Cryptanalysis of RAPP, an RFID
Authentication Protocol

Nasour Bagheri, Masoumeh Safkhani, Pedro Peris-Lopez, Juan E. Tapiador

Abstract—Tian et al. proposed a novel ultralightweight
RFID mutual authentication protocol [4] that has recently
been analyzed in [1]], [2], [5]. In this letter, we first propose
a desynchronization attack that succeeds with probability
almost 1, which improves upon the 0.25 given by the attack
in [1]. We also show that the bad properties of the proposed
permutation function can be exploited to disclose several
bits of the tag’s secret (rather than just one bit as in [2]),
which increases the power of a traceability attack. Finally,
we show how to extend the above attack to run a full
disclosure attack, which requires to eavesdrop less protocol
runs than the attack described in [5] (i.e., 192 << 239y,

Index Terms—RFID, Authentication, Attacks.

I. INTRODUCTION

Tian et al. recently proposed a permutation based
mutual authentication protocol called RAPP [4]. In this
scheme, tags only use three simple operations: bitwise
XOR, left rotation and a very lightweight permutation
function Per(-), defined as:

Definition: Let (X); denote the i*" bit of X, z =
(@)1l (@)l - ()1 and y = (y)1][(w)2] - - - [[ ()1, where
()4, (y); € {0,1} and || denotes concatenation. Assume
too that (y)e, = W = -+ = (Y, = 1 and
(y)km+1 (y)km+2 = = (y)kz = 0, where
1 <k <k < -+ <kp <landl < kpyr <
km4o < --- < k; < l. Then the permutation x based
on y, denoted as Per(x,y), is as follows: Per(x,y) =
@) 1@l 1@ 1@l @ty - 11 @

The protocol is sketched in Fig. [I| To prevent desyn-
chronization attacks (e.g, if the adversary blocks the
last message), the reader keeps two sets of the tuple
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Reader P}FDIL? >
{IDS, IDS™", K\°", |« B Tag
K", K™ Ky i C = {IDS, K, K>, K3}
K;UM, KSIM:W} <€ D, i

A= Per(K,, Ki) ® ny ; B=Per(K, ® K;, Rot(ny, n1)) ® Per(n, K;)
C=Per(m®K;,n®K3)® ID
D = Per(K;, Ky) ® ny 5 E = Per(Ks, Rot(ny, ny)) ® Per(n;, K3 ® K;)

Updating:

1) If IDS™ is received: Updating:

IDS"" = Per(IDS*", n, ® ny) ® K" IDS" = Per(IDS, ny ® ny)
® KM o K21 oK 0K, 0K;

K™ =Per(K|”M, m) o K™
K" =P gr(Kzold’ n) e Ko
K5"" = Per(K;*, ny @ ny) ® IDS™

K" =Per(Ky, ny) @ K,
K, = Per(Ky, ny) ® K,
K3' = Per(Ks, ny @ ny) ® IDS

2) If IDS™" is received: IDS = IDS"
DS = IDS™ Klnld =K K :K]*
KoM = K Kol = e K=K"
IDS"" = Per(IDS™, ny ® ny) © K;* K=Ky

® Kza/d ® K?uld
K" = Per(K,", ny) ® K,
K" = Per( KZ()Id, n) e Ko
K3"" = Per(Ks™, ny @ n,) @ IDS™

Fig. 1. Messages exchanged in RAPP [4].

{IDS* K¢, K3, K3} for © = old (previous values) and
x = new (updated values).

Contributions: RAPP is claimed to be resistant
against common attacks, including desynchronization and
traceability. In this letter, we first propose a desynchro-
nization attack that is independent of the mechanism used
to build the messages and has a success probability of
almost 1, which improves a 75% the success probability
of the previous known attack [1]]. Secondly, we introduce
a traceability attack that exploits the weak properties of
Per(-). Our attack is much more powerful than the one
described in [2], since we disclose several bits of the 1D
instead of just one. The attack can be extended to disclose
the whole ID (as in [3]]) at the expense of requiring
various protocol runs.



TABLE I
INTERNAL SECRET VALUES AFTER DESYNCHRONIZATION.

Reader (database)

Tag

IDS' = IDS
K = Ky K84 = Koy K§' = K

IDS™" = Per(IDS,n1 ®n2) ® K1 & K2 ® K3

TDS™" = Per(IDS,n}, & n}) & K1 & K2 & K3

K3 = Per(Kz,ny ®nb) ® IDS

Kpev = PeT(Kl,n’l) @O Ky K¢V = Per(KQ,n’z) D K,

K" = Per(K1,n1) ® Ko
K2} = Per(Ka,ng2) ® K1
K2 = Per(Ks,n1 ®nz) ®IDS

II. DESYNCHRONIZATION ATTACK ON RAPP

In this attack, the adversary misleads both the tag and
the reader to update their common values to different
values. The attack is based on the observation that the two
random numbers used in the protocol are both generated
by the reader. In a first step, the adversary A eavesdrops
one protocol run between the reader R; and the tag T;,
stores the exchanged values, and blocks D and E to
prevent T; from updating its internal secret. Note that
the captured values are:

A = PET(K27K1) (&) ni,

B = Per(K1 @ K», Rot(n1,n1)) ® Per(ni, K1),

C = Per(nl ® Ki,m EBKg) ®ID, D = PGT(Kg, KQ) D na
and E = Per(K3, Rot(n2,n2)) @ Per(ni, K3 @ Ka).

After that, A waits until a legitimate reader initi-
ates a new session with 7;. In this session R; sends
A" = Per(Ky, K1) @ nf and B’ = Per(K; @
K, Rot(n},n})) & Per(n}, K1) to T; and T; sends
C' = Per(n) ® Ki,n}, @ K3) @ ID to R;. In re-
sponse, R; computes D’ = Per(Ks, K2) @ n) and
E' = Per(Ks, Rot(nh,nb)) @ Per(n}, Ks ® K3) and
sends D’ and F’ to T;, which are both blocked by A.
Thus, the tag does not execute the updating mechanism
but the reader does it. In particular, R; gets:

IDSM = DS, K9 = K, K§'% = Ky, K§'% = K3,
IDS™" = Per(IDS,n} ®nb) ® K1 ® K2 ® Ks,

K7 = Per(Ki,n}) ® K2, K3 = Per(Ka,n5) ® K,
K5 = Per(Ks,n| @ ny) ® IDS.

whereas 7T; does not update its internal values and these
remain as {IDS, K1, Ko, K3}.

Finally, A supplants a legitimate R; by replying old
values. A sends Hello message to T; and T; replies with
its pseudonym I DS. Then, A sends A and B (captured in
the first step) to 7;. Then T; extracts ny from A, verifies
B, and sends C' to R; (i.e., to \A). Upon receiving C, A
replies with the values D and F eavesdropped in step 1.
Finally, T; extracts ny from D, verifies F, and updates
its secrets:

[DS* = Per(IDS,m @ng) @ Kl @KQ EBKg,

Kf = Per(K1,n1) @ KQ,K; = PeT(K27n2) @ Kl,

K3 = Per(Ksz,n1 @ n2) & IDS,

IDS =1IDS*, K1 = K{, Ko = K5,K5 = KT.

Thus, given that ny,n),ns and n), are chosen randomly,
by the end of the attack the reader keeps two records for
the tag, none of which match the values stored in the tag
(see Table [[| for details). Note that the success probability
for this attack is 1 — 272! where [ is the bit length of
the random numbers. For instance, for [ = 96 as in [2],
the success probability is almost 1.

III. TRACEABILITY ATTACK ON RAPP

In RAPP, a desynchronized tag never updates its IDS.
Therefore, such a constant value can be used to carry out
a straightforward traceability attack. We next describe a
different attack based on the uniqueness of /D and some
weak properties of the permutation function Per(-):

e Observation 1: Per(z,y) = (P)i|...|[(P); is
not a perfect permutation. More precisely, (z); will
be assigned to either (P); or (P);; (x)2 will be
assigned to either (P)q, (P)a, (P);—1 or (P);; and
SO on.

o Observation 2: Given the location of (z); in
Per(z,y), there are only two possible choices for
the location of (z);11;

o Observation 3: Given y
Per(z,y?), for j < i, if
(y%)1, either (P'); = (P?); = ... =
(P =(P)i=...= (P

We next show how to obtain {(/D);__1) ©

(I D),}ﬁ/jl The adversary A eavesdrops ¢ protocol runs,
stores the exchanged values and blocks message C'
to abort the protocol. The values captured in the gth
round are A7 = Per(Ks, K1) ® n}, B/ = Per(K; ®
Ks, Rot(n],n})) & Per(nj, K1), and C?7 = Per(nj &
Ki,n] & K;)® ID.



It is easy to see that A7 @ Af = nd @ n{ for j, f <
t. Hence, it is possible to determine whether (n])m <
(n])y, for 1 < m < [ and group nl,...,n! into two
groups, denoted by G'1 and G2, respectively, where any
entry in a group holds the same value in its m®* bit.
Now, consider the case where G1 and G2 are grouped
by the Least Significant Bit (LSB) of each entry. Then,
for any nl,n{ € G1 one can state that (nf); = (n{)l
and for n? € G1 and any n/ € G2 we have (n!); &
(n{ )1 = 1. A can also group the values of C based
on how ny has been grouped. In addition, given that in
each group the LSB of all n;s are the same, K3 remains
constant (non-updating condition by the blockage of C'),
and ID is fixed, then either LSB or, equivalently, the
Most Significant Bit (MSB) of all C’s in that group must
be the same. For instance, if for all CY € G1 the LSBs
are the same and for all CV € G2 the MSBs are the same
then A deduces that for any 7/} € G1, (n]®K3), = 1 and
(CI); = (n])1 @ (K1), ® (ID), and for any nl € G2,
(n] © K3)1 = 0 and (C7); = (n7)1 @ (K1)1 © (ID);
In this case, it is easy to deduce that for any C? € G1
and any CF € G2, (C7); ® (C¥), =1@(ID), & (ID),.
Otherwise, for all C? € G1 the MSBs are the same and
for all C7 € G2 the LSBs are the same, then A deduces
that for any nj] € G1, (n] ® K3); = 0 and (CY), =
(n])1 @ (K1)1 @ (ID); and for any n{ € G2, (n] ®
Kg)l =1 and (Cj)l = (nl) (Kl) (ID)l In this
case, for any C7 € G1 and any O/ € G2, we have
(C9), & (CT)y = 1@ (ID),; ® (ID);. Therefore, in both
of the above cases, A reveals one bit of information about
the I D (in particular, the XOR of two of its bits), which
remains unchanged during all the tag’s life.

Given the location of (n));@® (K1), for C €Gl,eg.,
(C7)1, there are two possible locations for (n])s® (K1)
in C7, e.g., (C7)y or (C7?),. Following the given proce-
dure, we can group the values of n; and C' in G1 based
on the second bits of n;s and determine (I D)o @ (ID);.
This process can be repeated to retrieve (ID);®(ID);_1
based on the grouping of the nis and C's in G2. These
new information increases the adversary’s probability of
tracing the tag. The adversary fails to determine the
correct value of IDy @ ID; if all (n/)y, for j < t,
has the same value, which occurs with a probability
of 27, or for any C7 € G1 and C7 € G2 we have
(C7); = (C7);, which happens with a probability of
2-1G11 x 271621 = 2=t where |G1| and |G2| denotes

the cardinality of G1 and G2 respectively. Hence, the
the total success probability is (1 — 27%)?

We note here that formal traceability models (e.g.,
[3]) require the disclosure of just one bit. Nevertheless,
more bits are needed to trace a constelation of tags.
Our attack facilitates this at the expense of requiring
several protocol runs. For instance, if the attacker wants
to disclose 3 bits, the success probability is approximately
((1 275 (1- t/Q) . For example, for ¢ = 8 the
success probability is 0.77, which is greater than 0.5. For
the given attack, the attack complexity increments expo-
nentially with the number of bits recovered. However, a
more efficient disclosure is possible, as described next.

IV. DISCLOSURE ATTACK

From Section [[I, we can generally state that to deter-
mine (n]); ® (K3)y, given the location of (n1)f 1P
(K1)f—1, there are two possible locations for (n]); @
(K1)f, ie., m for (n] @ K3); = 0 and n for (n] @
Ks3)r = 1. An adversary A can calculate such m and n
for all the stored records. Since ¢ > [, there are at least
t — 1 collisions for those cases where (n]); ® (K3)y =0
and also ¢ —1 collisions for those where (n]) ;& (K3) s =
1, with j < t. Assume that for (n]); @ (K3); = 1 and
(n§)y @ (Ks)5 =1, (n]); @ (K1)s and (nf); & (K1);
are grouped into (C7),, and (C¢),, respectively. Then,
for (n])f = (nf)y we have (C7),, = (C°),, because
(C9)n = (0]) 1 ® (K1) ® (ID) . and (C)yn = (n)
(K1); ® (ID),,. This may be used to verify whether
the assumption is correct or not. Thus, to determine
(n1)5 @ (K3)s, given (n])s—1 @ (K3) 51, A groups the
records based on the f* bit of nis, i.e., G1 and G2,
where all entries in each group hold the same value in
that bit of ny. Now, it is obvious that for any n] € G1
and n§ € G1 one can state that (n]); © (K3); =
(nf) ® (Ka)s and (n]); @ (K1) = (nf)y @ (K0)y.
(The same is applicable for entries in G2). Next A
guesses (n))r ® (K3); = 1 for entries in G1 and
checks its correctness by verifying the collision in the
expected location of Cs, e.g., (n]) s = (nf)s and also the
adversary expects to have (C7),,, = (C°),, as previously
explained. If (n1); @ (K3); = 1 passes the verification
for G1, then (n}) ;@& (K3) s = 0 must pass the verification
for entries in G2. However, it is possible that a wrong
guess for (n])y @ (K3) passes all verifications, with a



probability upper bounded by 2!~*, where the probability
of determining the correct value is 1—2'~*. Summarizing,
the success probability of extracting a correct value for
KgEBn{, and1 < j <t,is (1 — 2l*t)l ~1-—1-2"t, For
instance, if l = 64 and ¢t = 2/, then itis 1 — 2728 ~ 1 .

By the end of the above process, for any n]l we
have [ equations of the form (K3 @ nf)y, for f < I.
Moreover, for any bit of (C7) we have (C7),,, = (n{) ;&
(K1)f @ (ID),,. These equations are not all linearly
independent — collided values to the same position in a
group generate the same equation. Hence, assuming that
there are n possible locations for (n1)y @ (K7)s that
are confirmed, A has n distinct equations of the form
(1) (K1) &(ID)mys - o (0) 1 5(K1) & (ID)
where 1 < m; < ... < m, <. For instance, if A de-
termines (K3 @ n7 )2, she has the following information:
{(n1)1®(K1)1©(ID)1, (n1)1® (K1 )1 & (I D), (n)2®
(K1)2®(ID)1, ()2 (K1)2 (ID)2, (n1)2 8 (K1)2®
(ID);, (n])2 ® (K1)2 ® (ID);—1}. The above equations
can be used to compute {(n]); ® (K1)1 ® (n}])2 ®
(K1)2, (n)18(K1)18(ID)2, (n1)186(K1)1®(ID)1-1}-
Therefore, when A discloses (K3 @ n]);, she is expected
to have enough information to reveal (n§@ K1) ;S (I D),
for any given e <t and f,m <.

The adversary can also retrieve K as follows. If we
assume that (K;); = 1 then (A7), = (K3)1 & (nf)1.
On the other hand, A already knows the value of
(n?)1® (K3)1. So it can determine (K3); @ (K3); which
should be the same for all j < ¢. If all the values
are equal then the guess is correct, with a probability
of 1 —27% and (K;); = 1; otherwise (K31); = 0.
In addition, A discloses another bit of information of
the form (K3); @ (n1)1 or (Ka)1 @ (n1);. Next, for
2 < m < I, given the location of (K3),,_1 in A7,
there are two possible locations for (K53),,, i.e., e for
(K1)2 =1 and f for (K1)2 = 0 respectively. Assuming
(K1)m = 1 then (A7), = (K2)m @ (nl). On the other
hand, A already knows the value of (n]).®(K3)e., so she
can determine (K3),, ® (K3)e too, which should be the
same for all 1 < j < ¢ when the guessed value for (K1),
is correct. If all the values are equal, then the guess is
correct with a probability of 1 — 27¢, and (K1), = 1;
otherwise (K1)2 = 0. This process can be repeated to
retrieve all bits in K7 and auxiliary equations can also
be deduced (K2)5® (K3)es,-- -, (K2); @ (K3)e,, where
e;j € {1,...,1}. The success probability of extracting a

correct value for K, is (1 — 24)1 ~1-—127t

In the next step, the adversary combines the records
of the form (n{ & Ki); @ (ID),, for any given
e <t f < [l and f < [, and K; to deter-
mine the following information: {(n}); @ (n})s, (n}); @
(n%)% A (n%)l & (n%)h (n%)l & (ID)17 A (n%)l &
(ID)1}. Then A guesses (n});. Given (ni); A can
determine (n{)s,...,(ni); (i.e., she discloses all bits
in nJ) and ID from the above equations. Given that
A knows K3 @ nll, she can easily get K3 now. Then,
from the auxiliary equations (K2)1D(K3)ey,- - - (K2)i®D
(K3)e,, A discloses K3 too. Finally, A uses the stored
BJs to verify the correctness of the guessed value for
(n});. If any B’ does not pass the verification, then A
should flip its guess for (n}); and repeat the process to
determine nls, ID, Ko and Kj3. Finally, A reveals all
secrets. Assuming that the adversary has eavesdropped
t sessions, the success probability of the given attack is
(1—21)" (1 =274 & (1 —12!71) x (1 —127*). For
example, for [ = 96 and ¢ = 2 - (which is much less
than ¢ = 230 eavesdropped sessions required in [5])), then
the success probability is almost 1.

V. CONCLUSIONS

We have described desynchronization, traceability, and
disclosure attacks against RAPP more powerful than
those previously published. RAPP’s major contribution
is its permutation function, which is clearly insufficient.
While the traceability and disclosure attacks depend on
the permutation and might be fixed by proposing a
stronger permutation, our desynchronization attack works
for any permutation, showing that RAPP has major flaws
that cannot be fixed just by replacing the permutation.
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