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Further results on the distinctness of binary
sequences derived from primitive sequences modulo

square-free odd integers
Qun-Xiong Zheng and Wen-Feng Qi

Abstract

This paper studies the distinctness of primitive sequences over Z=(M) modulo 2, where M is an odd integer
that is composite and square-free, and Z=(M) is the integer residue ring modulo M . A new suf�cient condition is
given for ensuring that primitive sequences generated by a primitive polynomial f (x) over Z=(M) are pairwise
distinct modulo 2. Such result improves a recent result obtained in our previous paper [27] and consequently the
set of primitive sequences over Z=(M) that can be proven to be distinct modulo 2 is greatly enlarged.

Index Terms

Stream ciphers, linear recurring sequences, primitive polynomials, primitive sequences, modular reductions.

I. INTRODUCTION
Throughout the paper, for an integer m � 2, let Z=(m) denote the integer residue ring modulo m. We

choose f0; 1; : : : ;m� 1g as the complete set of representatives for the elements of the ring Z=(m). Thus
a sequence a over Z=(m) is usually seen as an integer sequence over f0; 1; : : : ;m� 1g. Moreover, for an
integer a and a positive integer b � 2, we denote the least nonnegative residue of a modulo b by [a]mod b,
and similarly for a sequence a = (a(t))t�0 over Z=(m), denote [a]mod b = ([a(t)]mod b)t�0.
Let p be a prime number and e a positive integer. During the past two decades, the maximal period linear

recurring sequences over Z=(pe), called primitive sequences over Z=(pe), have been paid much attention.
An enormous amount of effort is directed toward the study of �nding useful mappings to derive good
pseudorandom sequences from primitive sequences over Z=(pe), which are called compression mappings
in literature, and proving that they are injective. Generally there are two kinds of compression mappings:
one is based on e-variable functions over Z=(p) [1], [9], [10], [15], [16], [18], [19], [21], [30], [31];
the other is based on the modular arithmetic [11], [34]. Besides, the pseudorandom properties of these
compression sequences are also extensively studied, such as periodicity [5], [12], [13], linear complexity
[2], [4], [14], [17] and distribution properties [7], [8], [20], [24], [25], [32], [33].
Recently research interests on primitive sequences over Z=(pe) are further extended to primitive se-

quences over Z=(M) [3], [26]-[29], where M is a square-free odd integer. One of important reasons for
this is that the period of a primitive sequence a of order n over Z=(pe) is undesirable if e � 2. Recall that
the period per(a) of a primitive sequence a of order n over Z=(pe) is equal to pe�1 � (pn � 1) � pe+n�1
[23]. It can be seen that for a �xed pe with e � 2, the period per(a) increases slowly and far less than pe�n
as n increases. Therefore, to meet the requirement of long period in practical applications (such as � 264),
n should be chosen large enough, which will be high resource consumption in hardware and software
implementation. For example, to generate a sequence with period not less than 264 over Z=(28), Z=(216)
and Z=(232), the number of bit-registers required must be larger than 456, 784 and 1056, respectively.
However for many choices of M , primitive sequences over Z=(M) have no such periodic weakness.
For cryptographic applications, the moduli of the form 2e � 1 have attracted much attention since the
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operation �mod 2e � 1� can be ef�ciently implemented both in hardware and software, and this offers
new possibilities for advancement in the solution of applying linear recurring sequences over integer
residue rings. For instance, primitive sequences over Z=(231 � 1) are used to design the ZUC algorithm,
a stream cipher that is the core of the standardized 3GPP con�dentiality algorithm 128-EEA3 and the
3GPP integrity algorithm 128-EIA3, see [6].
By applying the operation mod 2 to primitive sequences over Z=(M), one can easily obtain a class of

binary sequences, called modulo 2 reductions of primitive sequences over Z=(M). It is thought that the
operation mod 2 destroys the original linear recurrence relation of primitive sequences over Z=(M) and
the obtained binary sequences should have many desirable cryptographic properties if the modulus M
and the order n are carefully chosen. As for cryptographic interests, one of the most concerned problems
is whether these modulo 2 reductions are pairwise distinct, that is, whether a = b iff [a]mod 2 = [b]mod 2,
where a and b are two primitive sequences generated by a primitive polynomial f (x) over Z=(M). If
the distinctness holds, then there is a one-to-one correspondence between primitive sequences and their
modulo 2 reductions, which implies that every modulo 2 reduction preserves all the information of its
original primitive sequence. Moreover, the distinctness also guarantees that the period of these modulo 2
reductions attains the maximum possible value.
For a special case where M is an odd prime number, the problem presented above has been completely

solved in [34]. However, if M has at least two different prime divisors, there indeed exist many primitive
sequences of order 1 over Z=(M) such that their modulo 2 reductions are the same [3]. It is long unclear
whether primitive sequences of order n � 2 over Z=(M) are pairwise distinct modulo 2. In [3], for the
case M = pq, a product of two different odd prime numbers, a suf�cient condition was given for (n; p; q)
such that primitive sequences generated by a primitive polynomial of degree n over Z=(pq) are distinct
modulo 2. Then in [26] based on a new result on the element distribution property of primitive sequences
over Z=(pq), the set of primitive sequences that can be proved to be distinct modulo 2 is further enlarged.
In [28], for a special modulus M = 232 � 1, a relatively complete result was obtained by taking full use
of the arithmetic properties of primitive sequences over Z=(232 � 1). However, for the case of a general
modulus M that is odd, composite, and square-free, the distinctness of primitive sequences over Z=(M)
modulo 2 has been quite resistant to proof. Until now only a class of primitive sequences of order 2n0+1
(n0 � 1) over Z=(M) are proved to be distinct modulo 2 in [27]. Besides there are several papers [28],
[29], [32] study the distinctness of primitive sequences over Z=(M) modulo H , where H > 2 has a prime
divisor coprime with M , and in particular in [29] a relatively complete result had been obtained for a
general modulus M that is odd, composite and square-free.
In this paper, we further study the modulo 2 distinctness of primitive sequences of order n � 2 over

Z=(M), where M is an odd integer that is composite and square-free. A new suf�cient condition (see
Theorem 2) is given for ensuring that primitive sequences generated by a primitive polynomial f (x)
over Z=(M) are pairwise distinct modulo 2. Compared with [27, Theorem 19], it can be seen that the
condition that (M;n) is a distinguishable pair (the de�nition of a distinguishable pair see [27, De�nition
3]) is deleted in the new result, and so the generating polynomial can be a primitive polynomial of degree
n � 2, rather than a typical primitive polynomial of degree 2n0+1 (see [27, Remark 5]). As a result, the
set of primitive sequences over Z=(M) that can be proven to be distinct modulo 2 is greatly enlarged. In
particular, two relatively complete results (see Theorem 7 and Theorem 10) are obtained for two special
cases: one is that v2 (pn1 � 1) = v2 (pn2 � 1) = � � � = v2 (pnr � 1), where M = p1p2 � � � pr is the canonical
factorization of M and v2 (m) denotes the greatest nonnegative integer k such that 2k divides m; the other
is that the generating polynomial is a typical primitive polynomial over Z=(M).
The rest of the paper is organized as follows. Section II presents some necessary preliminaries. Section

III gives the main results of this paper. Finally, conclusions are drawn in Section IV.

II. PRELIMINARIES
Let m be an integer greater than 1. If a sequence a = (a(t))t�0 over Z=(m) satis�es

a(i+ n) = [cn�1a(i+ n� 1) + � � �+ c1a(i+ 1) + c0a(i)]modm
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for all integer i � 0, where n is a positive integer and c0; c1; : : : ; cn�1 2 Z=(m) are constant coef�cients,
then a is called a linear recurring sequence of order n over Z=(m) generated by f(x) = xn�cn�1xn�1�
� � � � c0 (or a is a sequence of order n over Z=(m) in short). For convenience, the set of sequences
generated by f(x) over Z=(m) is generally denoted by G (f (x) ;m). Particular interests for cryptography
are the maximal period linear recurring sequences also called primitive sequences over Z=(m), which are
generated by primitive polynomials over Z=(m). Next we introduce the de�nitions of primitive polynomials
and primitive sequences over Z=(m).
Let f (x) be a monic polynomial of degree n over Z=(m). If f (0) is an invertible element in Z=(m),

then there exists a positive integer T such that xT � 1 is divisible by f(x) in Z=(m)[x]. The minimum of
such T is called the period of f (x) over Z=(m) and denoted by per (f (x) ;m). For the case that m is a
prime power, say m = pe, it is known that per (f (x) ; pe) � pe�1(pn � 1), see [23]. If per (f (x) ; pe) =
pe�1(pn � 1), then f (x) is called a primitive polynomial of degree n over Z=(pe). A sequence a over
Z=(pe) is called a primitive sequence of order n if a is generated by a primitive polynomial of degree
n over Z=(pe) and [a]mod p is not an all-zero sequence. A primitive sequence a of order n over Z=(pe)
is (strictly) periodic and the period per(a) is equal to pe�1(pn � 1), see [23]. For the case of a general
integer m, assume m = pe11 p

e2
2 � � � perr is the canonical factorization of m. A monic polynomial f (x) of

degree n over Z=(m) is called a primitive polynomial if for every i 2 f1; 2; : : : ; rg, f (x) (mod peii ) is a
primitive polynomial of degree n over Z=(peii ). A sequence a over Z=(m) is called a primitive sequence
of order n if a is generated by a primitive polynomial of degree n over Z=(m) and [a]mod pi is not an
all-zero sequence for every i 2 f1; 2; : : : ; rg, that is, [a]mod peii is a primitive sequence of order n over
Z=(peii ). It can be seen that the period of a primitive polynomial of degree n over Z=(m) and that of a
primitive sequence of order n over Z=(m) are both equal to

lcm
�
pe1�11 (pn1 � 1) ; pe2�12 (pn2 � 1) ; : : : ; per�1r (pnr � 1)

�
.

For convenience, the set of primitive sequences generated by a primitive polynomial f(x) over Z=(m) is
generally denoted by G0(f(x);m).
Finally we introduce a special class of primitive polynomials called typical primitive polynomials, which

were �rst proposed and studied in [22].
Let M be a square-free odd integer with the canonical factorization as M = p1p2 � � � pr. An element

� 2 Z=(M) is called a primitive element in Z=(M) if [�]mod pi is a primitive element in Z=(pi) for every
i 2 f1; 2; : : : ; rg, i.e., the multiplicative order of [�]mod pi in Z=(pi) is equal to pi � 1. It is clear that if
� is a primitive element in Z=(M), then for any divisor R > 1 of M , [�]modR is a primitive element in
Z=(R). Let f (x) be a primitive polynomial of degree n over Z=(M). In the theory of �nite �elds, it is
easy to see that there is a unique element �f 2 Z=(M) such that x� � �f mod f (x) holds over Z=(M),
where � = lcm

�
pn1�1
p1�1 ;

pn2�1
p2�1 ; : : : ;

pnr�1
pr�1

�
. We say that �f is the associated element of f (x) over Z=(M).

De�nition 1: ([22]) A primitive polynomial f(x) of degree n over Z=(M) is called a typical primitive
polynomial if �f is a primitive element in Z=(M), where �f is the associated element of f (x) over Z=(M).
We note that a primitive polynomial is not always a typical primitive polynomial, see for example

[22, Example 6]. In [22], some necessary and suf�cient conditions for the existence of typical primitive
polynomials of degree n over Z=(M) were presented. Here we emphasize that the existence of typical
primitive polynomials of degree n over Z=(M) only depends on the arithmetic properties of M and n,
see [22, Lemma 7]. If the modulus is not square-free, say m = pem0 for some prime power pe with e � 2
and some integer m0 � 1, indeed one can de�ne a typical primitive polynomial over Z=(m) analogously.
However, unlike the case of Z=(M), the existence of typical primitive polynomials of degree n over
Z=(m) depends on individual primitive polynomials besides n and m, for more details see [22, Section
4].

III. MAIN RESULTS
Let m � 2 be an integer and a a periodic sequence over Z=(m) with period T = per (a). Given

an element s 2 Z=(m), we say that the element s occurs in the sequence a if there exists an integer
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t 2 f0; 1; : : : ; T � 1g such that a (t) = s.
Then we can make our main result explicit in the following statement.
Theorem 2: Let M be a positive odd integer that is composite and square-free, and let f (x) be a

primitive polynomial of degree n � 2 over Z=(M), and let �f be the associated element of f (x) over
Z=(M). If
(1) for any sequence z 2 G0(f(x);M), every element in Z=(M) occurs in the sequence z; and
(2) for any divisor R > 1 of M , there is an integer kR > 0 such that

h
�kRf

i
modR

is a positive even
number,
then for a; b 2 G0(f(x);M), a = b iff [a]mod 2 = [b]mod 2.
Remark 3: If the conditions of Theorem 2 are satis�ed, then for any sequence a 2 G0(f(x);M),

theoretically there is an algorithm to recover a from [a]mod 2. Therefore in this sense we say that [a]mod 2
contains all the information of the original primitive sequence a. Moreover, the period of [a]mod 2 attains
the maximum possible value, that is per ([a]mod 2) = per (a) (the prove is similar with that of [28, Theorem
2-(ii)]).
The rest of this section is divided into two subsections. In Subsection III-A we discuss the validity

of the conditions of Theorem 2 by combining theoretical analysis and computer experiment, and then in
Subsection III-B we give the proof of Theorem 2.

A. Discussions on the conditions of Theorem 2
First we focus on Condition (1) of Theorem 2. Based on some estimates of exponential sums over

integer residue rings, a suf�cient condition was given in [27, Theorem 9] such that Condition (1) of
Theorem 2 is valid for all primitive polynomials of degree n over Z= (M).
Lemma 4: ([27, Theorem 9]) Let M , n and f (x) be described as in Theorem 2. Suppose M =

p1p2 � � � pr is the canonical factorization of M . Then Condition (1) of Theorem 2 is valid if
rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; : : : ; pnik � 1

� < 1� rX
i=1

pi � 1
pni � 1

. (1)

In theory it was proved that for any given square-free odd integer M , inequality (1) is satis�ed if n
is suf�ciently large, see [27, Theorem 11]. Furthermore, experimental data show that inequality (1) is
satis�ed for most of M if n > 6, see [27, Table 1] for more details.
Next we focus on Condition (2) of Theorem 2. For a given primitive polynomial f (x) of degree n

over Z= (M), one can easily calculate the value of �f , and so the validity of Condition (2) of Theorem 2
can be directly checked. It is clear that the validity of Condition (2) of Theorem 2 depends on individual
primitive polynomials. If Condition (2) of Theorem 2 is valid for all primitive polynomials of degree n
over Z= (M), then we say that it is valid for (M;n).
Let M = p1p2 � � � pr be the canonical factorization of M and 
i the set of all primitive elements in

Z= (pi) for i 2 f1; : : : ; rg. Since f (x) (mod pi) is also a primitive polynomial over Z= (pi), in the theory
of �nite �elds there exists a primitive element �i 2 
i such that

x
pni �1
pi�1 � �imod (f (x) ; pi) for i 2 f1; : : : ; rg ,

where the notation �A � Bmod (f (x) ; p)� means that A � Bmod f (x) holds over Z= (p). Denote

� = lcm

�
pn1 � 1
p1 � 1

; : : : ;
pnr � 1
pr � 1

�
and � i =

[�]mod pni �1
pni �1
pi�1

for i 2 f1; : : : ; rg .

Then we have that
x� � �� ii mod (f (x) ; pi) for i 2 f1; : : : ; rg ,
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and so by the Chinese Remainder Theorem together with the fact that x� � �f mod (f (x) ;M), we get
that

�f � x� � Lift(��11 ; : : : ; ��rr )mod (f (x) ;M) ,

where Lift(��11 ; : : : ; �
�r
r ) denotes the unique integer L between 0 and M � 1 such that

L � �� ii mod pi for i 2 f1; : : : ; rg .

Observing that Condition (2) of Theorem 2 is necessarily valid for (M;n) if it is valid for every �f 2
fLift(��11 ; : : : ; ��rr ) j (�1; : : : ; �r) 2 
1 � : : :� 
rg. Therefore, based on this observation, the proportions
of (M;n)'s such that Condition (2) of Theorem 2 is valid for (M;n)'s are tested under some ranges of
M and n, and the results are listed in Table 1. For example, the proportion is at least 98:348090% for
n = 2 and all odd integers M < 50000 that are composite and square-free. It can be see from Table 1 that
Condition (2) of Theorem 2 is in fact highly valid and can be valid for the great majority of (M;n)'s.

Table 1 Proportions of (M;n)'s such that Condition (2) is valid for (M;n)'s

n M < 50000 n M < 50000
2 � 98:348090% 11 100%
3 � 99:980177% 12 � 95:579490%
4 � 96:993525% 13 100%
5 100% 14 � 97:938417%
6 � 97:634465% 15 � 99:940531%
7 100% 16 � 96:491344%
8 � 96:907625% 17 � 99:993392%
9 � 99:973569% 18 � 97:383375%
10 � 96:755650% 19 100%

Remark 5: There do exist primitive polynomials f (x) such that Condition (2) of Theorem 2 is invalid.
For example, it can be veri�ed that f(x) = x2 + x+ 80 is a primitive polynomial over Z= (7� 13) and

�f � x
lcm

�
72�1
7�1 ;

132�1
13�1

�
� 3mod (f (x) ; 7� 13) .

Then ��
�tf
�
mod 7�13

�
t�0
= (1; 3; 9; 27; 81; 61; : : :)

is a sequence over Z= (7� 13) with period 6. It can be seen that Condition (2) of Theorem 2 is invalid
for f (x).
Finally we present some further results for the following two cases:
Case 1: v2 (pn1 � 1) = v2 (p

n
2 � 1) = � � � = v2 (p

n
r � 1), where M = p1p2 � � � pr is the canonical

factorization of M and v2 (m) denotes the greatest nonnegative integer k such that 2k divides m;
Case 2: f (x) is a typical primitive polynomial over Z= (M).
First we deal with Case 1. In this case, we will show that Condition (2) of Theorem 2 is always valid.
Lemma 6: Let M , n, f (x) and �f be described as in Theorem 2. Suppose M = p1p2 � � � pr is the

canonical factorization of M . Then Condition (2) of Theorem 2 is valid if v2 (pn1 � 1) = v2 (pn2 � 1) =
� � � = v2 (pnr � 1).

Proof: Set T = lcm (pn1 � 1; : : : ; pnr � 1) and � = lcm
�
pn1�1
p1�1 ; : : : ;

pnr�1
pr�1

�
. To prove the lemma, it

suf�ces to show that
�
T=2�
f �M � 1modM , (2)

since (2) implies that the congruence

�
T=2�
f � R� 1modR

holds for any divisor R > 1 of M , where R� 1 is a positive even number.
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Since v2 (pn1 � 1) = v2 (pn2 � 1) = � � � = v2 (pnr � 1) by assumption, we get that v2 (T ) = v2 (pni � 1)
for i 2 f1; : : : ; rg, and so

T

2
� pni � 1

2
mod pni � 1 for i 2 f1; : : : ; rg . (3)

Note that f (x) (mod pi) is a primitive polynomial of degree n over the �nite �eld Z= (pi). In the theory
of �nite �elds, it is clear that

xp
n
i �1 � 1mod (f (x) ; pi) and x(p

n
i �1)=2 � �1mod (f (x) ; pi) for i 2 f1; : : : ; rg . (4)

Then (3) and (4) together with the fact that x� � �f mod (f (x) ;M) yield

�
T=2�
f � xT=2 � x(pni �1)=2 � �1mod (f (x) ; pi) for i 2 f1; : : : ; rg ,

which implies that
�
T=2�
f � �1mod pi for i 2 f1; : : : ; rg . (5)

Therefore (2) follows from (5). This completes the proof.
The following Theorem 7 immediately follows from Theorem 2, Lemma 4 and Lemma 6.
Theorem 7: LetM , n and f (x) be described as in Theorem 2. SupposeM = p1p2 � � � pr is the canonical

factorization of M . If
(1)

Pr
k=2

P
1�i1<���<ik�r

Qk
j=1(pij�1)p

n=2
ij

lcm
�
pni1
�1;:::;pnik�1

� < 1�Pr
i=1

pi�1
pni �1

; and

(2) v2 (p
n
1 � 1) = v2 (pn2 � 1) = � � � = v2 (pnr � 1),

then for a; b 2 G0(f(x);M), a = b iff [a]mod 2 = [b]mod 2.
Next we deal with Case 2. In this case �f is a primitive element in Z=(M), and so for any divisor

R > 1 of M ,
��
�tf
�
modR

�
t�0
is a primitive sequence of order 1 generated by x�

�
�f
�
modR

over Z=(R).
Then we shall use the following Conjecture 8 on primitive sequences of order 1, which was made in [27,
Conjecture 15].
Conjecture 8: (Even Conjecture) Let m be a square-free odd integer. For every primitive sequence a

of order 1 over Z=(m), there exists an even element occurring in a.
Remark 9: The correctness of Conjecture 8 has been veri�ed for all square-free odd integers less than

300; 000. Moreover, although Conjecture 8 is not completely proven by now, a asymptotic result was
obtained in [27, Theorem 18] which implies that Conjecture 8 is true for almost all square-free odd
integers.
Therefore, in the case of Case 2, Theorem 2 can be represented as the following Theorem 10, which

is an improvement of [27, Theorem 19] since the strongest condition of [27, Theorem 19], that is (M;n)
is a typical primitive pair, is deleted in Theorem 10.
Theorem 10: LetM and n be described as in Theorem 2, and let f (x) be a typical primitive polynomial

of degree n over Z=(M). If
(1) for any sequence z 2 G0(f(x);M), every element in Z=(M) occurs in the sequence z; and
(2) Conjecture 8 is true for m 2 DM , where DM is the set of all divisors of M that are greater than 1,

then for a; b 2 G0(f(x);M), a = b iff [a]mod 2 = [b]mod 2.
In [27, Theorem 14], based on some estimates of exponential sums over integer residue rings, a suf�cient

condition was given for m such that Conjecture 8 is true for m.
Lemma 11: ([27, Theorem 14]) Given a square-free odd integer m, Conjecture 8 is true for m if

m+ 1

4
�
X
djm
d>1

d3=2

� (d)
�
�
ln d

�
+
1

5

�
,

where � (d) = lcm (d1 � 1; : : : ; dk � 1) provided that d = d1 � � � dk is the canonical factorization of d.
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Note that Conjecture 8 naturally holds for the case where m is a prime number, and so we can
immediately get the following Corollary 12 by replacing Condition (1) and (2) of Theorem 10 with the
estimate of Lemma 4 and Lemma 11, respectively.
Corollary 12: LetM and n be described as in Theorem 2, and let f (x) be a typical primitive polynomial

of degree n over Z=(M). Suppose M = p1p2 � � � pr is the canonical factorization of M . If

(1)
Pr

k=2

P
1�i1<���<ik�r

Qk
j=1(pij�1)p

n=2
ij

lcm
�
pni1
�1;:::;pnik�1

� < 1�Pr
i=1

pi�1
pni �1

; and

(2) m+1
4
�
P
djm
d>1

d3=2

�(d)
�
�
ln d
�
+ 1

5

�
for every nonprime divisor m of M ,

then for a; b 2 G0(f(x);M), a = b iff [a]mod 2 = [b]mod 2.

B. Proof of Theorem 2
This subsection is devoted to the proof of Theorem 2. We �rst give a necessary lemma.
Lemma 13: Let M , n, f (x) and �f be described as in Theorem 2. If
(1) for any sequence z 2 G0(f(x);M), every element in Z=(M) occurs in the sequence z; and
(2) there exists an integer kM > 0 such that

h
�kMf

i
modM

is a positive even number,
then for a; b 2 G0(f(x);M) with [a]mod 2 = [b]mod 2, there is a prime divisor p of M such that [a]mod p =
[b]mod p.

Proof: Suppose, on the contrary, that [a]mod p 6= [b]mod p for any prime divisor p of M . Then it is
clear that c = [a� b]modM is a primitive sequence generated by f (x) over Z= (M), i.e. c 2 G0(f(x);M).
By Condition (1) there is an integer t� � 0 such that c (t�) = 1, i.e. [a (t�)� b (t�)]modM = 1. Then
[a (t�)]mod 2 = [b (t

�)]mod 2 implies that

a (t�) = 0 and b (t�) =M � 1.

Since x� � �f mod f(x) holds over Z=(M) for some positive integer � and by Condition (2) there is an
integer kM � 0 such that C :=

h
�kMf

i
modM

is a positive even number, we get that

x��kM � �kMf � Cmod f(x) (6)

holds over Z=(M). Then by applying (6) to a and b, respectively, we get that

a (t� + � � kM) = [C � 0]modM = 0 and b (t� + � � kM) = [C � (M � 1)]modM =M � C,

which yield
[a (t� + � � kM)]mod 2 = 0 6= 1 = [b (t� + � � kM)]mod 2 ,

a contradiction to the assumption that [a]mod 2 = [b]mod 2. Therefore, there at least exists a prime divisor
p of M such that [a]mod p = [b]mod p. This completes the proof.
Now we start to prove Theorem 2.
Proof: [Proof of Theorem 2] Since the necessary condition is trivial, in the following, we only prove

the suf�cient condition.
If a; b 2 G0(f(x);M) satisfying [a]mod 2 = [b]mod 2, then by Lemma 13 there is a prime divisor p of M

such that [a]mod p = [b]mod p. Denote by R the greatest divisor of M satisfying [a]modR = [b]modR. Then it
is clear that R is divisible by p. In the following it suf�ces to show that R =M .
Suppose, on the contrary, that R < M .
Let us denote Q = M=R. Then we have that Q > 1 and [a]mod q 6= [b]mod q for any prime divisor q

of Q. Since M is square-free, it is clear that gcd(R;Q) = 1. By the Chinese Remainder Theorem, there
exist unique sequences u1 over Z=(R) and u2 over Z=(Q) such that

a = [Q � u1 +R � v1]modM , (7)
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where [Q � u1 +R � v1]modM = ([Q � u1 (t) +R � v1 (t)]modM)t�0. Moreover, it can be seen that u1 2
G0(f(x); R) and v1 2 G0(f(x); Q). Analogously, we have that

b = [Q � u2 +R � v2]modM , (8)

where u2 2 G0(f(x); R) and v2 2 G0(f(x); Q). Since [a]modR = [b]modR, it follows that u1 = u2, and so

[a� b]modM = [R � (v1 � v2)]modM = R � [v1 � v2]modQ .

Furthermore, for any prime divisor q of Q, since [a]mod q 6= [b]mod q, we have that [v1]mod q 6= [v2]mod q,
and so [v1 � v2]modQ 2 G0(f(x); Q). Set

z = [Q � u1 +R � (v1 � v2)]modM .

Then it can be seen that z 2 G0(f(x);M). Hence Condition (1) implies that (u1 (t) ; [v1 (t)� v2 (t)]modQ)
runs through the set Z= (R)� Z= (Q) as t runs from 0 to per(z)� 1.
Choose an integer t� � 0 such that u1 (t�) = u2 (t�) = 0 and

[v1 (t
�)� v2 (t�)]modQ = 1. (9)

Then (7) and (8) yield
a (t�) = R � v1 (t�) and b (t�) = R � v2 (t�) .

Since [a (t�)]mod 2 = [b (t�)]mod 2 and [R]mod 2 = 1, we obtain that

[v1 (t
�)]mod 2 = [v2 (t

�)]mod 2 . (10)

Combining (9) and (10) we can deduce that

v1 (t
�) = 0 and v2 (t�) = Q� 1,

and so
a (t�) = 0 and b (t�) =M �R.

Since x� � �f mod f(x) holds over Z=(M) for some positive integer �, we have that

x��k � �kf mod f(x) (11)

holds over Z=(M) for any integer k � 0. Applying (11) to a and b, respectively, we get that

a (t� + � � k) =
�
a (t�) � �kf

�
modM

= 0

and
b (t� + � � k) =

�
b (t�) � �kf

�
modM

=M �R �
�
�kf
�
modQ

.

By the assumption of Condition (2) there exists an integer kR � 0 such that
h
�kRf

i
modQ

is a positive even
number, we get that

[a (t� + � � kR)]mod 2 = 0 6= 1 = [b (t� + � � kR)]mod 2 ,

a contradiction to the assumption that [a]mod 2 = [b]mod 2.
Therefore, we have that R =M . This completes the proof.
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IV. CONCLUSIONS
Let M be an odd integer that is composite and square-free and Z=(M) the integer residue ring

modulo M . One of the most attractive problems for primitive sequences of order n over Z=(M) is
whether their modulo 2 reductions are pairwise distinct, that is a = b iff [a]mod 2 = [b]mod 2, where
a and b are two primitive sequences generated by a primitive polynomial of degree n over Z=(M).
It is known that the problem is not true if n = 1. For example, a = (5; 4; 20; 16; 17; 1; 5; : : :) and
b = (13; 2; 10; 8; 19; 11; 13; : : :) are two primitive sequences of order 1 generated by x � 5 over Z=(21).
It can be seen that [a]mod 2 = [b]mod 2 whereas a 6= b. However, until now no counterexample is found for
n � 2. Based on extensive experiments and the results obtained in this paper, it is further believed that the
problem should be true for n � 2. A complete solution to this problem will be one of the subjects of our
future work and it may rely on more investigations on the distribution properties of primitive sequences
over Z=(M), as well as more profound results in number theory.
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