
Recovering RSA Secret Keys from Noisy Key
Bits with Erasures and Errors?

Noboru Kunihiro1, Naoyuki Shinohara2, and Tetsuya Izu3

1 The University of Tokyo, Japan
kunihiro@k.u-tokyo.ac.jp

2 NICT, Japan
3 Fujitsu Labs, Japan

Abstract. We discuss how to recover RSA secret keys from noisy key
bits with erasures and errors. There are two known algorithms recover-
ing original secret keys from noisy keys. At Crypto 2009, Heninger and
Shacham proposed a method for the case where an erroneous version of
secret keys contains only erasures. Subsequently, Henecka et al. proposed
a method for an erroneous version containing only errors at Crypto 2010.
For physical attacks such as side-channel and cold boot attacks, we need
to study key recovery from a noisy secret key containing both erasures
and errors. In this paper, we propose a method to recover a secret key
from such an erroneous version and analyze the condition for error and
erasure rates so that our algorithm succeeds in finding the correct secret
key in polynomial time. We also evaluate a theoretical bound to recover
the secret key and discuss to what extent our algorithm achieves this
bound.

Keywords: RSA, Key-recovery, Cold Boot Attack, Side-channel At-
tack, Maximal Likelihood

1 Introduction

1.1 Background

RSA [13] is a widely used cryptosystem. In RSA a public modulus N
is chosen to be a product of two distinct primes p and q. The key-pair
e, d ∈ Z satisfies ed ≡ 1 (mod (p − 1)(q − 1)). The encryption keys are
(N, e) and the decryption keys are (N, d). The PKCS#1 standard [11]
specifies that the RSA secret key includes the following information:
(p, q, d, dp, dq, q

−1 mod p) in addition to d, which allows a fast decryption
process using the Chinese Remainder Theorem.

Secret keys must be kept secret. Nevertheless, some fractional amounts
of the secret information can be leaked by physical attacks such as side-
channel and cold boot attacks [4]. If the amount of leaked bits for secret
? This is the full version of [9].



keys is quite small, it is impossible to recover the secret keys from the
leaked information. Conversely, it might be possible to recover them by
using their redundancy if a certain amount of bits are leaked. Note that
all bits are not necessarily leaked. For example, Coppersmith [2] showed
that RSA can be broken if the upper half of the secret key p is revealed.
Herrmann and May [7] showed that RSA can be broken (in exponential
time) if at least 70% of the bits for a prime factor p of N are leaked.
Their methods are based on the lattice reduction technique. Note that
the Herrmann-May method does not require that the leaked bits are con-
secutive.

At Crypto 2009, Heninger and Shacham [6] proposed an algorithm
that efficiently recovers secret keys (p, q, d, dp, dq) given a random fraction
of their bits. Concretely, they showed that if at least 27% of the secret
key bits are leaked at random, the full secret keys can be recovered.
Conversely, we can say that even if 73% of original secret bits are erased,
the key recovery succeeds.

As opposed to the Heninger-Shacham algorithm correcting erasures,
Henecka et al. [5] proposed an algorithm correcting error bits of secret keys
at Crypto 2010. They showed that the secret key (p, q, d, dp, dq) can be
fully recovered if the error probability is less than 0.237. They also showed
the bound for the error probability is given by 0.084 if the involved secret
key is (p, q).

Independently of our work, Paterson et al. proposed an algorithm
correcting error bits which asymmetrically occurs at Asiacrypt 2012 [10].
Their algorithm works in a true cold boot setting. They took a coding
theoretic approach for designing a new algorithm and analyzing its per-
formance.

1.2 Motivation: Attack Scenario

All existing works concerning key recovery from noisy secret keys have
discussed the erasure-only (error-free) case or error-only (erasure-free)
case. This paper deals with the key recovery for a noisy secret key with
both erasures and errors. We call the erroneous version of the secret key
with both erasures and errors noisy secret keys. We denote the correct
secret key by sk, and the noisy secret key corresponding to sk by sk.
Before discussing the details, we address the motivations of this study.

Cold Boot Attack Scenario: Under the cold boot attack scenario [4],
(the degraded version of) secret keys are observed with (almost) unidirec-
tional bit flipping. Assume that the flip of each bit occurs as completely

2



unidirectional. For simplicity, we assume that only the bit flipping of
1 → 0 occurs. If the observed bit is 1, the corresponding bit of the cor-
rect secret key is definitely 1. In contract, if the observed bit is 0, we
cannot determine whether the corresponding bit is 0 or 1. Therefore,
the observed bit 0 can be considered erasure. Heninger and Shacham [6]
proposed an efficient algorithm that recovers the secret key from the de-
graded version of the secret key with erasure. However, as Heninger and
Shacham [6] pointed out, the bit flip with an opposite direction occurs
with small but non-zero probability. If the observed bit sequence contains
errors, Heninger-Shacham’s algorithm can never recover the correct secret
key. This algorithm is then no longer applicable for the noisy secret key
containing both erasures and errors.

Side-channel Attack Scenario: Henecka et al. [5] proposed an efficient
algorithm given a noisy secret key only with errors. The noisy keys are of-
ten provided through a side-channel attack. Under some attack situations,
each bit is provided with additional information: so-called reliability. Con-
sider the following situation: some bits of secret keys are 0 (or 1) with
very high reliability and others are 0 (or 1) with not so high reliability.
One reasonable strategy is to set a bit value as the observed bit if its
reliability is sufficiently high. How should we set a bit value with low re-
liability? We have two potential strategies. The first is to set a bit value
as the observed bit, which will cause a high number of bit errors. The
second strategy is to regard the bit as an erasure bit, which will involve
the observed secret key with (fewer) errors and erasures. So then which
of strategies is good for attackers? As Henecka et al. pointed out, the
correction of errors seems to be a much more difficult problem than the
correction problem. We therefore expect that the second strategy leads to
a better algorithm. However, their algorithm is not applicable to a noisy
secret key containing both erasures and errors.

For both cases, studies for the key recovery for noisy secret keys with
both errors and erasures are important to maximize and evaluate the
potential threat of physical attacks and to consider the possible counter-
measures against them.

1.3 Our Contributions

This paper discusses secret key recovery from noisy secret key sequences
with both errors and erasures. First, we present a polynomial time algo-
rithm for recovering secret keys and show an explicit success condition
for recovering the keys. We denote the erasure probability by δ and error

3



probability by ε. We also denote by m the number of involved secret keys.
For example, m = 5 if sk = (p, q, d, dp, dq) is involved. Our algorithm can
asymptotically recover secret keys in polynomial time with high proba-
bility provided that

1 − δ − 2ε ≥
√

2(1 − δ) ln 2
m

,

where we denote the natural logarithm of n to the base e by lnn. In special
case, our algorithm also includes previous methods. In fact, our algorithm
achieves the upper bound of Heninger-Shacham [6] and that of Henecka
et al. [5] for the error-free case (ε = 0) and erasure-free case (δ = 0),
respectively. We ran experiments to verify our analysis. We achieved to
the error rates of up to 0.6 and the erasure rate ε = 0.01 for 1024-bit RSA
with high success probability.

Second, we derive a theoretical bound for recovering the secret keys
from the noisy secret keys. We first introduce a natural abstract algorithm
(meta-algorithm) and derive a condition for δ and ε such that it needs
exponential time for recovering keys. The binary Entropy function H(x)
[3] is defined by by −x log x− (1−x) log(1−x), where log n is the binary
logarithm of n to the base 2. Then, we prove that we cannot recover the
secret keys in polynomial time under our meta-algorithm if it holds that

(1 − δ)
(

1 − H

(
ε

1 − δ

))
<

1
m

.

Finally, we discuss the relation between the condition where our algo-
rithm can recover secret keys and the theoretical bound. We first see that
there exists a small gap between the success condition and the theoretical
bound. Then, we show that the proposed algorithm achieves the second
order expansion of the theoretical bound.

2 Preliminaries

This section presents an overview of methods using binary trees to recover
the secret key of the RSA cryptosystem [13]. In particular, we briefly ex-
plain two known methods: Heninger-Shacham method [6] and the method
of Henecka et al. (abbreviated to HMM method) [5].

We use similar notations as [5]. For an n-bit sequence x = (xn−1, . . . , x0) ∈
{0, 1}n, we denote the i-th bit of x by x[i] = xi, where x[0] is the least sig-
nificant bit of x. Let τ(M) denote the largest exponent such that 2τ(M)|M .
As well as [5], Hoeffding’s bound [8] is the main tool in our analysis.

4



Theorem 1 (Hoeffding’s Bound). Let X1, . . . , Xk be a sequence of
independent Bernoulli trials with identical success probability Pr[Xi =
1] = p for all i. Define X :=

∑k
i=1 Xi. Then, for every 0 < γ < 1 we have

Pr[X ≥ k(p + γ)] ≤ exp(−2kγ2) and Pr[X ≤ k(p − γ)] ≤ exp(−2kγ2).

2.1 Noise Models

We formalize (three) noise models discussed in this paper. Let ε and δ be
real numbers satisfying 0 ≤ ε < 1/2, 0 ≤ δ < 1 and 0 ≤ ε + δ < 1. In
our noise models, each bit in a secret bit sequence is either erased with
probability δ or flipped with probability ε, or remains unchanged with
probability 1 − δ − ε. Then, only the transformed sequence is observed.
Nevertheless, the original sequence is not directly obtained. We refer to
this noise model as the Binary Erasure-Error model (BEE model). The
error-free model, that is ε = 0 (but, δ > 0), is referred to as the Binary
Erasure model (BE model) and erasure-free model, that is δ = 0 (but,
ε > 0), is referred to as the Binary Symmetric model (BS model).

Our target in this paper is to recover the original secret key from the
observed noisy sequence. We can say that Heninger and Shacham [6] have
studied key recovery from the noisy keys in the BE model and Henecka
et al. [5] have studied it in the BS model.

2.2 Recovering RSA Secret Key by Using Binary Trees

First, we review the key setting of the RSA cryptosystem [13], especially
of the PKCS #1 standard [11]. The public key is (N, e) and the secret
key is sk = (p, q, d, dp, dq, q

−1 mod p). As in the previous works, we also
ignore the last component q−1 mod p in the secret key. The public and
secret keys have the following relations:

N = pq, ed ≡ 1 (mod (p−1)(q−1)), edp ≡ 1 (mod p−1), edq ≡ 1 (mod q−1).

From the key setting, there exist some integers k, kp, kq such that

N = pq, ed = 1+k(p−1)(q−1), edp = 1+kp(p−1), edq = 1+kq(q−1). (1)

Suppose that we know the exact values of k, kp, and kq. There exist five
unknowns (p, q, d, dp, dq) in Eq. (1). Then, if we know just one of the exact
values of unknowns, we can easily obtain the others.

The small public exponent e is usually used in practical applications
[14], so we suppose that e is small enough such that e = 216+1 in the same

5



manner as [5, 6]. We need to find k, kp, and kq for small e. See Appendix
B for how to compute k, kp and kq in our method.

In the Heninger-Shacham method [6], HMM method [5] and our new
method, a secret key sk is recovered by using a binary-tree-based tech-
nique. Here we explain how to recover secret keys, taking sk = (p, q, d, dp, dq)
as an example.

First we mention generating the tree. Since p and q are n/2 bit prime
numbers and half of the most significant bit (MSB) of d is efficiently
computable in the Heninger-Shacham or HMM methods [5, 6], there exist
at most 2n/2 candidates for each secret key in {p, q, d, dp, dq}.

Heninger and Shacham [6] define the i-th bit slice for each bit index
i and we denote by

slice(i) := (p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], dq[i + τ(kq)]).

Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′p, d
′
q)

up to slice(i − 1). Heninger and Shacham [6] applied Hensel’s lemma to
Eq. (1) and presented the following equations

p[i] + q[i] = (N − p′q′)[i] mod 2, (2)
d[i + τ(k)] + p[i] + q[i] = (k(N + 1) + 1 − k(p′ + q′) − ed′)[i + τ(k)] mod 2,

(3)

dp[i + τ(kp)] + p[i] = (kp(p′ − 1) + 1 − ed′p)[i + τ(kp)] mod 2, (4)

dq[i + τ(kq)] + q[i] = ((kq(q′ − 1) + 1 − ed′q)[i + τ(kq)] mod 2, (5)

We can easily see that p[i], q[i], d[i+τ(k)], dp[i+τ(kp)], and dq[i+τ(kq)] are
not independent and the degree of freedom is 1. Therefore, each Hensel
lift yields exactly two candidate solutions. Then, the number of all candi-
dates is given by 2n/2. The root node is given by slice(0) = (1, 1, d[τ(k)],
dp[τ(kp)], dq[τ(kq)]).

Next we explain a pruning step, in which we count the number of
matching bits between a bit sequence given by a node sequence and the
corresponding bit sequence of a noisy secret key. We then discard or leave
each node according to given criteria.

Section 2.3 briefly overviews the Heninger-Shacham method, which is
for the case of an erroneous version sk with an erasure rate δ of sk. And
in section 2.4 we mention the HMM method for an erroneous version sk
with error rate ε.

6



2.3 Heninger-Shacham Method [6]

In the Heninger-Shacham method, a binary tree is constructed by it-
erating an expansion phase and a pruning phase. At the pruning step,
we compare a bit sequence given by one node with the corresponding bit
sequence given by sk. Then we discard a node containing a bit not match-
ing with the corresponding bit of sk, skipping the bit corresponding to
an erasure bit of sk.

In the Heninger-Shacham method, discarded nodes are exactly wrong
nodes, so the node corresponding to the correct solution consistently re-
mains. Therefore, the success probability of the Heninger-Shacham method
is 1. The computational cost of Heninger-Shacham method is evaluated
with the number of remaining nodes of the binary tree, and depends on
erasure rate δ. Therefore, Heninger and Shacham estimated the upper
bound of δ such that the expected number of remaining nodes yielded
from one wrong node is less than 1 under the following assumption:

Assumption 1 The bit slice corresponding to a wrong node consists of
random bits.

This assumption is also used in the analysis of [5] and our new method.
Heninger and Shacham showed that their method recovers the se-

cret keys provided that δ ≤ 0.73 if the noisy secret key is of the form
(p, q, d, dp, dq), namely m = 5. If we use the noisy secret information
(p, q), the secret key (p, q) can be obtained provided that δ ≤ 0.43. For
general m of the involved secret information, the secret key can be recov-
ered provided that δ ≤ 2

m−1
m − 1. We can see that the right-hand side of

the above inequality is approximated by 1 − 2 ln 2
m for large m.

The Heninger-Shacham algorithm requires that the non-erasure bit is
correct. However, this requirement is too idealistic in the physical attacks
such as a cold boot attack, as described in Section 1.2. If the observed
secret key contains an error, the Heninger-Shacham algorithm never finds
the correct secret keys. We provide a simple example. Assuming that
ε = 0.001, we can regard the error rate as extremely small. Nevertheless,
the number of errors in secret keys is expected to be 512 × 5 × 0.001 =
2.56(> 2). Due to there being only two errors, the Heninger-Shacham
algorithm does not work.

2.4 Henecka-May-Meurer Method [5]

We briefly explain the HMM method. For an erroneous version sk with
error rate ε, if we discard every node having a bit not matching the corre-
sponding bit in sk, sk is never recovered since the leaf node corresponding

7



to the correct solution does not remain. Therefore, the binary tree is sep-
arated into partial trees whose depth is t, and then the pruning step is
performed for each partial tree. Actually, mt bits of the node sequence
from the root node of the partial tree to the leaf node of the partial tree
are compared with the corresponding bit of sk. If the number of matches
is less than C ∈ [0,mt], the leaf node is discarded. Since the remaining
nodes of the binary tree decrease if the threshold value C increases, the
computational cost decreases and the success probability decreases. Es-
pecially the pruning step is not practically performed when C = 0, and
we never obtain sk when C = mt. Henecka et al. considered the two fol-
lowing restrictions, which help to decide how to choose parameters (t, C).
Note that E[X] is the mean of a random variable X.

Restriction 1 Let Zb,i be the number of bad candidates generated from
one bad partial solution at the i-th pruning step. Then, we choose param-
eters (t, C) so that E[Zb,i] ≤ 1/2 holds.

Restriction 2 For each pruning step, we choose parameters (t, C) so
that the probability that the correct node is discarded is less than 1/n.

The HMM method recovers the secret keys (p, q, d, dp, dq) if the error
rate ε of the noisy keys is not larger than 0.237. If we use the noisy secret
information or (p, q), the secret key (p, q) can be obtained, provided that
ε ≤ 0.084. For general m of the involved secret information, the secret
key can be recovered provided that ε ≤ 1/2 −

√
ln 2/2m.

2.5 Naive Method Based on HMM Method

As mentioned, our main purpose is to recover secret keys from the noisy
keys with both erasures and errors (that is, obtained through the BEE
model). The following naive algorithm, which is not described in the lit-
erature, is sufficient for merely achieving this purpose.

Naive Method
Input: Public key (N, e), observed secret key sk, erasure probability δ

and error probability ε

Output: Correct secret key sk
Step 1: Transform sk to sk

′ by substituting random bits into erasure
positions of sk.

Step 2: Perform the HMM method with the sequence sk
′ and the error

probability ε + δ
2 as inputs.

8



We evaluate the success condition of the algorithm. Each erasure bit
will change a correct bit with probability 1/2 and a wrong bit with 1/2.
The secret key sequence transformed in Step 1 can be considered a se-
quence with erasure probability 0 and error probability ε+ δ

2 . By applying
the success condition for the BS model, we have the following condition
for the naive method:

ε + δ/2 ≤ 1/2 −
√

ln 2/(2m). (6)

Although the algorithm does work for the noisy secret key for the BEE
model, the above algorithm is not better than expected. There are some
drawbacks to the naive method. Assuming that ε = 0, the condition is
described as δ ≤ 1−

√
2 ln 2/m. This condition is clearly worse than that

of Heninger-Shacham: δ ≤ 1 − 2 ln 2
m . Next, we discuss the case where the

error probability ε is very small but not zero, which is a natural situation
in the cold boot attack scenario. For example, we assume that m = 5,
δ = 0.6 and ε = 0.001. Considering that the Heninger-Shacham algorithm
works well if δ = 0.73 and ε = 0, it is natural that we expect that the
key recovery succeeds if δ = 0.6, ε = 0.001. However, the condition that
δ = 0.6 and ε = 0.001 does not satisfy Eq. (6), and the naive method
then cannot recover the secret key if δ = 0.6 and ε = 0.001. Our main
goal in this paper is to propose a method that works in that case. Table 1
summarizes the known results.

Table 1. Success Conditions for Heninger-Shacham, HMM, and Naive Methods

model BE model（ε = 0） BS model (δ = 0) BEE model

Heninger-Shacham method [6] HMM method [5] Naive method

m = 2 δ ≤ 0.43 ε ≤ 0.084 ε + δ
2
≤ 0.084

m = 5 δ ≤ 0.73 ε ≤ 0.237 ε + δ
2
≤ 0.237

m δ ≤ 2(m−1)/m − 1 ≈ 1 − 2 ln 2
m

ε ≤ 1
2
−

q

ln 2
2m

ε + δ
2
≤ 1

2
−

q

ln 2
2m

3 Recovering Secret Key from Noisy Secret Keys in BEE
Model

Let sk be an erroneous version of a secret key sk with erasure rate δ
and error rate ε. The main purpose of our algorithm is to recover the
original secret key from the observed sk with the help of redundancy. We
propose an algorithm to recover sk from sk by using the binary-tree-based

9



technique as in the Heninger-Shacham method [6] and HMM method [5].
Our algorithm is a combination of the two methods.

In our algorithm, the binary tree is separated into partial trees, and
the pruning step is executed for every partial tree with threshold values
as with the HMM method. Analysis of our algorithms then requires As-
sumption 1, Restrictions 1 and 2 in the same manner as with the HMM
method.

Lesson Learned from Failure of Naive Method In the naive method
described in section 2.5, we transform the erasure bit to the error bit
with probability 1/2. This worsens the success condition. Any erasure bit
should then be handled as erasure not error.

3.1 Our Proposed Method

In the HMM method [5], the noisy secret key sequence sk is divided in an
mt-bit subsequence to construct a partial tree, where t is a fixed integer.
On the other hand, in our new method we divide the sequence in a T -bit
subsequence skipping erasure bits in sk. We show a small example for m =
3 and T = 4. First, we explain how to divide bits for the i-th pruning step.
Let E be the error symbol in sk. Suppose that we have divided bits until
the bit ps in the s-th node [ps, qs, E] at the (i − 1)-th pruning step, and
the following nodes are given: [ps, qs, E], [ps+1, E, ds+1], [ps+2, qs+2, ds+2].
Then, since the i-th pruning step will be performed for T bits skip-
ping bits corresponding to E in sk, we check the bits corresponding to
qs, ps+1, ds+1, ps+2. Here we denote by ti the length of a node sequence
that is newly generated for the i-th pruning step, and denote by ∆i the
number of E in sk at the i-th pruning step. In the example, ti = 2 and
∆i = 2. Since the condition T ≥ m practically holds, we have that

ti = d(T + ∆i)/me or d(T + ∆i)/me − 1. (7)

In the HMM method, only one threshold value C is used. In contrast,
we use threshold values C1, . . . , C` when sk is separated into ` intervals.
Theorem 2 in Section 3.2 provides how to set each Ci. Note that unknown
values of k, kp and kq are efficiently computable from sk. We show the
details of how to compute them in Appendix B.

New method
Input: Public key (N, e), noisy secret key sk, error probability ε and

erasure probability δ

Output: Correct secret key sk.

10



Step 1: Compute k, kp, kq and slice(0).
Step 2: Compute (T, C1, . . . , C`).
Step 3: From i = 1 to `, perform the following computation. Set t0 = 0:

Compute ti slices: slice(1+
∑i−1

j=0 tj), slice(2+
∑i−1

j=0 tj), . . . , slice(
∑i

j=0 tj)
and generate a partial tree whose depth is ti + 1. For T bits skipping
erasure bits sk, count the number of matches of bits in partial solu-
tions with the corresponding bits in sk. If it is not less than Ci, then
set i = i+1 and go to the generating of a partial tree step. Otherwise,
discard the node.

Step4: For each remaining leaf node, check whether the nodes are in-
deed the valid secret key with the help of public information.

Remark 1. Suppose that ε = 0. Our method for T = C = 1 is equivalent
to the Heninger-Shacham method [6]. Suppose that δ = 0. Our method
with (T,C, C, . . . , C) is equivalent to the HMM method [5] with (T/m, C).
Our method includes both of the two methods.

3.2 Analysis of Our Proposed Method

This section provides the analysis of our proposed method. The proofs of
theorem and corollary in this section are given in Appendix A.

Theorem 2. Suppose that Assumption 1 holds. Let (N, e) be an RSA
public key with n-bit N and fixed e. We choose

T =
⌈

lnn

2ε′2

⌉
, γi =

√
ti + 1

T

ln 2
2

, Ci = T

(
1
2

+ γi

)
, (8)

where ti and ∆i are defined in section 3.1. Furthermore, let sk = (sk1, . . . , skm)
be an RSA secret key with noise rate ε such that

1
2

+ γi ≤ 1 − (T + ∆i)ε
T

− ε′ (9)

for every i. Then, Restrictions 1 and 2 hold for every fixed ε′ > 0. Our
method also corrects sk in expected time O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n

)) with suc-
cess probability at least 1 −

(
(1−δ)mε′2

ln n + 1
n

)
, where ∆ = max{∆i} and

δmn/2 =
∑

∆i.

By Theorem 2, we have the corollary.

11



Corollary 1 Suppose that Assumption 1 holds and that the number of
erasure bits is ∆ for each block. We choose

T =
⌈

lnn

2ε′2

⌉
, t =

T + ∆

m
, γ =

√(
1 +

1
t

)
ln 2
2m

, C = T

(
1
2

+ γ

)
.

If δ and ε satisfy

ε +
δ

2
≤ 1

2
−

√(
1 +

1
t

)
(1 − δ) ln 2

2m
− (1 − δ)ε′, (10)

then our method satisfies Restrictions 1 and 2 for every fixed ε′ > 0. It also
corrects sk in expected time O(n2+2( ln 2

2mε′2
+δt ln 2

ln n
)) with success probability

at least 1 −
(

(1−δ)mε′2

ln n + 1
n

)
.

Remark 2. For sufficiently large n, t goes to infinity and thus γ converges

to
√

ln 2
2m . This implies that our algorithm asymptotically works if

ε +
δ

2
≤ 1

2
−

√
(1 − δ) ln 2

2m
− ε′ (11)

and succeeds with a probability close to 1. Hereafter, we ignore the term
“−ε′” for simplicity.

If the erasure rate δ is 0, then the new method is equivalent to the
HMM method [5] by Corollary 1. Therefore, the new method naturally
combines the results of the Heninger-Shacham and HMM methods. The
upper bound of the new method coincides with that of Heninger-Shacham
for ε = 0 and that of the HMM method for δ = 0. Finally, we confirm
that our algorithm works well for δ = 0.6, ε = 0.001. Remember that our
algorithm works provided that ε + δ/2 ≤ 1/2 − 0.263

√
1 − δ. The left-

hand side is given by 0.301 and the right-hand side is given by 0.334; the
left-hand side is less than the right-hand side. Our algorithm works in
that case.

4 Implementation and Experiments

We implemented our algorithm in the Risa/Asir [12] computer algebra
system and used the program on an Intel Xeon X5570 at 2.93 GHz with 72
GB memory of DDR3 at 1333 MHz. In our experiments for 1024-bit RSA,
we prepared 100 different tuples of secret keys sk, e.g. sk = (p, q, d, dp, dq).

12



For a fixed ε and δ, we generated one erroneous version sk for each of sk.
For a given T , the threshold value Ci is determined by using Eq. (8).

Table 2 shows the experimental results for the case of sk = (p, q, d, dp, dq),
ε = 0.01, and T = 40. Note that the erasure rate δ was selected to be
smaller than the theoretical bound 0.684 estimated by Eq. (11). Simi-
larly, but for T = 75, we also conducted the experiments for the case of
sk = (p, q) and the results are given in Table 3.

Table 2. Experiments for sk = (p, q, d, dp, dq), n = 1024, ε = 0.01, and T = 40

δ 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

success rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.42 0.02
average time (s) 0.45 0.57 0.83 0.98 0.99 1.41 1.75 1.91 2.05 2.24 2.07 1.56 0.97 0.59

Table 3. Experiments for sk = (p, q), n = 1024, ε = 0.01, and T = 75

δ 0 0.05 0.10 0.15 0.20 0.25

success rate 1.00 1.00 0.97 0.91 0.42 0.04
average time (s) 14.06 5.86 3.26 1.07 0.25 0.08

For fixed n, ε, and T , if an erasure rate δ becomes large, then the
average of depth ti becomes large with the increase in δ by Eq. (7). The
average of threshold values Ci also increase because of the process of
determining Ci, namely, Eq. (8). We determine these Ci’s to satisfy Re-
striction 1 for the fixed T , so the success rate of our algorithm becomes
small as Tables 2 and 3 show. If we use T = 80 instead of T = 40 for the
case of Table 2, the success rate for δ = 0.65 increases to 0.21 from 0.02
and the average time becomes 40.14 seconds.

5 Theoretical Bound

This section derives a theoretical upper bound for key recovery from noisy
secret keys with errors and erasures in polynomial time.

First, we define the Hamming distance between two l-bit sequences;
the symbol of one sequence (Sequence 1) is {0, 1} and that of the other

13



sequence (Sequence 2) is {0, 1, E}, where E is an erasure symbol. We
denote the number of positions at which the corresponding symbols are
different by h. We also denote the number of symbols E in Sequence 2 by
a. We define the Hamming distance b between two sequences by b := h−a.
We also have the equivalent definition of Hamming distance as follows.
First, remove the bit of the position at which the symbol in Sequence 2 is
E in Sequence 1 and remove the symbol E in Sequence 2. We define the
Hamming distance between Sequences 1 and 2 by the ordinary Hamming
weight between resulting sequences. For example, the Hamming weight
between 1111 and 1E01 is 1.

We recall some known facts about the binary Entropy function. Re-
member that the binary Entropy function H(x) is defined by H(x) =
−x log x− (1− x) log(1− x). It is well known that the following inequali-
ties hold between the number of combinations and the binary Entropy [3].

Lemma 1. For any positive integer n and w(≤ n), it holds that

1√
8w(1 − w/n)

2nH(w/n) ≤
w∑

i=0

(
n

i

)
≤ 2nH(w/n). (12)

It is known that H(x) can be represented by the following sum of an
infinite series:

H(x) = 1 − 1
ln 2

∞∑
u=1

1
2u(2u − 1)

(2x − 1)2u. (13)

5.1 Maximal-likelihood-based Approach

We consider the following meta-algorithm. Small examples for the meta-algorithm
are given in Appendix C.

Meta-Algorithm for Recovering Keys
Input: Public key (N, e) and noisy secret key sk, (ε, δ)
Output: Correct secret key sk
Step 1: Expansion Phase (Virtually) generate a candidate set C by

using the public information and Eqs. (2)–(5). Note that the number
of elements of C is given by 2n/2−1.

Step 2: Pruning Phase Discard the candidate that is not consistent
with sk. We denote the obtained set by C∗.

Step 3: Finalization Phase Test whether each candidate solution in
C∗ is indeed the correct sk with the help of public information

14



The design of Step 2 is crucial for our algorithm. It is important to ade-
quately determine criteria in Step 2 so that the correct solution c is not
discarded during Step 2 in C∗ and |C∗| is as small as possible. We discuss
concrete criteria for discarding a candidate solution in Step 2. In order to
do so, we adopt the maximal-likelihood-based approach.

Our analysis relies on a similar heuristic assumption as that in [5] and
[6].

Assumption 2 Every candidate solution in C is a bit-wise sum of n/2−1
randomly chosen bit and the correct sequence c.

We denote a candidate solution by c ∈ C. We discuss the conditional
probability that we observed sk under the condition that c is the correct
solution. We denote the conditional probability by Pr(sk; c) and we refer
to Pr(sk; c) as likelihood. In the maximal likelihood-based-approach, we
decide that candidate that maximizes Pr(sk; c) is the correct solution.

This probability is simply evaluated as follows:

Pr(sk; c) = δaεb(1− ε− δ)mn/2−a−b = (δ/(1− ε− δ))aεb(1− ε− δ)mn/2−b,

where a is the number of erasure symbols in sk and b is the Hamming
distance between sk and c.

Since a does not depend on the choice of c, it is sufficient to find b that
maximizes the likelihood. If b is smaller, the likelihood is obviously bigger.
Then, it is sufficient to find the solution c with the smallest Hamming
distance to sk for finding the solution that maximizes the likelihood. The
Hamming distance bc between the correct solution and sk is bc ≈ mnε

2
with high probability. Meanwhile, the Hamming distance bw between the
wrong solution and sk is bw ≈ m× n

2 ×
1−δ
2 (> mnε

2 ) with high probability.
Then, it is sufficient to find the solution whose Hamming distance is
mnε/2 in order to find the solution with maximal likelihood.

Remark 3. The computation of our proposed algorithm described in sec-
tion 3 corresponds to finding the solution whose Hamming distance is less
than m× n

2 × (1− δ)× (1
2 − γ) for small positive γ. This implies that the

correct solution is not discarded and falls within C∗ with high probability.
However, the size of C∗ increases.

Remark 4. It is obviously impossible to execute Step 2 if the computa-
tional time is limited to a polynomial of n. In practice, we need to divide
the candidate sequence into several sub-sequences and execute the expan-
sion and pruning phase as in our proposed algorithm in section 3.

15



5.2 Deriving Theoretical Upper Bound

We derive the condition such that the meta-algorithm can never recover
the secret key in polynomial time. This can be done by counting up the
candidate solution that is not discarded during Step 2 and deriving the
condition of (ε, δ) when the number of candidate solutions exceeds the
polynomial of n.

We note that the candidate solution c is consistent with the observed
solution sk in Step 2 of the meta-algorithm if the following criteria hold.

CRITERIA The Hamming distance between c and sk is less than mnε/2.

Note that the expected bit length of the sequences removing erasures
is given by mn(1 − δ)/2. The probability Pr that one candidate c is
consistent with sk is evaluated by

Pr =
∑mnε/2

i=0

(
mn(1−δ)/2

i

)
2mn(1−δ)/2

. (14)

From Lemma 1, Eq. (14) is lower bounded by

Pr ≥ 2−mn(1−δ)(1−H(ε/(1−δ)))/2. (15)

We define C(ε, δ) by C(ε, δ) := (1 − δ)(1 − H(ε/(1 − δ))). Then, the
probability is larger than 2−mnC(ε,δ)/2. Since the number of candidate
solutions is 2n/2, the expected number of candidate solutions consistent
with the observed sequence sk is lower bounded by 2n/22−mnC(ε,δ)/2 =
2n(1−mC(ε,δ))/2.

Suppose that ε and δ satisfy the condition: C(ε, δ) < 1/m. This implies
that 1−mC(ε, δ) > 0. Then, the expected number of candidate solutions
consistent with sk is an exponential function of n. Step 3 then requires
the exponential testing of whether the candidate is indeed the secret key.
Hence, the total computational time of the whole algorithm is actually
exponential.

Conversely, suppose that C(ε, δ) ≥ 1/m. Then, the number of candi-
date solutions is at most a polynomial of n and the total computational
time dominates Step2. This means that it depends on C(ε, δ) and 1/m
whether there exists an algorithm that recovers in polynomial time of
n. We show an information-theoretic view of our theoretical bound in
Appendix D.

16



5.3 Discussion

Fig.1 shows achievable regions for the naive method and our proposed
method in addition to the theoretical bound with m = 5. Note that all
the values that lie below the respective line concerning the naive method
and proposed method are vulnerable to each of the attacks and all the
values that lie above the line about theoretical limitation are not solvable
in polynomial time. We can see that the bound for our method nearly
achieves the theoretical bound, but there is still a small gap.

Fig. 1. Upper bounds of naive method and new method, and theoretical limitation

Table 4 shows the success conditions for three noise models; the upper
is the bound the best-known algorithm achieves and the lower is the
theoretical bound.

Table 4. Success Conditions of Heninger-Shacham, HMM, and our Proposed Methods

model BE model（ε = 0） BS model (δ = 0) BEE model

best known algorithm HS [6] HMM [5] Proposed Method in Sec. 3

2 algorithm δ ≤ 0.43 ε ≤ 0.084 ε + δ/2 ≤ 1
2
− 0.416

√
1 − δ

2 theoretical bound δ ≤ 0.5 ε ≤ 0.110 (ε, δ) s.t. C(ε, δ) ≥ 1/2

5 algorithm δ ≤ 0.73 ε ≤ 0.237 ε + δ/2 ≤ 1
2
− 0.263

√
1 − δ

5 theoretical bound δ ≤ 0.8 ε ≤ 0.243 (ε, δ) s.t. C(ε, δ) ≥ 1/5

m algorithm δ ≤ 1 − 2 ln 2
m

ε ≤ 1
2
−

q

ln 2
2m

ε + δ
2
≤ 1

2
−

q

(1−δ) ln 2
2m

m theoretical bound δ ≤ 1 − 1
m

ε s. t. H(ε) ≤ 1 − 1
m

(ε, δ) s.t. C(ε, δ) ≥ 1/m

17



5.4 Our Algorithm Achieves Second-order Expansion of
Theoretical Bound

We present a strong bridge between the theoretical bound and achieved
regions. We define the whole parameter space I by I := {(ε, δ)|0 ≤ ε <
1/2, 0 ≤ δ < 1} and define H by

H :=
{

(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1, (1 − δ)
(

1 − H

(
ε

1 − δ

))
≥ 1

m

}
.

The discussion in Section 5.3 shows that we cannot recover the secret
keys in polynomial time if (ε, δ) ∈ I/H. This argument suggests that we
have a chance to recover the secret key in polynomial time if (ε, δ) ∈ H.
However, it does not guarantee that we can recover the secret keys if
(ε, δ) ∈ H. As shown in Fig. 1, there exists a small gap between our
theoretical bound and the achieved regions. We give a strong relation
between the two regions.

From Eq. (13), C(ε, δ) < 1/m can be represented as follows:
∞∑

u=1

(1 − δ)
2u(2u − 1)

(
1 − δ − 2ε

1 − δ

)2u

≤ ln 2
m

, (16)

which is a representation not explicitly used by the binary Entropy H(·).
Consider the condition truncated by u = k and denote the condition by
Hk

Hk :=

{
(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1,

k∑
u=1

(1 − δ)
2u(2u − 1)

(
1 − δ − 2ε

1 − δ

)2u

≤ ln 2
m

}
.

Obviously, it holds that Hi ⊆ Hj if i ≤ j for any i, j ∈ Z and it holds
that limk→∞Hk = H.

We focus on the region H1. By simplifying the condition corresponding
to H1, we have the equivalent condition:

1 − δ − 2ε ≥
√

2(1 − δ) ln 2/m.

This is equivalent to the condition obtained in section 3: Eq. (11) if we
neglect the small term ε. This implies that our proposed algorithm can
recover the secret key in polynomial time if (ε, δ) ∈ H1.

Acknowledgement

We thank PKC2012 and Asiacrypt2012 reviewers for revising the manuscript.
The first author was supported by JSPS Grant Number KAKENHI22700006.

18



References

1. D. Boneh, G. Durfee, and Y. Frankel, “An Attack on RSA Given a Small Fraction
of the Private Key Bits,” in Proc. of Asiacrypt’98, LNCS 1514, pp. 25-34, 1998.

2. D. Coppersmith, “Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known,” in Proc. of Eurocrypt’96, LNCS 1070, pp. 178–189, 1996.

3. C. M. Cover and J. A. Thomas, “Elements of Information Theory, 2nd Edition,”
Wiley-Interscience, 2006.

4. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum and, E. W. Felten, “Lest We Remember:
Cold Boot Attacks on Encryption Keys,” in Proc. of USENIX Security Symposium
2008, pp. 45–60, 2008.

5. W. Henecka, A. May, and A. Meurer, “Correcting Errors in RSA Private Keys,”
in Proc. of Crypto 2010, LNCS 6223, pp. 351–369, 2010.

6. N. Heninger and H. Shacham, “Reconstructing RSA Private Keys from Random
Key Bits,” in Proc. of Crypto 2009, LNCS 5677, pp. 1–17, 2009.

7. M. Herrmann and A. May, “Solving Linear Equations Modulo Divisors: On Fac-
toring Given Any Bits,” in Proc. of Asiacrypt 2008, LNCS5350, pp. 406-424, 2008.

8. W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables,”
Journal of the American Statistical Association, 58(301), pp. 13–30, 1963.

9. N. Kunihiro, N. Shinohara and T. Izu, “Recovering RSA Secret Keys from Noisy
Key Bits with Erasures and Errors,” to appear in PKC 2013, 2013.

10. K. G. Paterson, A. Polychroniadou and D. L. Sibborn, “A Coding-Theoretic Ap-
proach to Recovering Noisy RSA Keys,” in Proc. of Asiacrypt 2012, LNCS 7658,
pp. 386–403, 2012.

11. PKCS #1 Standard for RSA. Available at http://www.rsa.com/rsalabs/node.

asp?id=2125.
12. Risa/Asir (Kobe Distribution) Download Page, http://www.math.kobe-u.ac.jp/

Asir/asir.html, 2011.
13. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems,” Communications of the ACM, vol. 21(2), pp.
120–126, 1978.

14. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When Private
Keys are Public: Results from the 2008 Debian OpenSSL Vulnerability,” IMC
2009, ACM Press, pp. 15–27, 2009.

A Proofs of Theorem 2 and Corollary 1

A.1 Proofs of Theorem 2

First, we discuss how to determine the threshold value Ci satisfying Re-
striction 1 for a fixed T . Note that ti and ∆i are uniquely determined if
T is fixed once.

In one i-th partial tree of the binary tree, there are 2ti candidates.
Thus we defines 2ti variables Zj

b,i for j = 1, . . . , 2ti as

Zj
b,i =

{
1 (j-th bad candidate passes)
0 (otherwise.)

19



Then, the number of bad candidates Zb,i given in Restriction 1 is described
as Zb,i =

∑2ti

j=1 Zj
b,i. Since all Zj

b,i are identically distributed, there exists

an integer j such that E[Zb,i] = 2tiE[Zj
b,i].

Here we consider the number Xb,i of matching bits between sk and
one bad candidate at the i-th pruning step skipping bits corresponding
to erasure positions of sk. Since T bits of a bad candidate are compared
with the corresponding bits of sk, we have that Xb,i ∼ Bin(T, 1/2) by
Assumption 1. The condition Zj

b,i = 1 is equivalent to that Xb,i ≥ Ci, and

thus E[Zj
b,i] = Pr[Zj

b,i = 1] = Pr[Xb,i ≥ Ci]. Supposing that

Ci = T

(
1
2

+ γi

)
, (17)

we have Pr[Xb,i ≥ Ci] ≤ exp(−2Tγ2
i ) from Theorem 1. Therefore, we

obtain that E[Zb,i]/2ti = E[Zj
b,i] ≤ exp(−2Tγ2

i ). By setting

γi =

√
ti + 1

T

ln 2
2

, (18)

we have exp(−2Tγ2
i ) = 2−(ti+1). Restriction 1 holds since E[Zb,i] ≤

2ti exp(−2Tγ2
i ) = 1/2.

Let Yi be the number of all bad candidates passing the i-th pruning
step. Then, we have the following lemma.

Lemma 2. Suppose that γi and Ci satisfy Eqs. (17) and (18) for a fixed
T . Then, it holds that E[Yi] < 2max{tj}i

j=1+1.

Proof. At the i-th pruning step, let Zg,i be the number of bad candi-
dates generated from the correct solution, and Zb,i the number of bad
candidates generated from one bad partial solution. Then, the following
holds:

E[Y1] = E[Zg,1], E[Yi] = E[Zg,i] + E[Zb,i]E[Yi−1]. (19)

Since the number of candidates is 2ti , we have E[Zg,i] ≤ 2ti . For a given
T , namely a fixed ti, we determine γi and Ci so that Restriction 1 holds.
From (19), we have

E[Yi] < 2ti +
E[Yi−1]

2
< 2max{tj}i

j=1
1 − (1/2)i

1 − 1/2
< 2max{tj}i

j=1+1.

Then, we have the lemma. 2

20



Next we discuss T such that Restriction 2 holds. Let Xc,i be the
number of matching bits between sk and the correct solution at the i-th
pruning step without the bits corresponding to erasure positions of sk.
Since we see total (T +∆i) bits and the T bits of them correspond to the
non-erasure position of sk, the probability that a bit of a correct solution
matches the corresponding bit of sk is (T−(T+∆i)ε)/T = 1−(T+∆i)ε/T .
Therefore, since Xc,i ∼ Bin(T, 1 − (T+∆i)ε

T ), we suppose that

1
2

+ γi ≤ 1 − (T + ∆i)ε
T

− ε′,

for any i. From Theorem 1, we have that

Pr[Xc,i < Ci] ≤ Pr
[
Xc,i < T

(
1 − (T + ∆i)ε

T
− ε′

)]
≤ exp(−2Tε′2).

Since we consider T such that Restriction 2 holds, exp(−2Tε′2) ≤ 1/n.
Therefore, we have T ≥ lnn/2ε′2, and so we set T = dlnn/(2ε′2)e.

By considering the above discussion, we have Theorem 2. The proof
of Theorem 2 is given in detail below.

Proof. First we show that the total expected computational cost of the
new method is O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n

)). One node is computable in time
O(n), so the partial tree is generated in time O(n2ti) since there are∑ti−1

j=0 2j(< 2ti) nodes. The pruning step can be performed in time O(ti)
for each of 2ti candidates, and thus the total time complexity for pruning
is O(ti2ti). Therefore, the time complexity for one partial tree is O((n +
ti)2ti) = O(n2ti). For a given T , we suppose that the erroneous version
sk is separated into ` parts. By Eq. (7), ti is bounded by t∗i = dT+∆i

m e.
Let t∗ be the maximum integer of t∗1, . . . , t

∗
` . By Lemma 2, the upper

bound for the expected total number E[Y ] of partial trees is given by
E[Y ] < 1 +

∑`−1
j=1 E[Yj ] < `2t∗+1 ≤ n2t∗+1 = O(n2t∗). Let ∆ be the ∆i

corresponding to t∗. Then, the total expected computational cost is

O(n2t∗ · n2t∗) = O(n2n2t∗ ln 2
ln n ) = O(n2n2T+∆

m
ln 2
ln n ) = O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n

)).

Next we discuss the success probability of the new method. Note that
Ci, γi and T are determined so that Restriction 2 holds. Hence the success
probability is given by∏̀

i=1

(1 − Pr[Xc < Ci]) ≥
(

1 − 1
n

)`

≥ 1 − `

n
≥ 1 −

(
(1 − δ)mε′2

lnn
+

1
n

)
since ` ≤

n
2
(1−δ)m

T + 1. 2

21



A.2 Proofs of Corollary 1

To give the proof of Corollary 1, we begin with the discussion of Eq. (9)
in the analysis of our method. For simplicity, we consider only the case
where all δi’s are the same4, for example, δi = δ. Suppose that sk is
separated into ` fractions. Then, each part consists of mn/2` bits. By
letting t = n/2`, we have ∆ = δtm and T = tm − ∆ = (1 − δ)tm, so
we can describe γi in Theorem 2 as

√
t+1

(1−δ)tm
ln 2
2 . Hence, in this case, the

upper bound (9) implies that

ε +
δ

2
≤ 1

2
−

√(
1 +

1
t

)
(1 − δ) ln 2

2m
− (1 − δ)ε′.

B Computation of k, kp, kq

If sk = (p, q, d), (p, q, d, dp), (p, q, d, dq) or (p, q, d, dp, dq), namely m ≥ 3,
it is required to compute k, kp, kq. Let sk be an erroneous version of sk,
such that the erasure rate and error rate of sk are δ and ε, respectively.
In this section, we explain that k, kp, kq are efficiently computable from
sk in the same manner as the HMM method [5] when e is small such as
e = 216 + 1.

In section 2 in [6], it is shown that kp, kq are given by solving the
equation

x2 − (k(N − 1) + 1)x − k ≡ 0 (mod e)

if k is known. In the HMM method and our new method, the same tech-
nique is employed. Therefore, we discuss how to compute k from sk.

As 0 < k < e d
φ(N) < e, there are at most e− 1 candidates k′ of k. For

each such k′, we define

d(k′) =
⌊

1 + k′(N + 1)
e

⌋
.

In [1], Boneh et al. obtained the fact that

|d − d(k)| =<
k(p + q)

e
< p + q < 3

√
N.

4 For a large enough T , it holds with high probability. More precisely, all of δi takes
the value close to δT/(1 − δ) with overwhelming probability, which can be proved
by the similar analysis of [6].

22



Thus, d(k) agrees with d on at least α = bn
2 c − 2 most significant bits.

Conversely, d(k′) with k′ 6= k agrees with d on at most log e most signifi-
cant bits.

In Appendix B in [5], MSB of d(k′) is compared with that of d̃ for
each k′, and we find the k′

0 such that the number of matching bits between
them is larger than the number for the other k′. Then, the probability
that k′

0 = k is close to 1. In this section, it is shown that the probability
that we obtain k from sk in the same manner as the HMM method is
close to 1.

Let X(k′) be the number of matching bits between d̃ and d(k′) on
their α most significant bits, and we define

D(k′) = X(k) − X(k′).

Then we estimate the lower bound of Pr[D(k′) > 0] for any k′ 6= k.
D(k′) is described as the sum of the following α random variables

D(k′)n−i ∈ {−1, 0, 1}:
1. D(k′)n−i = 1 if d(k)[n− i] = d̃(k)[n− i], but d(k′)[n− i] 6= d̃(k)[n− i].
2. D(k′)n−i = −1 if d(k)[n− i] 6= d̃(k)[n− i], but d(k′)[n− i] = d̃(k)[n− i].
3. D(k′)n−i = 0 otherwise.
By Assumption 1, we have

E[D(k′)n−i] = 1 · (1 − ε − δ)
1
2

+ (−1)ε
1
2

= (1 − 2ε − δ)
1
2

for i = log(e) + 1, . . . α. Thus, the following property holds:

E[D(k′)] ≥ (α − log(e))(1 − 2ε − δ)
2

.

By Eq. (1) in [5], the following property holds

Pr[D(k′) > 0] = 1 − exp
(
−(α − log(e)2)(1 − 2ε − δ)2α

8

)
.

When n = 1024 and e = 216 + 1, we have that

1 − 2ε − δ ≥
√

2(1 − δ) ln 2
m

≥
√

0.4 ln 2
m

by Eq. (11). This implies that Pr[D(k′) > 0] is close to 1.

23



C Small Examples for Meta-algorithm

This section presents several small examples for the meta-algorithm. We
consider the case that the secret keys are p and q. Suppose that a public
key N is N = 437 = (19× 23) = (10011)× (10111). The set of candidate
solution C is calculated by only public information N . In this setting, C
is given by

(p, q) = (10111, 10011), (11111, 11011), (11011, 11111), (10011, 10111),
(11101, 11001), (10101, 10001), (11001, 11101), (10001, 10101).

Note that |C| = 8 since the MSB and LSB of p and q are 1.
We show several examples of observed sequences sk.

Example 1: Suppose that ε = 0.
Example 1.1: Suppose that we observed (p, q) = (1E0E1, 10E1E).

The candidate maximizing the likelihood is (p, q) = (10011, 10111).
The likelihoods of the remaining seven candidate solutions are 0.

Example 1.2: Suppose that we observed (p, q) = (1E0E1, 10EEE).
The candidates maximizing the likelihood are (p, q) = (10011, 10111)
and (10001, 10101). By computing p×q for each candidate, we have
the final solution: (p, q) = (10011, 10111).

Example 2: Suppose that δ = 0 and ε = 1/6.
Example 2.1: Suppose that we observed (p, q) = (10011, 10111).

The likelihood of the correct solution is evaluated by (5/6)5(1/6)1

. The likelihood of the remaining seven candidates is at most
(5/6)3(1/6)3. Then, the correct solution indeed maximizes the
likelihood. Hence, by obtaining the solution maximizing the like-
lihood, we have the correct solution.

Example 2.2: Suppose that we observed (p, q) = (11011, 11111),
which has more errors than Example 2.1. The likelihood of the
correct solution is evaluated by (5/6)4(1/6)2. However, the like-
lihood of the other candidate (11011, 11111) is given by (5/6)6,
which is bigger than the likelihood of the correct solution. In this
case, even if we find the solution maximizing the likelihood, we
cannot find the correct solution.

Example 3: Suppose that δ = ε = 1/6. In this case, the obtained se-
quence involves both erasure and errors. Suppose that we observed
(p, q) = (10E11, 10101). The candidate solutions maximizing likeli-
hood are given by (10011, 10111) and (10001, 10101), which includes
the correct solution.

24



D Information-theoretic View of Our Theoretic Bound

We explain why the exponential time is needed for recovering the secret
key when

C(ε, δ) <
1
m

by regarding the process involving erasures and errors as symmetric com-
munication channel with erasures and errors.

Suppose that the i-th bit p[i] of p and all bits up to the i-th bit are
fixed. By using Eqs.(2)–(5), we know q[i], d[i + τ(κ)], dp[i + τ(κp)], dq[i +
τ(κq)]. Regard p[i] as an information bit and (p[i], q[i], d[i + τ(κ)], dp[i +
τ(κp)], dq[i + τ(κq)]) as a codeword. An information rate of this code is
given by 1/5.

In considering the symmetric channel with erasure and errors, the
following lemma is well known.

Lemma 3. Consider a binary symmetric memoryless channel with error
probability ε and erasure probability δ. The capacity of the channel is given
by

(1 − δ)
(

1 − H

(
ε

1 − δ

))
.

This value is equivalent to C(ε, δ). Notably, it holds that C(0, δ) = 1 − δ
and C(ε, 0) = 1 − H(ε).

The well-known converse of the channel coding theorem states that
decoding error rates go to 1 for any codes if the information rate is bigger
than the channel capacity. By applying the theorem to the channel with
errors and erasures, we know that the decoding error rates go to 1 for any
codes if C(ε, δ) ≥ 1/m. This effectively explains our obtained theoretical
upper bound.

25


