
1

Cryptanalysis of RAPP, an RFID
Authentication Protocol

Nasour Bagheri, Masoumeh Safkhani, Pedro Peris-Lopez, Juan E. Tapiador

Abstract—Tian et al. proposed a novel ultralightweight
RFID mutual authentication protocol [4] that has recently
been analyzed in [1], [2], [5]. In this letter, we first propose
a desynchronization attack that succeeds with probability
almost 1, which improves upon the 0.25 given by the attack
in [1]. We also show that the bad properties of the proposed
permutation function can be exploited to disclose several
bits of the tag’s secret (rather than just one bit as in [2]),
which increases the power of a traceability attack. Finally,
we show how to extend the above attack to run a full
disclosure attack, which requires to eavesdrop less protocol
runs than the attack described in [5] (i.e., 192 << 230).

Index Terms—RFID, Authentication, Attacks.

I. INTRODUCTION

Tian et al. recently proposed a permutation based
mutual authentication protocol called RAPP [4]. In this
scheme, tags only use three simple operations: bitwise
XOR, left rotation and a very lightweight permutation
function Per(·), defined as:

Definition: Let (X)i denote the ith bit of X , x =
(x)1‖(x)2‖ · · · ‖(x)l and y = (y)1‖(y)2‖ · · · ‖(y)l, where
(x)i, (y)i ∈ {0, 1} and ‖ denotes concatenation. Assume
too that (y)k1 = (y)k2 = · · · = (y)km

= 1 and
(y)km+1 = (y)km+2 = · · · = (y)kl

= 0, where
1 ≤ k1 < k2 < · · · < km ≤ l and 1 ≤ km+1 <
km+2 < · · · < kl ≤ l. Then the permutation x based
on y, denoted as Per(x, y), is as follows: Per(x, y) =
(x)k1 ||(x)k2 || · · · ||(x)km

||(x)kl
||(x)kl−1 || · · · ||(x)km+1 .

The protocol is sketched in Fig. 1. To prevent desyn-
chronization attacks (e.g, if the adversary blocks the
last message), the reader keeps two sets of the tuple

Nasour Bagheri is with the Department of Electrical Engineering,
Shahid Rajaee Teachers Training University, Tehran, Iran.

Masoumeh Safkhani is with the Department of Electrical Engineer-
ing, Tehran, Iran.

Pedro Peris-Lopez and Juan E. Tapiador are with COSEC Lab,
Universidad Carlos III de Madrid, Spain.

2 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

Fig. 1. The computation of the example.

Moreover, the Hamming weight of B, wt(B), is m(0 ≤ m ≤
l) and

bk1 = bk2 = · · · = bkm = 1,

bkm+1 = bkm+2 = · · · = bkl
= 0,

where 1 ≤ k1 < k2 < · · · < km ≤ l and 1 ≤ km+1 <
km+2 < · · · < kl ≤ l. Then, the permutation of A according
to B, denoted as Per(A, B), is

Per(A, B) = ak1ak2 · · · akmakl
akl−1 · · · akm+2akm+1 .

Example Given X = 01001010, Y = 01110101. Then we
have

Per(X, Y) = 10000110.

Fig. 1 shows the computation.
Permutation can be computed effectively on passive tags. In

order to compute Per(A, B), two pointers, pA and pB , are set
to string A and string B respectively, indicating the index of
the strings. Firstly, pA and pB go synchronously from the most
significant bit (msb) to the least significant bit (lsb). During
the movement of the pointers, if the bit pointed by pB is 1, the
bit pointed by pA will be copied into the third string. Since
A and B are of the same length, pA and pB will reach lsb at
the same time. Then they will change the movement direction
and go back to msb simultaneously. During the return process,
if the bit pointed by pB is 0, the bit pointed by pA will be
copied into the third string. The permutation will go to an end
when pA and pB both return to msb and the third string is the
computation result.

There are two remarks that should be noticed in the use of
permutation. One is the invariability of Hamming weight. It
is obvious that wt(Per(A, B)) = wt(A). Hence, the permu-
tation can not be used alone as it will reveal the information
of Hamming weight. So in our protocol, permutation takes
random numbers as input and the result is always XORed
with other values. The other remark is about the value of the
second input of permutation. Suppose that B and B′ are two
strings that only differ in lsb. Then the following equation
holds: Per(A, B) = Per(A, B′). This means that lsb of B
doesn’t influence the output. Although A is not revealed, this
is a weakness that can be exploited by the adversary to flip
lsb of B and pass the verification. Therefore, in our protocol,
we add rotation operation to shift lsb in the second input
of permutation. There are two kinds of rotation operations,
denoted by Rot1(X, Y) and Rot2(X, Y). Rot1(X, Y) is
defined to left rotate X by wt(Y) bits. Rot2(X, Y) left rotates
X by Y (mod L) bits, where L is the bit length of X . Except
that Y is composed of all 0s or 1s, X will always be rotated by
certain bits in the result of Rot1(X, Y). However, the result
of Rot2(X, Y) may be X itself with the probability equal

Fig. 2. RAPP protocol.

to 1
L . On the other hand, the probability distribution of the

number of rotated bits in Rot1(X, Y) is not uniform due to
the fact that the distribution of wt(Y) is unbalanced. But that
of Rot2(X, Y) is uniform. Thus, the sole use of Rot1(X, Y)
is not proper in the authentication protocol because X is more
likely to be rotated by L

2 bits than by 1 bit. In our case, the
purpose is to change the position of lsb in the second input of
permutation. As a result, we decide to use Rot1(·, ·) and just
denote it by Rot(·, ·).

RAPP involves three entities: the tag, the reader and the
back-end database. The communication between the reader
and the back-end database is assumed to be secure since
both the reader and the back-end database can use traditional
cryptographic primitives to protect the communication. On
the other hand, the channel between the reader and the tag
is wireless and vulnerable to all the possible attacks due
to the fact that the tag has limited resources to protect the
transmitted data. Each tag has an L-bit unique identity ID and
shares the four elements {IDS, K1, K2, K3} with the back-
end database. IDS is the pseudonym of the tag and K1, K2,
K3 are the secret keys. IDS, K1, K2 and K3 are all L-
bits and will be updated at the end of a successful protocol
run. In order to resist de-synchronization attacks, the back-end
database keeps {IDSold, Kold

1 , Kold
2 , Kold

3 } for the old values
and {IDSnew, Knew

1 , Knew
2 , Knew

3 } for the new values as an
entry of each tag. Fig. 2 illustrates the specification of the
protocol. The details of the messages exchanged are presented
below.

1. The reader sends a ”Hello” message to the tag to initiate
a protocol session.

2. Upon receiving the reader’s query, the tag transmits IDS
to the reader.

3. After receiving IDS, the reader uses it as an index to
search a matched entry in the database. If it is an old IDS, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 1. Messages exchanged in RAPP [4].

{IDSx, Kx
1 , Kx

2 , Kx
3 } for x = old (previous values) and

x = new (updated values).
Contributions: RAPP is claimed to be resistant

against common attacks, including desynchronization and
traceability. In this letter, we first propose a desynchro-
nization attack that is independent of the mechanism used
to build the messages and has a success probability of
almost 1, which improves a 75% the success probability
of the previous known attack [1]. Secondly, we introduce
a traceability attack that exploits the weak properties of
Per(·). Our attack is much more powerful than the one
described in [2], since we disclose several bits of the ID
instead of just one. The attack can be extended to disclose
the whole ID (as in [5]) at the expense of requiring
various protocol runs.

2

TABLE I
INTERNAL SECRET VALUES AFTER DESYNCHRONIZATION.

Reader (database) Tag
IDSold = IDS

Kold
1 = K1; Kold

2 = K2; Kold
3 = K3 IDSnew = Per(IDS, n1 ⊕ n2)⊕K1 ⊕K2 ⊕K3

IDSnew = Per(IDS, n′1 ⊕ n′2)⊕K1 ⊕K2 ⊕K3 Knew
1 = Per(K1, n1)⊕K2

Knew
1 = Per(K1, n′1)⊕K2; Knew

2 = Per(K2, n′2)⊕K1 Knew
2 = Per(K2, n2)⊕K1

Knew
3 = Per(K3, n′1 ⊕ n′2)⊕ IDS Knew

3 = Per(K3, n1 ⊕ n2)⊕ IDS

II. DESYNCHRONIZATION ATTACK ON RAPP
In this attack, the adversary misleads both the tag and

the reader to update their common values to different
values. The attack is based on the observation that the two
random numbers used in the protocol are both generated
by the reader. In a first step, the adversary A eavesdrops
one protocol run between the reader Ri and the tag Ti,
stores the exchanged values, and blocks D and E to
prevent Ti from updating its internal secret. Note that
the captured values are:
A = Per(K2, K1)⊕ n1,
B = Per(K1 ⊕K2, Rot(n1, n1))⊕ Per(n1, K1),
C = Per(n1⊕K1, n1⊕K3)⊕ ID, D = Per(K3, K2)⊕n2

and E = Per(K3, Rot(n2, n2))⊕ Per(n1, K3 ⊕K2).
After that, A waits until a legitimate reader initi-

ates a new session with Ti. In this session Ri sends
A′ = Per(K2, K1) ⊕ n′1 and B′ = Per(K1 ⊕
K2, Rot(n′1, n

′
1)) ⊕ Per(n′1, K1) to Ti and Ti sends

C ′ = Per(n′1 ⊕ K1, n
′
1 ⊕ K3) ⊕ ID to Ri. In re-

sponse, Ri computes D′ = Per(K3, K2) ⊕ n′2 and
E′ = Per(K3, Rot(n′2, n

′
2)) ⊕ Per(n′1, K3 ⊕ K2) and

sends D′ and E′ to Ti, which are both blocked by A.
Thus, the tag does not execute the updating mechanism
but the reader does it. In particular, Ri gets:
IDSold = IDS, Kold

1 = K1, K
old
2 = K2, K

old
3 = K3,

IDSnew = Per(IDS, n′1 ⊕ n′2)⊕K1 ⊕K2 ⊕K3,

Knew
1 = Per(K1, n

′
1)⊕K2, K

new
2 = Per(K2, n

′
2)⊕K1,

Knew
3 = Per(K3, n

′
1 ⊕ n′2)⊕ IDS.

whereas Ti does not update its internal values and these
remain as {IDS, K1, K2, K3}.

Finally, A supplants a legitimate Ri by replying old
values. A sends Hello message to Ti and Ti replies with
its pseudonym IDS. Then,A sends A and B (captured in
the first step) to Ti. Then Ti extracts n1 from A, verifies
B, and sends C to Ri (i.e., to A). Upon receiving C, A
replies with the values D and E eavesdropped in step 1.
Finally, Ti extracts n2 from D, verifies E, and updates
its secrets:

IDS∗ = Per(IDS, n1 ⊕ n2)⊕K1 ⊕K2 ⊕K3,

K∗1 = Per(K1, n1)⊕K2, K
∗
2 = Per(K2, n2)⊕K1,

K∗3 = Per(K3, n1 ⊕ n2)⊕ IDS,
IDS = IDS∗, K1 = K∗1 , K2 = K∗2 ,K3 = K∗1 .
Thus, given that n1, n

′
1, n2 and n′2 are chosen randomly,

by the end of the attack the reader keeps two records for
the tag, none of which match the values stored in the tag
(see Table I for details). Note that the success probability
for this attack is 1 − 2−2l, where l is the bit length of
the random numbers. For instance, for l = 96 as in [2],
the success probability is almost 1.

III. TRACEABILITY ATTACK ON RAPP

In RAPP, a desynchronized tag never updates its IDS.
Therefore, such a constant value can be used to carry out
a straightforward traceability attack. We next describe a
different attack based on the uniqueness of ID and some
weak properties of the permutation function Per(·):
• Observation 1: Per(x, y) = (P)1‖ . . . ‖(P)l is

not a perfect permutation. More precisely, (x)1 will
be assigned to either (P)1 or (P)l; (x)2 will be
assigned to either (P)1, (P)2, (P)l−1 or (P)l; and
so on.

• Observation 2: Given the location of (x)i in
Per(x, y), there are only two possible choices for
the location of (x)i+1;

• Observation 3: Given y1, y2, . . . , yi and P j =
Per(x, yj), for j ≤ i, if (y1)1 = (y2)1 = . . . =
(yi)1, either (P 1)1 = (P 2)1 = . . . = (P i)1 or
(P 1)l = (P 2)l = . . . = (P i)l.

We next show how to obtain {(ID)l−(i−1) ⊕
(ID)i}l/2

i=1. The adversary A eavesdrops t protocol runs,
stores the exchanged values and blocks message C
to abort the protocol. The values captured in the jth

round are Aj = Per(K2, K1) ⊕ nj
1, Bj = Per(K1 ⊕

K2, Rot(nj
1, n

j
1)) ⊕ Per(nj

1, K1), and Cj = Per(nj
1 ⊕

K1, n
j
1 ⊕K3)⊕ ID.

3

It is easy to see that Aj ⊕ Af = nj
1 ⊕ nf

1 , for j, f ≤
t. Hence, it is possible to determine whether (nj

1)m
?=

(nf
1)m for 1 ≤ m ≤ l and group n1

1, . . . , n
t
1 into two

groups, denoted by G1 and G2, respectively, where any
entry in a group holds the same value in its mth bit.
Now, consider the case where G1 and G2 are grouped
by the Least Significant Bit (LSB) of each entry. Then,
for any nj

1, n
f
1 ∈ G1 one can state that (nj

1)1 = (nf
1)1

and for nj
1 ∈ G1 and any nf

1 ∈ G2 we have (nj
1)1 ⊕

(nf
1)1 = 1. A can also group the values of C based

on how n1 has been grouped. In addition, given that in
each group the LSB of all n1s are the same, K3 remains
constant (non-updating condition by the blockage of C),
and ID is fixed, then either LSB or, equivalently, the
Most Significant Bit (MSB) of all Cs in that group must
be the same. For instance, if for all Cj ∈ G1 the LSBs
are the same and for all Cj ∈ G2 the MSBs are the same
thenA deduces that for any nj

1 ∈ G1, (nj
1⊕K3)1 = 1 and

(Cj)1 = (nj
1)1 ⊕ (K1)1 ⊕ (ID)1 and for any nj

1 ∈ G2,
(nj

1 ⊕ K3)1 = 0 and (Cj)l = (nj
1)1 ⊕ (K1)1 ⊕ (ID)l

In this case, it is easy to deduce that for any Cj ∈ G1
and any Cf ∈ G2, (Cj)1⊕ (Cf)l = 1⊕ (ID)1⊕ (ID)l.
Otherwise, for all Cj ∈ G1 the MSBs are the same and
for all Cj ∈ G2 the LSBs are the same, then A deduces
that for any nj

1 ∈ G1, (nj
1 ⊕ K3)1 = 0 and (Cj)l =

(nj
1)1 ⊕ (K1)1 ⊕ (ID)l and for any nj

1 ∈ G2, (nj
1 ⊕

K3)1 = 1 and (Cj)1 = (nj
1)1 ⊕ (K1)1 ⊕ (ID)1. In this

case, for any Cj ∈ G1 and any Cf ∈ G2, we have
(Cj)l ⊕ (Cf)1 = 1⊕ (ID)l ⊕ (ID)1. Therefore, in both
of the above cases, A reveals one bit of information about
the ID (in particular, the XOR of two of its bits), which
remains unchanged during all the tag’s life.

Given the location of (nj
1)1⊕(K1)1 for Cj ∈ G1, e.g.,

(Cj)1, there are two possible locations for (nj
1)2⊕(K1)2

in Cj , e.g., (Cj)2 or (Cj)l. Following the given proce-
dure, we can group the values of n1 and C in G1 based
on the second bits of n1s and determine (ID)2⊕ (ID)l.
This process can be repeated to retrieve (ID)1⊕(ID)l−1

based on the grouping of the n1s and Cs in G2. These
new information increases the adversary’s probability of
tracing the tag. The adversary fails to determine the
correct value of ID1 ⊕ IDl if all (nj)1, for j ≤ t,
has the same value, which occurs with a probability
of 2−t, or for any Cj ∈ G1 and Cj ∈ G2 we have
(Cj)1 = (Cj)l, which happens with a probability of
2−|G1| × 2−|G2| = 2−t, where |G1| and |G2| denotes

the cardinality of G1 and G2 respectively. Hence, the
the total success probability is (1− 2−t)2 .

We note here that formal traceability models (e.g.,
[3]) require the disclosure of just one bit. Nevertheless,
more bits are needed to trace a constelation of tags.
Our attack facilitates this at the expense of requiring
several protocol runs. For instance, if the attacker wants
to disclose 3 bits, the success probability is approximately(
(1− 2−t)

(
1− 2−t/2

)2
)2

. For example, for t = 8 the
success probability is 0.77, which is greater than 0.5. For
the given attack, the attack complexity increments expo-
nentially with the number of bits recovered. However, a
more efficient disclosure is possible, as described next.

IV. DISCLOSURE ATTACK

From Section III, we can generally state that to deter-
mine (nj

1)f ⊕ (K3)f , given the location of (nj
1)f−1 ⊕

(K1)f−1, there are two possible locations for (nj
1)f ⊕

(K1)f , i.e., m for (nj
1 ⊕ K3)f = 0 and n for (nj

1 ⊕
K3)f = 1. An adversary A can calculate such m and n
for all the stored records. Since t > l, there are at least
t− l collisions for those cases where (nj

1)f ⊕ (K3)f = 0
and also t−l collisions for those where (nj

1)f⊕(K3)f =
1, with j ≤ t. Assume that for (nj

1)f ⊕ (K3)f = 1 and
(ne

1)f ⊕ (K3)f = 1, (nj
1)f ⊕ (K1)f and (ne

1)f ⊕ (K1)f

are grouped into (Cj)m and (Ce)m respectively. Then,
for (nj

1)f = (ne
1)f we have (Cj)m = (Ce)m because

(Cj)m = (nj
1)f⊕(K1)f⊕(ID)m and (Ce)m = (ne

1)f⊕
(K1)f ⊕ (ID)m. This may be used to verify whether
the assumption is correct or not. Thus, to determine
(nj

1)f ⊕ (K3)f , given (nj
1)f−1⊕ (K3)f−1, A groups the

records based on the f th bit of n1s, i.e., G1 and G2,
where all entries in each group hold the same value in
that bit of n1. Now, it is obvious that for any nj

1 ∈ G1
and ne

1 ∈ G1 one can state that (nj
1)f ⊕ (K3)f =

(ne
1)f ⊕ (K3)f and (nj

1)f ⊕ (K1)f = (ne
1)f ⊕ (K1)f .

(The same is applicable for entries in G2). Next A
guesses (nj

1)f ⊕ (K3)f = 1 for entries in G1 and
checks its correctness by verifying the collision in the
expected location of Cs, e.g., (nj

1)f = (ne
1)f and also the

adversary expects to have (Cj)m = (Ce)m as previously
explained. If (nj

1)f ⊕ (K3)f = 1 passes the verification
for G1, then (nj

1)f⊕(K3)f = 0 must pass the verification
for entries in G2. However, it is possible that a wrong
guess for (nj

1)f ⊕ (K3)f passes all verifications, with a

4

probability upper bounded by 2l−t, where the probability
of determining the correct value is 1−2l−t. Summarizing,
the success probability of extracting a correct value for
K3⊕nj

1, and 1 ≤ j ≤ t, is
(
1− 2l−t

)l ≈ 1− l ·2l−t. For
instance, if l = 64 and t = 2l, then it is 1− 2−58 ≈ 1 .

By the end of the above process, for any nj
1 we

have l equations of the form (K3 ⊕ nj
1)f , for f ≤ l.

Moreover, for any bit of (Cj) we have (Cj)m = (ne
1)f⊕

(K1)f ⊕ (ID)m. These equations are not all linearly
independent – collided values to the same position in a
group generate the same equation. Hence, assuming that
there are n possible locations for (n1)f ⊕ (K1)f s that
are confirmed, A has n distinct equations of the form
(nj

1)f⊕(K1)f⊕(ID)m1 , . . ., (nj
1)f⊕(K1)f⊕(ID)m+n,

where 1 ≤ m1 < . . . < mn ≤ l. For instance, if A de-
termines (K3⊕nj

1)2, she has the following information:
{(nj

1)1⊕(K1)1⊕(ID)1, (n
j
1)1⊕(K1)1⊕(ID)l, (n

j
1)2⊕

(K1)2⊕(ID)1, (n
j
1)2⊕(K1)2⊕(ID)2, (n

j
1)2⊕(K1)2⊕

(ID)l, (n
j
1)2 ⊕ (K1)2 ⊕ (ID)l−1}. The above equations

can be used to compute {(nj
1)1 ⊕ (K1)1 ⊕ (nj

1)2 ⊕
(K1)2, (n

j
1)1⊕(K1)1⊕(ID)2, (n

j
1)1⊕(K1)1⊕(ID)l−1}.

Therefore, when A discloses (K3⊕nj
1)l, she is expected

to have enough information to reveal (ne
1⊕K1)f⊕(ID)m

for any given e ≤ t and f, m ≤ l.
The adversary can also retrieve K1 as follows. If we

assume that (K1)1 = 1 then (Aj)1 = (K2)1 ⊕ (nj
1)1.

On the other hand, A already knows the value of
(nj

1)1⊕(K3)1. So it can determine (K2)1⊕(K3)1 which
should be the same for all j ≤ t. If all the values
are equal then the guess is correct, with a probability
of 1 − 2−t, and (K1)1 = 1; otherwise (K1)1 = 0.
In addition, A discloses another bit of information of
the form (K2)1 ⊕ (n1)1 or (K2)1 ⊕ (n1)l. Next, for
2 ≤ m ≤ l, given the location of (K2)m−1 in Aj ,
there are two possible locations for (K2)m, i.e., e for
(K1)2 = 1 and f for (K1)2 = 0 respectively. Assuming
(K1)m = 1 then (Aj)e = (K2)m ⊕ (nj

e). On the other
hand, A already knows the value of (nj

1)e⊕(K3)e, so she
can determine (K2)m ⊕ (K3)e too, which should be the
same for all 1 ≤ j ≤ t when the guessed value for (K1)m

is correct. If all the values are equal, then the guess is
correct with a probability of 1 − 2−t, and (K1)m = 1;
otherwise (K1)2 = 0. This process can be repeated to
retrieve all bits in K1 and auxiliary equations can also
be deduced (K2)3 ⊕ (K3)e3 , . . . , (K2)l ⊕ (K3)el

, where
ej ∈ {1, . . . , l}. The success probability of extracting a

correct value for K1 is (1− 2−t)l ≈ 1− l2−t.
In the next step, the adversary combines the records

of the form (ne
1 ⊕ K1)f ⊕ (ID)m, for any given

e ≤ t, f ≤ l and f ≤ l, and K1 to deter-
mine the following information: {(n1

1)1⊕ (n1
1)2, (n

1
1)1⊕

(n1
1)2, . . . , (n

1
1)1 ⊕ (n1

1)l, (n1
1)1 ⊕ (ID)1, . . . , (n1

1)1 ⊕
(ID)1}. Then A guesses (n1

1)1. Given (n1
1)1 A can

determine (n1
1)2, . . . , (n

1
1)l (i.e., she discloses all bits

in nj
1) and ID from the above equations. Given that

A knows K3 ⊕ n1
l , she can easily get K3 now. Then,

from the auxiliary equations (K2)1⊕(K3)e1 , . . . , (K2)l⊕
(K3)el

, A discloses K2 too. Finally, A uses the stored
Bjs to verify the correctness of the guessed value for
(n1

1)1. If any Bj does not pass the verification, then A
should flip its guess for (n1

1)1 and repeat the process to
determine nj

1s, ID, K2 and K3. Finally, A reveals all
secrets. Assuming that the adversary has eavesdropped
t sessions, the success probability of the given attack is(
1− 2l−t

)l · (1− 2−t)l ≈ (1− l2l−t)× (1− l2−t). For
example, for l = 96 and t = 2 · l (which is much less
than t = 230 eavesdropped sessions required in [5]), then
the success probability is almost 1.

V. CONCLUSIONS

We have described desynchronization, traceability, and
disclosure attacks against RAPP more powerful than
those previously published. RAPP’s major contribution
is its permutation function, which is clearly insufficient.
While the traceability and disclosure attacks depend on
the permutation and might be fixed by proposing a
stronger permutation, our desynchronization attack works
for any permutation, showing that RAPP has major flaws
that cannot be fixed just by replacing the permutation.

REFERENCES

[1] Z. Ahmadian, M. Salmasizadeh, and M. R. Aref. Desynchro-
nization attack on RAPP ultralightweight authentication protocol.
Cryptology ePrint Archive, Report 2012/490, 2012.

[2] G. Avoine and X. Carpent. Yet another ultralightweight authenti-
cation protocol that is broken. In Workshop on RFID Security –
RFIDSec’12, Nijmegen, Netherlands, June 2012.

[3] R. C.-W. Phan. Cryptanalysis of a new ultralightweight RFID
authentication protocol - sasi. IEEE Transactions on Dependable
and Secure Computing, 6(4):316–320, 2009.

[4] Y. Tian, G. Chen, and J. Li. A new ultralightweight RFID
authentication protocol with permutation. IEEE Communications
Letters, 16(5):702–705, 2012.

[5] S.-H. Wang, Z. Han, S. Liu, and D.-W. Chen. Security analysis
of RAPP an rfid authentication protocol based on permutation.
Cryptology ePrint Archive, Report 2012/327, 2012.

	Introduction
	Desynchronization Attack on RAPP
	Traceability Attack on RAPP
	Disclosure Attack
	Conclusions
	References

