d)‘—0<\/ﬁ> }

where Bin(k; n,p) = (})p¥(1 — p)"~* is the binomial probability with parameters (n, k, p). We shall
assume for simplicity that d = O(1), and our constructions indeed achieve this; the analysis extends
also to any d < +/n. It follows that C’ obtains an answer with probability at least % — ﬁ, and in
particular it holds with probability at least % - ﬁ over the coins of C’, that C’ (%, Dj) -approximates

SD(D*,D') < [#;(D*) — #;(D)| < 3
k=0

gk- We call such random coins r of C’ good for D;. It is left to note that the probability that C" does

not sample r1, ..., 7, that contain some good r for each of the D;’s is bounded by d - (1 — %)n from

which it follows that with overwhelming probability C” gives the required approximation for all D;’s.
O

2.2 Robust Unobfuscatable Functions with a Hardcore Secret

The notion of robust (and error-robust) unobfuscatable function is defined with respect to an unlearnable
relation R, where it is guaranteed that given black-box access to fi, it is hard to fully learn some
unlearnable secret z € Rz (k). We now present a natural variant of this definition, where each function
has an associated hardcore secret that is indistinguishable from a random string, even given black-box
access to the function; in contrast, the hardcore secret can be extracted from any circuit that approximates
fx. This variant will be useful for constructing unobfuscatable functions with a verifiable unlearnable
secret (see Section[)), and for some applications to resettable protocols (see Section[5.5)).

In the following definition HC,, = {h : {0,1}P°¥(™ — {0,1}"} will represent a family of func-
tions (called hardcore functions).

Definition 2.5 (Robust unobfuscatable functions with a hardcore secret). A family of functions F =
{fihke (0,1} meN is a robust unobfuscatable family with respect to an efficient input sampler D, and a
family of hardcore functions HC if it has the following properties:

1. Black-box indistinguishability: For any poly-size distinguisher L = {L,}, o, and all large
enough n:

Pr (LI (h,h(k)) =1| — Pr [Lf(h,u) =1|| < negl
Po[Urn) =1] = P [0 =1]| < nesitn) |

where k < {0,1}", h <= HC,, and u < {0, 1}" are all sampled independently.

2. Non-Black-box learnability: There exists an efficient extractor E such that for any noticeable
function e(n) = n~%W, any large enough n, any hardcore function h € HC,, any k € {0,1}",
and every circuit C that (e, D)-approximates fy, E(h) extracts h(k) from C:

Pr [h(k) « E(C,h,1",1Y¢)] > 1 — negl(n) - poly(|C]) .
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We show that any robust unobfuscatable family G that has a unique-witness unlearnable relation R ¢
(as defined in Remark [2.4]) can be transformed into a robust F with a hardcore secret.

Lemma 2.3. There exists a hardcore family HC = {HCy,},cy, Such that a robust unobfuscatable
Sfamily G with respect to a unique-witness unlearnable relation Rg, can be transformed to a robust
unobfuscatable family F with respect to some R r and the hardcore family HC.

Proof sketch. Given a robust family G with respect to a unique-witness unlearnable relation Rg and an
efficient input sampler D, we define a new function family F, where each fy consists of n independently
chosen functions from G, with keys (ki,...,k],); the new key k is set to be (k},...,k],). The input
sampler of the function is the n-fold product distribution D=Dx-- xD, and f(qr, ..y qn) is
defined to be gy, (@1),---5 9w (an)-

Let us denote by ¢ = ¢(n) the length ¢ = |z;| of the unique witness z; € Rg(k}). The hardcore
family HC,, will be the family GL£,, that extracts a single Goldreich-Levin [[GL89] hardcore-bit from
each k/. That is, a randomly chosen function h,, . € GL, is parameterized by n random strings

{r; € {0,1}*}, and is defined as:

hrh---ﬂ“n( /177k;1) = <217T1>7~-'7<Zn77'n> )

where each z; € Rg(k}) is the unique unlearnable secret corresponding to k!, and (-, -) is the inner-
product operation modulo 2.

To see that F has the black-box indistinguishability property (Definition [2.5]), note that the uniquely
determined zy, . .., z, are each uninvertible given oracle access to fy; indeed, any inverting algorithm
directly implies a learner for the underlying g.. We can thus apply the Goldreich-Levin theorem [[GL89]]
to deduce that (z1,71), ..., (z,, r,) are pseudo-random, given ry, ..., 7, and oracle access to fi.

Next, we show that F is non-black-box learnable according to Definition 2.5} namely, the hardcore
secret can be extracted from any circuit approximation. Indeed, note that any circuit C' that (ﬁ, 2¢)-
approximates fi can be transformed, with overwhelming probability, into a circuit C; that (D, ¢)-
approximates 9! (and this holds for any ¢ € [n]). To transform C' into such a circuit, we construct

a circuit C’ that, given a sample ¢ <— D(1") for gy, completes ¢ into a sample from D by sampling the
rest of the coordinates himself, and then feeds this tuple to C'. A standard averaging argument shows
that with probability at least € over the choice of randomness 7 for C’ the resulting circuit C. (D, ¢€)-
approximates g,s. Thus we can take n/e random copies of C’, and with overwhelming probability get a
circuit C; that (25, €)-approximates g,/. (It is important here that since C' errs with negligible probability
so does C’ and hence we can do the above amplification.)

Thus the extractor Ex for F, would run the extractor Eg with each circuit C};, and obtain the corre-
sponding unique secret z; € Rg(k}). In particular, given h,, ., € GL,, Eg can compute as required

th,mﬂ"n(k) = h’"17~--,7"n( /17 ceey k%) = <Zlarl>7 ceey <Zna7an> .

This concludes the proof of Lemma[2.3] O

3 A Construction of Robust Unobfuscatable Functions

In this section, we construct robust unobfuscatable functions from one-way functions.

Theorem 3.1. Assuming one-way functions, there exist a family of robust unobfuscatable functions.
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3.1 Required PRFs and Encryption

Before describing the construction, we define several required primitives.

We start by defining invoker randomizable pseudo-random functions. These are functions that allow
their invoker to ensure that the output is truly uniform, independently of the seed for the function.
Looking ahead, such functions will allow the extractor for the unobfuscatable function family, to obtain
samples from the proper distribution. See further details in the next section. The definition is taken
almost verbatim from [BGIT01].

Definition 3.1 (Invoker randomizable pseudo-random functions [BGI"01])). Let PRF = {PRF} se{0,1}+
be pseudo random function family, where for s € {0,1}", PRFg : {0,1}™+" — {0,1}". Then
PRF is called invoker randomizable if, for any s € {0,1}" and any x € {0,1}"), the mapping
r — PRFs(z,7) is a permutation.

[BGIT01] show that invoker randomizable PRFs are implied by any PRF.
The required symmetric-key encryption. In our construction, we will make use of a symmetric-

key encryption scheme with specific properties. Next, we define these properties and note existing
constructions that satisfy these properties, and based only on one-way functions. In a nutshell, we
require a CCA-1 symmetric-key encryption scheme with public randomness, and oblivious generation
of ciphers for a random plaintexts. Such an encryption scheme can be obtained using a one-bit output
PRF as Encg(b) = (7,0 ® PRFg(7)).

In what follows, we give slightly more general definitions that are sufficient for our needs, and will
be useful for optimization of extraction running time.

First we require that the encryption scheme is decomposable, meaning that every cypher can be “de-
composed” into a public part and a private part. We require that the public part is independent of
the plaintext, however, together with the plaintext, the public part uniquely defines the ciphertext (with
respect to a given secret key). For example, any encryption that uses public randomness (i.e., the ran-
domness of the encryption algorithm is included in the ciphertext) is decomposable; the public part of
the cipher is just the public randomness.

Definition 3.2 (Decomposable encryption). A decomposable encryption scheme includes in addition to
the standard (Gen, Enc, Dec) is decomposable if there exist an efficient algorithm pub that operates on
ciphertexts and satisfies the following conditions:

e For ciphertext c, pub(c) is independent of the plaintext and samplable; that is, there exist an
efficient sampler PubSamp such that:

PubSamp(1™) £ pub(Encg, (0)) £ pub(Encg, (1))
for any secret key sk € {0, 1}" (however, PubSamp works independently of sk).

e A ciphertext c is deterministically defined by pub(c) and the plaintext; that is, for every secret key
sk and two distinct ciphers ¢ # ¢/, if pub(c) = pub(c’), then Decg(c) # Decg(c').

In addition, we shall require random generation of ciphertexts encrypting random values.

Definition 3.3 (Encryption with random ciphertext generation). An encryption scheme (Gen, Enc, Dec)
is said to have random ciphertext generation if there exist a ciphertext sampling algorithm RanSamp
such that for any secret key sk € {0,1}":

RanSamp(1") = Encg, (1))

were Uy is the uniform distribution over {0, 1}.
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We remark that in both Definitions and the equality of distributions can be, naturally, re-
placed with statistical (or computational) indistinguishability; however, the construction presented below
does satisfy the stronger notion with equality. We also remark that if we assume that the scheme has ran-
dom ciphertext generation, then the algorithm PubSamp, can be simply implemented as PubSamp(1") £

pub(RanSamp(1™)), and need not be explicitly defined.

The encryption scheme used in our constructions. We will use a CCA-1 symmetric key decom-
posable bit encryption scheme with random ciphertext generation. Such an encryption scheme can be
constructed from one-way functions. Concretely, given a PRF {f} . (0,1} with one bit output, for se-
curity parameter n, the secret key is a random s € {0,1}", and encryption of a bit b is computed by
sampling a random r € {0, 1}" and outputting 7, fs(r) @ b. This function can be shown to be CCA-1
(see [[GolOQ]), and it is clearly decomposable and has random cipher generation.

3.2 The Construction

To prove Theorem we shall construct an unobfuscatable function family that is d-distribution -
robust with respect to distribution ensembles Dy, . . . , Dy, that are jointly key-independent in the sense of
Definition [2.4] Then, we will use Lemma[2.2]to obtain robust unobfuscatable functions (Definition [2.2)).
We now proceed to describe the construction (in several steps).
Construction 3.1. Let (a,b) be random strings, sk a key for a CCA-1 symmetric key decomposableen-
cryption scheme with random ciphertext generation (Definitions [3.2]3.3), and let s a seed for a pseudo-
random function PRF. The construction will use two probabilistic and three deterministic auxiliary
functions:

1. The function Ay 4, given any input, returns a bit encryption ¢ = Encg(a) of a’s bits.

2. The function Hyy is given two encryptions (c1, c2), and an operation © in a universal set of gates, it
then decrypts to obtain the plaintexts x1 and x9, where x; = Decg,(c;), it computes the operation:
x3 = x1 © X2, and returns an encryption cg = Encgc(x3).

3. The function Rs is given r € {0, 1}*, and returns PRF(7).
4. The function R, p 5 is given r € {0, 1}", and returns b & PRFs(r @ a).

5. The function Ry 3 s is given n bit encryptions (cy,...,cy), it decrypts them to obtain plain text
r € {0,1}", and returns b PRFs(r & b||pub(cy)]| . . . ||pub(cy)). (Recall that pub(c) is the public
randomness of c.)

Making the functions deterministic and invoker randomizable. Let s’ be a seed for an invoker ran-
domizable PRF (Definition @We define derandomized variants Ay , o, Hgy ¢ Of the two probabilistic
functions: Agy o, Hgk. For a function Gyey € {Hsk, Ask o}, the function Gyey ¢ gets, in addition to its
original input ¢, a random string 7 € {0, 1}". Gyey ¢ (g; ) runs the original Gyey (¢), using randomness
PRF¢ (g;7).

The n-fold repetition. For each function G above, we define an n-fold variant @, that takes n inputs
q1,- -, qn and returns (G(q1), ..., G(gn))-

The function. A function f, € F will be parameterized by a random k = (a, b, sk,s,s’) € {0,1}°",
where (a, b, sk, s, s') are as specified above. The function fi will be given input (g, i) where i € [5],
indicates which function G € {&sk,a,s” ]ITHSk,S/, HA%S, ]@a,b,s, ]I/ésk,b,s} to invoke with input ¢g. The unlearn-
able relation is

Ry = {((a,b,sk,s,s/),é) b= B}

(Note that this is a unique-witness relation according to Remark [2.4]
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3.3 Black-Box Unlearnability
Lemma 3.1. F given by Construction satisfies black-box unlearnability with respect to R r.

We next prove the lemma. The high-level overview of the proof is presented in the introduction

(Section[I.3).

Proof sketch. We shall perform the analysis in several steps: we will first show unlearnability assuming
1-fold probabilistic oracles then we will show security for the case that randomness is derived using
(invoker-randomizable) PRF, and move to security for n-fold oracles, and finally for the actual function
Ji-

Let A be a polysize adversary with oracle access to the functions Hg, Rs, Rgy ..

We first define E; to be the event that A produces distinct queries ¢ = (c1,...,¢,),¢ = (c},...,c))
to Ry 4.5 such that

r @ bl[pub(cy)| .. . [[pub(cn) = " @ bl[pub(c})]| ... [Ipub(c;,) ,

where (r,7") € {0, 1}" are the decryptions under sk of (g, ¢’).
Claim 3.1. Pry s [E1] = 0.

Proof. Indeed, for E to occur it must be that for all ¢ € [n] r; = 7} and pub(c;) = pub(c}), implying
that ¢; = ¢}, and thus also ¢ = ¢ (recall that the public part and the plaintext determine the cipher

Definition [3.2). 0

We now define E to be the event that A produces queries ¢ = (ci,...,C,) to Reps and ¢’ to R
such that r @ b||pub(cy)]] ... ||pub(cy,) = ¢/, where as above r € {0,1}" is the underlying plaintext of
q.

Claim 3.2. Pry g s [F2] < negl(n).

Proof. First, we note that the event is testable given (b, sk) and thus, it is enough to show that the claim
holds when PRFg, is replaced by a truly random function R.
Let F; be the event that F> does not occur in the first ¢ queries, it is enough to show that

Pr [Eiy1|E;] > 1 —negl(n) .

Indeed, conditioned on F;, the view of A after the first i queries is information theoretically inde-
pendent of b. We can now show that if Ei_;,_l does not occur, then A can reconstruct b from its view in
the first ¢ queries, implying that F; 1 can only occur with negligible probability. Indeed, if the first 41
queries contain ¢, ¢’ satisfying Es, then b = r & 7/, where 7 is the decryption of ¢ and 7’ are the first n
bits of ¢’. O

We now claim that an encryption schemes using sk is still semantically secure, even given the oracles
Hsk; RSv Rsk,b,s-

Claim 3.3 (semantic security). Let A be a polysize adversary, then:

{AHskvR57Rsk,b,s<Encsk(0))} . o {AHsk7R57Rsk,b,s(Encsk(l))}
S ?S7

sk,s,b ’
where the distributions are also over the randomness of all involved probabilistic functions.

Proof sketch. We first note that by Claims [3.23.1} we can replace Rgy s (in both distributions) with
a PRF PRF4 that is completely independent of sk. Now, the claim follows directly from the CCA-1
security of the encryption scheme, just as in [BGIT01, Claim 3.7]. O

16



Now, let A be a polysize adversary with oracle access to the (probabilistic) functions
Ask,aa Hsk7 RSa Ra,b,Sa Rsk,b,s .

We define E to be the event that A produces distinct queries (g,q’) to R, ;s and R, respectively,
such that ¢ = ¢’ @ a.

Claim 3.4. Pry, o s [E] = negl(n).

Proof sketch. First we note that the event E is testable given a and thus, it is enough to show that the
claim holds when PRFy, is replaced always replaced by a truly random function R. Now assume towards
contradiction that £ occurs with noticeable probability ¢ = €(n). Then, there exists an ¢ < |.A| such
that, the event F first occurs in the i’th query that .4 makes with noticeable probability €/|.A|. We
consider an hybrid experiment, where for the first ¢ — 1 queries that A makes, R, ; g is replaced with
an independent random function R’. The view of .4 does not change because the first ¢ answers to
Ry, are uncorrelated to the answers of Ry, since the queries are not a-correlated, and they’re also
uncorrelated to the answers of Ry, r, since the queries are of different length. Thus, in this hybrid
experiment, £ still occurs first in the i’th query with probability €/|.4|. Now, after replacing R, ,, r with
an independent random function R’ for the first i« — 1 queries, we think about a new adversary .4; that
halts after making the 7’th query. By semantic security Claim [3.3|(and a standard hybrid argument), we
can replace the oracle Ay ,, with a new oracle Ay o», while effecting the probability that £ occurs in
A; only by a negligible amount. Now, the view of A; is information theoretically independent of a, and
thus the probability that it outputs two queries ¢, ¢/, such that a = ¢ @ ¢’ cannot be noticeable, leading
to the required contradiction. O

Putting things together. Now, for any adversary .A with oracle access to the functions
Ask,aa Hsk7 RSa Ra,b,sa Rsk,b,s )

we can first replace all applications of PRF¢ with a truly random function R; then, by Claim [3.4]
we can replace R, ; g with an independent random function R’; Now, we can invoke semantic security
(Claim [3.3) to replace Agx, with Ag gn, and finally we can invoke again Claims [3.2J3.1} to replace
Rk b,s With another independent random function R”. Overall, each change effects the probability that
A outputs b, only with negligible probability; however, the view of A in the final hybrid is information
theoretically independent of b, and thus, A cannot output b with noticeable probability.

Deducing unlearnability of f.. Recall that the function f is implemented n-fold repetitions of the
invoker randomizable deterministic variants of the above oracles. However, the view of an adversary
interacting with fi can be simulated from the above oracles. Indeed, first note that we can replace
Agk o, Hgi by their invoker-randomizable deterministic variants: every new call (y,7) to Gyey ¢ is an-
swered according to probabilistic oracle Gyey(y), and repeated calls are answered consistently. Then,
we can replace any oracle G with its n-fold variant G: every call to Gis replaced by ncallstoG. [

3.4 Non-Black-Box Learnability

In this section, we prove that Construction [3.1]is non-black-box learnable in the sense of Definition [2.4]
The high-level overview of the proof (namely the construction of an extractor), is given in Section
We now describe the extraction procedure; we start by describing an extractor that is only required to
work for circuits that perfectly compute a 1-fold version of each one of the underlying functions. Then,
we will explain how to generalize this extractor for faulty circuits, in the n-fold case.
The following notation will be useful in what follows. Let

{A RA Ra b,s» RsAk,b,s}

sk,a,s’’ sks?
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be circuits perfectly implementing each of fi’s underlying functions.

e Denote by A}, ,(U) the distribution

{Aasks’ ):T<_{071}n}

for sampling a random cipher encrypting a’s bits. Denote by A% asks (U) its n fold variant
{Aa sk,s’ (F) 4 {0 1}n><n}
e Denote by Hsk o(c,d', ®; U) the distribution

{HSAKS/ ((c, d, @;r)) :r <+ {0, 1}"}

for sampling a cipher encrypting the result of an homomorphic operation. Denote by I/P\]IsAk (e, d,®;0)
the distribution

(B (e, @im), oo (e, @) 1 74 (0,1}
for sampling an n-fold cipher encrypting the result of the homomorphic computation.

Construction 3.2. Let C' be a circuit that perfectly implements a function f, € JF. In particular, C'
consists of restricted circuits

H

sk,a,s’ s ~sk,s’

{A RA Ra b,s RsAk,b,s} )

perfectly implementing each of f’s underlying functions. The extractor E works according to the fol-
lowing steps:

1. Obtain a random encryption of a’s bits using Ask as (Un).

2. Sample a random 7 < {0, 1}"; then, using the circuit HY, _ (-; Uy, ), homomorphically compute

c1 = Enc(Rgp5(a ® 7)) = Enca(PRFs(r) @ b)
ca = Encg (R (7)) = Encek(PRFs(7))
C3 = H?k,s’(cl’ Co, D; Un) = EnCSk(b) :

3. Sample a random 7’ < {0, 1}"; using the circuit H ;(-;Uy), and cipher c3 homomorphically
compute ¢4 = Encg (b @ r’), and now obtain b by computing:

b & PRF(r'|lpub(cs)) = Rg p o(ca)
PR (r'|lpub(cs)) = R (r'|Ipub(cs)) -

A “parallel emulation” of the extractor. Next, we move to describe an extractor E that extracts b from
any circuit C that approximately implements the n-fold variants of the underlying functions related to
fk € F. (The required notion of approximation is described following the construction, and is not
needed for the description of the extractor, but only for its analysis.)

Construction 3.3. The extractor E is given a circuit C consisting of restricted circuits

NS
{Ask,a,s’7 IHIsk s’ R Ra b,s» IRsk b,s}
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approximating each of fi’s underlying n-fold functions. The extractor Erunsa “parallel emulation” of
E as follows.

Emulating ciphertext operations. We now describe how to perform ciphertext operations; specifically,

how to retrieve encryptions of a, and how to perform homomorphic operations. In the n-fold version of

the extractor, a ciphertext for any single bit b is, in fact, an n-fold cipher consisting of n ciphers, each
encrypting the same bit b. The operations are done as follows.

e Whenever E would run the circuit A%, , . to obtain an encryption of a’s bits, E obtains n samples

N

from A o, ¢

aborts; otherwise, E continues with the first n-fold cipher that was successfully sampled.

(U). (Each of the n samples are either an n-fold cipher or L.) If all samples are L, E

e Whenever E would run the circuit H, ., with two ciphers (c,c’) and a gate ©, E has at hand two

n-fold ciphers (c1,...,¢,) and (c},...,c),). For each pair (c;,c}): E obtains n samples from

]ITHSAk o (<, c;,®;U). (Each of the n samples are either L or an n-fold cipher.) If at least a %—
fraction of the samples are not L, Econtinues with the first n-fold cipher as the result of the
homomorphic operation; otherwise, E continues to the next pair of ciphers. If none of the pairs
produced sufficiently many samples, E aborts.

Emulating Steps[2|and 3| of E. Before describing how to perform a parallel emulation of Steps[2]and
we describe several auxiliary functions that will be used by E.

1. For G € {Rs, Ry s, Ry sk s}, let RandInputg be a function that samples a random input for G:

e RandInputg_  and RandInputg ., , each consisting of n random strings 7 = (r1,..., Tn)-
(We note that Ry may get different input lengths; throughout, the proper length will be clear
from the context.)

e RandInputg, , _consisting of n random ciphers of random bits ¢ = (c, ..., c,), sampled
using RanSamp(1™), as defined in[3.3]

Importantly, all the above samplers work independently of the key k for the unobfuscatable
function, so E can invoke them.

2. ForG € {Rs, R, 3 s, Ry sk s }, we define an auxiliary function ParEvalg that, given queries (¢1, . .., ¢n)
for G, plants each ¢; in a random n-fold query, and tries to obtain an answer. Intuitively, this func-
tion exploits the parallel repetition to boost up the answering probability on any specific query gq.
The function is given by Algorithm (3.1).

Algorithm 3.1 Parallel Evaluation - ParEvalg
Input: (g1,. .., qn)

I: for j € [n] do

2:  obtain (¢}, ...,q),) < RandInputg

3:  sample a random i* < [n]

4 execute G(qy, ..., @1, Qs Qeyys- - )
5.  if the call succeeds (does not output L) then
6 obtain the answer (a1, ..., a,) and set ans; = a;«
7. else

8 setans; = L

9:  end if
10: end for
11: return (ansy,...,ans,)
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Emulating Stepof E. In this step, E has an encryption of ¢ and it transforms it to an encryption of b, by
homomorphically evaluating a circuit C, ; that outputs b on input a. The circuit C, ; will be constructed
by E and will emulate a parallel execution of Step of E. The circuit is described in Algorithm . We
shall describe Cj, 3, as a probabilistic circuit (using probabilistic subroutines); when E homomorphically
computes C, p, it first samples the required random coins and hardwires them to Cy .

Algorithm 3.2 The a to b circuit - C,,

Input: a (allegedly a = a)

e A Al

sample 71, ...,r, € {0,1}"
execute (ansy, ..., ans,) < ParEvalg_(r1,...,75)
execute (ansy,...,ans; ) < ParEvalg,, (@ ®71,...,a D ry)
if 3j € [n] such that ans; and ans’; are not L then
return ans; @ ans;-
else
return |
end if

Emulating Step of E. In this step, E has an encryption of b, which it will transform into b. The above
is done using the procedure C}, given by Algorithm (3.3):

Algorithm 3.3 The b decoding procedure - Cj,

Input: 7 tuples (Cy,...,Cy), each ; consists of n ciphers with an underlying plaintext b; (allegedly
b; = b;).
1:
2: for j € [n] do

sample rq,...,r, € {0,1}"

3: homomorphically compute from Cly.--,Cn
new tuples of ciphers 'y, . . c n» €ncrypting r =b® Tj
4:  setCy = c1[k], ..., c'n[k] to be an encryption of the bits of 7
5. execute (ansy,...,ans,) < ParEvalg,, (c],...,<})
6:  execute (ans},...,ans),) <ParEvalg_(r;||pub(c}),...,7;||pub(c}))
7: if 3m € [n] such that ans,, and ans], are not L then
8 return ans,, ¢ ans),
9:  end if
10: end for

11: return L (if the loop failed for all j € [n])

Emulating all steps together. We describe the full extraction process of E. E first constructs the circuit

Cq,p and the procedure C from the restricted circuits (]H[

sk’ ]RA ]Ra b ]Rsk b, ¢) (in particular, it will

sample random coins to be used by C, j, and (). E then proceeds according to the following steps:

1.

2.

Obtain a random encryption of a’s bits using Ask as (Uy).

Using homomorphic ciphertext operations, evaluate the circuit C, ; on the encryptions of a’s bits
and obtain encryptions of b’s bits.

Run C} on the encryptions of b’s bits, obtain and output b.
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The approx1mated distributions. We define d = O(1) distribution ensembles (or samplers) 231, .. ﬁd.
For the extractor E to work, the circuit will be required to (Dl, 2) approximate each of these dlstrlbu—
tions. Each D; = D;(1™) will be an n-fold version of a distribution D; = D;(1"); we thus define the
distributions {D; }:

e D, , consists of n random strings 71,...,r, € {0,1}" (each r; is “invoker randomness” for
encrypting a;).

e For each operation ©® (from the universal set of gates) and every pair of bits (z,x’), Dg’f’x/
consists of a random string r € {0, 1}" (for encrypting  ® '), and random encryptions (c, c’)
under sk with underlying plaintexts x, 2.

e Dy consists of a random string 7 € {0, 1}".

D"Jrn consists of a random string € {0, 1}", and n independent samples from PubSamp(1™)

of random * ‘public parts of a cipher” as defined in[3.2]

e Dr_, . consists of a random string r € {0, 1}".

a,b,s

e Dg_ , . consists n random encryptions (cy, ..., C,) to the bits of a random string r € {0, 1}".

sk,b,s

As noted above, for each D, we define the n-fold version D. For all distributions D, but Dgs’f’m/, D
is just the n-fold product distribution D x --- x D. For D = Dﬂ?ls’f’zl, D is defined a bit differently:

it is the product distribution D X ..., xD conditioned on (c,c’) being equal in all repetitions; that
is, the distribution corresponds to a single pair (c,c’), and n random strings (71, ...,7,) meant for n

independent homomorphic operations. In addition, each of the distributions D above also includes an

index ig € [5], indicating which function G € {I&Sk,a,s’a ]ﬁlsk’sl, H/és, @a,b,y Hisk,b’s} to invoke.
Key-independent sampling. Note that in Definition [2.4]for d-distribution robustness, we do not require
that all the distributions Dy, ..., Dy are efficiently samplable independently of the key k for the unob-
fuscatable function. Indeed, while almost all the above distributions can be sampled independently of
k, the distributions of the form D" f a4 may not be samplable without the secret encryption key sk, even
given (z,z'); we only assume samphng of ciphers for random plamtexts(Deﬁnltlonn 3.3).We do require,
however, that the distributions {D;} are jointly key-independent (Definition , implying that, for a
random ¢* < [d], we can sample from D;-, independently of k (this sampler was denoted by D*). In our
case, this is satisfied due to random ciphertext generation(Definition [3.3): instead of sampling at random
x,2’ € {0, 1}, and then sampling encryptions (c, c’) of (x, '), we can directly sample two independent
ciphers of random bits.

Furthermore, the extractor E itself works by generating query samples from the different distributions
D;. However, E naturally cannot use the key k to sample (it is trying to extract k, or a part of it). For those
distributions that can be sampled without k this is not a problem. On the other hand, for the distributions

/ ~
Dﬁ kwm , where the secret key is needed, E does not generate the samples on its own, but rather they

are generated as answers to previous ciphertext queries (to H, or A), without E knowing the underlying
plaintext. The only place where E needs to generate ciphers completely on its own is when running
ParEvalg, , . within Cp; however, there it only generates ciphers of random bits, which can already be
done obliviously of the encryption key sk.

Remark 3.1 (One uniform distribution). In the general Definition of unobfuscatable functions, we
allow the distribution ensemble D to be an arbitrary samplable distribution. As mentioned in Remark[2.2]
we can consider a more strict (but natural) definition where D is required to be the uniform distribution.
Our constructions can indeed achieve this stronger notion. Indeed, the distribution D in our eventual
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construction of robust robust unobfuscatable functions, will be a n-fold repetition of the distribution D*,
and D* can be made uniform.

Specifically, using the symmetric key encryption described in Section [3.1] the samplers PubSamp
and RanSamp both output uniformly random strings. So each distribution D; described above simply
consists of a random strings (of some length) and an index iz € [5]. In particular, by appropriately
padding with extra randomness, we can think of each of the n blocks of D* as a uniform string repre-
senting a random i € [5], plus an extra random string representing the input to G. (There are some
extra technical issues that can be easily taken care of: (a) the index i is outputted by several distribu-

tions D;, and not just one, which may skew the uniformity of ig; however, this can be taken care of by

artificially adding more indices to represent ¢. (b) formally, the way we defined things D® 2" includes

n appearances of the same pair (c, c¢’); however, this was done just to be consistent with the description
of H as a n-fold function, and can be augmented to include one copy.)

We now move on to proving that the construction described in this section is non-black-box learnable.
Lemma 3.2. F given by Construction is non-black-box learnable in the sense of Definition

Proof. We start by giving a roadmap to the proof; the high-level ideas behind the proofs are described
in the introduction.

Overview of the proof. Our first step is to show the completeness homomorphic evaluation; namely,
that when the extractor performs homomorphic operations (in its parallel mode), it will never get stuck,
and will always obtain a new n-fold cipher representing the result of the homomorphic computation. At
the second step, we will prove that the circuit C,, j, constructed by the extractor indeed performs properly;
that is, maps a to b. Finally, we will show that the procedure Cj,, when given the n-fold encryption of b
produced by E, successfully outputs b.

Throughout the analysis, we will condition on the event that the circuit C' (that we extract from) does
not make any undetectable errors (i.e., C(q) ¢ {fk(q), L}) on any query ¢ sampled by the extractor for
one of the functions implemented by the circuit. Recall, that the probability of an undetectable error is
negl(n), and the total number of queries made by the extractor is bounded by some poly(|C|, n). Thus,
this condition is violated and may cause extraction failure with probability at most negl(n) - poly(|C|).

Completeness of the homomorphic evaluation phase. We say that a pair of ciphers (c, c’) encrypting
a pair bits = and 2’ is good for © if

Pr[Hi (e, ¢ 0:0) # 1] > % ,
where ]ﬁlﬁk(c, c/,®;U) is as defined in Construction We say that a pair of n-fold ciphers C, c , each
encrypting a pair of bits x and #’, respectively, is good for @ if there exists i € [n] such that ([i], ¢'[i])
is good for ®. We say that a pair of n-fold ciphers is good if it is good for any operation ©.

Since the circuit ﬁA answers DQ’Z"'E/ where c, ¢’ are random, with probability 3 1 it holds that at
least an f—fractlon of the cipher-pairs encryptmg x, 2’ is good for ®. Therefore, a random pair of n-fold
ciphers is not good with probability at most ( ) - d (indeed, the number of distributions d is a bound
on the number of operations).

Claim 3.5. The extractor E does not abort during the homomorphic evaluation phase, except with
negligible probability.

Proof sketch. We first claim that except with negligible probability, for every two n-fold 01phers € and
¢ that are produced at some point during the execution of E (at different times), the pair (C, c ) is good.
Indeed, note that any two executions of circuit ]HI .. produce a pair (C,c’) that is not good, only if the
corresponding two executions of the function Hsk (that, unlike its approximation, never outputs 1),
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given the same inputs, output such a pair. However, since ]ﬁlﬁk is invoker randomizable, the output of
any two executions is uniformly distributed over all pairs of n-fold ciphers, and, therefore, is not good
only with negligible probability (%)n - d; in particular, this is also the case for any pair produced by an
execution of the circuit IF]ISAk. The same argument holds for pair of n-fold ciphers generated by the circuit
1&3 « (or by mixed pairs created by the two circuits).

"We now claim that, except with negligible probability, the extractor does not abort during the ho-
momorphic evaluation phase. We condition on the (overwhelmingly often event) that the extractor only
runs a homomorphic operation only for good pairs. First note that, in Step E aborts only if all n

samples from A2

2« (U) are L. Thus, because the circuit Aﬁk o answers on Dy, . with probability %, E
aborts only with probability 27". In Step when E is running a homomorphic operation ® for a good
pair of n-fold ciphers (C,c’), there always exist some i € [n], such that the pair of ciphers (c[i], c’[])
is good for the ®. Therefore, samples drawn from H, _,(c[i], €[i], ®; U) are not L with probability at
least i. Recall, that E aborts only if it fails to obtain more than %—fraction of the samples in all iterations;

however, this would occur in the good iteration ¢ only with negligible probability. O

Good inputs under completion. We next analyze the completeness of C, 3, and C},. For this purpose,
we prove a simple claim regarding the probability of successfully computing a function on a specific
sample taken from a 1-fold distribution. We will compute the function by completing the specific sample
into a random sample and evaluate the function on it.

For G € {Rs, Ry ps, Rk s}, let ﬁg be an n-fold samplable distribution (13@, =Dg X --- X Dg).
For a fixed element ¢ in the support of Dg, we denote by ﬁ@\q the distribution given by sampling a
random q—7 from 75@ and replacing a random coordinate ¢; with ¢q. We say that ¢ is good for Dg if

Pr[G(@)#L1]>7.

q_7 F5G|q 4
Claim 3.6. Pry. p; [q is good for Dg] > 1 — —=.
Proof sketch. First recall that for G € {Rs, R s, Rek p s }, it holds that

1

Pr [Glq) # 1] > 5 -

q'+Dg

Assume towards contradiction that the claim does not hold, then except with negligible probability

n ~
(1 — ﬁ) ~ e~V™, arandom sample from Dg contains some ¢ that is not good; however, conditioned

on this event, the event {(G:(q7 ) # J_} occurs with probability at most , and thus, overall, {G((f’ ) # J_}

occurs with probability at most % + negl(n) < % resulting in a contradiction. O
Completeness of the circuit C, ;. We now show that the probabilistic circuit C, j constructed by the
extractor (almost always) returns b on input a as required.

Claim 3.7. Prc, ,[Cop(a) = b] > 1 — negl(n).

Proof sketch. Recall that C, j, samples n random string 71, ..., 7,. Conditioned on r; being good for
Dg,, ans; # L with probability at least %; similarly, if r; & a is good for Dr ans; # 1 with
probability at least %. By Claim for a random 7, the pair (r;,7; @ a) is simultaneously good (in
the above sense) with probability at least 1 — ln, in which case both ans; and ans] are not L and b =

a,b,s’

1

n
ans; @ ans, with probability at least 16> overall, b is returned except with probability <% + %) . O
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Completeness of the procedure Cj. We now show that the procedure C}, (almost always) returns b on
an n-fold encryption of b as required.

Claim 3.8. Let C be the n-fold encryption of b produced by E, then Prc, [Cy(C) = b] > 1 — negl(n).
Proof sketch. Throughout, we condition on the (overwhelmingly often) event that homomorphic oper-

ations do not fail. Let c be a (1-fold) random encryption of a random n-bit string r; by Claim cis
good for D = Dg_ , . with probability at least 1 — ﬁ For such a random c, let (c) = Decg,(c) be

the underlying plaintext, and let pub(c) be the public part of c. We say that c is good for D = @ﬁan’

sk,b,s

if (b® r(c), pub(c)) is good for D = ﬁﬁj’ﬁ. Note that a random cipher of a random string, such as c,
induces a random pair (b & 7(c), pub(c)); thus, by Claim[3.6|c is good for D = ﬁﬂ%j"Q with probability
at least 1 — ﬁ Overall, a random c is good for both distributions with probability at least 1 — % We

say that r is good if a random encryption c of r is good for both distributions with probability 1 — f/Z ;

n’
in particular, we know that there is a (1 — {‘/%) -fraction of good r’s.

For a fixed r, let M be a matrix with rows (C1, . . ., Cy,), such that each C; is an n-fold cipher encrypt-
ing the bit ;. We say that such a matrix M is good if one of its columns M [j] = (¢i[j],...,Cu[j]) is a
good (1-fold) encryption of the string r (as defined above). By the previous paragraph, it follows that if

n
. . . ., . . oy 4 1 n
r is good, then a random matrix M encrypting it is not good with probability at most (% ) < (1—7) .

Recall that, for random 71, .. ., r, C}, generates for each = r; a matrix M encrypting 7’ = b @ r,
where every row of M is an n-fold cipher encrypting /. Fix any column M][i| of the matrix, this
column is generated homomorphically from a pair of ciphers (c,c’). We claim that except with neg-

ligible probability Pr [ﬁgkys, (c,c/,@: U) # J_] > L
dure (Step would skip (c,c’) with overwhelming probability. Next, note that the output of the
(non-aborting) invoker-randomizable function Hgy ¢ (¢, ¢’, ®; U) is uniformly distributed over all n-fold
ciphers of r}. It follows that M[¢] that is sampled from the circuit ﬁ-\]lfk’s, (c,c’,®;U) is uniformly dis-

tributed over at least a %—fraction of all n-fold cipher encrypting r}. Since this holds for every 4, the
matrix M is uniformly distributed over a (Tlfj)n—fraction of all random cipher matrices encrypting r’.

It now follows, that for any good r, a matrix M encrypting r that is produced by Cj, is good except
with probability (%)n For any good M there exists a column c;, that is a good encryption of r, and

in particular ans;, and ansj, are not 1, and b = ansj, & ans), with probability % in each one of the n

otherwise, the homomorphic evaluation proce-

trials. Finally, since a (1 — f/% -fraction of the r’s are good, and our extractor performs n trials, C

will recover b with overwhelming probability.
O

This concludes the proof of Lemma[3.2]
O
3.4.1 Necessity of One-Way Functions

We show that one-way functions are not only sufficient for constructing robust unobfuscatable functions,
but also necessary (given the natural requirement of a unique witness unlearnable relation noted in
Remark [2.4).

Lemma 3.3. Robust unobfuscatable functions with unique witness unlearnable relations imply one-way
functions.
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Proof sketch. Let F' = { fi : {0,1}" — {0, 1}* },c 10 13n e be a family of robust unobfuscatable func-

tions. For simplicity, let us also assume that the family is %—robust with respect to the uniform distri-
bution ensemble D = U (the proof easily generalizes to arbitrary 1 — ¢, and samplable distribution
ensemble D). We define a one-way function ¢ = {(,,} as follows: ¢, : {0, 1}*(™+1) — {0,1}*, and

(kaxla'--yxm) )ﬁ) (fk(xl)?'"afk(xm)amb"'?xm) 3

where m(n) = 2n.

We next show that ¢ is one-way. For any k € {0,1}", we denote by z its corresponding unique
unlearnable secret. First note that for any k, k' such that z,, # z/, the agreement between fi and f is at
most 2/3. Indeed, if that was not the case, we could construct a circuit Cyny that given input z returns
fi(x), only if fu(x) = fw(x), and otherwise returns L. This circuit computes both functions with
probability at least 2/3 (without making errors); however, in this case the robust extraction guarantee,
implies that the extractor outputs z € Rx(k) N Rx(k') = {zk} N {zw }, which means that z,, = zk'.

Thus we can deduce that for any k € {0, 1}™:

Vi € [m] Z;Z(éﬂczz;/: fir (i) <1 0.7} <§>m : <S>n '

It follows that any algorithm that inverts (o with noticeable probability, outputs k’ such that z)s = z;
in particular, such an algorithm directly implies a learner that breaks the black-box unlearnability of F
with respect to its unlearnable relation R z. This learner would simply query its oracle fi on m random
points, run the inverter to obtain k' and compute z,; = z. O

Pr {Elk’

L1y

Remark 3.2. We note that the above lemma also holds if we consider a weaker form of robust unobfus-
catable Turing machine families, whereas for non-robust unobfusactable Turing machine families can be
constructed without any computational assumptions (see [BGIT01]). In addition, the above also holds
given a weaker inefficient extraction guarantee.

3.5 More Efficient Extraction from Fully Homomorphic Encryption

In this section, we discuss the running time of the extractor and its importance. We analyze the running
of the extractor corresponding to Construction 3.1, and also present an augmented construction with
more efficient extraction based on fully homomorphic encryption. A R

The extractor E given by Construction evaluates each of the functions RS, RS, (RE , ., im-
plemented by the input circuit C, a poly(n) number of times (where poly is some fixed polyﬁc;mial).
However, some of these evaluations are performed by “homomorphically evaluating” the circuit C' on

certain encryptions. Since each homomorphic operation is performed by evaluating the function IFHSAk i

implemented by C, we get that the total running of E is poly(n) - |C|?.

As discussed in Section [T.4] and will be further discussed in Section [5.3.2] improving the ratio be-
tween the running time of E and |C/| has applications to reducing the round complexity of resettably-
sound and simultaneously-resettable ZK. By replacing the symmetric encryption in Construction (3.1
with fully homomorphic encryption we can improve the running time of Eto poly(n) - |C|; namely, we
can make the dependency on ]C’Llinear instead of quadratic.

The main idea is that now E is able to emulate a homomorphic operation without evaluating the
function HSAKS, implemented by C.

The augmented construction. We start by overviewing the basic properties needed by the encryption
scheme, compared to those of the previous one. First, we require that the scheme is fully-homomorphic
and rerandomizable in the following sense:
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Definition 3.4 (Rerandomizable encryption). an encryption scheme (Gen, Enc, Dec) is rerandomizable
if there exist an efficient ciphertext rerandomization algorithm ReRan, such that, for every sequence of
ciphers and secret keys, {cp, skn}, o

{ReRan(c,)},, e ~s {Encek, (Decsk, (¢n))) ey -

(statistical indistinguishability can be naturally relaxed to computational)

In our modified construction, the learner will not have access to a function that performs homomor-
phic ciphertext operations and therefore we no longer require that the encryption is CCA-1. Additionally,
our previous requirement of random ciphertext generation can be replaced by the above rerandomization
property (which is needed anyhow). Specifically, we assume WLOG that, when constructing publicly
verifiable robust unobfuscatable functions (see Section ), the public verification key contains encryp-
tions of the constants in {0, 1}. Now, using encryptions of constants and the ciphertext rerandomization
algorithm, it is possible to sample random ciphertexts encrypting random bits. (The notion of publicly
verifiable robust unobfuscatable functions we get from this construction is slightly weaker then defined
in Definition [.1] since the distribution D is only samplable given the public verification key. However,
this suffices for all the applications to ZK, where the public verification key is known before evaluating
the function.)

Recall that for Construction|3.1|we required that the underlying encryption scheme is decomposable
(according to Definition [3.2). We will make the same requirement for the augmented construction;
however, we next show that any homomorphic encryption scheme can be also made decomposable. If
the original scheme is rerandomizable, so is the resulting scheme.

Construction 3.4 (Making a homomorphic encryption decomposable). Let (Gen, Enc, Dec, Eval) be a
fully homomorphic encryption scheme. We construct a decomposable fully homomorphic encryption
scheme (Gen’, Enc’, Dec’, Eval’) as follows:

e Gen’ is identical to Gen.

e Enc’ on a secret key sk and plaintext b € {0, 1}, samples a random bit r from {0, 1} and outputs
Encg(r)|[0 @ r.

e Dec’ on a secret key sk and ciphertext |

r, outputs 7 & Decg(c).

e Eval’ on a pair of ciphertexts ¢ ||r1 and ¢a||r2 samples a random bit r from {0, 1} and outputs ¢||r
where the ciphertext ¢ is computed homomorphically (using Eval) from (c1, ¢2, 71,72, ) accord-
ing the homomorphic operation.

e If the original scheme has a rerandomization algorithm ReRan, the new scheme has a rerandom-
ization algorithm ReRan’ that on input ciphertext c; ||r1, samples a random bit 7 from {0, 1}, ho-
momorphically computes a cipher ¢ such that Dec(c||r1) = Dec(c||r) and outputs ReRan(c)||r.

The algorithm pub on input ciphertext c||r outputs c. (As remarked in Section the algorithm
PubSamp can be implemented by sampling a random cipher of a random plaintext and applying pub.)

Theorem 3.2. Assuming rerandomizable homomorphic encryption, there exist a family of robust unob-
fuscatable functions, where the running time of the extractor E(C, 1") is poly(n) - |C].

Construction 3.5 (Robust unobfuscatable functions with efficient extraction). The construction is a vari-
ant of Construction [3.1{ with the following modifications:

e The encryption scheme is a rerandomizable decomposable fully homomorphic bit encryption.

e The function fi, will no longer evaluate the function ]ﬁlsk
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e When making the function Ay , deterministic, a standard PRF can be used (instead of one that is
invoker randomizable). In addition, the n-fold A , can be replaced with the 1-fold version Agy ,.

Proof sketch of Theorem The proof of black-box unlearnability is similar to the proof of Lemma[3.1]
In the proof of non-black-box learnability, the main modification we introduce to the extractor given by
Construction [3.3] is in the emulation of ciphertext operations. Specifically, ciphertexts are no longer
represented by n-fold ciphers; instead, values of intermediate wires in the homomorphic evaluation per-
formed by E are represented by a single ciphertext, and homomorphic operations are performed using
Eval (instead of using the function ]ﬁISAk ¢)- Also, the circuit Cj, is given one encryption of b instead of
n encryptions. Cj, will now use the cipflertext rerandomization algorithm ReRan to generate n random
encryptions of b. O

4 Publicly Verifiable Robust Unobfuscatable Functions

In this section, we define publicly-verifiable robust unobfuscatable functions. In Section f.Ijwe show
how to construct them from robust unobfuscatable functions (using a general compiler). We also show
that such functions imply error-robust unobfuscatable functions. Throughout, we shall simply call them
verifiable (rather than publicly-verifiable).

At high-level, a verifiable robust unobfuscatable family J is associated with a key generation algo-
rithm Genr that samples a secret key k and a (public) verification key vk. The verification key has two
purposes:

e Public verification of the unlearnable relation. vk allows verifying a witness for a unlearnable
relation R r; namely, given z, it can be efficiently checked whether R z(vk,z) = 1 (whereas in
Definition the secret key k is required for verification).

e Public verification of an image property. Intuitively, vk is meant to allow verifying that a given
value @ is indeed the correct evaluation of fi on some known input q. We generalize the latter
so that vk allows to verify a given property of a candidate image a for fi(q), for a given input
q. Specifically, the family is associated with an efficient relation Ver z, where Verr(vk, ¢,a) = 1
only if (g, a) satisfy a given property with respect to fx. For example, fi may consist of two
functions fy,, fx,» and Verz may try to verify that a pair (g1,a1), (go,az) is such that either
a1 = fi,(q1) or az = fi,(q2). We will require that Verr has a completeness property, implying
that it is always the case that if a = fi(q), then Verz(vk, ¢, a) = 1.

The black-box unlearnability property is defined just as for robust unobfuscatable functions, except that
it should hold also against learners that are given the verification key vk. The non-black-box learnability
property is strengthened: in the definition of robustness, the extractor was required to work for any C that
agrees with the function on a given distribution D = D(1"); now we require that extraction works, even
if the circuit C' may never produce a = fi(q), but does produce a’s such that Verr(vk, g, a) = 1 with
high-probability over inputs drawn from D. In particular, the circuit C'is allowed to output undetectable

errors a ¢ {f«(q), L}.

Definition 4.1 (A verifiable robust unobfuscatable function). A family of functions F, with efficient key
generation algorithm Genx, and image verification relation Ver g, is a verifiable robust unobfuscatable
Sfamily with respect to efficient relation R x and input sampler D if it is:

1. Black-box unlearnable: For any poly-size learner L = {L,}, c:

(k,vk)eGﬁn;(l")[(v ,2) € R : 2 < L (vk)] < negl(n)
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Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion e(n) = n=OW, all large enough n € N, any secret key and verification key (k,vk) €
supp(Genz(1™)), and every circuit C such that

Pr [Ver]‘—(Vk7Q7a) =1: C(Q) = (1] > 6(”) )
q<D(1")

E extracts z € R r(vk) from C:

f;r [(vk,z) € Rr:z + E(C,vk,1",1Y)| > 1 —negl(n) - poly(|C|) .

2. Verification completeness: For any (k,vk) € supp(Genx(1™)), and for any q in the domain of
fk’ Ver]'—(Vkv q, fk(Q)) =1

It is not hard to see that verifiable robust unobfuscatable functions are stronger than error-robust
unobfuscatable functions.

Lemma 4.1. Any verifiable robust unobfuscatable function family G can be transformed into an error-
robust unobfuscatable function family F (according to Definition [2.3)).

Proof sketch. The transformation from G to F: a key k’ for a function fi» € F consists of a key k
and a corresponding verification key vk for a function gx. The input sampler D is the same as for
F, and a function fis is defined as follows: given an input ¢ <— D(1"), fi/(q) returns (gk(q),vk),
the unlearnable relation R r will be {((k,vk),z) : z € Rg(vk)}. First, black-box unlearnability of the
constructed F follows directly from that of G. Second, for black-box non-learnability, note that if a
circuit C (% + ¢, D)-approximates f/, even with errors (where D = D(1™)). Then, an extractor Ex can
first sample C' (about /) to identify, with overwhelming probability, the single verification key vk, such
that k" = (vk, k); then, it can construct from C' a new circuit C” that (% + €, D)-approximates f in the
sense of Definition[4.1} indeed, the completeness of Ver r says that whenever C' agrees with the function
Verr will accept. Now, the extractor can run the underlying extractor Eg and obtain z € Rg(vk). O

4.1 Constructing Verifiable Robust Families

We now show how to construct verifiable robust families from robust families with a hardcore secret
(Definition [2.5]), which in turn can be constructed from any robust family with a unique-witness relation,
such as the family constructed in Section[3]

Theorem 4.1. Assuming trapdoor permutations, any robust unobfuscatable G with respect to a hardcore
family {HC,,}, can be compiled into a verifiable robust family F (according to Definition .

Proof sketch. We prove the theorem in two steps: we first show how to get a verifiable family that only
satisfies public-verifiability of the unlearnable relation, but will only be robust against detectable errors
(like the family G we started from). Then, we show how to transform the resulting family into one that
also satisfies public-verifiability of some prescribed image property, and will already be robust to errors,
given that the property is frequently satisfied.

Step 1 - a family with a publicly-verifiable unlearnable relation. Given a family G with a hardcore
family {HC,, }, we augment each function gx € G and its corresponding (secret) key k, with public key
vk = (h,y), where h <— HC,, is randomly chosen hardcore function, and y = ¢(h(k)) for a one-way
function ¢. We then define the publicly verifiable unlearnable relation to be

Rg = {(vk,2) = ((h,y),2) |y = ¢(z)} .
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Claim 4.1. A randomly chosen g € G is black-box unlearnable with respect to the relation Rg, even
given a corresponding vk. Also, for any h € HC,, and k, h(k) is non-black-box learnable from any
circuit C that (D, €)-approximates f is the input distribution corresponding to G).

Proof sketch. First, to see that gy is unlearnable with respect to Rg, recall that h(k) is pseudo random,
even given black-box access to gk, and h. Thus, any learner that manages to satisfy Rg, would also
manage to do so had we given it p(u), contradicting the one-wayness of ¢.

The fact that z € Rg(k) can be extracted, given a circuit that (D, €)-approximates gi, and vk =
(h,y), directly follows from the extraction guarantee of G. Indeed, Eg, given h and C, is guaranteed to
extract h(k), and thus produces the required pre-image in ¢~ (y). O

Step 2 - public-verification of an image property. The family G, after being augmented as above, still
does not have a publicly-verifiable image property. We now construct from G a new family F that will
already satisfy all the requirements of a verifiable robust family as given by Definition 4.1}

The basic idea is to embed, in the function’s answers, rZAPs (see Section attesting that the
answer is consistent with the verification key; however, to securely use rZAPs, we first need to establish a
proper statement with at least two valid witnesses. We use a similar idea to that used in [ES90,ICOSV12],
of using a WI proof (or tZAPs in our case) in order to get a witness-hiding proof for statements with two
independent witnesses. Details follow.

Each function fy in the family F consists of two independent functions gy, and gy, sampled indepen-
dently from G, and randomness s for an rZAP; the secret key k is set to be (ko, ki, s). The corresponding
verification key vk, will consist of the two verification keys (vkg, vki) sampled with the above to func-
tions (as defined in Step 1), as well as two commitments Cy = Com(ko), C; = Com(k;), and a third
commitment C = Com(b), to a random bit b < {0, 1}" (the commitments are non-interactive and per-
fectly binding as defined in Section [5.1)); overall, vk = (vk, vki, Co, C1, C). The input sampler for F
is given by the product D =1DxU; namely it consists of an input for the underlying gy, gx,, and a
random string 7, which will be a uniformly random first message for a rZAP.

The function fi, given an input (g, ), computes ap = gk,(q) and a1 = g, (¢), and then treating
r as the first message of an rZAP, and using the rZAP randomness s, computes an rZAP proof for the
statement:

Co = Com(ko) }} { { C1 = Com(kl) }}
C=Com(0)}V C=Com(1)}V ;
{1c=comop v { @~ Comto) M A {ic = comuy v { &~ Come
This statement has two witnesses: one witness consists of the bit b and randomness for the commitment
C, as well as the key k;_p, and randomness for the commitment C;_;. the second witness consists of
the two keys ko, k; and the randomness corresponding to both commitments Cp, C;. The function fi

correctly computes a, = gk, (q), for both b € {0,1}, and gives the proof using the second witness.
Finally, the unlearnable relation for the new family JF will be:

Rr= {((Vko,vkl, Co, Cq, C),Z) | ze Rg(vko) Vze Rg(vkl)} ;

namely, z is a witness if it is a witness for either one of the underlying verification keys vkg or vkj.

Claim 4.2. The function family F is verifiable and robust according to Definition

Proof sketch. First, we show that a random fi, € F is black-box unlearnable, even given the verification
key vk. Specifically, we show that any learner L that satisfies R #(vk) with noticeable probability ¢ =
€(n) can be transformed into a learner L for the family G. Indeed, given oracle access to a random g,
and its verification key vk’, L will treat its oracle g as gk, and the verification key vk’ as vkp. In addition,
L’ samples a random bit b, and then samples gy, , € G on its own, together with a verification key vk;_y.
L’ then feeds the learner L with a verification key vk consisting of commitments C = Com(b), C1_p =
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Com(ki_p) and Cp = Com(O'kb|), and the verification keys vk, vk; _;. Now, L’ emulates L, answering
any query (g, r) using its own sampled function for answer a1_p, and the oracle for answer a. The
proof is then given using what we referred above a “the first witness”; namely, for one part of the “and”
statement b and the randomness for C = Com(b) is used, and for the second part the function gy, , and
the randomness for C;_; = Com(kj_p) is used.

We now claim that with probability at least €/2, the emulated L (and thus also L’) outputs z;, €
Rg(vkp) for the oracle gi,. Indeed, using the fact that the commitment Com is hiding, and that the
rZAP is (resettably) witness-indistinguishable, we can use a standard hybrid argument to move to an
experiment in which L has the exact same view as in a true interaction with fi, where it outputs z that
satisfies the unlearnable relation corresponding to one of the two functions. Then, using again the hiding
of the commitment, we can move to an experiment where C is a commitment to a bit b’ that is chosen
independently of b, and L still succeeds; thus, it will output the right bit at least in % of its successes.

We now show that F is non-black-box learnable according to Definition 4.1} Specifically, we define
the image relation Verr (vk, (g,7), (ag, a1, 7)) to be a relation that simply verifies the rZAP proof 7
with respect to a first random message 7, and the statement given by (vk, ¢, ag, a1). (Clearly, Ver r has
the required completeness: Verz(vk, (q,7), fk(g,7)) = 1 for any triple). Next, for e = n=OW let C
be any circuit that (13, €)-approximates fi in the weak sense given by Definition The extractor Ex
will operate as follows: it will first transform C' into two circuits Cy and C such that one of them will
(D, e — n‘w(l))—approximate the underlying function gy, or gy, . The circuit Cj, given a sample ¢ from
D(1™), samples randomness r for an rZAP and feeds (q,r) to C, when it gets a result (ag, a1, ), it
verifies the proof , if it does not verify, Cj outputs L, otherwise it outputs ap. Let b be the plaintext
bit in the commitment C given in the verification key vk. We claim that with overwhelming probability
over the choice of randomness r for the rZAP, Cy, (D, € — n_“’(l))—approximates gk, - Indeed, by taking
the randomness for the rZAP to be of sufficiently large length poly(n), it can be guaranteed that with
overwhelming probability all false statements (of some fixed bounded length ¢(n) < poly(n)) are
rejected (see [DNO7]]). Therefore, Cj only makes detectable errors (i.e., outputs ). Also, we are
guaranteed that C' satisfies Verr (and, in particular, satisfies the rZAP statement) with probability at
least €, and thus (23, €— n_w(l))—approximation follows as required. Hence, it suffices that the extractor
E~ chooses randomness for both Cjy, C'; and feeds each one of them to the extractor Eg of the family G,
and it will manage to produce z € Rg(kp). O

This concludes the proof of Theorem [.] O

5 From Verifiable Robust Unobfuscatable Functions to Resettable Proto-
cols

In this section, we apply verifiable robust unobfuscatable functions in order to construct new resettable
protocols.

5.1 Definitions

We briefly recall the definitions of resettable ZK [CGGMOO0], resettable soundness [BGGLOIl, and
several other basic definitions and tools used in this section. Most definitions are taken almost verba-
tim from [[CGGMO0, BGGLO1, DGS09]. In Subsection m we define instance-dependent resettable
witness-indistinguishability.

Resettable ZK. we start by recalling resettable ZK.

Definition 5.1 (Resettable zero-knowledge [CGGMOO|). An interactive proof system (P, V) for a lan-
guage L is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V*
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there exists a probabilistic polynomial time simulator S so that the distribution ensembles D1 and Do
described below are computationally indistinguishable: Let each distribution be indexed by a sequence
of distinct common inputs T = x1, ..., Tpoly(n) € LN {0,1}™ and a corresponding sequence of prover’s
auxiliary-inputs § = yi, - . ., Ypoly(n)-

Distribution D is defined by the following random process which depends on P and V*

e Randomly select and fix t = poly(n) random-tapes wi, . .. ,w; for P, resulting in deterministic
strategies P(11) = Py, yiw, defined by Py, o, o, () = P(x4,yi, wj, a) for i, j € {1,...,t}. Each
P9) is called an incarnation of P.

e Machine V* is allowed to run polynomially-many sessions with the pld) g, Throughout these
sessions, \V* is required to complete its current interaction with the current copy of P(d) before
starting a new interaction with any P\"3"), regardless if (i,7) = (¢, j") or not. Thus, the activity
of V* proceeds in rounds. In each round it selects one of the P(%3)’s and conducts a complete
interaction with it.

e Once V* decides it is done interacting with the P%3)°s it (i.e, V*) produces an output based on
its view of these interactions. This output is denoted by (P(i),V*)(Z) and is the output of the
distribution.

Distribution Da: The output of S(Z).

Resettably-sound ZK. We briefly recall the definitions of resettable soundness presented in [BGGLO1]].
In the setting of resettable soundness, the prover P* has the power to reset the verifier V. Specifically,
the random tape of V is chosen at random and fixed once and for all and, from that point on, the prover
can interact multiple times with the residual deterministic verifier V,(z) induced by r and the common
input z. Each such interaction is called a session.

Note that the adversary may repeat in a current session the same messages sent in a prior session,
resulting in an identical prefix of an interaction (since the verifier’s randomness is fixed). Furthermore,
by deviating in the next message, the adversary may obtain two different continuations of the same prefix
of an interaction.

A generalization of the above model, also considered in [BGGLO1], is to allow the prover to interact
with multiple “incarnations” of the verifier. Here, ¢ = poly(n) random tapes r1, . .., r; are sampled, and
the prover can adaptively choose at any point an input = and index ¢ € [¢] and interact with V,, ().

Definition 5.2 (Resettably-sound argument[BGGLOIl]). A resetting attack of a malicious prover P* on
a resettable verifier V is defined by the following random process, indexed by a security parameter n:

1. Uniformly select pick t = poly(n) random-tapes, denoted r1, . .., vy for V, resulting in determin-
istic strategies \y,, ..., Vy,. Fora given x € {0,1}", V,,(z) is called an incarnation.

2. A prover P* of size poly(n) can initiate poly(n) interactions with different incarnations. In each
such interaction, P* chooses x € {0,1}" and i € [t], and conducts a complete session with the
incarnation V., (x).

An argument system (P = V) is a resettably-sound argument for L, for any resetting poly-size P*,
the probability that in some session during a resetting attack, P* convinces some incarnation V,(x) of
accepting while x ¢ L is negligible in n.

For simplicity, we concentrate on the simple case of one incarnation V,(z); however, all of our
results directly extend to the model of multiple incarnations.

Resettably-sound witness-indistinguishable arguments of knowledge. An rsWIAOK, is WI in the
usual since, and is also an argument of knowledge against resetting provers; namely we can efficiently
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extract a witness from any resetting prover that convinces the verifier of accepting with noticeable prob-
ability. Such proof systems can be constructed from classical public-coin proof systems such as (the
n-fold version of) Blum’s Hamiltonicity WI protocol [Blu86]] by applying to them the [BGGLO1] trans-
formation (the resulting constructions are based solely on one-functions).

A useful property of these classical protocols is that the knowledge extraction uses the prover as a
black-box (except for being given its size).

Resettable ZAPs. ZAPs are two-message public-coin witness-indistinguishable proofs introduced by
Dwork and Naor [DNO7]. They further have the special property that the first message (sent by the
prover) can be reused for multiple proofs. As noted in [BGGLOI1]], any ZAP already has the property of
resettable soundness. Furthermore, resettable witness-indistinguishability property can be obtained by
applying the transformation in [CGGMOO0]. We refer to the resulting system as an rZAP system having
the property of resettable soundness as well as resettable-witness indistinguishability.

Commitments. In this work, we shall use two types of perfectly (or statistically) binding commitments.
One type is non-interactive commitments, which can be constructed based on any one-way permutation
(let alone a trapdoor permutation) [Blu81l]. The second are interactive (two-message) commitments that
can be constructed from one-way functions [Nao91].

5.1.1 Instance-dependent resettable witness-indistinguishable arguments.

An instance-dependent resettable-WI argument (rW1Y), for an NP language £, is defined with respect to
a candidate instance y for another (possibly different) NP language £’. In an instance-dependent rW1¥
the soundness and rW1 properties are decoupled according to y: if y € L’ the system is a sound and if
y ¢ L' the system is rWI.

Definition 5.3 ‘W1IY). An argument system (P < V) for L is rWI with respect to L' if satisfies:

1. Instance-dependent soundness: for any poly-size prover P*, and all large enough = € {0,1}™\ L
andy € L':

Pr[(P* = V)(z,y) = 1] < negl(n) .

2. Instance-dependent rWI: for any poly-size resetting verifier V*, all large enough x € L,
wi w? e Re(x), andy ¢ L':

Pr <P(w§1)) SV (z,y) = 1} — Pr {(P(wa(?)) SV (z,y) = 1} < negl(n) .

Constructing instance-dependent rWIs from one-way functions. Instance-dependent rWI can be
constructed based on the [CGGMOO] transformation, and instance-dependent commitment schemes
(also known as equivocable commitments), which in turn can be constructed from one-way functions
[ES89, [Dam89].

We briefly recall what are the properties of such commitments (a more formal definition can be
found in [ES89]). An instance-dependent commitment scheme is also parameterized by an instance y
for an NP language £’ and has two properties:

1. Instance-dependent equivocation There is an efficient equivocation algorithm Eq that, given
(y,w) € R and some length ¢, can produce an equivocal commitment C, which it can open to
any € {0, 1}* (the equivocation algorithm uses w). Equivocal commitments and their openings
are computationally indistinguishable from honestly generated commitments and their openings.

2. Instance-dependent binding For y ¢ £, the commitment is statistically binding.
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Given such commitments, it is possible to transform any public-coin WI system (e.g. Blum) to an
instance-dependent rWI, using the [CGGMOO] transformation. Specifically, given an instance y as a
candidate for £, the verifier first commits to its random message using the y-dependent commitment.
Then, the parties run the WI protocol, where the verifier opens the commitment as its message. The
randomness used by the prover is derived by applying a pseudo random function to the verifier’s com-
mitment. If y € L', it follows by the equivocation guarantee, and the soundness for the underlying WI,
that the protocol is sound. If ¢ £, the commitment is binding, and rW1I follows as in [CGGMO00].

5.2 The Base Protocol

In this section, we present an O(m)-round resettably-sound ZK protocol where m is a parameter that
will be chosen according to the desired notion of ZK (stand-alone or concurrent).

In what follows, let F be a verifiable robust unobfuscatable function family, with respect to the
relation R r and input distribution D. Let Genr, Ver r be the key generation algorithm and the image
verification relation of F. The protocol is detailed in Figure

Protocol 1]

Common Input: =z € £N{0,1}".

Auxiliary Input to P: w € R.(z).
1. V samples keys (k, vk) <— Genz (1™) for F and sends vk to P.
2. Repeat the following function evaluation slot m times:

(a) P samples ¢ +— D(1™) and sends g to V.
(b) V evaluates the function a = fi(¢q) and sends a to P.
(c) P verifies that indeed Verz(vk, ¢,a) = 1.

3. P proves the following statement to V using an rsWIAOK:
“r € Lor{3z: (vk,z) € Rr}".

Figure 1: A resettably-sound (concurrent) ZK protocol

5.3 The Resettable Security of the Protocol

In this section, we show analyze the resettable security of Protocol [T} according to the setting of the
parameter m.

5.3.1 Resettable Soundness
We show that Protocol |1]is resettably-sound, for any setting of m (constant or poly(n)).

Lemma 5.1. For any m, Protocol|l|is a resettably-sound ZK argument of knowledge.

Proof sketch. Given a prover P* that, for a set X of inputs, convinces V to accept each x € X' N
{0, 1}™ with probability €(n). We can easily construct PPT extractor E that (for all but finitely many
x € X) extracts a witness w € Rp(z). First we consider a new prover P} against the rsWIAOK
protocol concluding the proof. The new prover P] is given oracle access to a random fix € F, as
well as a corresponding public key vk, and tries to convince the rsWIAOK verifier of the WI statement
corresponding to « and vk. This prover perfectly emulates P*, forwarding to the oracle fi any query that
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P* makes in the function evaluation slot, and forwarding any message in the proof stage to the external
resettable verifier. Since the view of the emulated P* is the same as in a real execution it convinces the
rsWIAOK verifier with the same probability e. We can now apply the black-box extractor E,,; for the
rsWIAOK to extract a witness from P7. To do so, E,; can sample fi and vk on its own, and use them to
answer any oracle call that P] makes. By the POK guarantee, we know that E,,; outputs a witness for the
WI statement corresponding to x and vk (in expected polynomial time). It is left to see that, except with
negligible probability, this witness will be w € R (z), rather than z € R »(vk); otherwise, we can use
E,i and P} to break the unlearnability of 7. Indeed, since E; is a black-box extractor (see Section|[5.IJ),
it can answer all of P7’s calls to the function, using an external oracle to f. O

5.3.2 Stand-Alone (Non-Resettable) ZK

In this section, we show that Protocol |1 for m = O(1) is (stand-alone) ZK (in the next section, we’ll
show that for m = n®*() it is concurrent ZK).
Let F be a verifiable robust unobfuscatable function family, as used Protocol |1, and let d be a
constant such that the running time of the non-black-box extractor of F, given security parameter n, and
d
approximation parameter €, is poly(n) - (‘—f') .

Lemma 5.2. Protocol[llwith m = d is ZK.
We describe the main ideas behind the proof of Lemma(5.2] More details can be found in [BP12].

Proof sketch. Following the simulation technique of Goldreich and Kahan [GK96a], the simulator starts
by running the cheating verifier V* once, simulating its view until the proof step. If the V* does not abort
and evaluates the function correctly in Step[3b] the simulator interacts with V* repeatedly to estimate the
probability ¢; that V* evaluates the function correctly in each slot 7. This estimation can be computed
in expected polynomial time, and it can be shown that for some 7 € [d], it holds that ¢; > et/ 4 where
€ is the probability that V* does not abort in any of the slots. The simulation runs the extractor E of
the unobfuscatable function family on the circuit corresponding to the next messages function of V* in
a slot ¢ as the above, using the approximation parameter ¢;. Correctness of the simulation follows from
the properties of the unobfuscatable function and the WI property of rsWIAOK. Since the extractor runs

in time 012;(") <P OIZ(") and since V* aborts before the proof step with probability 1 — ¢ the expected

running time of the simulation is poly(n). O

Round-efficient resettably-sound ZK. As explained in Section |3.5|the construction described in Sec-
tion [3| either yields extractors with running time poly(n) - |C|?, assuming trapdoor permutations, or

extractors running in time poly(n) - |C|, assuming fully-homomorphic encryption. However, the size
. poly(n) (the poly(n)
€ €

V]

€

of the circuit |C/| in our protocol will be |V*|

overhead is incurred by Lemma [2.1)).
2 .
) and poly(n) - (y) (respectively).
Plugging this into Protocol |1, we would get by Lemma an eight-message protocol in the first
case and a six-message one in the second case, if we use say a three-message rsWIAOK (e.g. based on
[Blu86l)). However, we can, in fact, save a round and run the first two messages of the rsWIAOK in

parallel to the last slot of the protocol (Step [3) similarly to the protocol of [FS89].

Thus the actual running times are poly(n) - (

Corollary 5.1 (of Lemma [5.2). Assuming trapdoor permutations there exist a six-message resettably-
sound ZK protocol.

Corollary 5.2 (of Lemmal[5.2). Assuming rerandomizable fully homomorphic encryption and trapdoor
permutations, there exist a four-message resettably-sound ZK protocol.
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5.3.3 Concurrent and Resettable ZK

In this section, we show that for m = n®*()) Protocol [1/is concurrent ZK. A simultaneously-resettable
ZK protocol can then be obtained from Protocol [T] and any simultaneously-resettable WI protocol by
applying a general transformation of [DGS09].

Lemma 5.3. For every constant 6 > 0, Protocol|l|with m = nd

Proof of Lemma

Overview of the simulation. The simulation uses the techniques of [RK99], and more specifically,
the slightly augmented version of them applied in [DGS09, [CLP10]. We start by describing the main
ideas behind this technique as they where used in previous works. The execution of the protocol in
every session consists of running many sequential slots giving the simulator many chances to “solve”
the session. The simulation runs a main thread, and in the beginning of every slot, the simulation also
starts “look-ahead” threads that are only meant to simulate the interaction until the end of the slot. If the
simulation in the look-ahead thread is successful, the simulator can then continue the simulation in the
main thread and solve the session.

The main difficulty is that, in the concurrent setting, even the simulation of one slot may be non
trivial. The idea is to have look ahead threads recursively use the same simulation strategy. If some slot
contains too many other concurrent slots, the simulation of the corresponding look-ahead thread may
“give up” and not reach the end of the slot. However, it can be shown that, in every session, some slots
must be successfully simulated by the look-ahead threads and therefore in the main thread, all sessions
will be solved.

is concurrent zero-knowledge.

Our setting. In our simulation, we think of every slot as computing V*’s function fi. Instead of actually
running a look-ahead thread to simulate the execution of a slot, we construct the circuit implementing
such look-ahead thread and run the extractor of the unobfuscatable function family on this circuit. While
we do not start any look ahead threads, the nature of our simulation is still recursive since the circuits
we construct and extract from, construct smaller simulation circuits themselves and extract from them.

We now describe the basic sub-routines used in our simulation procedure. We first describe them at
high-level, and then move on to describe them in more detail.

Let V* be a concurrent verifier that opens at most n¢ sessions, and assume WLOG that V* is determin-
istic. We refer to every iteration of Step [3| where V* evaluates the function fi as a slot. In a single
session, there are n9 slots, and thus in the entire execution of V* with the honest prover, there are at most
n¢ = nto slots (less if V* aborts or deviates from the protocol). The simulator S, using the code of

V*, uses the following functions to create the simulated transcript:

The function MAIN simulates a given number of slots. MAIN takes the parameters (7', m) where T is
the state of the concurrent simulation at the time the function is called, and m is the number of additional
slots to simulate.

The function EMULATE transforms the code of V* into a circuit that computes the function fi.
EMULATE is given a state 1" of a partial simulation of V*, right before the beginning of a slot. EMULATE
generates a circuit C' that, given input g, tries to evaluate the function fy(g) by simulating the slot with
the input ¢ as the first message. C' simulates V* according to same logic as in the function MAIN, until
the slot terminates. EMULATE takes the parameters (7', m), and uses them within C' in the same way
that they are used in the MAIN function.

The function EXTRACT tries to extract the unlearnable secret z corresponding to the function f,
in some session, by executing the extractor E of the unobfuscatable function family on the circuit C
returned by EMULATE. EXTRACT takes parameters (7', m) and passes them to EMULATE.

We note following recursive relations between the above functions:
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e When m > 1 the function MAIN will execute the function EXTRACT on every slot it starts,
passing it a smaller m.

e The function EXTRACT uses the circuit C' generated the function EMULATE.

e The circuit C' generated by the function EMULATE simulates messages according to the strategy
of the function MAIN. In particular, C' executes the function EXTRACT with a smaller value of
m.

The initial call. The simulator S will execute the function MAIN with m = n¢ and the empty simula-
tion state.

Next, we describe the above functions in more detail.

The function MAIN. The function is given the state 7' of the simulation so far, and extends it as
described above, updating the value of T as the simulation proceeds. Specifically, the simulation up to
Step ]3| (sending the rsWIAOK) in all sessions follows the strategy of the honest prover P (note that the
witness w is not required for that). The state of the simulation is just the state maintained by V* along
the different sessions.

Whenever a slot starts, MAIN executes the function EXTRACT with parameters (7", m') where 17"
is the simulation state just before the beginning of the slot, and m’ = m/A where A = n% for some
0 < &' < 0 a parameter of the simulation. If EXTRACT manages to output an unlearnable secret z such
that R(vk, z) = 1 for the vk sent in the session, then z is saved in 7".

To simulate the rsWIAOK given in some session (Step [3), MAIN uses the unlearnable secret of the
session saved in 7. If no such secret is previously extracted MAIN aborts. In this case, we say that the
simulation “got stuck”, and main will return L. When V* terminates or starts the m -+ 1 slot, MAIN
terminates and outputs the current value of 7.

The function EMULATE. On parameters (7', m), the function creates a circuit C' and outputs it. C'
simulates V* by following almost the same logic as in the function MAIN with the same parameters
(T, m). The only difference between the simulation of C' and the function MAIN is that C' gets an
external input ¢ and sends it as the prover message in the first slot that V* starts (when executed from
T). If during the simulation, the first slot ends, C' obtains V*’s response a and outputs it; otherwise,
it outputs L. As in the function MAIN, if V* aborts or starts m additional slots, before the first slot
terminates, C' outputs L.

The function EXTRACT. On parameters (7', m), the function calls the function EMULATE with the
same parameters and obtains a circuit C'. EXTRACT then executes the extractor E of the unobfuscatable
functions family on C' with threshold € = %6 (see Definition , and outputs the same as E.

Correctness of the simulation. Let Real(xz, w) be the view of V* in a real interaction (P(w) < V*)(z),
and let S(x) be the view generated by our simulation procedure. Let Bad be the event, over the coins
of S, that the simulation gets stuck; namely, it reaches a proof in some session in which the unlearnable
secret was not yet extracted. Since the only difference between the experiments Real and S is the witness
used to simulate the proof, it follows from the WI property of rsWIAOK that

{Real(‘T:? w)}(x,w)G'Rg ~ec {S($) ’_‘Bad}:pEE
It is thus enough to show that

Pr [Bad| = negl(n) ,
r [Bad] = negl(n)

where n = |z|. For this purpose, we need to show that, in every session, one of the extraction attempts
succeeds. The difficulty is that the circuit we are extracting from is performing simulation recursively,
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and this simulation may also get stuck and result in one of circuits (created by EMULATE along the main
thread) not computing the function correctly. To bound the probability of such an event, we consider
the following mental experiment: during simulation, before executing the extractor on some circuit, we
execute this circuit several time (using independent randomness) to see if executing this circuit is likely
to get stuck. The simulation in the circuit will recursively follow the same augmented behavior. If in
any of the executions the circuit gets stuck, we do not even try to extract, but just admit failure. We
show that the probability of getting stuck, in this modified experiment, is still negligible. Intuitively, this
guarantees that no attempt to extract, in the real simulation, will ever fail due to a recursive simulation
getting stuck (except with negligible probability). We next define this experiment in more detail.

Let S’ be the experiment that is defined like S except that all the calls to the function EXTRACT
are replaced by calls to a new function FORK. The function FORK starts off just like the function
EXTRACT; that is, on parameters (7', m), FORK calls the function EMULATE with the same param-
eters, obtains a circuit C, and executes the extractor E of the unobfuscatable functions family on C'.
FORK then repeats the following n independent times: sample g <— D(1™) and run C(gq). We shall
refer to the computation transcript produced by C' in the i-th execution (out of n executions) as the i-th
simulation performed by FORK.

After every such simulation performed by FORK, the simulation is rewound back to the state 7.
If any of the simulations by FORK gets stuck, we say that FORK gets stuck as well, and this failure
propagates up. More precisely:

o If the function MAIN makes a call to FORK that gets stuck, the entire simulation gets stuck.

o If FORK makes a recursive call to FORK that gets stuck, the outer execution of FORK also gets
stuck.

e If a circuit C constructed by EMULATE makes a call to FORK that gets stuck, C outputs | .

Finally, FORK outputs the same as E on C (similarly to the function EXTRACT).
Clearly

Pr [Bad] > Pr [Bad] ,
S§'(x) S(z)

and therefore it is enough to show that

SI,D(E)[Bad] =negl(n) .

Assume towards contradiction that there exist a polynomial p such that, for infinitely many values
of . € £LN{0,1}", Prg/(y)[Bad] > p(n), and let us fix any such z. Whenever Bad occurs in &,
the simulation performed by MAIN or by some call to FORK reaches the proof in some session while
the unlearnable secret was not previously extracted. We look at the execution “thread” that contains the
entire simulated interaction from the beginning of the experiment up until the point where the simulation
gets stuck. (Note that this thread might spread across several nested calls to FORK.) We can identify
every thread of execution by the number of previous calls to FORK and the index of the simulation in
the current call to FORK for every level of the recursion.

Let Badi’s be the event where the execution gets stuck in thread ¢ and session s. Since the total
number of threads and sessions is polynomial, there exist a thread ¢ and a session s such that the event
Bad; = Badi’s occurs with some polynomial probability p;(n).

To argue that some of the slots of session s in thread ¢ are “light”, that is, they do not contain too
many slots of other sessions, we will focus on a single level of the recursion that contains many of the
slots of the session. Let Bad) be the event that Bad; occurs and the call to FORK, in recursion level
[ and thread t, contains at least 2A full slots of session s. Since the simulation in the thread ¢ must
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contains all n? slots of session s, in order to get stuck in s, and since the maximal number of nested
calls to FORK is bounded by d = g—: = O(1), it follows that there exist a level [ such that the event
Bady = Badl2 occurs with some polynomial probability pa(n). Let m; be the parameter of FORK in
recursion level [.

Since the simulation of FORK in thread ¢ in level [ of the recursion contains a bounded amount
of slots from all sessions, but many slots of session s, there must be many slots of session s that are
concurrent to a relatively small number of other slots. Intuitively, this means that the extraction from
these light slots is more likely to succeed. Let S; be the random variable representing the simulation of
the i-th slot of session s that starts on recursion level [, in thread ¢ (if no such slot exist .S; is empty).
Let GG; be the event that S; is not empty, contains no aborts, and the number of other slots that start
concurrently to S; is at most “i'. Recall that before the simulation of a slot on recursion level /, S’
makes a recursive call to FORK with parameter .. Since the total number of sessions that start in the
function FORK in level [ is at most m;, we have that whenever Bads occurs, [{i € [2A]|G;}| > A.

Since with noticeable probability level [ of thread ¢ has many light slots, we expect that in at least
one of these slots, if we rewind the simulation to the beginning of the slot, and simulate it again with
independent randomness it will remain light with some constant probability. We will show that the
extraction from such slot is likely to succeed. Let H; be the event that Pr[G;|S1,...,S;—1] < 1/8.
Let Badg be that event Bady A —H;. The following lemma, together with the fact that Prs/(,) [Bads] =
po(n), implies that there exist i* € [2A] such that event Bads = Bad? occurs with some polynomial
probability ps(n).

Lemma 5.4. Pr[{(|{i € [2A]|G:}| = A} A {Hy A -+ A Hap}] < negl(n)

Proof. First we show that for every set {i;}, eia] S [2A] and forevery 0 < d < A

A A A—d A—d
Pr N G, |~ AN H, NG | A | N\NH, || <8¢
j=1+A—d J=1+A—-d J=1 J=1

For d = 0 the claim clearly holds. Assuming the claim holds for d — 1 we have:

A A A—d A—d
Pr /\ Gij A /\ Hij /\ Gij A /\ Hl'j
j=14+4A—d j=14A—d Jj=1 Jj=1
[ A A A—d 1+A—d
<Pr A G|~ N H, NG, |~ N\ H,
L \J=1+A-d j=2+A—d Jj=1 j=1
i A—d 1+A—d
<Pr Giu—A—d /\sz N /\ sz
L J=1 7j=1
A A 1+A—d 1+A—d
Pr N G, |~ AN H A G, |~ N\ H,
J=24+A—d J=24+A—d 7j=1 j=1
A—d 1+A—d
<Pr|Giaa | | NGy | AL N\ Hi || 87
j=1 7j=1
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A—d 1+A—d
where the last inequality is due to the fact that the event ( N\ Gi j> A ( N H; j> is contained in the
J=1 Jj=1

event H; By setting d = A we get that

1+A—d*
A 2A
Pr /\Gz] A /\H] <Pr /\GZ] A /\sz < g4 .
j=1 j=1 =

Finally, there are (2AA) < 228 sets {i;} jela] € [2A] of size A and therefore:

4 A
Pri{l{i € RAJIGHH > A} A {H A+ A s} < (8) < negl(n) .

O

Let T be the state of the simulation just before the beginning of the ¢*-th slot. Let good be the event
that the ¢*-th slot exists, and the probability over the rest of the experiment, starting from 7', that Bads
occurs is at least p3(n)/2. Since Prg/(,)[Bads] = p3(n), we have that Prg(,)[good] > p3(n)/2. Now,
conditioned on a good prefix T" of the execution, Prg, [G; | T] > 1/8 = 2/16 (this will be useful in a
few lines).

Before the simulation of the 7*-th slot the function FORK is called, and tries to extract the unlearn-
able secret of the session s. Let S/. be a random variable representing a simulation attempt made by
FORK (out of the n identically distributed attempts). S’. is distributed like S;= except that:

e Sj. never contains more than "3 other slots, while S; may contain up to m; concurrent slots.

However, this difference does not hold conditioned on the event G;«.

e The simulation of S/. makes recursive calls to FORK with parameter %, while the simulation of
S;« calls FORK with parameter %; this means that the simulation of S;» is more likely to extract
a witness, and less likely to get stuck. In particular, note that the above difference no longer holds
conditioned on the event that the simulation of S/. does not get stuck. We denote this event by
NS.

Since G~ implies that S;= contains the end of the i*-th slot, and that the messages (g, a) of the i*-th slot
satisfy Verr(vk,q,a) = 1, we have that NS A G+ implies that the same holds for S}.. Note that NS
must occur with probability at least 15/16; otherwise, one of the n simulation attempts made by FORK,
starting from 7', will get stuck with overwhelming probability and therefore Bads will only occur with
negligible probability; however, this will contradict our choice of 7' (recall that Bads occurs only when
the simulation gets stuck in thread ¢ and not in the recursive call to FORK after state 7"). We thus have
that Pr[NS A G« | T] > 1/16 and therefore, with probability at least 1/16, S’. contains the end of
the i*-th slot, and an execution of C'(q), performed by FORK starting from state 7°, outputs a such that
Verr(vk,q,a) = 1 with probability at least 1/16. By the non-black-box learnability property of the
unobfuscatable function, when FORK invokes E on C' with € = %, it outputs z such that (vk,z) € Rx
with overwhelming probability. However, by the choice of T, the probability that Bads occurs and
session s is not solved on thread ¢ must be noticeable.

Simulation running time. Let T\ (1), Temurare (M), Texrracr (M) be the running times of the functions
MAIN, EMULATE, EXTRACT, given parameter m. One can verify that following relations hold:

TMAIN(m) <p1 (n) : TEXTRACT(%) + D2 (n)
TEXTRACT(m) <p3 (TEMULATE(m))

TemuLate (m) < P4 (TMAIN (m> )
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And therefore
m
Thiam (m) <p1 (n) - D5 (TMAIN(K)) + p2 (n)

Where p; to ps are polynomials that depend only on V*. Specifically, note that ps is such a polynomial
since EXTRACT only runs E with a constant value of e. For m < 1 the MAIN stops whenever a new
slot starts and does not make any calls to EXTRACT. Therefore, Tyan(m) < po(n) where py is a
polynomial that depend only on V*. We get that:

TMAIN(m) < pd(n)

where p is a polynomial that depends only on V* and d = [logn m] + 1. Since A = n% and the main
simulation executes MAIN with parameter m = n¢ we have d = O(1) and the simulation running time
is polynomial.

This concludes the proof of Lemma [5.3|showing that Protocol [I]is concurrent zero-knowledge.
O

5.4 Resettable Protocols from Minimal Assumptions

In this section, we show how to construct resettably-sound ZK, and resettably-sound concurrent ZK
protocols based only on one-way functions, by directly using robust unobfuscatable function, instead
of (ZAP-based) verifiable robust ones. As a first corollary, we get a O(log n)-round resettable ZK ar-
gument of knowledge based on one-way function, by plugging our protocol into the transformation
of [BGGLO1]. As a second corollary, when combining our protocol with the recently constructed
simultaneously-resettable WI from one-way functions [OV12, |(CP13]], and a general transformation of
[DGSO9]], we obtain a simultaneously-resettable ZK protocol from one-way functions.

We now proceed to describe the augmented protocol. Let G be a family of robust unobfuscatable
functions with respect to a hardcore family {#C,,} (as defined in Definition and constructed in
Sections [2] and [3] based on one-way functions). Let ¢ be a one-way function. We make use of a two-
message statistically binding commitment Com (e.g., [Nao91[]). Given a first receiver message r, we
denote by Com,. the function that computes the sender’s commitment message. Additionally, we use
an instance-dependent resettable witness-indistinguishable argument rWI and resettably-sound witness-
indistinguishable arguments of knowledge rsWIAOK (see Definition [5.1)). The protocol closely follows
the idea of making robust unobfuscatable functions (with a hardcore secret) verifiable, as presented in
Section 4.1] Non-interactive commitments are replaced with two-message commitments. ZAPs are
replaced with instance-dependent rWIs (as defined in Section [5.1.1)), where the dependance is on the
proven statement z. (The latter will be used by the verifier to prove that it acts properly, so they need to
be sound only when x € £, and rWI only when = ¢ L£). The protocol is described in Figure 2| where
m is a parameter that controls the number of slots. similarly to Protocol [T we set m = 2 to get constant
round resettably-sound ZK and m = nfM) to get a resettably-sound concurrent ZK.

Theorem 5.1 (resettably-sound (concurrent) ZK from one-way functions). Protocol with m=2isa
constant round resettably-sound ZK protocol, and with m = n*V) it is a resettably-sound concurrent
ZK protocol.

Corollary 5.3 (of Theorem and [BGGLO1l). There exist a O(log n)-round resettable ZK argument
of knowledge based on one-way functions.

Corollary 5.4 (of Theorem [DGSO09]], and [OV 12, ICP13]]). There exist a simultaneously-resettable
ZK argument of knowledge based on one-way functions.
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Protocol 2]

Common Input: z € £N{0,1}".
Auxiliary Input to P: w € R.(z).

1. P samples the first message r for a statistically binding commitment scheme and sends r to P.

2. V samples a bit b < {0, 1}.
Fori € {0,1}, V samples gx, € G and vk; = (h;, y;), where h; < HC,, is randomly chosen hardcore
function, and y; = @(h(k;)).
V computes C = Com,.(b),C; = Com,.(k;) and sends (vko, vki, Co, C1, C) to P.

3. Repeat the following function evaluation slot m times:
(a) P samples ¢ + D(1™) and sends ¢ to V.
(b) V evaluates the functions ag = g, (q), a1 = gk, (¢) and sends ag, a1 to P.
(c) V proves to P using an z-dependent rWI” argument that the following statement is correct:

{{C:Comr(O)}\/{ Co = Comy (ko) }}/\{{C:Comr(l)}\/{ C1 = Comy (ki) }}

ao = gk, (q) a1 = g« (q)

4. P proves the following statement to V using an rsWIAOK:
“v € Lor{3z:yo=p(2) Vy1 = p(2)}".

Figure 2: A resettably-sound (concurrent) ZK protocol from any one-way function

The proof of Theorem [5.1] closely follows the proofs of Lemmas [5.3][5.1 and [5.2] and is omitted.
Corollary [5.3]follows by plugging in our one-way function based resettably-sound ZK protocol into the
transformation of [BGGLO1], and Corollary follows by plugging in our protocol, with the recently
constructed [OV 12, |CP13]] simultaneously-resettable WI (from one way functions) into the transforma-
tion of [DGSQ9].

5.5 A 3-Message Simultaneous Resettable WI Argument of Knowledge

In this section, we construct a three-message simultaneously-resettable WI proof-of-knowledge protocol
based on robust unobfuscatable functions, where knowledge extraction is performed by a non-black-box
extractor. As in Section 4.1 our protocol will use the idea of turning a single witness statement into a
two independent-witnesses statement as done in [FS90, (COSV12].

Lemma 5.5. Protocoll5|is a resettable WI argument of knowledge.

Since the protocol is a three-message protocol, we can apply the [BGGLOI]| transformation, where V
derives its randomness by applying a PRF to the transcript; as a corollary, we get the following theorem:

Corollary 5.5. Assuming trapdoor permutations exist, there exist a three-message simultaneously-
resettable WI argument of knowledge (with non-black-box knowledge extraction).

We now give a proof sketch of the lemma.

Proof sketch of Lemma We start by showing that the protocol is resettably WI. Let

(X, Wo, W1) = {(x,wp,w1) : (z,wp), (x,w1) € R}
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Protocol

Common Input: = € £N{0,1}".
Auxiliary Input to P: w € R.(z).
1. P performs the following:

o samples two keys ko, ky < {0,1}" for fy,, fx, € F,and abitb «+ {0,1}.
e samples two hardcore functions hg, h; < HC,, and computes 7o = hg(ko), 1 = h1(k1).
e sends V: Co = Com(kg),C; = Com(ky),C = Com(b), and hg,ep = w ® 19, h1,€1 = w D 71.

2. V performs the following:

e samples randomness 7 < {0, 1}*°("™) for an rZAP, and an input ¢ < D(1").

e sends (¢q,7) to P.

3. P performs the following:

e computes ag = fi, (), a1 = fi, (q)-
e computes an rZAP proof 7 for the statement:

= Com(kg) Cy = Com(ky)
{C = Com(0)} v ‘Z;)G—%T((qg AS{C=Com(pv g o Zge )
e0:w®h0(k ) €1 :w@hl(kl)

e sends V: ag,ay, 7

4. V verifies the rZAP proof 7, and decided whether to accept accordingly.

Figure 3: An rWI three-message Argument of Knowledge (implying stWIAOK)

be any infinite sequence of instances in £ and corresponding witness pairs. We next consider a sequence
of hybrids starting with an hybrid describing an interaction with a prover that uses wg € W, and
ending with an hybrid describing an interaction with a prover that uses w; € Wi, where both wy, w1,
are witness for some x € X. We shall prove that no efficient verifier can distinguish between any two
hybrids in the sequence. The list of hybrids is given in Table[I] The can be though of as two sequences.
One 0.1-6, starts from witness wg, and the other 1.1-6 starts at witness wi. We will show that within
these sequences the hybrids are indistinguishable, and then will show that 0.6 is indistinguishable from
1.6.

Hybrid 0.1: describes a true interaction of a resetting verifier V* with an honest prover P that uses
wp as a witness for the statement € L. In particular, the rZAP uses the witness ((ko, wo), (k1,wo))
(the witness also includes the randomness for the commitments Cy and Cy, but for notational brevity,
shall omit it.) In Table m the witness used in part O of the rZAP is referred to as zapw,, and the one
corresponding to 1 in zapwy.

Hybrid 0.2: This hybrid differs from the previous only the witness used in any rZAP. Specifically, for
the bit b given by C, the witness for the rZAP is set to be (b, (ki_p, wo)), instead of ((ky, wo), (k1—p, wo)).
(Again the witness should include the randomness for the commitment C, and C;_;, but is omitted from
our notation.) Since the rZAP is resettably W1, this hybrid is computationally indistinguishable from the
previous one.

Hybrid 0.3: In this hybrid, the commitment Cj, is given to 0/¢!, instead of to k,. This hybrid is compu-
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hyb | zapw, | G T | e Dy | zapwy_y, | Cip T1-b e1_p DT1p
0.1 | (kp,wo) | ko | ho(ks) | wo | (kip,wo) | kip | hip(kip) wo
0.2 b kp | ho(ks) | wo (ki—p,wo) | kip | hi_p(kip) wo
0.3 b ol | hy(ky) | wo (ki—p,wo) | kip | hi_p(kip) wo
0.4 b 0|kb| u wo (klfb, wo) klfb hlfb(klfb) wo
0.5 b 0|kb| u w1 (klfb, wo) klfb hlfb(klfb) wo
0.6 | (kp,wi) | ky | hp(ky) | w (ki—p,wo) | ki—p | hi—p(ki—p) wo
1.6 | (kp,wo) | ky | hp(ky) | wo (ki—p,w1) | ki—p | hi—p(ki—p) w1
11 | (kpywi) | ky | hy(ky) | w1 | (kip,wi) | kip | hi_p(kip) wy

Table 1: The sequence of hybrids; the bit b corresponds the bit commitment C; the blue cells are those
different comparing to the previous hybrid.

tationally indistinguishable from the previous one due to the computational hiding of the commitment
scheme C.

Hybrid 0.4: In this hybrid, instead of sending the verifier the hardcore secret hy(kp), it is given a
random independent string u < {0, 1}‘hb(kb)‘. Computational indistinguishability of this hybrid from
the previous one, follows by the black-box indistinguishability of F (Definition [2.5]). Indeed, note that
any distinguisher here can be turned into a distinguisher against F and its corresponding hardcore family
‘HC, by treating the oracle as k; and simulating all the other elements in the experiment.

Hybrid 0.5: In this hybrid, the padded value ¢ is taken to be wi & 7y, instead of wg + @ry. Since 1y,
is now uniform and independent of all other elements, this hybrid induces the exact same distribution as
the previous hybrid.

Hybrid 0.6: This hybrid now backtracks, returning to the same experiment as in hybrid 0.1 with the
exception that the rZAP witness is now ((kp,w1), (ky—p, wp)) instead of ((kp,wo), (k1_p,wp)). This
indistinguishability follows exactly as when moving from 0.1 to 0.5 (only backwards).

Hybrids 1.1 to 1.6: These hybrids are symmetric to the above hybrids, only that they start from w;
instead of wg. This means that they end in 1.6 which uses an rZAP witness ((kp, wo), (ki—p, w1)),
which is the same as 0.6, only in reverse order.

Hybrids 0.6 and 1.6 are computationally indistinguishable. This follows directly from the compu-
tationally hiding of C = Com(b). Indeed, assume towards contradiction that V distinguishes the two
hybrids. Concretely, denote the probability it outputs 1 on 0.6 by pg, and the probability it outputs 1
on 1.6 by p;, and assume WLOG that py — p; > e, for some noticeable ¢ = ¢(n). We can construct a
predictor that given a commitment C = Com(b) to a random bit b <— {0, 1}, guesses b with probability
%. The predictor, samples a random b’ < {0, 1} as a candidate guess for b, and performs the experi-
ment corresponding to 0.6, only that it locates wg and w; according to ', rather than the unknown b. If
the distinguisher outputs 1, the predictor guesses b = b’ and otherwise it guesses b =1 — b'.

Conditioned on b = ¥/, V is experiencing 0.6, and thus the guess will be correct with probability po;
conditioned on b = 1 — b/, V is experiencing 1.6, and the guess will be right with probability 1 — p;.
So overall the guessing probability is £ +- 1_2p L > % + 5. This completes the proof that the protocol is
resettable WI.

It is left to show that the protocol is an argument of knowledge. Indeed, let P* be any prover that
convinces the honest verifier of accepting with noticeable probability € = €(n), then with probability at
least €/2 over its first message, it holds with probability at least €/2 over the rest of the protocol that P*
convinces V. Let us call such a prefix good. Now for any good prefix, we can consider the perfectly
binding induced commitment to the bit b, and from the soundness of the rZAP, we get a circuit that with
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probability at least € /2 computes correctly the function fi, ,, and gives a valid witness w € Rz, padded
with hy_p(kqy_p). This in particular, means that we can first sample a prefix (hope it is good), and then
invoke the non-black-box learnability guarantee (Definition to learn hq_p(ki—p), and thus also the
witness w. (Since we do not know what is the bit b, we will need to construct two circuits for both
options of b, and try to extract from both, just as was done in the proof of Claim 4.2]) This completes
the proof of Lemma [5.5] O
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