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Abstract. The classic Leftover Hash Lemma (LHL) is one of the most useful tools in cryptography, and is often
used to argue that certain distributions arising from modular subset-sums are close to uniform over some finite do-
main. Though extremely useful and powerful in general, the applicability of the leftover hash lemma to lattice based
cryptography is limited for two reasons. First, typically the distributions we care about in lattice-based cryptography
are discrete Gaussians, not uniform. Second, the elements chosen from these discrete Gaussian distributions lie in
an infinite domain: a lattice rather than a finite field.
In this work we prove a “lattice world” analog of LHL over infinite domains, proving that certain “generalized
subset sum” distributions are statistically close to well behaved discrete Gaussian distributions, even without any
modular reduction. Specifically, given many vectors {xi}mi=1 from some lattice L ⊂ Rn, we analyze the probability
distribution

∑m
i=1 zixi where the integer vector z ∈ Zm is chosen from a discrete Gaussian distribution. We

show that when the xi’s are “random enough” and the Gaussian from which the z’s are chosen is “wide enough”,
then the resulting distribution is statistically close to a near-spherical discrete Gaussian over the lattice L. Beyond
being interesting in its own right, this “lattice-world” analog of LHL has applications for the new construction of
multilinear maps [GGH12], where it is used to sample Discrete Gaussians obliviously. Specifically, given encoding
of the xi’s, it is used to produce an encoding of a near-spherical Gaussian distribution over the lattice. We believe
that our new lemma will have other applications, and sketch some plausible ones in this work.

1 Introduction

The Leftover Hash Lemma (LHL) is a central tool in computer science, stating that universal hash functions are
good randomness extractors. In a characteristic application, the universal hash function may often be instantiated by a
simple inner product function, where it is used to argue that a random linear combination of some elements (that are
chosen at random and then fixed “once and for all”) is statistically close to the uniform distribution over some finite
domain. Though extremely useful and powerful in general, the applicability of the leftover hash lemma to lattice based
cryptography is limited for two reasons. First, typically the distributions we care about in lattice-based cryptography
are discrete Gaussians, not uniform. Second, the elements chosen from these discrete Gaussian distributions lie in an
infinite domain: a lattice rather than a finite field.

The study of discrete Gaussian distributions underlies much of the advances in lattice-based cryptography over
the last decade. A discrete Gaussian distribution is a distribution over some fixed lattice, in which every lattice point
is sampled with probability proportional to its probability mass under a standard (n-dimensional) Gaussian distribu-
tion. Micciancio and Regev have shown in [MR07] that these distributions share many of the nice properties of their
continuous counterparts, and demonstrated their usefulness for lattice-based cryptography. Since then, discrete Gaus-
sian distributions have been used extensively in all aspects of lattice-based cryptography (most notably in the famous
“Learning with Errors” problem and its variants [Reg09]). Despite their utility, we still do not understand discrete
Gaussian distributions as well as we do their continuous counterparts.

A Gaussian Leftover Hash Lemma for Lattices?

The LHL has been applied often in lattice-based cryptography, but sometimes awkwardly. As an example, in the
integer-based fully homomorphic encryption scheme of van Dijk et al. [vDGHV10], ciphertexts live in the lattice Z.
Roughly speaking, the public key of that scheme contains many encryptions of zero, and encryption is done by adding
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the plaintext value to a subset-sum of these encryptions of zero. To prove security of this encryption method, van Dijk
et al. apply the left-over hash lemma in this setting, but with the cost of complicating their encryption procedure by
reducing the subset-sum of ciphertexts modulo a single large ciphertext, so as to bring the scheme back in to the realm
of finite rings where the leftover hash lemma is naturally applied.1 It is natural to ask whether that scheme remains
secure also without this artificial modular reduction, and more generally whether there is a more direct way to apply
the LHL in settings with infinite rings.

As another example, in the recent breakthrough construction of multilinear maps [GGH12], Garg et. al. require a
procedure to randomize “encodings” to break simple algebraic relations that exist between them. One natural way to
achieve this randomization is by adding many random encodings of zero to the public parameters, and adding a random
linear combination of these to re-randomize a given encoding (without changing the encoded value). However, in their
setting, there is no way to “reduce” the encodings so that the LHL can be applied. Can they argue that the new
randomized encoding yields an element from some well behaved distribution?

In this work we prove an analog of the leftover hash lemma over lattices, yielding a positive answers to the
questions above. We use discrete Gaussian distributions as our notion of “well behaved” distributions. Then, for m
vectors {xi}i∈[m] chosen “once and for all” from an n dimensional lattice L ⊂ Rn, and a coefficient vector z chosen
from a discrete Gaussian distribution over the integers, we give sufficient conditions under which the distribution∑m
i=1 zixi is “well behaved.”

Oblivious Gaussian Sampler

Another application of our work is in the construction of an extremely simple discrete Gaussian sampler [GPV08,Pei10].
Such samplers, that sample from a spherical discrete Gaussian distribution over a lattice have been constructed by
[GPV08] (using an algorithm by Klein [Kle00]) as well as Peikert [Pei10]. Here we consider a much simpler discrete
Gaussian sampler (albeit a somewhat imperfect one). Specifically, consider the following sampler. In an offline phase,
for m > n, the sampler samples a set of short vectors x1,x2, . . . ,xm from L – e.g., using GPV or Peikert’s algo-
rithm. Then, in the online phase, the sampler generates z ∈ Zm according to a discrete Gaussian and simply outputs∑m
i=1 zixi. But does this simpler sampler work – i.e., can we say anything about its output distribution? Also, how

small can we make the dimension m of z and how small can we make the entries of z? Ideally m would be not much
larger than the dimension of the lattice and the entries of z have small variance – e.g., Õ(

√
n).

A very useful property of such a sampler is that it it can be used easily within an additively homomorphic scheme.
Thus, it can be made oblivious to an explicit representation of the underlying lattice! Now, if you are given lattice
points encrypted under an additively homomorphic encryption scheme, you can use them to generate an encrypted
well behaved Gaussian on the underlying lattice. Previous samplers [GPV08,Pei10] are too complicated to use within
an additively homomorphic encryption scheme 2.

Our Results

In this work, we obtain a discrete Gaussian version of the LHL over infinite rings. Formally, consider an n dimensional
lattice L and (column) vectors X = [x1|x2| . . . |xm] ∈ L. We choose xi according to a discrete Gaussian distribution
DL,S , where DL,S is defined as follows:

∀ x ∈ L,DL,S,c(x) =
ρS,c(x)

ρS,c(L)

where ρS,c(x) = exp(−π‖x− c‖2/s2) and ρS,c(A) for set A denotes
∑
x∈A ρS,c(x). Let z ← DZm,s′ . We analyze

the conditions under which the vector X · z is statistically close to a “near-spherical” discrete Gaussian. Formally,
consider:

EX,s′
def
= {X · z : z ← DZm,s′}

1 Once in the realms of finite rings, one can alternatively use the generic proof of Rothblum [Rot11], which also uses the LHL.
2 As noted by [Pei10], one can indeed generate an ellipsoidal Gaussian distribution over the lattice given a basis B by just

outputting y ← B · z where z is a discrete Gaussian, but this ellipsoidal Gaussian distribution would typically be very skewed.
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Then, we prove that EX,s′ is close to a discrete Gaussian over L of moderate “width”. Specifically, we show that
for large enough s′, with overwhelming probability over the choice of X:

1. The distribution EX,s′ is statistically close to the ellipsoid Gaussian DL,s′X> , over L.
2. The singular values of the matrix X are of size roughly s

√
m, hence the shape of DL,s′X> is “roughly spherical”.

Moreover, the “width” of DL,s′X> is roughly s′s
√
m = poly(n).

We emphasize that it is straightforward to show that the covariance matrix of EX,s′ is exactly s′2XX>. However,
the technical challenge lies in showing that EX,s′ is close to a discrete Gaussian for a non-square X . Also note that for
a square X , the shape of the covariance matrix XX> will typically be very “skewed” (i.e., the least singular value of
X> is typically much smaller than the largest singular value).

Our Techniques

Our main result can be argued along the following broad outline. Our first theorem (Theorem 2) says that the distribu-
tion of X · z ← EX,s′ is indeed statistically close to a discrete Gaussian over L, as long as s′ exceeds the smoothing
parameter of a certain “orthogonal lattice” related to X (denoted A). Next, Theorem 3 clarifies that A will have a
small smoothing parameter as long as X> is “regularly shaped” in a certain sense. Finally, we argue in Lemma 8 that
when the columns of X are chosen from a discrete Gaussian, xi ← DL,S , then X> is “regularly shaped,” i.e. has
singular values all close to σn(S)

√
m.

The analysis of the smoothing parameter of the “orthogonal lattice” A is particularly challenging and requires
careful analysis of a certain “dual lattice” related to A. Specifically, we proceed by first embedding A into a full rank
lattice Aq and then move to study Mq – the (scaled) dual of Aq . Here we obtain a lower bound on λn+1(Mq), i.e.
the n + 1th minima of Mq . Next, we use a theorem by Banasczcyk to convert the lower bound on λn+1(Mq) to an
upper bound on λm−n(Aq), obtainingm−n linearly independent, bounded vectors inAq . We argue that these vectors
belong to A, thus obtaining an upper bound on λm−n(A). Relating λm−n(A) to ηε(A) using a lemma by Micciancio
and Regev completes the analysis.

To argue that X> is regularly shaped, we begin with the literature of random matrices which establishes that for
a matrix H ∈ Rm×n, where each entry of H is distributed as N (0, s2) and m is sufficiently greater than n, then the
singular values of H are all of size roughly s

√
m. We extend this result to discrete Gaussians – showing that as long

as each vector xi ← DL,S where S is “not too small” and “not too skewed”, then with high probability the singular
values of X> are all of size roughly s

√
m.

Related Work

Properties of linear combinations of discrete Gaussians have been studied before in some cases by Peikert [Pei10] as
well as more recently by Boneh and Freeman [BF11]. Peikert’s “convolution lemma” (Thm 3.1 in [Pei10]) analyzes
certain cases in which a linear combination of discrete Gaussians yields a discrete Gaussian, in the one dimensional
case. More recently, Boneh and Freeman [BF11] observed that, under certain conditions, a linear combination of
discrete Gaussians over a lattice is also a discrete Gaussian. However, the deviation of the Gaussian needed to achieve
this are quite large. Related questions were considered by Lyubashevsky [Lyu12] where he computes the expectation
of the inner product of discrete Gaussians.

Discrete Gaussian samplers have been studied by [GPV08] (who use an algorithm by [Kle00]) and [Pei10]. These
works describe a discrete Gaussian sampling algorithm that takes as input a ‘high quality’ basisB for an n dimensional
latticeL and output a sample fromDL,s,c. In [GPV08], s ≥ ‖B̃‖·ω(

√
log n), and B̃ = maxi ‖b̃i‖ is the Gram Schmidt

orthogonalization of B. In contrast, the algorithm of [Pei10] requires s ≥ σ1(B), i.e. the largest singular value of B,
but is fully parallelizable. Both these samplers take as input an explicit description of a “high quality basis” of the
relevant lattice, and the quality of their output distribution is related to the quality of the input basis.

Peikert’s sampler [Pei10] is elegant and its complexity is difficult to beat: the only online computation is to compute
c − B1bB−11 (c − x2)e, where c is the center of the Gaussian, B1 is the sampler’s basis for its lattice L, and x2 is a
vector that is generated in an offline phase (freshly for each sampling) in a way designed to “cancel” the covariance
of B1 so as to induce a purely spherical Gaussian. However, since our sampler just directly takes an integer linear
combination of lattice vectors, and does not require extra precision for handling the inverse B−11 , it might outperform
Peikert’s in some situations, at least when c = 0.
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2 Preliminaries

We begin by defining some notation that will be used throughout the paper. We say that a function f : R+ → R+

is negligible if for all d > d0 we have f(λ) < 1/λd for sufficiently large λ. We write f(λ) < negl(λ). For two
distributions D1 and D2 over some set Ω we define the statistical distance SD(D1,D2) as

SD(D1,D2)
def
=

1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

We say that two distribution ensembles D1(λ) and D2(λ) are statistically close or statistically indistinguishable if
SD
(
D1(λ),D2(λ)

)
is a negligible function of λ.

2.1 Gaussian Distributions

For any real s > 0 and vector c ∈ Rn, define the (spherical) Gaussian function on Rn centered at c with parameter s
as ρs,c(x) = exp(−π‖x − c‖2/s2) for all x ∈ Rn. The normal distribution with mean µ and deviation σ, denoted
N (µ, σ2), assigns to each real number x ∈ R the probability density f(x) = 1

σ
√
2π
· ρσ√2π,µ(x). The n-dimensional

(spherical) continuous Gaussian distribution with center c and uniform deviation σ2, denotedNn(c, σ2), just chooses
each entry of a dimension-n vector independently from N (ci, σ

2).
The n-dimensional spherical Gaussian function generalizes naturally to ellipsoid Gaussians, where the different

coordinates are jointly Gaussian but are neither identical nor independent. In this case we replace the single variance
parameter s2 ∈ R by the covariance matrix Σ ∈ Rn×n (which must be positive-definite and symmetric). To maintain
consistency of notations between the spherical and ellipsoid cases, below we let S be a matrix such that S>×S = Σ.
Such a matrix S always exists for a symmetric Σ, but it is not unique. (In fact there exist such S’es that are not even
n-by-n matrices, below we often work with such rectangular S’es.)

For a rank-n matrix S ∈ Rm×n and a vector c ∈ Rn, the ellipsoid Gaussian function on Rn centered at c with
parameter S is defined by

ρS,c(x) = exp
(
− π(x− c)>(S>S)−1(x− c)

)
∀x ∈ Rn.

Obviously this function only depends on Σ = S>S and not on the particular choice of S. It is also clear that the
spherical case can be obtained by setting S = sIn, with In the n-by-n identity matrix. Below we use the shorthand
ρs(·) (or ρS(·)) when the center of the distribution is 0.

2.2 Matrices and Singular Values

In this note we often use properties of rectangular (non-square) matrices. Form ≥ n and a rank-nmatrix3 X ′ ∈ Rm×n,
the pseudoinverse of X ′ is the (unique) m-by-n matrix Y ′ such that X ′>Y ′ = Y ′

>
X ′ = In and the columns of Y ′

span the same linear space as those of X ′. It is easy to see that Y ′ can be expressed as Y ′ = X ′(X ′
>
X ′)−1 (note that

X ′
>
X ′ is invertible since X ′ has rank n).

For a rank-n matrix X ′ ∈ Rm×n, denote UX′ = {‖X ′u‖ : u ∈ Rn, ‖u‖ = 1}. The least singular value of X ′

is then defined as σn(X ′) = inf(U ′X) and similarly the largest singular value of X ′ is σ1(X ′) = sup(U ′X). Some
properties of singular values that we use later in the text are stated in Fact 1.

Fact 1 For rank-n matrices X ′, Y ′ ∈ Rm×n with m ≥ n, the following holds:

1. If X ′>X ′ = Y ′
>
Y ′ then X ′, Y ′ have the same singular values.

2. If Y ′ is the (pseudo)inverse of X ′ then the singular values of X ′, Y ′ are reciprocals.
3. If X ′ is a square matrix (i.e., m = n) then X ′, X ′> have the same singular values.
4. If σ1(Y ′) ≤ δσn(X

′) for some constant δ < 1, then σ1(X ′ + Y ′) ∈ [1 − δ, 1 + δ]σ1(X
′) and σn(X ′ + Y ′) ∈

[1− δ, 1 + δ]σn(X
′). ut

3 We use the notation X ′ instead of X to avoid confusion later in the text where we will instantiate X ′ = X>
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It is well known that when m is sufficiently larger than n, then the singular values of a “random matrix” X ′ ∈
Rm×n are all of size roughly

√
m. For example, Lemma 1 below is a special case of [LPRTJ05, Thm 3.1], and

Lemma 2 can be proven along the same lines of (but much simpler than) the proof of [Tao12, Corollary 2.3.5].

Lemma 1. There exists a universal constant C > 1 such that for anym > 2n, if the entries ofX ′ ∈ Rm×n are drawn
independently from N (0, 1) then Pr[σn(X

′) <
√
m/C] < exp(−O(m)). ut

Lemma 2. There exists a universal constant C > 1 such that for anym > 2n, if the entries ofX ′ ∈ Rm×n are drawn
independently from N (0, 1) then Pr[σ1(X

′) > C
√
m] < exp(−O(m)). ut

Corollary 1. There exists a universal constant C > 1 such that for any m > 2n and s > 0, if the entries of
X ′ ∈ Rm×n are drawn independently from N (0, s2) then

Pr
[
s
√
m/C < σn(X

′) ≤ σ1(X
′) < sC

√
m
]
> 1− exp(−O(m)). ut

Remark. The literature on random matrices is mostly focused on analyzing the “hard cases” of more general distribu-
tions and m which is very close to n (e.g., m = (1 + o(1))n or even m = n). For our purposes, however, we only
need the “easy case” where all the distributions are Gaussian and m� n (e.g., m = n2), in which case all the proofs
are much easier (and the universal constant from Corollary 1 get closer to one).

2.3 Lattices and their Dual

A lattice L ⊂ Rn is an additive discrete sub-group of Rn. We denote by span(L) the linear subspace of Rn, spanned
by the points in L. The rank of L ⊂ Rn is the dimension of span(L), and we say that L has full rank if its rank is n.
In this work we often consider lattices of less than full rank.

Every (nontrivial) lattice has bases: a basis for a rank-k latticeL is a set of k linearly independent points b1, . . . , bk ∈
L such that L = {

∑k
i=1 zibi : zi ∈ Z ∀i}. If we arrange the vectors bi as the columns of a matrix B ∈ Rn×k then we

can write L = {Bz : z ∈ Zk}. If B is a basis for L then we say that B spans L.

Definition 1 (Dual of a Lattice). For a lattice L ⊂ Rn, its dual lattice consists of all the points in span(L) that are
orthogonal to L modulo one, namely:

L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}

Clearly, if L is spanned by the columns of some rank-k matrix X ∈ Rn×k then L∗ is spanned by the columns of the
pseudoinverse of X . It follows from the definition that for two lattices L ⊆M we have M∗ ∩ span(L) ⊆ L∗.

Banasczcyk provided strong transference theorems that relate the size of short vectors in L to the size of short
vectors in L∗. Recall that λi(L) denotes the i-th minimum of L (i.e., the smallest s such that L contains i linearly
independent vectors of size at most s).

Theorem 1 (Banasczcyk [Ban93]). For any rank-n lattice L ⊂ Rm, and for all i ∈ [n],

1 ≤ λi(L) · λn−i+1(L
∗) ≤ n.

2.4 Gaussian Distributions over Lattices

The ellipsoid discrete Gaussian distribution over lattice L with parameter S, centered around c, is

∀ x ∈ L,DL,S,c(x) =
ρS,c(x)

ρS,c(L)
,

where ρS,c(A) for set A denotes
∑
x∈A ρS,c(x). In other words, the probability DL,S,c(x) is simply proportional

to ρS,c(x), the denominator being a normalization factor. The same definitions apply to the spherical case, which is
denoted by DL,s,c(·) (with lowercase s). As before, when c = 0 we use the shorthand DL,S (or DL,s). The following
useful fact that follows directly from the definition, relates the ellipsoid Gaussian distributions over different lattices:
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Fact 2 Let L ⊂ Rn be a full-rank lattice, c ∈ Rn a vector, and S ∈ Rm×n, B ∈ Rn×n two rank-n matrices, and
denote L′ = {B−1v : v ∈ L}, c′ = B−1c, and S′ = S × (B>)−1. Then the distribution DL,S,c is identical to the
distribution induced by drawing a vector v ← DL′,S′,c′ and outputting u = Bv. ut

A useful special case of Fact 2 is when L′ is the integer lattice, L′ = Zn, in which case L is just the lattice spanned
by the basis B. In other words, the ellipsoid Gaussian distribution on L(B), v ← DL(B),S,c, is induced by drawing an
integer vector according to z ← DZn,S′,c′ and outputting v = Bz, where S′ = S(B−1)> and c′ = B−1c.

Another useful special case is where S = sB>, so S is a square matrix and S′ = sIn. In this case the ellipsoid
Gaussian distribution v ← DL,S,c is induced by drawing a vector according to the spherical Gaussian u ← DL′,s,c′
and outputting v = 1

sS
>u, where c′ = s(S>)−1c and L′ = {s(S>)−1v : v ∈ L}.

Smoothing parameter. As in [MR07], for lattice L and real ε > 0, the smoothing parameter of L, denoted ηε(L),
is defined as the smallest s such that ρ1/s(L∗ \ {0}) ≤ ε. Intuitively, for a small enough ε, the number ηε(L) is
sufficiently larger than L’s fundamental parallelepiped so that sampling from the corresponding Gaussian “wipes out
the internal structure” of L. Thus, the sparser the lattice, the larger its smoothing parameter.

It is well known that for a spherical Gaussian with parameter s > ηε(L), the size of vectors drawn from DL,s is
bounded by s

√
n whp (cf. [MR07, Lemma 4.4]). The following lemma (that follows easily from the spherical case

and Fact 2) is a generalization to ellipsoid Gaussians.

Lemma 3. For a rank-n lattice L, vector c ∈ Rn, constant 0 < ε < 1 and matrix S s.t. σn(S) ≥ ηε(L), we have that
for v ← DL,S,c,

Pr
v←DL,S,c

(
‖v − c‖ ≥ σ1(S)

√
n
)
≤ 1 + ε

1− ε
· 2−n

Proof. We can assume w.l.o.g. that S is a square matrix (since DL,S,c depends only on S>S, and all the matrices
that agree on S>S have the same singular values). Letting s = σn(S), we apply Fact 2 with B = 1

sS
>, so we have

S′ = sIn, c′ = s(S>)−1c, and L′ = {s(S>)−1v : v ∈ L}). Namely the ellipsoid Gaussian distribution v ← DL,S,c
is induced by drawing a vector according to the spherical Gaussian u← DL′,s,c′ and outputting v = 1

sS
>u.

We recall that the largest singular value of (S>)−1 is the reciprocal of the least singular value of S> (which is
σn(S

>) = σn(S) = s), namely σ1((S>)−1) = 1/s. Hence the singular values of the matrix s(S>)−1 are all at most
one, which means that multiplying by s(S>)−1 is “shrinking”, ‖s(S>)−1v‖ ≤ ‖v‖ for all v. Since the lattice L′ is
obtained from L by “shrinking” all the vectors v ∈ L as above, it follows that the smoothing parameter of L′ is no
larger than that of L, so s = σn(S) ≥ ηε(L) ≥ ηε(L′).

Applying now [MR07, Lemma 4.4] for the spherical case, when drawing a vectoru← DL′,s,c′ we get ‖u‖ ≤ s
√
n

except with probability at most 1+ε
1−ε · 2

−n. Hence we can bound whp the norm of v by
‖v‖ = ‖ 1sS

>u‖ ≤ 1
s · σ1(S

>) · ‖u‖ = 1
s · σ1(S) · s

√
n = σ1(S)

√
n.

The next lemma says that the Gaussian distribution with parameter s ≥ ηε(L) is so smooth and “spread out” that
it covers the approximately the same number of L-points regardless of where the Gaussian is centered. This is again
well known for spherical distributions (cf. [GPV08, Lemma 2.7]) and the generalization to ellipsoid distributions is
immediate using Fact 2.

Lemma 4. For any rank-n lattice L, real ε ∈ (0, 1), vector c ∈ Rn, and rank-n matrix S ∈ Rm×n such that
σn(S) ≥ ηε(L), we have ρS,c(L) ∈ [ 1−ε1+ε , 1] · ρS(L). ut

Regev also proved that drawing a point from L according to a spherical discrete Gaussian and adding to it a
spherical continuous Gaussian, yields a probability distribution close to a continuous Gaussian (independent of the
lattice), provided that both distributions have parameters sufficiently larger than the smoothing parameter of L.

Lemma 5 (Claim 3.9 of [Reg09]). Fix any n-dimensional lattice L ⊂ Rn, real ε ∈ (0, 1/2), and two reals s, r such
that rs√

r2+s2
≥ ηε(L), and denote t =

√
r2 + s2.

Let RL,r,s be a distribution induced by choosing x ← DL,s from the spherical discrete Gaussian on L and
y ← Nn(0, r2/2π) from a continuous Gaussian, and outputting z = x+y. Then for any pointu ∈ Rn, the probability
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density RL,r,s(u) is close to the probability density under the spherical continuous Gaussian Nn(0, t2/2π) upto a
factor of 1−ε

1+ε :
1−ε
1+εN

n(0, t2/2π)(u) ≤ RL,r,s(u) ≤ 1+ε
1−εN

n(0, t2/2π)(u)

In particular, the statistical distance betweenRL,r,s and Nn(0, t2/2π) is at most 4ε.

More broadly, Lemma 5 implies that for any event E(u), we have

Pr
u←N (0,t2/2π)

[E(u)] · 1−ε1+ε ≤ Pr
u←RL,r,s

[E(u)] ≤ Pr
u←N (0,t2/2π)

[E(u)] · 1+ε1−ε

Another useful property of “wide” discrete Gaussian distributions is that they do not change much by short shifts.
Specifically, if we have an arbitrary subset of the lattice, T ⊆ L, and an arbitrary short vector v ∈ L, then the
probability mass of T is not very different than the probability mass of T − v = {u − v : u ∈ T}. Below let erf(·)
denote the Gauss error function.

Lemma 6. Fix a lattice L ⊂ Rn, a positive real ε > 0, and two parameters s, c such that c > 2 and s ≥ (1+ c)ηε(L).
Then for any subset T ⊂ L and any additional vector v ∈ L, it holds thatDL,s(T )−DL,s(T −v) ≤ erf(q(1+4/c)/2)

erf(2q) ·
1+ε
1−ε , where q = ‖v‖

√
π/s.

Proof. Clearly for any fixed v, the set that maximizes DL,s(T ) − DL,s(T − v) is the set of all vectors u ∈ L for

which DL,s(u) > DL,s(u − v), which we denote by Tv
def
= {u ∈ L : DL,s(u) > DL,s(u − v)}. Observe that for

any u ∈ L we have DL,s(u) > DL,s(u− v) iff ρs(u) > ρs(u− v), which is equivalent to ‖u‖ < ‖u− v‖. That is,
u must lie in the half-space whose projection on v is less than half of v, namely 〈u,v〉 < ‖v‖2/2. In other words we
have

Tv = {u ∈ L : 〈u,v〉 < ‖v‖2/2},

which also means that Tv − v = {u ∈ L : 〈u,v〉 < −‖v‖2/2} ⊆ Tv . We can therefore express the difference in
probability mass as DL,s(Tv)−DL,s(Tv − v) = DL,s(Tv \ (Tv − v)). Below we denote this set-difference by

Hv
def
= Tv \ (Tv − v) =

{
u ∈ L : 〈u,v〉 ∈ (−‖v‖

2

2 , ‖v‖
2

2 ]
}
.

That is, Hv is the “slice” in space of width ‖v‖ in the direction of v, which is symmetric around the origin. The
arguments above imply that for any set T we have DL,s(T ) − DL,s(T − v) ≤ DL,s(Hv). The rest of the proof is
devoted to upper-bounding the probability mass of that slice, i.e., DL,s(Hv) = Pru←DL,s

[u ∈ Hv].
To this end we consider the slightly thicker slice, say H ′v = (1 + 4

c )Hv , and the random variable w, which is
obtained by drawing u ← DL,s and adding to it a continuous Gaussian variable of “width” s/c. We argue that w is
somewhat likely to fall outside of the thick slice H ′v , but coditioning on u ∈ Hv we have that w is very unlikely to
fall outside of H ′v . Putting these two arguments together, we get that u must have significant probability of falling
outside Hv , thereby getting our upper bound.

In more detail, denoting r = s/c we consider drawing u← DL,s and z ← Nn(0, r2/2π), and settingw = u+z.
Denoting t =

√
r2 + s2, we have that s ≤ t ≤ s(1 + 1

c ) and rs/t ≥ s/(c + 1) ≥ ηε(L). Thus the conditions of
Lemma 5 are met, and we get that w is distributed close to a normal random variable Nn(0, t2/2π), upto a factor of
at most 1+ε

1−ε .
Since the continuous Gaussian distribution is spherical, we can consider expressing it in an orthonormal basis with

one vector in the direction of v. When expressed in this basis, we get the event z ∈ H ′v exactly when the coefficient
in the direction of v (which is distributed close to the 1-diemsnional GaussianN (0, t2/2π)) exceeds ‖v(1+ 4

c )/2‖ in
magnitude. Hence we have

Pr[w ∈ H ′v] ≤ Pr
α←N (0,t2/2π)

[|α| ≤ ‖v‖] · 1 + ε

1− ε

= erf

(‖v‖√π(1 + 4
c )

2t

)
· 1 + ε

1− ε
≤ erf

(‖v‖√π(1 + 4
c )

2s

)
· 1 + ε

1− ε

7



On the other hand, consider the conditional probability Pr[w ∈ H ′v|u ∈ Hv]: Let H ′′v = 4
cHv , then if u ∈ Hv

and z ∈ H ′′v , then it must be the case that w = u+ z ∈ H ′v . As before, we can consider the continuous Gaussian on
z in an orthonormal basis with one vector in the direction of v, and we get

Pr[w ∈ H ′v|u ∈ Hv] ≥ Pr[z ∈ H ′′v |u ∈ Hv] = Pr[z ∈ H ′′v ]
= Pr
β←N (0,r2/2π)

[|β| ≤ 2‖v‖/c] = erf(‖v‖2
√
π/cr) = erf(2‖v‖

√
π/s)

Putting the last two bounds together, we get

erf

(‖v‖√π(1 + 4
c )

2s

)
· 1 + ε

1− ε
≥ Pr[w ∈ H ′v] ≥ Pr[u ∈ Hv] · Pr[w /∈ H ′v|u ∈ Hv]

≥ Pr[u ∈ Hv] · erf
(
‖v‖2

√
π

s

)
from which we conclude that Pr[u ∈ Hv] ≤

erf(‖v‖
√
π(1+4/c)/2s)

erf(‖v‖2
√
π/s)

· 1+ε1−ε , as needed.

One useful special case of Lemma 6 is when c = 100 (say) and ‖v‖ ≈ s, where we get a bound DL,s(T ) −
DL,s(T − v) ≤ erf(0.52

√
π)

erf(2
√
π)
· 1+ε1−ε ≈ 0.81. We note that when ‖v‖s → 0, the bound from Lemma 6 tends to (just

over) 1/4, but we note that we can make it tend to zero with a different choice of parameters in the proof (namely
making H ′v and H ′′v thicker, e.g. H ′′v = Hv and H ′v = 2Hv). Lemma 6 extends easily also to the ellipsoid Gaussian
case, using Fact 2:

Corollary 2. Fix a lattice L ⊂ Rn, a positive real ε > 0, a parameter c > 2 and a rank-n matrix S such that
s

def
= σn(S) ≥ (1 + c)ηε(L). Then for any subset T ⊂ L and any additional vector v ∈ L, it holds that DL,S(T ) −
DL,S(T − v) ≤ erf(q(1+4/c)/2)

erf(2q) · 1+ε1−ε , where q = ‖v‖
√
π/s.

Micciancio and Regev give the following bound on the smoothing parameter in terms of the primal lattice.

Lemma 7. [Lemma 3.3 of [MR07]] For any n-dimensional lattice L and positive real ε > 0,

ηε(L) ≤ λn(L) ·
√

ln(2n(1 + 1/ε))

π
.

In particular, for any superlogarithmic function ω(log n), there exists a negligible function ε(n) such that ηε(L) ≤√
ω(log n) · λn(L).

3 Our Discrete Gaussian LHL

Consider a full rank lattice L ⊆ Zn, some negligible ε = ε(n), the corresponding smoothing parameter η = ηε(L)
and parameters s > Ω(η), m > Ω(n log n), and s′ > Ω(poly(n) log(1/ε)). The process that we analyze begins
by choosing “once and for all” m points in L, drawn independently from a discrete Gaussian with parameter s,
xi ← DL,s.4

Once the xi’s are fixed, we arrange them as the columns of an n-by-mmatrixX = (x1|x2| . . . |xm), and consider
the distribution EX,s′ , induced by choosing an integer vector v from a discrete spherical Gaussian with parameter s′

and outputting y = X · v:
EX,s′

def
= {X · v : v ← DZm,s′}. (1)

Our goal is to prove that EX,s′ is close to the ellipsoid Gaussian DL,s′X> , over L. We begin by proving that the
singular values of X> are all roughly of the size s

√
m5.

4 More generally, we can consider drawing the vectors xi from an ellipsoid discrete Gaussian, xi ← DL,S , so long as the least
singular value of S is at least s.

5 Since we eventually apply the following lemmas to X>, we will use X> in the statement of the lemmas for consistency at the
risk of notational clumsiness.
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Lemma 8. There exists a universal constant K > 1 such that for all m ≥ 2n, ε > 0 and every n-dimensional real
lattice L ⊂ Rn, the following holds: choosing the rows of an m-by-n matrix X> independently at random from a
spherical discrete Gaussian on L with parameter s > 2Kηε(L), X> ← (DL,s)m, we have

Pr
[
s
√
2πm/K < σn(X

>) ≤ σ1(X>) < sK
√
2πm

]
> 1− (4mε+O(exp(−m/K))).

Proof. Let C be the universal constant from Corollary 1, and we set K = max(3C, 2C2). Denote r = s/K, and
consider the process of first choosing X as in the lemma statement, then choosing the rows of an m-by-n matrix Y
independently from the continuous n-dimensional Normal distributionN (0, r2/2π), then setting Z = X>+ Y . Note
that for these parameters r, s we have

rs√
r2 + s2

=
s(s/K)√
s2 + (s/K)2

=
s√

1 +K2
> s/2K > ηε(L).

Thus the conditions of Lemma 5 are met, hence setting t =
√
s2 + r2 we conclude that the statistical distance between

the columns of Z and a continuous n-dimensional Gaussian Nn(0, t2/2π) is at most 4ε. Namely we can bound by
4mε the statistical distance between Z and a matrix whose entries are all chosen independently from N (0, t2/2π).
Therefore, by Corollary 1 we have that

Pr
[
t
√
2πm/C < σn(Z) ≤ σ1(Z) < tC

√
2πm

]
> 1− (4mε+O(exp(−m/C))),

and since s < t < 2s then with at least the same probability we have s
√
2πm/C < σn(Z) ≤ σ1(Z) < 2sC

√
2πm.

At the same time, again by Corollary 1 we have that Pr[σn(Y ) > Cr
√
2πm] < O(exp(−m/C)), and our parameters

choice imply that

Cr
√
2πm = s/K · C

√
2πm ≤ Cs

√
2πm

2C2
= s
√
2πm/2C.

We conclude that except with probability 4mε+O(exp(−m/C)), we have both σn(Z) ≥ s
√
2πm/C and σ1(−Y ) =

σ1(Y ) ≤ s
√
2πm/2C. In this case, since X> = Z − Y , we can apply Fact 1 (with δ = 1/2) to conclude that

σn(X
>) ≥ (1 − 1

2 )s
√
2πm/C > s

√
2πm/K and σn(X>) ≤ (1 + 1

2 )2sC
√
2πm ≤ sK

√
2πm. In summary, we

have

Pr
[
s
√
2πm/K < σn(X

>) ≤ σ1(X>) < sK
√
2πm

]
≥ Pr

[
2σ1(Y ) < s

√
2πm/C < σn(Z) ≤ σ1(Z) < sC

√
2πm

]
≥ 1− (4mε+O(exp(−m/C))) ≥ 1− (4mε+O(exp(−m/K))),

as needed.

3.1 The Distribution EX,s′ Over Zn

We next move to show that with high probability over the choice of X , the distribution EX,s′ is statistically close to
the ellipsoid discrete Gaussian DL,s′X> . We first prove this for the special case of the integer lattice, L = Zn, and
then use that special case to prove the same statement for general lattices. In either case, we analyze the setting where
the columns of X are chosen from an ellipsoid Gaussian which is “not too small” and “not too skewed.”

Parameters. Below n is the security parameters and ε = negligible(n). Let S be an n-by-n matrix such that σn(S) ≥
2Kηε(Zn), and denote s1 = σ1(S), sn = σn(S), and w = s1/sn. (We consider w to be a measure for the “skewness”
of S.) Also let m, q, s′ be parameters satisfying m ≥ 10n log q, q > 8(mn)1.5s1w, and s′ ≥ 4mnw ln(1/ε). An
example setting of parameters to keep in mind is m = n2, sn =

√
n (which implies ε ≈ 2−

√
n), s1 = n (so w =

√
n),

q = 8n6, and s′ = 4n4.

9



Theorem 2. For ε negligible in n, let S ∈ Rn×n be a matrix such that sn = σn(S) ≥ 18Kηε(Zn), and denote s1 =
σ1(S) and w = s1/sn. Also let m, s′ be parameters such that m ≥ 10n log(8(mn)1.5s1w) and s′ ≥ 4mnw ln(1/ε).

Then, when choosing the columns of an n-by-m matrix X from the ellipsoid Gaussian over Zn, X ← (DZn,S)
m,

we have with all but probability 2−O(m) over the choice of X , that the statistical distance between EX,s′ and the
ellipsoid Gaussian DZn,s′X> is bounded by 2ε.

The rest of this subsection is devoted to proving Theorem 2. We begin by showing that with overwhelming probability,
the columns of X span all of Zn, which means also that the support of EX,s′ includes all of Zn.

Lemma 9. With parameters as above, when drawing the columns of an n-by-m matrix X independently at random
from DZn,S we get X · Zm = Zn with all but probability 2−O(m).

Proof. Consider choosing the columns one by one, and we show that (a) as long as the current columns only R-span
a subspace of Rn then it is likely that the next row falls outside that subspace, and (b) once the current matrix has full
rank, as long as the current columns only Z-span a sub-lattice of Zn, it is likely that the next one falls outside that
sub-lattice. Combining these two arguments, the lemma follows.

For i = 1, 2, . . . ,m, consider the binary random variable χi, which is defined as follows over the choice of the
columns xi of X: At any step i we consider only the “short vectors” among the previous xi’s, namely Xi−1

def
= {xj :

j < i, ‖xj‖ ≤ s
√
n}.

1. If the vectors in Xi−1 only R-span a proper linear subspace of Rn, then we define χi = 1 if ‖xi‖ ≤ s
√
n and xi

falls outside that linear subspace, and χi = 0 otherwise;
2. If the vectors in Xi−1 only Z-span a sub-lattice of Zn but R-span the entire Rn, then we define χi = 1 if
‖xi‖ ≤ s

√
n and xi falls outside that sub-lattice, and χi = 0 otherwise;

3. Else (if x1, . . . ,xi−1 Z-span the entire Zn), we defined χi = 1.

It is clear from the definition of the χi’s that
∑m
i=1 χi ≥ n implies that the xi’s R-span all of of Rn. Moreover

we claim that if
∑m
i=1 χi ≥ n(log(s

√
n) + 1) then the xi’s must Z-span the entire lattice Zn. To see this, consider

the first n vectors xi for which χi = 1: they must be linearly independent and they are all shorter than s
√
n, hence

they Z-span a full-rank sub-lattice of Zn of determinant less than (s
√
n)n. As long as the xi do not yet Z-span the

entire integer lattice, any subsequent xi for which χi = 1 corresponds to a refinement of the current sub-lattice, which
must reduce the determinant by at least a factor of 2. Hence after at most log((s

√
n)n) = n log(s

√
n) such vectors the

determinant is reduced to 1, which means that the xi’s must Z-span the entire integer lattice. We therefore have

Pr[X · Zm = Zn] ≥ Pr

[∑
i

χi ≥ n(log(s
√
n) + 1)

]
.

It is left to lower-bound the last expression. We claim that regardless of the previous xi′ ’s for i′ < i, we always have
Pr[χi = 1] ≥ 1/4. This is obvious if χi is assigned according to the third rule above, so we only need to prove it for
the first two rules. To see why this is true for the first rule, note that as long as the vectors inXi−1 only R-span a proper
sub-space of Rn, there must exists at least one standard unit vector ej outside that sub-space. Letting Ti−1 ⊂ Zn be
the sub-lattice of Zn that lies in the sub-space of Xi−1, we have that Ti−1 − ej is disjoint from Ti−1. Since ‖ej‖ = 1
and s > ηε(Zn) ≥

√
n, then Corollary 2 (with c = 9) says that

Pr[xi ∈ Ti−1]− Pr[xi ∈ Ti−1 − ej ] ≤
erf(0.75

√
π/n)

erf(2
√
π/n)︸ ︷︷ ︸

≈0.75/2=0.375

·1 + ε

1− ε
< 0.4,

which means that Pr[xi ∈ Ti−1] < 1+0.4
2 = 0.7. Hence

Pr[χi = 1] ≥ Pr[xi /∈ Ti−1 and ‖xi‖ ≤
√
n] ≥ Pr[xi /∈ Ti−1]−

1 + ε

1− ε
· 2−n

≥ 0.3− 1 + ε

1− ε
· 2−n > 0.25
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The argument for the second rule is nearly identical, using the fact that for any proper sub-lattice of Zn there must be
at least one standard unit vector ej outside that sub-lattice.

It follows that Pr[
∑
i χi < n(log(s

√
n) + 1)] is upper-bounded by the same probability expression applied to m

Bernoulli- 14 variables, which is 2−O(m/4−n(log(s
√
n)+1)) = 2−O(m).

From now on we assume that the columns of X indeed span all of Zn. Now let A = A(X) be the (m − n)-
dimensional lattice in Zm orthogonal to all the rows of X , and for any z ∈ Zn we denote by Az = Az(X) the z coset
of A:

A = A(X)
def
= {v ∈ Zm : X · v = 0} and Az = Az(X)

def
= {v ∈ Zm : X · v = z}.

Since the columns of X span all of Zn then Az is nonempty for every z ∈ Zn, and we have Az = vz + A for any
arbitrary point vz ∈ Az .

Below we prove that the smoothing parameter ofA is small (whp), and use that to bound the distance between EX,s′
and DZn,s′X> . First we show that if the smoothing parameter of A is indeed small (i.e., smaller than the parameter s′

used to sample the coefficient vector v), then EX,s′ and DZn,s′X> must be close.

Lemma 10. Fix X and A = A(X) as above. If s′ ≥ ηε(A), then for any point z ∈ Zn, the probability mass assigned
to z by EX,s′ differs from that assigned by DZn,s′X> by at most a factor of (1− ε)/(1 + ε), namely

EX,s′(z) ∈
[
1−ε
1+ε , 1

]
· DZn,s′X>(z).

In particular, if ε < 1/3 then the statistical distance between EX,s′ and DZn,s′X is at most 2ε.

Proof. Fix some z ∈ Zn. The probability mass assigned to z by EX,s′ is the probability of drawing a random vector
according to the discrete Gaussian DZm,s′ and hitting some v ∈ Zm for which X · v = z. In other words, this is
exactly the probability mass assigned by DZm,s′ to the coset Az . Below let T = T (X) ⊆ Rm be the linear subspace
containing the lattice A, and Tz = Tz(X) ⊆ Rm be the affine subspace containing the coset Az:

T = T (X) = {v ∈ Rm : X · v = 0}, and Tz = Tz(X) = {v ∈ Rm : X · v = z}.

Let Y be the pseudoinverse ofX (i.e.XY > = In and the rows of Y span the same linear sub-space as the rows ofX).
Let uz = Y >z, and we note that uz is the point in the affine space Tz closest to the origin: To see this, note that
uz ∈ Tz since X ·uz = X×Y >z = z. In addition, uz belongs to the row space of Y , so also to the row space of X ,
and hence it is orthogonal to T .

Since uz is the point in the affine space Tz closest to the origin, it follows that for every point in the coset v ∈ Az
we have ‖v‖2 = ‖uz‖2 + ‖v − uz‖2, and therefore

ρs′(v) = e−π(‖v‖/s
′)2 = e−π(‖uz‖/s′)2 · e−π(‖v−uz‖/s′)2 = ρs′(uz) · ρs′(v − uz).

This, in turn, implies that the total mass assigned to Az by ρs′ is

ρs′
(
Az
)
=
∑
v∈Az

ρs′(v) = ρs′(uz) ·
∑
v∈Az

ρs′(v − uz) = ρs′(uz) · ρs′
(
Az − uz

)
. (2)

Fix one arbitrary pointwz ∈ Az , and let δz be the distance fromuz to that point, δz = uz−wz . SinceAz = wz+A,
we get Az − uz = A− δz , and together with the equation above we have:

ρs′
(
Az
)
= ρs′(uz) · ρs′

(
Az − uz

)
= ρs′(uz) · ρs′

(
A− δz

)
= ρs′(uz) · ρs′,δz

(
A
) Lemma 4

= ρs′(uz) · ρs′
(
A
)
·
[
1−ε
1+ε , 1

]
. (3)

As a last step, recall that uz = Y >z where Y Y > = (XX>)−1. Thus we have

ρs′(uz) = ρs′(Y
>z) = exp(−π|z>Y Y >z|/s′2) = exp

(
−π
∣∣z>((s′X)(s′X)>

)−1
z
∣∣) = ρ(s′X)>(z)
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Putting everything together we get

EX,s′(z) = DZm,s′
(
Az
)
=

ρs′
(
Az
)

ρs′(Zm)
∈ ρ(s′X>)(z) ·

ρs′
(
A
)

ρs′(Zm)
·
[
1−ε
1+ε , 1

]
The term ρs′ (A)

ρs′ (Zm) is a normalization factor independent of z, hence the probability mass EX,s′(z) is proportional to
ρ(s′X>)(z), upto some “deviation factor” in [ 1−ε1+ε , 1].

The smoothing parameter of A. We now turn our attention to proving that A is “smooth enough”. Specifically, for
the parameters above we prove that with high probability over the choice of X , the smoothing parameter ηε(A) is
bounded below s′ = 4mnw ln(1/ε).

Recall again that A = A(X) is the rank-(m− n) lattice containing all the integer vectors in Zm orthogonal to the
rows of X . We extend A to a full-rank lattice as follows: First we extend the rows space of X , by throwing in also
the scaled standard unit vectors qei for the integer parameter q mentioned above (q ≥ 8(mn)1.5s1w). That is, we let
Mq =Mq(X) be the full-rank m-dimensional lattice spanned by the rows of X and the vectors qei,

Mq = {X>z + qy : z ∈ Zn,y ∈ Zm} = {u ∈ Zm : ∃z ∈ Znq s.t. u ≡ X>z (mod q)}

(where we idenfity Zq above with the set [−q/2, q/2) ∩ Z). Next, let Aq be the dual of Mq , scaled up by a factor of q,
i.e.,

Aq = qM∗q = {v ∈ Rm : ∀u ∈Mq, 〈v,u〉 ∈ qZ}
= {v ∈ Rm : ∀z ∈ Znq ,y ∈ Zm, z>X · v + q 〈v,y〉 ∈ qZ}

It is easy to see that A ⊂ Aq , since any v ∈ A is an integer vector (so q 〈v,y〉 ∈ qZ for all y ∈ Zm) and orthogonal
to the rows of X (so z>X · v = 0 for all z ∈ Znq ).

Obviously all the rows of X belong to Mq , and whp they are linearly independent and relatively short (i.e., of size
roughly s1

√
m). In Lemma 11 below we show, however, that whp over the choice ofX’s, these are essentially the only

short vectors in Mq .

Lemma 11. Recall that we choose X as X ← (DZn,S)
m, and let w = σ1(S)/σn(S) be a measure of the “skewness”

of S. The n + 1’st minima of the lattice Mq = Mq(X) is at least q/4nw, except with negligible probability over the
choice of X . Namely, PrX←(DZn,S)m [λn+1(Mq) < q/4nw] < 2−O(m).

Proof. We prove that with high probability over the choice of X , every vector in Mq which is not in the linear span of
the rows of X is of size at least q/4nw.

Recall that every vector in Mq is of the form X>z + qy for some z ∈ Znq and y ∈ Zm. Let us denote by [v]q the
modular reduction of all the entries in v into the interval [−q/2, q/2), then clearly for every z ∈ Znq

‖[X>z]q‖ = inf{‖X>z + qy‖ : y ∈ Zm}.

Moreover, for every z ∈ Znq ,y ∈ Zm, if X>z + qy 6= [X>z]q then ‖Xz + qy‖ ≥ q/2. Thus it suffices to show that
every vector of the form [X>z]q which is not in the linear span of the rows of X has size at least q/4nw (whp over
the choice of X).

Fix a particular vector z ∈ Znq (i.e. an integer vector with entries in [−q/2, q/2)). For this fixed vector z, let imax

be the index of the largest entry in z (in absolute value), and let zmax be the value of that entry. Considering the vector
v = [X>z]q for a random matrix X whose columns are drawn independently from the distribution DZn,S , each entry
of v is the inner product of the fixed vector z with a random vector xi ← DZn,S , reduced modulo q into the interval
[−q/2,+q/2).

We now have two cases, either z is “small”, i.e., |zmax| < q/2ns1 or it is “large”, |zmax| ≥ q/2ns1. Recall that by
Lemma 3 for each xi we have ‖xi‖ ≤ s1

√
n except with probability 2−m. If z is “small” then we get

| 〈z,xi〉 | ≤ ‖z‖ · ‖xi‖ ≤ |zmax|
√
n · s1

√
n < q/2.
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Hence except with probability m2−m all the entries of X>z are smaller than q/2 in magnitude, which means that
[X>z]q = X>z, and so [X>z]q belongs to the row space of X . Using the union bound again, we get that with all but
probability qn ·m2−m < m2−9m/10, the vectors [X>z]q for all the “small” z’s belong to the row space of X .

We next turn to analyzing “large” z’s. Fix one “large” vector z, and for that vector define the set of “bad” vectors
x ∈ Zn, i.e. the ones for which |[〈z,x〉]q| < q/4nw (and the other vectors x ∈ Zn are “good”). Observe that if x
is “bad”, then we can get a “good” vector by adding to it the imax’th standard unit vector, scaled up by a factor of
µ = min

(
dsne , bq/|2zmax|c

)
, since

|[〈z,x+ µeimax〉]q| = |[〈z,x〉+ µzmax]q| ≥ µ|zmax| − |[〈z,x〉]q| ≥ q/4nw.

(The last two inequalities follow since q/2nw < µ|zmax| ≤ q/2 and |[〈z,x〉]q| < q/4nw.) Hence the injunction
x 7→ x+µeimax maps “bad” x’es to “good” x’es. Moreover, since the x’es are chosen according to the wide ellipsoid
Gaussian DZn,S with σn(S) = sn ≥ ηε(Zn), and since the scaled standard unit vectors are short, µ < sn+1, then by
Lemma 6 the total probability mass of the “bad” vectors x differs from the total mass of the “good” vectors x+µeimax

by at most 0.81. It follows that when choosingx← DZn,S , we have Prx [|[〈z,x〉]q| < q/4nw] ≤ (1+0.81)/2 < 0.91.
Thus the probability that all the entries of [X>z]q are smaller than q/4nw in magnitude is bounded by (0.91)m =
2−0.14m. Since m > 10n log q, we can use the union bound to conclude that the probability that there exists some
“large” vector for which ‖[X>z]q‖ < q/4nw is no more than qn · 2−0.14m < 2−O(m).

Summing up the two cases, with all but probability 2−O(m)) over the choice of X , there does not exist any vector
z ∈ Znq for which [X>z]q is linearly independent of the rows of X and yet |[X>z]q| < q/4nw.

Corollary 3. With the parameters as above, the smoothing parameter ofA = A(X) satisfies ηε(A) ≤ s′ = 4mnw ln(1/ε),
except with probability 2−O(m).

Proof. Recall that Aq is the scaled-by-q dual of Mq . By Lemma 11 we have that w.h.p. λn+1(Mq) ≥ q/4nw, and
from Banasczcyk’s theorem (Theorem 1) we conclude that λm−n(Aq) ≤ 4mnw. Hence we have m − n linearly
independent vectors vj ∈ Aq of size below 4mnw. We next argue that these vectors must also belong to A.

To see that they must be integer vectors, note that by definition of Aq , for every v ∈ Aq it holds in particular that
v × qIm ∈ qZm, which means that v = v × Im ∈ Zm. To see that the vj’s are orthogonal to the the rows of X ,
recall that the rows of X are in Mq and the vj’s are in Aq , and therefore X · vj ∈ qZn for all j. On the other hand, by
Lemma 3 with all but probability 2−O(m) the columns of X are smaller than s1

√
n, hence the rows are smaller than

s1
√
n
√
m. It thus follows that

‖X · vj‖ ≤ ‖vj‖ · ‖X‖ ≤ (4mnw) · (s1
√
mn) = 4(mn)1.5s1w < q/2,

which together with X · v ≡ 0 (mod q) means that we have X · vj = 0 (over R, with no modular reduction). We
conclude that the vj’s are integer vectors orthogonal to the rows of X , hence they belong to A.

It thus follows that all the successive minima of the rank-(m−n) latticeA are bounded below 4mnw, and Lemma 7
then says that

ηε(A) ≤ 4mnw ·
√

ln(2(m− n)(1 + 1/ε))

π

(?)

≤ 4mnw ln(1/ε) = s′

(where the inequality (?) uses the fact that 1/ε� m).

Putting together Lemma 10 and Corollary 3 completes the proof of Theorem 2. ut

3.2 The Distribution EX,s′ Over General Lattices

Armed with Theorem 2, we turn to prove the same theorem also for general lattices.

Theorem 3. LetL be a full-rank latticeL ⊂ Rn andB a matrix whose columns form a basis ofL. Also letM ∈ Rn×n
be a full rank matrix, and denote S =M(B>)−1, s1 = σ1(S), sn = σn(S), andw = s1/sn. Finally let ε be negligible
in n and m, s′ be parameters such that m ≥ 10n log(8(mn)1.5s1w) and s′ ≥ 4mnw ln(1/ε).

If sn ≥ ηε(Zn), then, when choosing the columns of an n-by-m matrix X from the ellipsoid Gaussian over L,
X ← (DL,M )m, we have with all but probability 2−O(m) over the choice of X , that the statistical distance between
EX,s′ and the ellipsoid Gaussian DL,s′X> is bounded by 2ε.
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Proof. This theorem is an immediate corollary of Theorem 2 and Fact 2. Noting that S, ε satisfy the conditions of
Theorem 2, we conclude that when choosing the columns of an n-by-m integer matrix as Z ← (DZn,S)

m, the
statistical distance between EZ,s′ and DZn,s′Z> is at most 2ε.

Letting X> = BZ>, we get by Fact 2 that choosing the columns of Z from DZn,S induces the distribution
DL,M on the columns of X . Also multiplying the output of both distributions EZ,s′ and DZn,s′Z by B, we have that
EX,s′ = B × EZ,s′ and DL,s′X> = B × DZn,s′Z> . Since the distance between EZ,s′ and DZn,s′Z is at most 2ε, then
so is the distance between EX,s′ and DL,s′X> .

4 Applications

In this section, we discuss the application of our discrete Gaussian LHL in the construction of multilinear maps from
lattices [GGH12]. This construction uses our LHL crucially for randomizing certain encodings. Below we provide
a detailed description of how our lemma is used. This construction is also illustrative in providing an example of a
canonical setting where our lemma should be useful.

High Level overview of GGH Construction. To begin, we provide a high level overview of the construction. Our
description here is necessarily high level and skips many important details, we refer the reader to [GGH12] for a
complete description. Recall that Bilinear groups consist of two groupsG1 andG2 along with a map e : G1×G1 → G2

such that e(xa, yb) = e(x, y)ab. A canonical hard problem over Bilinear groups is the Discrete Log problem where
given g, ga, one is asked to compute a. In [GGH12], the authors view a → ga as an “encoding” of a that satisfies (at
a high level), the following properties:

1. The encoding is easy to compute in the forward direction and hard to invert.
2. Encoding is additively homomorphic as well as one-time multiplicatively homomorphic (via the pairing).
3. Given encodings of two elements, it is easy to test whether the underlying scalars are equal: a = b if ga = gb.
4. Given encodings, it is hard to test more complicated relations between the underlying scalars. For example, given

the tuple (x, y, z) where x, y, z ∈ G1 encode a, b, c respectively, i.e. (x, y, z) = (ga, gb, gc) and w ∈ G2, test if w
encodes abc, i.e. test if w = e(g, g)abc?

In [GGH12], the authors construct encodings that approximately satisfy (and generalize) the above properties from
lattices. See figure 1 for a high level schematic. In their setting, R = Z[x]/f(x) is a polynomial ring for cyclotomic
f(x) and Rq = R/qR for some large q. Let g ∈ Rq be a small element and I = (g) be a principal ideal over R
generated by g. The scalars they encode are elements of the quotient ring R/I (so if |R/I| = p, the elements can be
represented by 0, . . . p− 1) and the source and target groups are Rq .

The encoding of element s + I ∈ R/I is given by [c/z]q for some small c ∈ s + I and some (uniformly)
randomly chosen, fixed, hidden z ∈ Rq . Note that this encoding right away satisfies property (2): the encoding is
additively homomorphic – [c1/z+c2/z]q = [(c1+c2)/z]q where c1+c2 is short and c1+c2 ∈ s1+s2+I as well
as multiplicatively homomorphic [c1/z]q× [c2/z]q = [c1c2/z]q where c1c2 is short and c1c2 ∈ s1s2+I. Moreover,
this immediately generalizes to the multilinear setting, where a level k encoding of a coset s+I is of the form [c/zk]q
for short c ∈ s+I and [c1/z

i]q[c2/z
j ]q = [c1c2/z

i+j ]q where c1c2 ∈ s1s2+I and are short. To satisfy property (3),
i.e. testing whether u1,u2 encode the same coset entails testing whether [u1−u2]q encodes 0. The authors enable this
by providing a “zero testing parameter” in the public key: for level k, publish vk = [hzk/g]q where h is somewhat
short. Then, to test equality, one simply tests if [u1 − u2]q · vk is short mod q. Note that if [u1 − u2]q encodes 0 at
level k, then [u1 − u2]q = [c/zk]q where c ∈ I , hence c = c′g for some c′. Then, [u1 − u2]q · vk mod q = [c′h]q
is a short element for an appropriate setting of parameters.

Next, we come to property (1): a natural method to enable efficient encoding given public parameters (which hide
z) is to publish an encoding of 1, i.e. y1 = [a1/z]q where a1 ∈ I+1 and have the encoder pick a short element in his
chosen coset c ∈ s+ I and set the encoding as c · y1. Then translating from level i to level i+ 1 is ui+1 = [ui · y]q .
However this simple encoding is certainly not hard to decode: just dividing by y1 suffices! Moreover property (4) is
also not satisfied; several complicated relations are easy to test algebraically. For example, a typical application would
need to generate encoding of a random s, t and st , say us,ut and ust so that (us,ut,ust) is hard to distinguish from
an encoding of s, t, r where r is random, without the appropriate zero testing parameter. However, the simple encoding
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(a) Bilinear Maps (b) Multilinear Maps

Fig. 1. Viewing multilinear maps as graded encodings.

presented above does not achieve this – the procedure would draw random short cs, ct, from s+I, t+I respectively,
compute cst = csct and encode us = [csy1]q , ut = [cty1]q and ust = [csty1]q . But then an adversary can simply
check if ust = usut/y1.

Randomizing the encodings. To break these simple algebraic relations, the authors include in the public parameters
also the “randomizers” xi which are just random encodings of zero. Namely xi = [bi/z]q where the bi’s are short
elements in I. Denote by X the matrix with the vectors xi as columns, namely X = (x1| . . . |xm). Denote by B the
matrix with the numerators bi as columns, i.e., B = (b1| . . . |bm).

Then, they use thexi’s to randomize level-one encodings: Givenu′ = [c′/z]q with appropriate noise-bound ‖c′‖ <
γ, they draw an m-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗ (e.g. σ∗ = 2λγ where λ is the se-
curity parameter), and output

u := [u′ +Xr]q = [u′ +

m∑
i=1

rixi]q (= [
c′ +

∑
i ribi

z
]q).

We write Br as a shorthand for
∑
i ribi and similarly Xr as a shorthand for

∑
i rixi.

Since all the bi’s are in the ideal I, then obviously c′ +
∑
i ribi is in the same coset of I as c′ itself. Moreover

since ‖bi‖ < poly(n) then ‖Br‖ < σ∗poly(m,n). If indeed ‖c′‖ < γ, then ‖c′ + Br‖ < γ + σ∗poly(m,n). Now,
the [GGH12] can claim that the distribution of u is nearly independent of original u′ conditioned on its coset. If the
bi’s are chosen from a wide enough spherical distribution then our Gaussian LHL (Thm 3) allows them to conclude
that Br is close to a wide ellipsoid Gaussian. With appropriate choice of σ∗ the “width” of that distribution is much
larger than the original c′, hence the distribution of c′ + Br is nearly independent of c′, conditioned on the coset it
belongs to.

5 Discussion

Unlike the classic LHL, our lattice version of LHL is less than perfect – instead of yielding a perfectly spherical
Gaussian, it only gives us an approximately spherical one, i.e. DL,s′X> . Here approximately spherical means that
all the singular values of the matrix X> are within a small, constant sized interval. It is therefore natural to ask: 1)
Can we do better and obtain a perfectly spherical Gaussian? 2) Is an approximately spherical Gaussian sufficient for
cryptographic applications?

First let us consider whether we can make the Gaussian perfectly spherical. Indeed, as the number of lattice vectors
m grows larger, we expect the greatest and least singular value of the discrete Gaussian matrix X to converge – this
would imply that as m→∞, the linear combination

∑m
i=1 zixi does indeed behave like a spherical Gaussian. While

we do not prove this, we refer the reader to [RV10] for intuitive evidence. However, the focus of this work is small
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m (such as m = 2n) suitable for applications, in which case we cannot hope for the same. Discrete Gaussians over
infinite rings just do not behave that way, and one way to view our work is getting a handle on their behavior.

This leads to the second question: is approximately spherical good enough? This depends on the application. We
have already seen that it is sufficient for GGH encodings [GGH12], where a canonical, wide-enough, but non-spherical
Gaussian is used to “drown out” an initial encoding, and send it to a canonical distribution of encodings that encode
the same value. Our LHL shows that one can sample from such a canonical approximate Gaussian distribution without
using the initial Gaussian samples “wastefully”.

On the other hand, we caution the reader that if the application requires the basis vectors x1, . . . ,xm to be kept
secret (such as when the basis is a trapdoor), then one must carefully consider whether our Gaussian sampler can be
used safely. This is because, as demonstrated by [NR09] and [DN12], lattice applications where the basis is desired
to be secret can be broken completely even if partial information about the basis is leaked. In an application where
the trapdoor is available explicitly and oblivious sampling is not needed, it is safer to use the samplers of [GPV08] or
[Pei10] to sample a perfectly spherical Gaussian that is statistically independent of the trapdoor.
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