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Abstract

We present a general framework for efficient, universally composable oblivious transfer (OT)
protocols in which a single, global, common reference string (CRS) can be used for multiple
invocations of oblivious transfer by arbitrary pairs of parties. In addition:

• Our framework is round-efficient. E.g., under the DLIN or SXDH assumptions we achieve
round-optimal protocols with static security, or 3-round protocols with adaptive security
(assuming erasure).

• Our resulting protocols are more efficient than any known previously, and in particular
yield protocols for string OT using O(1) exponentiations and communicating O(1) group
elements.

Our result improves on that of Peikert et al. (Crypto 2008), which uses a CRS whose length
depends on the number of parties in the network and achieves only static security. Compared
to Garay et al. (Crypto 2009), we achieve adaptive security with better round complexity and
efficiency.
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1 Introduction

In this work we study the construction of efficient protocols for universally composable (UC) [Can01]
oblivious transfer (OT). Our work is motivated by the fact that, although UC commitments are
complete for UC multiparty computation [CLOS02], the most efficient multiparty computation
protocols (e.g., [LP11, LOP11]) rely on universally composable OT as a building block. Relative
to UC commitments (see [Lin11, FLM11] and references therein), however, universally composable
OT has received less attention.

There is a long series of work on efficient OT protocols in the stand-alone setting (e.g., [NP01,
AIR01, HK12, Lin08]). Lindell [Lin09] (also [IPS08, Appendix A]) gave a generic transformation
from static security to adaptive security (assuming erasure) that applied in the semi-honest setting
and the stand-alone malicious setting, but not in the UC setting.

Constructions of UC oblivious transfer from general assumptions were given in [CLOS02];
these constructions are relatively inefficient. Garay, MacKenzie, and Yang [GMY04] constructed a
constant-round protocol for committed OT under the DDH and strong RSA assumptions. Their
protocol yields bit OT rather than string OT, so results in protocols for string OT with complexity
linear in the length of the sender’s inputs. Jarecki and Shmatikov show a four-round protocol
for committed string OT under the decisional composite residuosity (DCR) assumption [JS07]. A
round-optimal OT protocol appears in [HK07].

The most efficient known protocol for UC oblivious transfer is that of Peikert et al. [PVW08].
Their work, however, has several disadvantages. First, it requires an independent common reference
string1 (CRS) for every party in the network or, equivalently, a single CRS of length linear in the
number of parties. (Any pair of parties can then run the protocol of Peikert et al. using the CRS
of the receiver.) Their protocols also only achieve security against a static adversary who decides
which parties to corrupt before the protocol begins (and even before the CRS is chosen). They do
not handle an adaptive adversary who may choose which parties to corrupt during the course of
the protocol execution.

Garay et al. [GWZ09] constructed efficient UC oblivious-transfer protocols that address both
the above-mentioned drawbacks. In their constructions, the parties run a coin-tossing protocol
whose outcome is then used as a common random string for an OT protocol. Since the resulting
schemes are not explicitly described in the literature, we do so in Appendix A. This approach is
not entirely satisfactory. First, it increases the overall computation, communication, and round
complexity; second, it can (in general) only be instantiated with OT protocols that work in the
common random string model rather than the more general common reference string model. Choi
et al. [CDMW09b, CDMW09a] showed other approaches for obtaining adaptively secure, constant-
round UC oblivious transfer.

1.1 Our Results

Here, we present a new framework for constructing UC oblivious-transfer protocols that require only
a single, global CRS.2 We aim for efficient protocols having low round complexity, and incurring
only constant computation and communication even when the sender’s inputs are long strings. We
are also interested in achieving adaptive security, under the assumption that parties erase portions

1Some form of setup is known to be necessary for universally composable OT [CF01, CKL06].
2Here, global CRS just means multiple parties can share the same CRS, and our notion of global CRS is different

from that in [CDPW07].
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reference assumption rounds
communication CRS

complexity size

[PVW08] DDH 2 6 n

[PVW08]+[GWZ09]+[FLM11] DLIN 4 78 12

Protocol 1∗ (Sec. 4.1) DLIN 2 54 12

[PVW08]+[GWZ09]+[Lin11] DDH 6 38 7
Protocol 2 (Sec. 5.1, Sec. 6.1) DDH 4 32 6

[JS07] DCR 4 35 (ZN2) + 16 (ZN ) 10
Protocol 2 (Sec. 5.1, Sec. 6.2) DCR 4 18 (ZN2) + 7 (ZN ) 12

Protocols with static security.

reference assumption rounds
communication CRS

complexity size

[PVW08]+[GWZ09]+[FLM11] DLIN 4 83 12
Protocol 1∗ (Sec. 4.1) DLIN 3 59 12

[PVW08]+[GWZ09]+[Lin11] DDH 8 51 7

Protocol 2∗ (Sec. 5.2, Sec. 6.1) DDH 4 35 6

Protocol 2∗ (Sec. 5.2, Sec. 6.2) DCR 4 21 (ZN2) + 7 (ZN ) 12

Protocols with adaptive security (assuming erasure).

Table 1: Efficient universally composable protocols for string OT. Here, n is the number of parties.
Communication complexity and CRS size are measured in terms of group elements, with other
values ignored. The numbers for [JS07] include the cost of the pre-processing (off-line) stage.

of their local state that are no longer needed. (Note, however, that the works of [CDMW09b,
GWZ09, CDMW09a] do not make this assumption.)

Our framework is fairly general and can be instantiated from several assumptions. Specifically:

• We obtain efficient, round-optimal OT protocols with static security under the decisional
linear (DLIN) [BBS04] or symmetric external Diffie-Hellman (SXDH) assumptions [Sco02,
BBS04]. These protocols can be modified to achieve adaptive security (assuming erasure)
with one additional round and a slight increase in communication and computation.

• We obtain efficient, four-round OT protocols under the decisional Diffie-Hellman (DDH)
or DCR [Pai99] assumptions. Our basic constructions achieve static security, and we
present variants that are secure against adaptive corruptions (assuming erasure) without any
additional rounds, but with a slight increase in communication and computation.

We compare our constructions with previous work in Table 13

Overview of our constructions. The starting point of our approach is the Halevi-Kalai
construction [HK12] of 2-round OT based on smooth projective hashing. Their construction only
achieves indistinguishability-based security (and not even stand-alone simulation-based security)
against a malicious receiver. We show how to overcome this with the following modifications:

3The numbers for the adaptively secure protocol of [PVW08]+[GWZ09]+[Lin11] in Table 1 are based on a
preliminary version of [Lin11], and could change once the author publishes the fix to a bug in the protocol.
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1. We require the receiver to commit to its input using CCA-secure encryption.

2. The receiver proves in zero knowledge that it is behaving consistently in the underlying OT
protocol (with respect to the input it committed to).

A similar high-level approach was taken in [HK07], but using generic simulation-sound non-
interactive zero knowledge [DDO+01]. Here, following recent constructions of efficient UC
commitments [Lin11, FLM11], we rely instead on efficient zero-knowledge protocols that admit
straight-line simulation in the CRS model. In particular, for our two-round OT protocols
we instantiate the underlying zero-knowledge proofs using Groth-Sahai proofs [GS08], as in
[FLM11]. For our four-round OT protocols, we rely on Damg̊ard’s three-round zero-knowledge
proof system [Dam00].

Achieving adaptive security. To achieve adaptive security, we first modify our protocols so
the final message is sent over an adaptively secure channel (cf. functionality Fsmt in [Can01]). The
latter can be realized at low cost if erasure is assumed [BH92]. With this modification, security
against adaptive corruption of the sender is achieved automatically by simply having the sender
erase its local state at appropriate times. In our two-round protocols, security against adaptive
corruption of the receiver is similarly achieved. For our 4-round protocols, we use techniques similar
to those in [Lin11, FLM11]. Unlike this prior work, however, we do not introduce any additional
overhead in communication or round complexity. (We incur a modest increase in computational
cost.)

1.2 Organization

We review preliminaries in Section 2. Our general framework and concrete instantiations for two-
round OT is described in Sections 3 and 4, and for four-round OT in Sections 5 and 6.

2 Preliminaries

Let λ be the security parameter. For a set S, we let x← S denote choosing x uniformly at random
from S. For a randomized algorithm A, we let y←A(x) denote running A(x; r) with r chosen
uniformly at random.

2.1 Ideal Functionalities

The ideal OT functionality FMOT described in Figure 1 is a reformulation of the multi-session OT
functionality in [Can01].

The CRS functionality in Figure 2 is a reformulation of that in [Can07].

2.2 Smooth Projective Hash Proof Systems

We recall the notion of a hard subset membership problem and smooth projective hashing defined
by Cramer and Shoup [CS02], following the notation of [HK12]. A hash family H consists of the
following PPT algorithms:
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Functionality FMOT

FMOT interacts with parties P1, . . . , Pn and an adversary Sim, and proceeds as follows:

Upon receiving an input (send, 〈sid, ssid, Pi, Pj〉, 〈m0,m1〉) from Pi with m0,m1 ∈ {0, 1}`, record
the tuple 〈ssid, Pi, Pj ,m0,m1〉, and reveal (send, 〈sid, ssid, Pi, Pj〉) to the adversary. Ignore further
(send, . . .) inputs with the same ssid from Pi.

Upon receiving an input (receive, 〈sid, ssid, Pi, Pj〉, b) from Pj with b ∈ {0, 1}, record the
tuple 〈ssid, Pi, Pj , b〉, and reveal (receive, 〈sid, ssid, Pi, Pj〉) to the adversary. Ignore further
(receive, . . .) inputs with the same ssid from Pj .

Upon receiving a message (sent, 〈sid, ssid, Pi, Pj〉, Pi) from the adversary, ignore the message if
〈ssid, Pi, Pj ,m0,m1〉 or 〈ssid, Pi, Pj , b〉 is not recorded; Otherwise, return (sent, 〈sid, ssid, Pi, Pj〉)
to Pi; Ignore further (sent, 〈sid, ssid, Pi, Pj〉, Pi) messages from the adversary.

Upon receiving a message (received, 〈sid, ssid, Pi, Pj〉, Pj) from the adversary, ignore
the message if 〈ssid, Pi, Pj ,m0,m1〉 or 〈ssid, Pi, Pj , b〉 is not recorded; Otherwise, return
(received, 〈sid, ssid, Pi, Pj〉,mb) to Pj ; Ignore further (received, 〈sid, ssid, Pi, Pj〉, Pj) messages
from the adversary.

Figure 1: The ideal FMOT functionality for muti-session string-OT.

Functionality FP,DCRS

Upon receiving an input (crs, sid) from P , sid = (P, sid′) where P is a set of identities, and P ∈ P;
else ignore the input. Next if there is no value crs recorded then choose crs←D() and record it.
Send (crs, sid, crs, P ) to S; when receiving (crs-return, sid) from S, send (crs-return, sid, crs)
to P .

Figure 2: The ideal FP,DCRS functionality for common reference string.
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• The parameter-generator HashPG(1λ)→pp. We assume that the security parameter λ can be
inferred from pp. Let λ(pp) denote the security parameter corresponding to pp.

• A pair of disjoint sets Λyes and Λno are associated to pp corresponding to yes and no
instances respectively. There exists a yes instance-sampler SampYes(pp)→(x,w) where x is
uniformly distributed over Λyes and w is the corresponding witness. There also exists a no
instance-sampler SampNo(pp)→x′ where x′ is uniformly distributed over Λno.

• The hash-key generator HashKG(pp)→(hk,pk). Here hk is the primary hashing key and pk
is a projective key.

• The primary hash algorithm Hash(hk, x)→y for all x ∈ Λyes ∪ Λno.

• The secondary (projection) hash algorithm pHash(pk, x, w)→y for all (x,w)← SampYes(pp).

Definition 1 A family H = (HashPG,SampYes, SampNo,HashKG,Hash, pHash) is a smooth
projective hash family if for every pp ∈ support(HashPG), the following holds:

Correctness:

Pr[(hk,pk)←HashKG(pp); (x,w)←SampYes(pp) : pHash(pk, x, w) = Hash(hk, x) ] = 1.

Smoothness: Let (hk,pk)←HashKG(pp). For all x ∈ Λno, the distribution of Hash(hk, x) given
pk is statistically close to uniform. That is, the statistical difference between the following
two distributions is negligible in λ(pp).

{y←Hash(hk, x) : (pk, y, x)} s≡ {y←Γ : (pk, y, x)}

where Γ denotes the set of possible hash values with parameter pp.

Definition 2 A smooth projective hash family H = (HashPG, SampYes,SampNo,HashKG,Hash, pHash)
is said to have a hard subset membership property if the following two ensembles are computationally
indistinguishable:

-
{
pp←HashPG(1λ); (x,w)←SampYes(pp) : (pp, x)

}
λ∈N

-
{
pp←HashPG(1λ); x←SampNo(pp) : (pp, x)

}
λ∈N

.

2.3 Dual-Mode NIZK

Groth introduced composable non-interactive zero-knowledge proofs [Gro06]. In this work, we
sometimes call these proofs as dual-mode NIZK proofs. In the system, a common reference string
crs is generated in one of two modes called soundness mode and zero knowledge (ZK) mode. It is
required that given the crs, no efficient adversary can distinguish between the modes. In addition,
when crs is generated in soundness mode, the proof system is statistically sound. On the other
hand, when crs is generated in ZK mode, the simulation is perfect. Groth and Sahai [GS08] provide
efficient dual mode NIZK proofs for various equations in bilinear groups.
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Definition 3 A non-interactive proof system for a language L ∈ NP consists of three algorithms
(K,P,V) where K is a CRS generation algorithm, P and V are a prover and a verifier algorithm
respectively. The system is required to satisfy the following properties:

Completeness: For any λ, any x ∈ L, and any witness w for x, it holds that

Pr[crs←K(1λ); π←P(1λ, crs, x, w) : V(1λ, crs, x, π) = 1] = 1.

Adaptive soundness: For any λ and any adversary A, it holds that

Pr[crs←K(1λ); (x, π)←A(1λ, crs) : V(1λ, crs, x, π) = 1 ∧ x 6∈ L] = negl(λ).

Definition 4 A non-interactive proof system (K,P,V) for a language L ∈ NP is said to be dual-
mode NIZK if there is a pair of efficient algorithms (S1,S2) such that for any λ ∈ N and for all
non-uniform polynomial time adversary A, it holds the following:

Indistinguishability of modes:∣∣∣Pr[crs←K(1λ) : A(1λ, crs) = 1]− Pr[(crs, τ)←S1(1λ) : A(1λ, crs) = 1]
∣∣∣ = negl(λ).

Perfect simulation in ZK mode: The following two probabilities are equal.

- Pr[(crs, τ)←S1(1λ); (x,w)←A(1λ, crs, τ); π←P(1λ, crs, x, w) : A(π) = 1]

- Pr[(crs, τ)←S1(1λ); (x,w)←A(1λ, crs, τ); π←S2(τ, x) : A(π) = 1]

Here, A has to generate a valid pair (x,w), i.e., w should be a witness for x.

2.4 Labeled CCA-Secure Encryption

We use the standard notion of chosen-ciphertext security for public-key encryption supporting
labels [CS03].

Definition 5 A labeled public-key encryption scheme consists of three PPT algorithms (Gen,Enc,Dec)
such that:

• The key generation algorithm Gen takes as input a security parameter 1λ returns a public key
pk and a secret key sk.

• The encryption algorithm Enc takes as input a public key pk, a label L, and a message m. It
returns a ciphertext C←EncLpk (m).

• The decryption algorithm Dec takes as input a secret key sk, a label L, and a ciphertext C.
It returns a message m or a distinguished symbol ⊥. We write this as m = DecLsk (C) or
m = Decsk (L,C).

We require that for any label L ∈ {0, 1}∗ and any m in the message space, it should hold that

Pr[(pk , sk)←Gen(1λ); DecLsk (EncLpk (m)) = m] = 1.
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Our definition of security against chosen-ciphertext attacks is standard except for our inclusion
of labels. In the following, we define a left-or-right encryption oracle LRpk ,β(·, ·, ·) with β ∈ {0, 1}
as follows:

LRpk ,β(L,m0,m1)
def
:= EncLpk (mβ).

Definition 6 A labeled public-key encryption scheme (Gen,Enc,Dec) is secure against adaptive
chosen-ciphertext attacks (CCA-secure) if for any non-uniform PPT algorithms A, it holds that
|2p− 1| = negl(λ) where

p = Pr
[
(pk , sk)←Gen(1λ);β←{0, 1} : ALRpk,β(·,·,·),Decsk (·,·)(1λ, pk) = β

]
.

Here, A’s queries are restricted as follows: if A makes a query LRpk ,β(L,m0,m1) then |m0| = |m1|;
furthermore, if A receives ciphertext C in response to a query with label L, then A cannot later
query Decsk (L,C); however, it is allowed to query Decsk (L′, C) with L 6= L′.

2.5 Σ-Protocols

A Σ-protocol is a 3-round honest-verifier zero-knowledge protocol. We denote by (a, e, z) the
messages exchanged between the prover PΣ and the verifier VΣ. Please see Figure 3. We say that
a transcript (a, e, z) is an accepting transcript for x if the protocol instructs VΣ to accept based on
the values (x, a, e, z). Formally:

PΣ((x,w) ∈ R) VΣ(x)

a←PΣ(x,w)
a -

e←{0, 1}λ

� e

z←PΣ(x,w, e)
z -

VΣ(x, a, e, z)
?
= 1

Figure 3: A Σ-protocol (PΣ,VΣ) for relation R.

Definition 7 A protocol is a Σ-protocol for relation R if it is a three-round public-coin protocol
and the following requirements hold:

Completeness: If PΣ and VΣ follow the protocol on input x and private input w to PΣ where
(x,w) ∈ R, then VΣ always accepts.

Special soundness: There exists a polynomial-time algorithm A that given any x and any pair
of accepting transcripts (a, e, z), (a, e′, z′) for x where e 6= e′, outputs w s.t. (x,w) ∈ R.

Special honest verifier zero knowledge: There exists a probabilistic polynomial-time simulator
SΣ, which on input x and e outputs a transcript of the form (a, e, z) with the same probability
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distribution as transcripts between the honest PΣ and VΣ on common input x. Formally, for
every x and w such that (x,w) ∈ R and every e ∈ support(VΣ(x)) it holds that

{SΣ(x, e)} = {viewVΣ
〈PΣ(x,w),VΣ(x, e)〉}

where SΣ(x, e) denotes the output of simulator SΣ upon input x and e, and viewVΣ
〈PΣ(x,w),

VΣ(x, e)〉 denotes the view of VΣ of an execution between PΣ and VΣ, where PΣ has input
(x,w), VΣ has input x, and VΣ’s random tape (determining its query) equals e.

2.6 Equivocal Commitments

We define equivocal commitment scheme as follows:

Definition 8 Let (Kcom,Com) be a non-interactive commitment scheme with CRS where Kcom is a
CRS generation algorithm, and Com is a commitment algorithm. The scheme is said to be equivocal
if there exists a tuple of PPT algorithm (Scom1,Scom2,Scom3) that satisfies the following properties:

Computational binding: LetM and R be the message space and the randomness space implicitly
defined by the commitment scheme. For any λ ∈ N, and any non-uniform polynomial time
adversary A the following probability is negligible in λ:

Pr
[
crs←Kcom(1λ); (m,m′, r, r′)←A(crs) : m 6= m′ and Comcrs(m; r) = Comcrs(m

′; r′)
]

Indistinguishability of modes:{
crs←Kcom(1λ) : crs

}
λ∈N

c
≈
{

(crs, t)←Scom1(1λ) : crs
}
λ∈N

Equivocality: For any λ ∈ N, any (crs, t) ∈ support(Scom1(1λ)), and any adversary A, the
following distributions are identical.

-
{
m←A(crs); r←R; c = Comcrs(m; r) : (m, r, c)

}
-
{
m←A(crs); (c, s)←Scom2(t); r←Scom3(s,m) : (m, r, c)

}
2.7 A Family of Collision-Resistant Hash Functions

HF =
{
hk : {0, 1}∗ → {0, 1}`(λ)}

k∈{0,1}λ with a polynomial ` is a family of collision-resistant hash

functions if for any non-uniform PPT algorithm A, it holds that

Pr[k ← {0, 1}λ : A(k) = (x1, x2) s.t. x1 6= x2 and hk(x1) = hk(x2)] = negl(λ).

3 A Generic Framework for Two-Round OT (Protocol 1∗)

Let (K,P,V) be a dual-mode NIZK proof system, (Gen,Enc,Dec) be a CCA-secure labeled public-
key encryption scheme, and H = (HashPG,SampYes, SampNo,HashKG,Hash, pHash) be a smooth
hash proof system with a hard subset membership property. We assume for simplicity that {0, 1}` is
the range of the hash functions in H; known constructions can be modified to achieve this property.
Based on these components, we construct an OT protocol between a sender Pi and a receiver Pj
in the CRS model; refer also to Figure 4.
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Common reference string: Compute pp←HashPG(1λ), (pk , sk)←Gen(1λ), and crsnizk←K(1λ).
The common reference string is crsot = (pp, pk , crsnizk).

Oblivious transfer: The protocol starts by having the receiver, holding selection bit b, send two
instances (x0, x1) for the hash proof system H with x1−b a no-instance; the receiver sends Encpk (b)
and a NIZK proof that x1−b is a no-instance as well. In the second round, for σ ∈ {0, 1} the sender
generates primary and projection hash keys (hkσ,pkσ) and sends (pkσ,Hash(hkσ, xσ)⊕mσ) to the
receiver. The receiver recovers mb in the standard way. In more detail:

• On input a selection bit b, the receiver Pj proceeds as follows:

1. Generate yes and no instances according to the input b, i.e., (xb, w)←SampYes(pp)
and x1−b = SampNo(pp; γ) for uniformly random γ. Compute Φ = EncLpk (b; ξ) with
uniformly random ξ, where L = (sid, ssid, Pi, Pj). Generate a proof π←P(crsnizk,
(pp, pk , L, x0, x1,Φ), (b, γ, ξ)) for language

L∗ =
{

(pp, pk , L, x0, x1,Φ) : ∃(b, γ, ξ) s.t. x1−b = SampNo(pp; γ),Φ = EncLpk (b; ξ)
}
.

2. Send 〈x0, x1,Φ, π〉.

• On input m0,m1 ∈ {0, 1}`, and after receiving the first-round message 〈x0, x1,Φ, π〉 from the
receiver, the sender Pi proceeds as follows:

1. If the proof π does not verify, abort.

2. For σ ∈ {0, 1} compute (hkσ,pkσ)← HashKG(pp) and Zσ = mσ ⊕ Hash(hkσ, xσ).

3. Send 〈pk0, Z0,pk1, Z1〉 to Pj .

• Upon receiving the second-round message 〈pk0, Z0,pk1, Z1〉, the receiver Pj computes the
output mb = Zb ⊕ pHash(pkb, xb, w).

Informally, security against a malicious sender holds because the sender cannot guess the
receiver’s selection bit from (x0, x1) due to the hard subset membership property. On the other
hand, a malicious receiver gets no information about m1−b if x1−b is a no-instance, and this property
is enforced by the NIZK proof.

Theorem 1 Say (Gen,Enc,Dec) is a CCA-secure labeled public-key encryption scheme, (HashPG,
SampYes, SampNo,HashKG,Hash, pHash) is a smooth projective hash proof system with a hard subset
membership property, and (K,P,V) is a dual-mode NIZK proof system. Then the protocol described
above securely realizes FMOT in the FCRS-hybrid model, for static corruptions.

Here, we give an informal overview of the proof. The simulator works as follows:

• The simulator sets the CRS crsot = (pp, pk , crsnizk). It generates pp honestly. For the public
key pk , it additionally keeps the corresponding secret key sk . For crsnizk, it runs the CRS
generation algorithm in the ZK mode rather than in the soundness mode.

• In simulating an honest sender against a malicious receiver, it uses the secret key sk to
decrypt the encryption Φ and extract the receiver’s input b̂ (and thereby mb̂ from the OT
functionality). It sets the honest sender’s m1−b̂ to 0`.
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crsot = {pp, pk , crsnizk}

Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w)← SampYes(pp)
x1−b ← SampNo(pp; γ)

Φ← EncLpk (b; ξ);X := (x0, x1,Φ)
π ← P(crsnizk, (pp, pk , L,X), (b, γ, ξ))

erase all state except (b, w,X, π)

�
x0, x1,Φ, π

V(crsnizk, (pp, pk , L,X), π)
?
= 1

for σ ∈ {0, 1} :
(hkσ,pkσ)← HashKG(pp)
Zσ←mσ ⊕ Hash(hkσ, xσ)

erase all state except
(m0,m1,pk0, Z0,pk1, Z1)

pk0, Z0,pk1, Z1
Q
�

mb←Zb ⊕ pHash(pkb, xb, w)
output mb

Figure 4: An adaptively secure OT protocol in the FCRS-hybrid model (Protocol 1∗). The second
round message is sent over a secure channel (for static security, the message can be simply sent
over an authenticated channel).

• In simulating an honest receiver against a malicious sender, it generates (x0, x1) where both
are yes-instances; additionally, Φ = E(0), and π is simulated. Given the sender messages, it
extracts the sender input (m0,m1) using the witnesses for (x0, x1).

Indistinguishability is shown by going over the following hybrids:

• H0: Real execution.

• H1: The simulator sets up the CRS in such a way that it knows the decryption key for
pk. When the receiver is corrupted, the simulator decrypts Φ to obtain b̂ and switches the
honest sender’s m1−b̂ to 0`. Indistinguishability follows from the soundness of the proof π
and smoothness of the hash proof system.

• H2: The simulator generates crsnizk in the ZK mode.

• H3: When interacting with a corrupted sender, the simulator generates a simulated proof π.
Indistinguishability follows from the zero-knowledge property of the proof system.

• H4: When interacting with a corrupted sender, the simulator sets Φ to an encryption of 0.
Indistinguishability follows from the CCA security of the encryption scheme.
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• H5: When interacting with a corrupted sender, the simulator generates both (x0, x1) as yes
instances. Indistinguishability follows from the hard subset membership property.

• H6: When interacting with a corrupted sender, the simulator uses witnesses for (x0, x1) to
extract (m0,m1). H5 and H6 are identically distributed.

A full proof of Theorem 1 is given in Section 3.1.
The protocol as described is secure against static corruptions. Interestingly, it achieves adaptive

security if the second round message is sent over a secure channel, and parties can erase portions
of their local state at the appropriate times. Namely, before sending the message (x0, x1,Φ, π),
the receiver erases all its internal state except the information needed (i.e., the input b and the
witness w for xb as well as (x0, x1,Φ, π)) to later compute the output. Before sending the message
(pk0, Z0,pk1, Z1), the sender erases all its internal state except its input (m0,m1) and the message.
The details are in Figure 4.

Theorem 2 Under the same assumptions as Theorem 1, the protocol described in Figure 4, where
the second round message is sent over a secure channel, securely realizes FMOT in the FCRS-hybrid
model, for adaptive corruptions (assuming erasure).

The proof appears in Section 3.2.

3.1 Proof of Theorem 1

Let Π denote the OT protocol under consideration. To show the security of the protocol, we need
to construct a simulator Sim for any non-uniform ppt environment Z such that execFCRS

Π,A,Z ≈
idealFMOT,Sim,Z , where A is the dummy adversary. We first construct a simulator and then argue
the indistinguishability between the two ensembles.

Let (S1,S2) be the simulator for the dual-mode NIZK proof system (K,P,V).

3.1.1 The Simulator

Initialization step: The simulator Sim generates the common reference string as follows:

1. Compute pp←HashPG(1λ);

2. Compute (pk , sk)← Gen(1λ);

3. Compute (crsnizk, τnizk)← S1(1λ);

4. Set crsot = (pp, pk , crsnizk).

Simulating the communication with Z: Upon receiving an input value from Z, the simulator
Sim writes it on A’s input tape (as if coming from Z); upon obtaining an output value from
A, the simulator Sim writes it on Z’s output tape (as if coming from A).

Case 1: Simulating honest receiver Pj with honest sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
delivers A a first round message (sid, ssid,M1) that intends to send from Pj to Pi, where
M1 = (x0, x1,Φ, π) which is generated as follows:
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Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), and then
obtain a simulated proof π by using the simulator S2 for the NIZK, i.e., compute
π←S2(τnizk, (pp, pk , L, x0, x1,Φ)), where L = (sid, ssid, Pi, Pj).

2. Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, and the first round
message has been delivered from Pj to Pi, the simulator Sim then sets m0 = m1 = 0`,
and computes (hkσ,pkσ) ← HashKG(pp), Zσ = mσ ⊕ Hash(hkσ, xσ) for σ ∈ {0, 1},
and generates a second round message (sid, ssid,M2) that it intends to send from Pi to
Pj , where M2 = (pk0, Z0,pk1, Z1). The second round message (sid, ssid,M2) is then
delivered to A.

Case 2: Simulating honest receiver Pj with corrupted sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
delivers A a first round message (sid, ssid,M1) that intends to send from Pj to Pi, where
M1 = (x0, x1,Φ, π) which is generated as follows:

Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), and then
obtain a simulated proof π by using the simulator S2 for the NIZK, i.e., compute
π←S2(τnizk, (pp, pk , L, x0, x1,Φ)), where L = (sid, ssid, Pi, Pj).

2. Upon receiving a second round message (sid, ssid,M2) from the adversary A that intends
to send from Pi to Pj , where M2 = (pk0, Z0,pk1, Z1), the simulator use (w0, w1) to
compute m̂0 = Z0⊕pHash(pk1, x0, w0) and m̂1 = Z1⊕pHash(pk1, x1, w1). The simulator
Sim sends (send, 〈sid, ssid, Pi, Pj〉, 〈m̂0, m̂1〉) to FMOT.

Case 3: Simulating corrupted receiver Pj with honest sender Pi:

1. Upon receiving a first round message (sid, ssid,M1) from A that it intends to send from
Pj to Pi, where M1 = (x0, x1,Φ, π), the simulator Sim first verifies if π is valid. If the

verification fails, then Sim aborts; otherwise, Sim decrypts Φ into b̂, i.e., b̂ = DecLsk (Φ)
with L = (sid, ssid, Pi, Pj). If b̂ 6∈ {0, 1}, Sim aborts.

2. Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, the simulator Sim

then sends (receive, 〈sid, ssid, Pi, Pj〉, b̂) to the ideal functionality FMOT in the name of
dummy receiver and obtains (received, 〈sid, ssid, Pi, Pj〉,mb̂). Set m1−b̂ = 0`. Then the
simulator computes (hkσ,pkσ)← HashKG(pp), Zσ = mσ⊕Hash(hkσ, xσ) for σ ∈ {0, 1},
and sends a second round message (sid, ssid,M2) to A that it intends to send from Pi to
Pj , where M2 = (pk0, Z0,pk1, Z1).

Case 4: Simulating corrupted receiver Pj with corrupted sender Pi: This is the trivial
case. Now the simulator Sim just runs A internally. Note that now A itself generates the
messages between the sender and the receiver.

3.1.2 Indistinguishability

Here we show by hybrid arguments that execFCRS
Π,A,Z ≈ idealFMOT,Sim,Z . Since the case in which

both players are corrupted (or honest) is easy (i.e., Case 1 and 4), we here ignore the analysis for
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those two cases and focus the remaining two difficult cases: honest receiver with corrupted sender,
and honest sender with corrupted receiver. Here, We highlight the main features of each hybrid.

• H0: Real execution.

• H1: When simulating honest senders, the simulator decrypts Φ from a corrupted receiver to
obtain b̂ and switches the honest sender’s m1−b̂ to 0`.

• H2: Use a simulated crsnizk.

• H3: In simulating honest receivers, the simulator generates a simulated proof π.

• H4: In simulating honest receivers, the simulator sends a dummy encryption Φ = Enc(0).

• H5: In simulating honest receivers, the simulator generates (x0, x1) with both yes instances.

• H6: In simulating honest receivers, the simulator uses witnesses for (x0, x1) to extract
(m0,m1) from a dishonest sender.

Hybrid H0: This is execFCRS
Π,A,Z .

Hybrid H1: In this hybrid, when the environment feeds inputs, the input of an honest receiver is
magically forwarded to the simulator Sim1. The simulator Sim1 generates CRS, and simulates
the behavior of all the honest parties. At the end of the protocol execution, the output from
Sim1 (as an honest party) is forwarded to Z.

In simulating the behavior of honest receivers, Sim1 executes the protocol Π with the adversary
A, simply following the protocol specification using the magically given input; however, the
input to an honest sender will be suppressed as in the ideal world, and more care is necessary.

Simulation of CRS. As in H0. However, the simulator Sim1 stores the secret key sk for
the CCA-secure cryptosystem in order to use it later.

Simulating honest receiver Pj with corrupted sender Pi. As in H0.

Simulating honest sender Pi with corrupted receiver Pj. The simulator Sim1 as Pi
just follows the protocol description except the following:

• Upon receiving a first round message (sid, ssid,M1) from A that it intends to send
from Pj to Pi, where M1 = (x0, x1,Φ, π), the simulator Sim first verifies if π is valid.

If valid, Sim decrypts Φ into b̂, i.e., b̂ = DecLsk (Φ) with L = (sid, ssid, Pi, Pj).

• Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, the simulator Sim

then sends (receive, 〈sid, ssid, Pi, Pj〉, b̂) to the ideal functionality FMOT in the name
of dummy receiver and obtains (received, 〈sid, ssid, Pi, Pj〉,mb̂). The simulator sets
m1−b̂ = 0` and computes (hkσ,pkσ)← HashKG(pp), Zσ ← mσ ⊕Hash(hkσ, xσ) for
σ ∈ {0, 1}. It sends a second round message (sid, ssid,M2) to A that it intends to
send from Pi to Pj , where M2 = (pk0, Z0,pk1, Z1).

We claim that the hybrids H0 and H1 are statistically indistinguishable. The proof proceeds
via a case analysis:
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Case (I). The proof π is accepting, the ciphertext Φ correctly decrypts to some value b̂ ∈
{0, 1}, and x1−b̂ is a yes instance. By adaptive soundness of the proof system (K,P,V),
this happens with negligible probability (over crsnizk and the coin tosses of Z).

Case (II). The proof π is not accepting. In this case, the sender in both H0 and H1 will
abort, so H0 and H1 are identically distributed.

Case (III). The proof π is accepting and x1−b̂ is a no instance. In this case, the only difference
between the distributions H0 and H1 is that in H0, Z1−b̂ is honestly generated based

on the real plaintext m1−b̂, but in H1 it is based on a dummy plaintext 0`; from the
smoothness property of the hash proof system, the two distributions are statistically
indistinguishable.

Combining the three cases, we may deduce that the two hybrids H0 and H1 are statistically
indistinguishable.

Hybrid H2: Similar to H1. The simulator Sim2 works as follows:

Simulation of CRS. As in H1 except that now compute (crsnizk, τnizk)← S1(1λ).

Simulating honest receiver Pj with corrupted sender Pi. As in H1.

Simulating honest sender Pi with corrupted receiver Pj. As in H1.

The only difference between the above two hybrids is: in H1, the crsnizk is in the soundness
mode while in H2 it is in the ZK mode. Since the CRSs in two modes are computationally
indistinguishable, we conclude that H1 and H2 are computationally indistinguishable.

Hybrid H3: Similar to H2. The simulator Sim3 works as follows:

Simulation of CRS. As in H2.

Simulating honest receiver Pj with corrupted sender Pi. The simulator Sim3 is the
same as in H2 except the following: in M1 = (x0, x1,Φ, π), now use the trapdoor τnizk
to simulate the proof π←S2(τnizk, (pp, pk , L, x0, x1,Φ)).

Simulating honest sender Pi with corrupted receiver Pj. As in H2.

Now the only difference between the above two hybrids is: in H2, π is generated honestly,
while in H3, π is simulated using the trapdoor τnizk. In the ZK mode, the two proofs are
statistically close. Therefore, we conclude that H2 and H3 are statistically indistinguishable.

Hybrid H4: Similar to H3. The simulator Sim4 works as follows:

Simulation of CRS. As in H3.

Simulating honest receiver Pj with corrupted sender Pi. The simulator Sim4 is the
same as in H3 except the following: in M1 = (x0, x1,Φ, π), now compute a dummy
ciphertext Φ ← Encpk (0). Note that here we still use the trapdoor τnizk generate a
simulated proof π.

Simulating honest sender Pi with corrupted receiver Pj. As in H3.
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Based on the CCA security of the encryption, we claim H3 and H4 are computationally
indistinguishable. Towards contradiction, assume there exists a distinguisher Z who can
distinguish H3 from H4. We next show an adversary B that breaks the CCA-security of
(Gen,Enc,Dec) as follows:

1. Upon receiving pk , B runs pp←HashPG(1λ) and (crsnizk, τnizk)←S1(1λ); then, it sets
crsot = (pp, pk , crsnizk).

2. B then internally simulates Z as follows:

Simulating honest receiver Pj with corrupted sender Pi. B works the same as in
H3 except the following: inM1 = (x0, x1,Φ, π), B queries LR-oracle LR with (L, b, 0)
where L = (sid, ssid, Pi, Pj); in turn it gets back a ciphertext Φ which is EncLpk (b) or

EncLpk (0) from the oracle.

Simulating honest sender Pi with corrupted receiver Pj. As in H3 except that
whenever Z instructs A (in the name of receiver Pj) to send M1 = (x0, x1,Φ, π) to
sender Pi, B queries its decryption oracle to obtain the plaintext of Φ (instead of
using the secret key for pk). Note that since the label (sid, ssid, Pi, Pj) is unique,
B can always use the decryption oracle for the given Φ. Therefore, both of the
decryption behaviors are identical.

3. Finally, B outputs whatever Z outputs.

Let β be the hidden random bit embedded in the LR oracle. We note that when β = 0,
B exactly simulates the hybrid H3 to Z; when β = 1, B simulates exactly the hybrid
H4 to Z. Under the assumption that Z is able to distinguish the two hybrids in non-
negligible probability, then the constructed machine B is successful CCA attacker against
(Gen,Enc,Dec), which is a contradiction. Therefore, H3 and H4 are computationally
indistinguishable.

Hybrid H5: Similar to H4. The simulator Sim5 works as follows:

Simulation of CRS. As in H4.

Simulating honest receiver Pj with corrupted sender Pi. As in H4 except that now in
M1 = (x0, x1,Φ, π), x0 and x1 are two yes instance. That is, (x0, w0) ← SampYes(pp),
and (x1, w1)← SampYes(pp).

Simulating honest sender Pi with corrupted receiver Pj. As in H4.

The only difference is the in H4, C1−b is a no instance while in H5 it is a yes instance. Under
the hard subset membership assumption, the two are computationally indistinguishable.
Therefore, H4 and H5 are computationally indistinguishable.

Hybrid H6: Similar to H5 except that in this hybrid, the input b of each honest receiver is not
magically forwarded to the simulator any more. The simulator Sim6 works as follows:

Simulation of CRS. As in H5.
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Simulating honest receiver Pj with corrupted sender Pi. The simulator Sim6 is the
same as in H5 except the following: Upon receiving a second round message (sid, ssid,M2)
from the adversary A that intends to send from Pi to Pj , where M2 = (pk0, Z0,pk1, Z1),
the simulator use wσ to compute m̂σ = Zσ⊕pHash(pkσ, xσ, wσ) for all σ ∈ {0, 1}. Sim6

sends (send, 〈sid, ssid, Pi, Pj〉, 〈m̂0, m̂1〉) to FMOT.

Simulating honest sender Pi with corrupted receiver Pj. As in H5.

Given the fact that the hash proof system is correct, H5 and H6 are identically distributed.

We conclude the proof by observing that Sim = Sim6.

3.2 Proof of Theorem 2

The proof is very similar to that for the static case but with careful treatment of corruptions.

3.2.1 The Simulator

Initialization step: Same as the static case simulator in the proof of Theorem 1.

Simulating the communication with Z: Same as the static case simulator in the proof of
Theorem 1.

Case 1: Simulating honest receiver Pj with honest sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
delivers A a first round message (sid, ssid,M1) that intends to send from Pj to Pi, where
M1 = (x0, x1,Φ, π) which is generated as follows:

Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), and then
obtain a simulated proof π by using the simulator S2 for the NIZK, i.e., compute
π←S2(τnizk, (pp, pk , L, x0, x1,Φ)), where L = (sid, ssid, Pi, Pj).

2. Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, inform the adverary
A that a message transfer over the secure channel took place.

Case 2: Simulating honest receiver Pj with corrupted sender Pi: Same as the static case
simulator in the proof of Theorem 1.

Case 3: Simulating corrupted receiver Pj with honest sender Pi: Same as the static case
simulator in the proof of Theorem 1.

Case 4: Simulating corrupted receiver Pj with corrupted sender Pi: Same as the static
case simulator in the proof of Theorem 1.

Dealing with adaptive corruption of sender Pi:

Before the second message. This case is equivalent to static corruption. That is, the simulator
receives the original input (m0,m1) and returns it to the adversary.

After the second message. The simulator receives the original input (m0,m1).
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• If the receiver Pi is already corrupted (Case 3), at this moment, the second round
message (pk0, Z0,pk1, Z1) is fixed by the simulator itself. Now the simulator
has to return the internal state of the sender to the adversary, and it returns
(m0,m1,pk0, Z0,pk1, Z1).

• Otherwise (Case 1), the simulator has to additionally generate the second round
message. The simulator Sim computes (hkσ,pkσ) ← HashKG(pp), Zσ = mσ ⊕
Hash(hkσ, xσ) for σ ∈ {0, 1}. Now the simulator has to return the internal state of
the sender to the adversary, and it returns (m0,m1,pk0, Z0,pk1, Z1).

Depending on whether Pj is honest, the simulator continues the simulation by following Case
2 (for honest Pj) or Case 4 (for corrupted Pj).

Dealing with adaptive corruption of receiver Pj:

Before the first message. This case is equivalent to static corruption. That is, the simulator
receives the original input b and returns it to the adversary.

Between the first message and the second. The simulator receives the original input b. It
returns (b, wb, X, π) to the adversary A as Pj ’s internal state.

After the second message The simulator receives the original input b, and it obtains the
receiver output mb.

• If the sender Pi is already corrupted (Case 2), at this moment, the second round
message (pk0, Z0,pk1, Z1) is fixed either by the adversary A or by the simulator
itself. Now the simulator has to return the internal state of the receiver to the
adversary, and it returns (b, w,X, π) and (pk0, Z0,pk1, Z1).

• Otherwise (Case 1), the simulator has to additionally generate the second round
message. The simulator Sim sets m1−b = 0`, and computes (hkσ,pkσ) ←
HashKG(pp), Zσ = mσ ⊕ Hash(hkσ, xσ) for σ ∈ {0, 1}. Now the simulator has to
return the internal state of the receiver to the adversary, and it returns (b, w,X, π)
and (pk0, Z0,pk1, Z1).

Note that in either case, it holds that mb = Zb⊕pHash(pkb, xb, w).

Depending on whether Pi is honest, the simulator continues the simulation by following Case
3 (for honest Pi) or Case 4 (for corrupted Pi).

3.2.2 Indistinguishability

The change of simulation (from the static corruption model as to Theorem 1) lies only in the
case where both parties are honest. In this case, the simulation is simpler since the protocol now
uses a secure channel, and showing static security is easy. Therefore, the simulation shown above
achieves static security. With that said, we only need to show that the internal state returned to
the adversary upon adaptive corruption is indistinguishable from that in the real-world protocol.

Corrupting the sender. When the simulator returns (m0,m1,pk0, Z0,pk1, Z0), the simulation is
indistinguishable due to the hard subset membership property for x1−b and the smoothness
of the underlying hash proof system.
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Corrupting the receiver. When the simulator returns (b, wb, X, π) to the adversary A (where
X = (x0, x1,Φ)), the simulated internal state is indistinguishable due to the hard subset
membership property for x1−b and CCA security for Φ and zero-knowledge property for
π. Even when the simulator additionally returns (pk0, Z0,pk1, Z0) to the adversary A, the
simulation is indistinguishable (as with the sender corruption case).

4 Instantiations of Protocol 1∗

4.1 Instantiation from the DLIN Assumption

We show a CCA-secure labeled public-key encryption scheme, a smooth hash proof system, and
a dual-mode NIZK proof system under the DLIN assumption. We then obtain a two-round OT
protocol by combining these building blocks.

4.1.1 Decision Linear Assumption (DLIN)

Let Gdlin a randomized algorithm that takes a security parameter λ as input and outputs desc =
(p,G,GT , ê, g) such that

1. p is a prime.

2. G and GT are descriptions of groups of order p.

3. ê : G×G→GT is a bilinear map, i.e., ∀u, v ∈ G, ∀a, b ∈ Zp : ê(ua, vb) = ê(u, v)ab.

4. g is a random generator of G and ê(g, g) generates GT .

5. Deciding group membership, group operations and the bilinear map are all efficiently
computable.

The decisional linear assumption was first introduced by Boneh et al. [BBS04]. The decisional
linear problem is to distinguish a linear tuple from a random tuple.

Definition 9 (Decisional Linear Assumption) We say the decisional linear assumption holds
for the bilinear group generator Gdlin if for all non-uniform polynomial time adversaries A it holds
that |p1 − p2| ≤ negl(λ), where

p1 = Pr[(p,G,GT , ê, g)←Gdlin(1λ);x, y←Z∗p; r, s←Zp : A(p,G,GT , ê, g, g
x, gy, gxr, gys, gr+s) = 1]

p2 = Pr[(p,G,GT , ê, g)←Gdlin(1λ);x, y←Z∗p; r, s, d←Zp : A(p,G,GT , ê, g, g
x, gy, gxr, gys, gd) = 1].

4.1.2 CCA-Secure Labeled Public-Key Encryption Scheme

Based on the DLIN assumption, Shacham constructed a CCA-secure encryption called Linear
Cramer-Shoup Encryption [Sha07]. As is done in [FLM11], slightly changing the scheme to support
labels leads to a CCA-secure labeled public-key encryption scheme: hash functions with stronger
security of collision-resistance (rather than UOWHF) are used, and in the encryption algorithm, a
given label is also applied to the hash function. Let desc←Gdlin(1λ).
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Key Generation (pk , sk)←Gen(desc): Choose random generators g1, g2←G and exponents
β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3←Zp and compute the following:

c1 = gβ1
1 gβ3 , d1 = gγ1

1 g
γ3 , h1 = gδ11 g

δ3 , c2 = gβ2
2 gβ3 , d2 = gγ2

2 g
γ3 , h2 = gδ22 g

δ3 .

Choose a hash function H←HF where HF is a family of collision-resistant hash functions.
Now set pk = (g1, g2, g, c1, c2, d1, d2, h1, h2, H) and sk = (β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3).

Encryption C ← EncLpk (m; r): Given the message m ∈ G under label L, choose r1, r2←Zp
and compute u1 = gr11 , u2 = gr22 , u3 = gr1+r2 , e = m · hr11 h

r2
2 . Then compute α =

H(u1, u2, u3, e, L) ∈ Zp and v = (c1d
α
1 )r1 ·(c2d

α
2 )r2 . Here r = (r1, r2) and C = (u1, u2, u3, e, v).

Decryption DecLsk (C): Parse C = (u1, u2, u3, e, v) and sk = (β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3);

compute α←H(u1, u2, u3, e, L) and test if uβ1+αγ1
1 · uβ2+αγ2

2 · uβ3+αγ3
3

?
= v. If it does not,

output reject. Otherwise, output m = e/(uδ11 u
δ2
2 u

δ3
3 ).

4.1.3 Smooth Projective Hashing

Shacham showed a smooth projective hash proof system based on the DLIN assumption [Sha07].

Parameter generation. Choose g1, g2←G. The parameter is pp = (g1, g2,G).

Instance sampling. To sample a yes instance, choose t1, t2←Zp and set t3 = t1+t2, and compute
z1 = gt11 , z2 = gt22 and z3 = gt3 , and then return x = (z1, z2, z3). To sample a no instance,
choose t1, t2←Zp and set t3 = t1 + t2 + 1, and then z1 = gt11 , z2 = gt22 and z3 = gt3 , and then
return x = (z1, z2, z3).

Hash key generation. Choose θ1, θ2, θ3←Zp and compute f1 = gθ11 g
θ3 , f2 = gθ22 g

θ3 . Return
hk = (θ1, θ2, θ3) and pk = (f1, f2).

Primary hashing. Given hk = (θ1, θ2, θ3) and x = (z1, z2, z3), return y = zθ11 z
θ2
2 z

θ3
3 .

Projective hashing. Given a projective hash key pk = (f1, f2), an instance x = (z1, z2, z3), and
its witness w = (t1, t2) such that z1 = gt11 , z2 = gt22 and z3 = gt1+t2 , return y = f t11 f

t2
2 .

4.1.4 Non-Interactive Dual-Mode Zero-Knowledge Proof System

We simply note that the Groth-Sahai (GS) proof system [GS08] satisfies the required definition.
Here, we briefly outline only the part of the system that we need.

CRS. The common reference string consists of three vectors g1,g2,g3 ∈ G3, where g1 = (g1, 1, g),
g2 = (1, g2, g) for some g1, g2 ∈ G. Let h3 = g3 · (1, 1, g). In the soundness mode, g3 is set

as g3 = gζ11 · g
ζ2
2 with ζ1, ζ2←Z∗p. In the ZK mode, g3 is set as g3 = gζ11 · g

ζ2
2 · (1, 1, g−1) with

ζ1, ζ2←Z∗p. Under the DLIN assumption, the two kinds of CRS are indistinguishable.

Commit to an exponent. Committing to an exponent x ∈ Zp needs three group elements. In
particular, the commitment is computed as C = gr1 · gs2 · hx3 with r, s←Z∗p. In the soundness

mode, the commitment becomes (gr+ζ1x1 , gs+ζ2x2 , gr+s+x(ζ1+ζ2) ·gx), and it is perfectly binding,
since it is a linear encryption of gx, which can be decrypted using a1 = logg g1, a2 = logg g2
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[BBS04]. In the ZK mode, it becomes C = (gr+ζ1x1 , gs+ζ2x2 , gr+s+x(ζ1+ζ2)), and it is a perfectly
hiding, since it is a random linear tuple for any x ∈ Zp.

Proving equations. Having the variables {xi}ni=1 with xi ∈ Zp committed using the above
commitment scheme, various equations can be proved. In order to prove a linear equation
such as

n∏
i=1

axii = b,

with known constants ai, b ∈ G, one needs two group elements in G. On the other hand, six
group elements are needed in order to prove a quadratic equation in Zp that looks as follows:

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi = c,

with known constants aij , bi, c ∈ Zp.

4.1.5 Oblivious Transfer

By plugging in these components into the generic framework for two-round OT, we obtain an OT
protocol based on the DLIN assumption. Thus, it is only left to show how to concretely generate
the proof π in the receiver side message given crsot.

Protocol detail. Ignoring the description desc for the bilinear group, the common reference string
is crsot = (pp, pk , crsnizk), where pp = (g1, g2, g), pk = (g1, g2, g, c1, c2, d1, d2, h1, h2, H), crsnizk =
(g1,g2,g3). Here, g1 = (g1, 1, g), g2 = (1, g2, g) and g3 = (g31, g32, g33) for some g31, g32, g33 ∈ G.
Therefore, the CRS can be represented with 12 group elements of G and one hash function index,
along with the description of the bilinear group.

Let x0 = (z01, z02, z03), x1 = (z11, z12, z13), and Φ = (u1, u2, u3, e, v) with α = H(u1, u3, u3, e, L),
with L = (sid, ssid, Pi, Pj). The proof π is a Groth-Sahai proof for the following variables and
equations.

Variables: r1, r2, b, t1, t2

u1 = gr11 ; u2 = gr22 ; u3 = gr1+r2 ; e = gbhr11 h
r2
2 ; v = (c1d

α
1 )r1 · (c2d

α
2 )r2 ;

b(b− 1) = 0; zb01 · z
1−b
11 = gt11 ; zb02 · z

1−b
12 = gt22 ; zb03 · z

1−b
13 = gt1+t2+1

The first five equations requires that Φ is a valid encryption of gb. From the sixth equation, it should
hold that b ∈ {0, 1}. When b = 0, the last three equations require that the x1 = (z11, z12, z13) is
a non-linear tuple (i.e., no-instance) with z11 = gt1 , z12 = gt2 , z13 = gt1+t2+1. On the other hand,
when b = 1, x0 should be a no-instance.

Communication complexity. The receiver message (x0, x1,Φ, π) needs 3 + 3 + 5 + 37 = 48
group elements. (In particular, for the proof π five variables need to be committed (i.e., 15 = 5 ·3),
and there are eight linear equations (i.e., 16 = 8 · 2) and one quadratic equation (i.e, 6 = 1 · 6).)
The sender message (pk0, Z0,pk1, Z1) needs 2 + 1 + 2 + 1 = 6 group elements. Therefore, the total
communication complexity amounts to 54 group elements.
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Adaptive security: realizing an adaptively secure channel. Note that the non-committing encryp-
tion given in [BH92] runs in three rounds and needs one public key and one ciphertext of a
semantically secure public key encryption scheme. The first two rounds can be overlapped with
the first round of the OT protocol, and thus the final OT protocol runs in three rounds. We can
use linear encryption [BBS04], and the communication overhead amounts to 5 group elements (the
public key consists of two elements excluding the generator in the CRS, and the ciphertext consists
of three elements).

4.2 Instantiation from the SXDH Assumption

We show a CCA-secure labeled public-key encryption scheme, a smooth hash proof system, and
a dual-mode NIZK proof system under the SXDH assumption. We then obtain a two-round OT
protocol by combining these building blocks.

4.2.1 Symmetric External Diffie-Hellman Assumption (SXDH)

Let Gsxdh be a randomized algorithm that takes a security parameter λ as input and outputs
desc = (p,G1,G2,GT , ê, g, g

′) such that

1. p is a prime.

2. G1, G2, and GT are descriptions of groups of order p.

3. ê : G1 ×G2→GT is a bilinear map, i.e., ∀u, v ∈ G,∀a, b ∈ Zp : ê(ua, vb) = ê(u, v)ab.

4. g and g′ are random generators of G1 and G2, and ê(g, g′) generates GT .

5. Deciding group membership, group operations and the bilinear map are all efficiently
computable.

Under the SXDH assumption [BBS04], the DDH assumption holds in both G1 and G2.

Definition 10 (Symmetric External Diffie-Hellman Assumption) We say the symmetric
external Diffie-Hellman assumption holds for the bilinear group generator Gsxdh if for all non-
uniform polynomial time adversaries A it holds that |p10− p11| = negl(λ) and |p20− p21| = negl(λ),
where

p10 = Pr[desc←Gsxdh(1λ); a, b←Zp : A(desc, ga, gb, gab) = 1]

p11 = Pr[desc←Gsxdh(1λ); a, b, c←Zp : A(desc, ga, gb, gc) = 1]

p20 = Pr[desc←Gsxdh(1λ); a, b←Zp : A(desc, (g′)a, (g′)b, (g′)ab) = 1]

p21 = Pr[desc←Gsxdh(1λ); a, b, c←Zp : A(desc, (g′)a, (g′)b, (g′)c) = 1].

Here, desc = (p,G1,G2,GT , ê, g, g
′).
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4.2.2 CCA-Secure Labeled Public-Key Encryption Scheme

Since the DDH assumption holds in G1, we can use Cramer-Shoup encryption scheme [CS98]. As
in the case for the DLIN assumption, we slightly change the scheme to support labels, that is, we
use collision resistant hash functions instead of UOWHF and apply labels to hash functions when
performing encryptions and decryptions. Let desc←Gsxdh(1λ).

Key Generation (pk , sk)←Gen(desc): Choose random generators g1←G1 and exponents β1, β2,
γ1, γ2, δ1, δ2←Zp and compute the following:

c = gβ1
1 gβ2 d = gγ1

1 g
γ2 h = gδ11 g

δ2

Choose a hash function H←HF where HF is a family of collision-resistant hash functions.
Now set pk = (g1, g, c, d, h,H) and sk = (β1, β2, γ1, γ2, δ1, δ2).

Encryption C ← EncLpk (m; r): Given the message m ∈ G under label L, choose r←Zp and
compute the following:

u1 = gr1, u2 = gr, e = m · hr

Then compute α = H(u1, u2, e, L) ∈ Zp and v = (cdα)r. The ciphertext is C = (u1, u2, e, v).

Decryption DecLsk (C): Parse C = (u1, u2, e, v) and sk = (β1, β2, γ1, γ2, δ1, δ2); compute
α←H(u1, u2, e, L) and test if the following holds

uβ1+αγ1
1 · uβ2+αγ2

2
?
= v

If it does not, output reject. Otherwise, output

m =
e

uδ11 u
δ2
2

4.2.3 Smooth Projective Hashing

We recall the construction of smooth projective hashing based on the DDH assumption [CS98,
CS02].

Parameter Generation. Let g1 be randomly chosen elements in G1. Then the parameter is
pp = (g1, g,G1).

Instance Sampling. To sample a yes instance, randomly choose t←Zp, and compute z1 = gt1,
z2 = gt, and then return x = (z1, z2).

To sample a no instance, randomly choose t←Zp, and then z1 = gt1, z2 = gt+1, and then
return x = (z1, z2).

Hash Key Generation. Randomly choose θ1, θ2←Zp and compute f = gθ11 g
θ2 . Return hk =

(θ1, θ2), and pk = f .

Primary Hashing Given a primary hash key hk = (θ1, θ2) and an instance x = (z1, z2), return
y = zθ11 z

θ2
2 .

Projective Hashing Given a projective hash key pk = f , an instance x = (z1, z2), and its witness
w = t such that z1 = gt1, z2 = gt, return y = f t.
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4.2.4 Dual-Mode Zero-Knowledge Proof System

We simply note that the Groth-Sahai (GS) proof system [GS08] is indeed the case. Here, we briefly
outline only the part of the system that we need.

CRS. The common reference string consists of two vectors g1,g2 ∈ G2
1, where g1 = (g, gα). Let

h2 = g2 · (1, g). In the soundness mode, g2 is set as g2 = gζ1 with ζ←Z∗p. In the ZK mode, g2

is set as g2 = gζ1 · (1, g−1) with ζ←Z∗p. Under the SXDH assumption, the two kinds of CRS
are indistinguishable.

For group G2, we can define g′1 and g′2 similarly.

Commit to an exponent. Committing to an exponent x ∈ Zp needs two group elements. In
particular, the commitment is computed as C = gr1 · hx2 with r←Z∗p. In the soundness mode,

the commitment becomes C = (gr+ζx, gα(r+ζx) · gx), and it is perfectly binding, since it is
an ElGamal encryption of gx, which can be decrypted using α. In the ZK mode, it becomes
C = (gr+ζx, gα(r+ζx)), and it is a perfectly hiding, since it is a random Diffie-Hellman tuple
for any x ∈ Zp.
We can also commit to an exponent using g′1 and g′2 in G2.

Proving equations. Having the variables {xi}ni=1 with xi ∈ Zp committed using G1 and the
variables {yj}n

′
j=1 with yj ∈ Zp committed using G2 using the above commitment scheme,

various equations can be proved. In order to prove a linear equation that looks as follows

n∏
i=1

(a′i)
xi = b′,

with known constants a′i, b
′ ∈ G2, one needs two group elements in G1. Similarly, for the

linear equation
n′∏
j=1

ayij = b,

with known constants aj , b ∈ G1, one needs two group elements in G2. On the other hand, two
group elements in G1 and two group elements in G2 are needed in order to prove a quadratic
equation in Zp that looks as follows:

n∑
i=1

n′∑
j=1

aijxiyj +

n∑
i=1

bixi +
n′∑
j=1

cjyj = d,

with known constants aij , bi, cj , d ∈ Zp.

4.2.5 Oblivious Transfer

Now we are ready to describe the protocol based on the SXDH assumption.
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CRS. Ignoring the description desc for the bilinear group, the common reference string crsot =
(pp, pk , crsnizk) is as follows:

pp = (g1, g)

pk = (g1, g, c, d, h,H)

crsnizk = (g1,g2,g
′
1,g
′
2)

Here, g1 = (g, f1), g2 = (f2, f3) for some f1, f2, f3 ∈ G1, and g′1 = (g′, f ′1), g′2 = (f ′2, f
′
3) for some

g′, f ′1, f
′
2, f
′
3 ∈ G2. Therefore, the CRS can be represented with 8 group elements of G1, 4 group

elements of G2 and one hash function index, along with the description of the bilinear group.

Protocol detail. It suffices to describe how to generate the proof for the receiver’s message M1

given crsot = (pp, pk , crsnizk). Let x0 = (z01, z02), x1 = (z11, z12), and Φ = (u1, u2, e, v) with
α = H(u1, u2, e, (sid, ssid, Pi, Pj)). The proof π is a Groth-Sahai proof for the following variables
and equations.

Variables committed using G2: r, b, t

Variables committed using G1: b
′

u1 = gr1; u2 = gr; e = gbhr; v = (cdα)r;

b = b′; b(b′ − 1) = 0; zb01 · z
1−b
11 = gt1; zb02 · z

1−b
12 = gt+1

2 ;

The first four equations requires that Φ is a valid encryption of gb. From the fifth equation and
the sixth, it should hold that b ∈ {0, 1}. When b = 0, the last two equations require that the
x1 = (z11, z12) is a non-Diffie-Hellman tuple (i.e., no-instance) with z11 = gt1, z12 = gt+1

2 . On the
other hand, when b = 1, x0 should be a no-instance.

Communication complexity. The receiver message (x0, x1,Φ) needs 2 + 2 + 4 = 8 group
elements in G1. The proof π takes 6 elements in G1 and 22 elements in G2. In particular, three
variables need to be committed using G2 (i.e., 6 = 3 · 2 in G2), and one variable needs to be
committed using G1 (i.e., 2 = 1 · 2 in G1). There are six linear equations (i.e., 12 = 6 · 2 in
G2) and two quadratic equations (i.e, 4 = 2 · 2 in G1 and 4 = 2 · 2 in G2). The sender message
(pk0, Z0,pk1, Z1) needs (1, 1, 1, 1) = 4 group elements in G1. Therefore, the total communication
complexity amounts to 18 group elements in G1 and 22 group elements in G2.

Adaptive security: realizing an adaptively secure channel. Note that the non-committing encryp-
tion given in [BH92] runs in three rounds and needs one public key and one ciphertext of a
semantically secure public key encryption scheme. The first two rounds can be overlapped with the
first round of the OT protocol, and thus the final OT protocol runs in three rounds. We can use
ElGamal encryption, and the communication overhead amounts to 3 group elements (the public
key consists of one element excluding the generator in the CRS, and the ciphertext consists of two
elements).
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crsot = {pp, pk , crscom}
Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w)← SampYes(pp)
x1−b←SampNo(pp; γ)

Φ←EncLpk (b; ξ);X := (x0, x1,Φ)
a← PΣ((pp, pk , L,X), (b, γ, ξ))

�
x0, x1,Φ, c c←Comcrscom(a; r)

e←{0, 1}λ
e -

z←PΣ((pp, pk , L,X), (b, γ, ξ), e)

VΣ((pp, pk , L,X), a, e, z)
?
= 1 �

(a, r), z

Comcrscom(a; r)
?
= c

for σ ∈ {0, 1} :
(hkσ,pkσ)← HashKG(pp)

Zσ ← mσ ⊕ Hash(hkσ, xσ)
pk0, Z0,pk1, Z1- mb ← Zb ⊕ pHash(pkb, xb, w)

output mb

Figure 5: A statically secure OT protocol in the FCRS-hybrid model (Protocol 2).

5 A Generic Framework for Four-Round OT

In this section, we describe a generic framework for constructing four-round OT protocols. We
begin by looking at the case of static security, and then show how the ideas can be extended to
achieve security against adaptive adversaries.

5.1 Static Security (Protocol 2)

The main idea is to adapt our previous two-round framework by replacing the dual-mode NIZK
proof with an interactive equivalent. In particular, the general structure of the protocol is as
follows: the protocol starts by having the receiver send two instances (x0, x1) for hash proof
system where x1−b being a no-instance; also, in protection against a malicious behavior, Encpk (b)
and a Sigma protocol (augmented with an equivocal commitment) are attached. Then, the
sender generates primary and projective hash keys (hkσ,pkσ) for each instance xσ and sends
(pkσ,Hash(hkσ, xσ)⊕mσ) to the receiver. The security can be shown similarly to the two-round
OT case.

Here, instead of replicating all the details, we only describe how to combine a Sigma protocol
with an equivocal commitment scheme in order to replace the NIZK part. The idea is having the
prover commit to the first round message of the Sigma protocol, and reveal it in the third round.
Refer to Figure 5 for the overall pictorial description of the protocol.

CRS. Compute pp←HashPG(1λ), (pk , sk)←Gen(1λ), and crscom←Kcom(1λ). The common refer-
ence string is crsot = (pp, pk , crscom).
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Replacing NIZK. Recall in the two-round OT case, the receiver generates a NIZK π to prove
that (x0, x1,Φ) is valid message, i.e., Φ is an encryption of b ∈ {0, 1} for some b and x1−b is no-
instance. In this protocol, the receiver proves it by running a Sigma protocol (PΣ,VΣ), along
with an equivocal commitment scheme (Kcom,Com), with respect to the following language:

L∗ = {(pp, pk , L, x0, x1,Φ) : ∃(b, γ, ξ) s.t. x1−b = SampNo(pp; γ),Φ = EncLpk (b; ξ)},

where L = (sid, ssid, Pi, Pj).

1. The receiver runs a←PΣ((pp, pk , L, x0, x1,Φ), (b, γ, ξ)), and c = Comcrscom(a; r) with r
chosen uniformly at random. It sends (x0, x1,Φ, c).

2. The sender sends the challenge message e←{0, 1}λ of the Sigma protocol.

3. Upon receiving the challenge e, the receiver generates an answer by running

z = PΣ((pp, pk , L, x0, x1,Φ), (b, γ, ξ), e).

It sends the sender the answer z along with the opening of the commitment, i.e.,
((a, r), z).

4. The sender verifies (a, e, z) is an accepting transcript and (a, r) is a valid opening of c:

VΣ((pp, pk , L, x0, x1,Φ), a, e, z)
?
= 1, Comcrscom(a; r)

?
= c.

The security of the protocol can be proved similarly to the two-round case.

Theorem 3 Say (Gen,Enc,Dec) is a CCA-secure labeled public-key encryption scheme, (HashPG,
SampYes,SampNo,HashKG,Hash, pHash) is a smooth projective hash proof system with hard subset
membership property, (PΣ,VΣ) is a Σ-protocol, and (Kcom,Com) is an equivocal commitment
scheme. Then the protocol of Figure 5 securely realizes FMOT in the FCRS-hybrid model, for static
corruptions.

The proof appears in Section 5.3.

5.2 Adaptive Security (Protocol 2∗)

As with the 2-round framework, the protocol first needs to be changed so that the last round message
is sent over a secure channel. This modification (along with erasing the state appropriately),
however, is not sufficient to deal with adaptive corruption in the four-round case. For the NIZK,
the receiver can generate π and then erase the unnecessary internal state before sending out
(x0, x1,Φ, π). However, if the statement is composed with the interactive Sigma protocol, some
of the internal state cannot be erased until the last move. For example, in the Sigma protocol, the
receiver cannot erase the randomness used for generating the no-instance x1−b until it receives the
challenge e, since he has to use the randomness as part of the witness in order to finish the proof.
However, recall that both x0 and x1 are yes instances in simulation; when the adversary corrupts
the receiver right before sending e, the simulator cannot return a valid randomness for x1−b, and
so the simulation breaks down.
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crsot = {pp, pk , crscom}
Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w)← SampYes(pp)
x1−b←SampNo(pp; γ)

Φ←EncLpk (b; ξ);X := (x0, x1,Φ)
a← PΣ((pp, pk , L,X), (b, γ, ξ))
c←Comcrscom((X, a); r)

� c

e←{0, 1}λ
e -

z←PΣ((pp, pk , L,X), (b, γ, ξ), e)

erase all state except
(b, w,X, a, r, z)

�
((x0, x1,Φ, a), r), z

VΣ((pp, pk , L,X), a, e, z)
?
= 1

Comcrscom((X, a); r)
?
= c

for σ = 0, 1
(hkσ,pkσ)← HashKG(pp)
Zσ ← mσ ⊕ Hash(hkσ, xσ)

erase all state except
(m0,m1,pk0, Z0,pk1, Z1)

pk0, Z0,pk1, Z1
Q
�

mb ← Zb ⊕ pHash(pkb, xb, w)
output mb

Figure 6: An adaptively secure OT protocol in the FCRS-hybrid model (Protocol 2∗). The last
round message is sent over a secure channel.
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Changing the order of messages. As in the commitment scheme [Lin11], we resolve this issue
by switching the order of messages. That is, the message to be committed to is not only the first
message a of the Sigma protocol but also the statement itself (i.e., (x0, x1,Φ)), and they are revealed
at the last move of the Sigma protocol. Now, thanks to the equivocality of the commitment scheme,
the protocol can achieve adaptive security. Refer to Figure 6 for the overall pictorial description.
Here, we only describe the aforementioned modification in more detail. Recall in the statically
secure protocol described in Section 5.1, the receiver sends (x0, x1,Φ) and the commitment c to the
first message a of the Sigma protocol (PΣ,VΣ) for the language

L∗ = {(pp, pk , L, x0, x1,Φ) : ∃(b, γ, ξ) s.t. x1−b = SampNo(pp; γ),Φ = EncLpk (b; ξ)},

where L = (sid, ssid, Pi, Pj). In this protocol, we change the order of messages as follows:

1. The receiver runs a←PΣ((pp, pk , L, x0, x1,Φ), (b, γ, ξ)), and c←Comcrscom((x0, x1,Φ, a); r)
with r chosen uniformly at random. It sends c.

2. The sender sends the challenge message e←{0, 1}λ of the Sigma protocol.

3. Upon receiving the challenge e, the receiver generates an answer by running

z = PΣ((pp, pk , L, x0, x1,Φ), (b, γ, ξ), e).

It sends the sender the answer z along with the opening of the commitment, i.e.,
((x0, x1,Φ, a), r, z).

4. The sender verifies (a, e, z) is an accepting transcript and ((x0, x1,Φ, a), r) is a valid opening
of c:

VΣ((pp, pk , L, x0, x1,Φ), a, e, z)
?
= 1, Comcrscom((x0, x1,Φ, a); r)

?
= c.

Theorem 4 Under the same assumptions as Theorem 3, the protocol in Figure 6 securely realizes
FMOT in the FCRS-hybrid model, for adaptive corruptions (assuming erasure).

The proof appears in Section 5.4.

5.3 Proof of Theorem 3

5.3.1 The Simulator

The simulator is very similar to that in the two round case. Let Π denote the OT protocol
under consideration. Here we construct a simulator Sim for any non-uniform ppt environment Z
such that execFCRS

Π,A,Z ≈ idealFMOT,Sim,Z , where A is the dummy adversary. Then we argue the
indistinguishability between the two ensembles. Let (Scom1,Scom2,Scom3) be the simulator for the
dual-mode equivocal commitment (Kcom,Com), and SΣ is the simulator for the Sigma protocol.

Initialization step: The simulator Sim generates the common reference string as follows:

1. Compute pp←HashPG(1λ);

2. Compute (pk , sk)← Gen(1λ);

3. Compute (crscom, τ)← Scom1(1λ);
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4. Set crsot = (pp, pk , crscom).

Simulating the communication with Z: Same as the simulator in the proof of Theorem 1.

Case 1: Simulating honest receiver Pj with honest sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
delivers A a first round message (sid, ssid,M1) that intends to send from Pj to Pi, where
M1 = (x0, x1,Φ, c) which is generated as follows:

Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), and then
run (c, ξ)←Scom2(τ).

2. Upon receiving a first round message (sid, ssid,M1) from A that it intends to send from
Pj to Pi, the simulator randomly chooses e, and sends A the second round message
(sid, ssid,M2 = e).

3. Upon receiving the second round message (sid, ssid,M2 = e) from A that intends to send
from Pi to Pj , the simulator sends A a third round message (sid, ssid,M3) that intends
to send from Pj to Pi, where X = (x0, x1,Φ) and M3 = (a, r, z) which are generated as
follows:

Run SΣ for the Sigma protocol, i.e., compute (a, z)←SΣ((pp, pk , L,X), e). After
that the simulator runs Scom3 to obtain r, i.e., compute r←Scom3(ξ, a).

4. Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, and the third round
message has been delivered from Pj to Pi, the simulator Sim then sets m0 = m1 = 0`,
and computes (hkσ,pkσ) ← HashKG(pp), Zσ = mσ ← Hash(hkσ, xσ) for σ ∈ {0, 1},
and generates a fourth round message (sid, ssid,M4) that it intends to send from Pi to
Pj , where M4 = (pk0, Z0,pk1, Z1). The fourth round message (sid, ssid,M4) is then
delivered to A.

Case 2: Simulating honest receiver Pj with corrupted sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
delivers A a first round message (sid, ssid,M1) that intends to send from Pj to Pi, where
M1 = (x0, x1,Φ, c) which is generated as follows:

Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), and then
run (c, ξ)←Scom2(τ).

2. Upon receiving the second round message (sid, ssid,M2 = e) from A that intends to send
from Pi to Pj , the simulator sends A a third round message (sid, ssid,M3) that intends
to send from Pj to Pi, where M3 = (a, r, z) is generated as follows:

Run SΣ for the Sigma protocol, i.e., compute (a, z)←SΣ((pp, pk , L,X), e). After
that the simulator runs Scom3 to obtain r, i.e., compute r←Scom3(ξ, a).

3. Upon receiving a fourth round message (sid, ssid,M4) from the adversary A that intends
to send from Pi to Pj , where M4 = (pk0, Z0,pk1, Z1), the simulator use (w0, w1) to
compute m̂0 = Z0⊕pHash(pk1, x0, w0) and m̂1 = Z1⊕pHash(pk1, x1, w1). The simulator
Sim sends (send, 〈sid, ssid, Pi, Pj〉, 〈m̂0, m̂1〉) to FMOT.
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Case 3: Simulating corrupted receiver Pj with honest sender Pi:

1. Upon receiving a first round message (sid, ssid,M1) from A that it intends to send from
Pj to Pi, where M1 = (x0, x1,Φ, c), the simulator randomly chooses e, and sends A the
second round message (sid, ssid,M2 = e).

2. Upon receiving a third round message (sid, ssid,M3) with M3 = (a, r, z) from A that
intends to send from Pj to Pi the simulator Sim verifies (a, e, z) is an accepting transcript
and (a, r) is a valid opening of c:

VΣ((pp, pk , L, x0, x1,Φ), a, e, z)
?
= 1, Comcrscom(a; r)

?
= c.

If the verification fails, then Sim aborts; otherwise, Sim decrypts Φ into b̂, i.e., b̂ =
DecLsk (Φ) with L = (sid, ssid, Pi, Pj). If b̂ 6∈ {0, 1}, Sim aborts.

3. Upon receiving (send, 〈sid, ssid, Pi, Pj〉) from functionality FMOT, the simulator Sim

then sends (receive, 〈sid, ssid, Pi, Pj〉, b̂) to the ideal functionality FMOT in the name of
dummy receiver and obtains (received, 〈sid, ssid, Pi, Pj〉,mb̂). Set m1−b̂ = 0`. Then the
simulator computes (hkσ,pkσ)← HashKG(pp), Zσ = mσ⊕Hash(hkσ, xσ) for σ ∈ {0, 1},
and sends a fourth round message (sid, ssid,M4) to A that it intends to send from Pi to
Pj , where M4 = (pk0, Z0,pk1, Z1).

Case 4: Simulating corrupted receiver Pj with corrupted sender Pi: This is the trivial
case. Now the simulator Sim just runs A internally. Note that now A itself generates the
messages between the sender and the receiver.

5.3.2 Indistinguishability

The proof is quite similar to the two-round case, and thus we highlight only the differences. As
before, we show indistinguishability by following the same series of the hybrids as the two-round
OT case.

• H0: Real execution.

• H1: When simulating honest senders, the simulator decrypts Φ from a corrupted receiver to
obtain b̂ and switches the honest sender’s m1−b̂ to 0`.

• H2: Use a simulated crscom (note that, in the two-round OT case, it was using a simulated
crsnizk).

• H3: In simulating honest receivers, the simulator generates a fake commitment c as well as
fake Sigma protocol transcript (a, r, z) (note that in the two-round OT case, the simulator
generates a simulated NIZK proof).

• H4: In simulating honest receivers, the simulator sends a dummy encryption Φ = Enc(0).

• H5: In simulating honest receivers, the simulator generates (x0, x1) with both yes instances.

• H6: In simulating honest receivers, the simulator uses witnesses for (x0, x1) to extract
(m0,m1) from a dishonest sender.
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The simulator is very similar to that in the two-round OT case except in simulating the proof.
There, the simulator generates a fake NIZK proof, while here the simulator needs to generate a fake
interactive proof (Sigma protocol along with a commitment). Since we only changed the proof-
simulation part, it suffices to show the indistinguishability from H0 to H3. The rest is the same as
the two-round OT.

H0 ≈ H1. As in the two-round OT, we consider the following cases:

Case (I). The proof is accepting, i.e., VΣ((pp, pk , L, x0, x1,Φ), a, e, z) = 1 and Comcrscom(a; r) = c,
the ciphertext Φ correctly decrypts to some value b̂ ∈ {0, 1}, and x1−b̂ is a yes instance.

Case (II). The proof is not accepting. In this case, the sender in both H0 and H1 will abort, so
H0 and H1 are identically distributed.

Case (III). The proof is accepting and x1−b̂ is a no instance. In this case, the only difference
between the distributions H0 and H1 is that in H0, Z1−b̂ is honestly generated based on the

real plaintext m1−b̂, but in H1 it is based on a dummy plaintext 0`; from the smoothness
property of the hash proof system, the two distributions are statistically indistinguishable.

Having these three cases in mind, next in order to show the two hybrids H0 and H1 are
indistinguishable, we just need to argue that Case (I) occurs with negligible probability.

Suppose there exists an environment Z that distinguishes H0 and H1 with non-negligible
probability. This means that with Z, the probability that Case (I) occurs is non-negligible. Without
loss of generality, we assume Z is deterministic. Then, we can construct an adversary B that breaks
the binding property of the equivocal commitment scheme (Kcom,Com). In particular, the adversary
B works as follows:

B is given crscom, and it tries to come up with a commitment that opens to two different
messages as follows.

1. B runs pp←HashPG(1λ) and (pk , sk)←Gen(1λ) and sets crsot = (pp, pk , crscom).

2. B exactly follows the specification H0 while interacting with Z.

3. Once Z finishes execution, B randomly chooses a sub-session among the sub-
sessions with an accepting transcript that Z invoked during the execution.

4. Let (c, (a, r), e, z) be the accepting transcript of the chosen sub-session ssid. Now, B
rewinds Z to the point right before sending e, and it resumes the protocol execution
by sending e′←{0, 1}λ instead of e in sub-session ssid. If Z generates another
accepting transcript (c, (a′, r′), e′, z′) with a 6= a′, B outputs (c, (a, r), (a′, r′));
otherwise B outputs ⊥.

Let δ be the probability that Case (I) occurs. Then, the probability that Case (I)
occurs in the chosen session ssid is at least δ/T , where T is the maximum number of
sub-sessions that Z initiates. Now, conditioned that the chosen session contains a false
statement, the probability that Z outputs another accepting transcript (c, (a′, r′), e′, z′)
is δ, since e′ is also chosen uniformly at random. Now consider the special soundness of
the Sigma protocol: the statement is false, so there is only one accepting challenge (i.e.,
e) for a. Therefore, e 6= e′ implies a 6= a′. Considering the event e 6= e′ happens with
probability 1− 2λ, we conclude that B outputs a commitment along with two different
openings with non-negligible probability of at least (1− 2−λ)δ2/T .
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H1 ≈ H2. Let (Scom1,Scom2,Scom3) be the simulator for the equivocal commitment scheme
(Kcom,Com). In H2, the CRS for the commitment scheme is generated as follows:

(crscom, τ)←Scom1(1λ).

The indistinguishability simply holds from the security definition of the equivocal commitment
scheme.

H2 ≈ H3. In the interactive setting, the simulation for the zero-knowledge proof goes as follows:

1. Let SΣ be the simulator for the Sigma protocol (PΣ,VΣ). Let X = (x0, x1,Φ) be the statement
to prove.

2. Run (c, ξ)←Scom2(τ), and send c (along with (x0, x1,Φ)) to the adversary.

3. Upon receiving the challenger e, run (a, z)←SΣ((pp, pk , L,X), e) and r←Scom3(ξ, a); send
((a, r), z) to the adversary.

From the special honest zero-knowledge property of the Sigma protocol, (a, e, z) are statistically
indistinguishable to the original transcript, and from the equivocality property of the commitment
scheme (c, a, r) is identically distributed to the original transcript. Therefore, H2 and H3 are
statistically indistinguishable.

5.4 Proof of Theorem 4

The proof is very similar to that of Theorem 3 but with careful treatment of corruptions. Here
we construct a simulator Sim for any non-uniform ppt environment Z such that execFCRS

Π,A,Z ≈
idealFMOT,Sim,Z , where A is the dummy adversary. Then we argue the indistinguishability between
the two ensembles. Let (Scom1,Scom2,Scom3) be the simulator for the equivocal commitment
(Kcom,Com), and SΣ is the simulator for the Sigma protocol.

5.4.1 The Simulator

Initialization step: Same as the simulator in the proof of Theorem 3.

Simulating the communication with Z: Same as the simulator in the proof of Theorem 3.

Case 1: Simulating honest receiver Pj with honest sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
sends A a first round message (sid, ssid,M1 = c) that intends to send from Pj to Pi,
where c is obtained by computing (c, ξ)←Scom2(τ).

2. The simulator randomly chooses e, and sendsA the second round message (sid, ssid,M2 =
e).

3. The simulator sends A a third round message (sid, ssid,M3) that intends to send from
Pj to Pi, where X = (x0, x1,Φ) and M3 = (X, a, r, z) which are generated as follows:
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Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), define
X = (x0, x1,Φ), and then run SΣ for the Sigma protocol, i.e., compute
(a, z)←SΣ((pp, pk , L,X), e). After that the simulator runs Scom3 to obtain r,
i.e., compute r←Scom3(ξ, (X, a)).

4. The simulator informs the adveraryA that the fourth round message has been transferred
over the secure channel.

Case 2: Simulating honest receiver Pj with corrupted sender Pi:

1. Upon receiving (receive, 〈sid, ssid, Pi, Pj〉) from the functionality FMOT, the simulator
sends A a first round message (sid, ssid,M1 = c) that intends to send from Pj to Pi,
where c is obtained by computing (c, ξ)←Scom2(τ).

2. Upon receiving the second round message (sid, ssid,M2 = e) from A that intends to send
from Pi to Pj , the simulator sends A a third round message (sid, ssid,M3) that intends
to send from Pj to Pi, where X = (x0, x1,Φ) and M3 = (X, a, r, z) which are generated
as follows:

Generate two yes instances, i.e, (x0, w0)← SampYes(pp), (x1, w1)← SampYes(pp),
and record (w0, w1). Compute a dummy ciphertext Φ ← Encpk (0), define
X = (x0, x1,Φ), and then run SΣ for the Sigma protocol, i.e., compute
(a, z)←SΣ((pp, pk , L,X), e). After that the simulator runs Scom3 to obtain r,
i.e., compute r←Scom3(ξ, (X, a)).

3. Upon receiving a fourth round message (sid, ssid,M4) from the adversary A that intends
to send from Pi to Pj , where M4 = (pk0, Z0,pk1, Z1), the simulator use (w0, w1) to
compute m̂0 = Z0⊕pHash(pk1, x0, w0) and m̂1 = Z1⊕pHash(pk1, x1, w1). The simulator
Sim sends (send, 〈sid, ssid, Pi, Pj〉, 〈m̂0, m̂1〉) to FMOT.

Case 3: Simulating corrupted receiver Pj with honest sender Pi: Similar to the simula-
tor in the proof of Theorem 3. The only difference is in the proof verification according to
the change of the protocol specification.

Case 4: Simulating corrupted receiver Pj with corrupted sender Pi: This is the trivial
case. Now the simulator Sim just runs A internally. Note that now A itself generates the
messages between the sender and the receiver.

Dealing with adaptive corruption of sender Pi:

Before the second message. This case is equivalent to static corruption. That is, the simulator
receives the original input (m0,m1) and returns it to the adversary.

Between the second message and the fourth. Likewise, the simulator receives the original
input (m0,m1), and return (m0,m1, e) to the adversary A as Pi’s internal state.

After the fourth message. The simulator receives the original input (m0,m1).

• If the receiver Pi is already corrupted (Case 3), at this moment, the last round
message (pk0, Z0,pk1, Z1) is fixed by the simulator itself. Now the simulator
has to return the internal state of the sender to the adversary, and it returns
(m0,m1,pk0, Z0,pk1, Z1).
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• Otherwise (Case 1), the simulator has to additionally generate the last round
message. The simulator Sim computes (hkσ,pkσ) ← HashKG(pp), Zσ = mσ ⊕
Hash(hkσ, xσ) for σ ∈ {0, 1}. Now the simulator has to return the internal state of
the sender to the adversary, and it returns (m0,m1,pk0, Z0,pk1, Z1).

Depending on whether Pj is honest, the simulator continues the simulation by following Case
2 (for honest Pj) or Case 4 (for corrupted Pj).

Dealing with adaptive corruption of receiver Pj:

Before the first message. This case is equivalent to static corruption. That is, the simulator
receives the original input b and returns it to the adversary.

Between the first message and the second. The simulator receives the original input b. The
simulator then computes X = (x0, x1,Φ) honestly and record witness (b, γ, ξ), and then
generates a honestly i.e. a←PΣ((pp, pk , L,X), (b, γ, ξ)). At this point, the simulator runs
r←Scom3(c, (X, a)), and return all internal state, i.e., (b,X, γ, ξ, a, r) to the adversary A.

Between the second message and the third. The simulator receives the original input b. The
simulator then computes X = (x0, x1,Φ) honestly and record witness W , and then gen-
erates a, z honestly i.e. a←PΣ((pp, pk , L,X), (b, γ, ξ)), z←PΣ((pp, pk , L,X), (b, γ, ξ), e).
At this point, the simulator runs r←Scom3(c, (X, a)), and returns (b, w,X, a, r, z) to the
adversary A as Pj ’s internal state.

Between the third message and the fourth. The simulator receives the original input b, and
returns (b, wb, X, a, r, z) to the adversary A as Pj ’s internal state.

After the fourth message. The simulator receives the original input b and the output mb.

• If the sender Pi is already corrupted (Case 2), at this moment, the last round message
(pk0, Z0,pk1, Z1) is fixed either by the adversary A or by the simulator itself. Now
the simulator has to return the internal state of the receiver to the adversary, and
it returns (b, wb, X, a, r, z) and (pk0, Z0,pk1, Z1).

• Otherwise (Case 1), the simulator has to additionally generate the last round
message. The simulator Sim sets m1−b = 0`, and computes (hkσ,pkσ) ←
HashKG(pp), Zσ = mσ ⊕ Hash(hkσ, xσ) for σ ∈ {0, 1}. Now the simulator
has to return the internal state of the receiver to the adversary, and it returns
(b, wb, X, a, r, z) and (pk0, Z0,pk1, Z1).

Note that in either case, it holds that mb = Zb⊕pHash(pkb, xb, w).

Depending on whether Pi is honest, the simulator continues the simulation by following Case
3 (for honest Pi) or Case 4 (for corrupted Pi).

5.4.2 Indistinguishability

The proof is quite similar to that of Theorem 3. We follow the same series of the hybrids as before.

• H0: Real execution.

• H1: When simulating honest senders, the simulator decrypts Φ from a corrupted receiver to
obtain b̂ and switches the honest sender’s m1−b̂ to 0`.
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• H2: Use a simulated crscom.

• H3: In simulating honest receivers, the simulator generates a simulated Sigma protocol
transcript and a fake commitment c.

• H4: In simulating honest receivers, the simulator sends a dummy encryption Φ = Enc(0).

• H5: In simulating honest receivers, the simulator generates (x0, x1) with both yes instances.

• H6: In simulating honest receivers, the simulator uses witnesses for (x0, x1) to extract
(m0,m1) from a dishonest sender.

Since we only changed the proof part, it suffices to show the indistinguishability from H0 to H3.
The rest are the same as the two-round OT.

H0 ≈ H1. As in the two-round OT, we consider the following cases:

Case (I). The proof is accepting, i.e., VΣ((pp, pk , L, x0, x1,Φ), a, e, z) = 1 and Comcrscom(a; r) = c,
and the ciphertext Φ correctly decrypts to some value b̂ ∈ {0, 1}, and x1−b̂ is a yes instance.

Case (II). The proof is not accepting. In this case, the sender in both H0 and H1 will abort, so
H0 and H1 are identically distributed.

Case (III). The proof is accepting and x1−b̂ is a no instance. In this case, the only difference
between the distributions H0 and H1 is that in H0, Z1−b̂ is honestly generated based on the

real plaintext m1−b̂, but in H1 it is based on a dummy plaintext 0`; from the smoothness
property of the hash proof system, the two distributions are statistically indistinguishable.

Having these three cases in mind, suppose there exists an environment Z that distinguishes H0

and H1 with non-negligible probability. This means that with Z, the probability that Case (I)
occurs is non-negligible. Without loss of generality, we assume Z is deterministic. Then, we can
construct an adversary B that breaks the binding property of the equivocal commitment scheme
(Kcom,Com). In particular, the adversary B works as follows:

B is given crscom, and it tries to come up with a commitment that opens to two different
messages as follows.

1. B runs pp←HashPG(1λ) and (pk , sk)←Gen(1λ) and sets crsot = (pp, pk , crscom).

2. B exactly follows the specification H0 while interacting with Z.

3. Once Z finishes execution, B randomly chooses a sub-session among the sub-
sessions with an accepting transcript that Z invoked during the execution.

4. Let (c, (X, a, r), e, z) be the accepting transcript of the chosen sub-session ssid∗.
Now, B rewinds Z to the point right before sending e, and it resumes the protocol
execution by sending e′←{0, 1}λ instead of e in sub-session ssid. If Z generates
another accepting transcript (c, (X ′, a′, r′), e′, z′) with (X, a) 6= (X ′, a′), B outputs
(c, ((X, a), r), ((X ′, a′), r′)); otherwise B outputs ⊥.

Let Diff(ssid) be a predicate for a given session ssid that is defined to be true if the
sub-session ssid satisfies the following conditions:
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• The sender is honest.

• The receiver is corrupted.

• Case (I) occurs.

Let Pr[∃ssid s.t. Diff(ssid) = 1] = δ. By assumption, the probability δ is non-negligible.
Then, the probability that Diff(ssid∗) is true for the chosen session ssid∗ is at least δ/T ,
where T is the maximum number of sub-sessions that Z initiates. Now, conditioned
that Diff is true for the chosen session ssid∗, the probability that Z outputs another
accepting transcript (c, (X ′, a′, r′), e′, z′), with Diff(ssid∗) = 1, is δ/T ; the challenge e′

is also chosen uniformly at random. Now consider the special soundness of the Sigma
protocol: the statement is false, so there is only one accepting challenge (i.e., e) for a.
Therefore, e 6= e′ implies (X, a) 6= (X ′, a′). Considering the event e 6= e′ happens with
probability 1− 2λ, we conclude that B outputs a commitment along with two different
openings with non-negligible probability of at least (1− 2−λ)(δ/T )2.

H1 ≈ H2. Let (Scom1,Scom2,Scom3) be the simulator for the equivocal commitment scheme
(Kcom,Com). In H2, the CRS for the commitment scheme is generated as follows:

(crscom, τ)←Scom1(1λ).

The indistinguishability simply holds from the security definition of the equivocal commitment
scheme.

H2 ≈ H3. In the interactive setting, the simulation for the zero-knowledge proof goes as follows:

1. Let SΣ be the simulator for the Sigma protocol (PΣ,VΣ). The statement to be proven is
(pp, pk , L,X) where X = (x0, x1,Φ).

2. Run (c, ξ)←Scom2(τ), and send c to the adversary.

3. Upon receiving the challenger e, run (a, z)←SΣ((pp, pk , L,X), e) and r←Scom(ξ, (X, a)); send
((X, a), r, z) to the adversary.

From the special honest zero-knowledge property of the Sigma protocol, (a, e, z) are statistically
indistinguishable to the original transcript, and from the equivocality property of the commitment
scheme (c, a, r) is identically distributed to the original transcript. Therefore, H2 and H3 are
statistically indistinguishable.

5.4.3 Dealing with Corruptions

We are left to show that the internal state returned to the adversary upon adaptive corruption is
indistinguishable from that in the real-world protocol.

Dealing with adaptive corruption of sender Pi.

Before the second message. The simulation is simply perfect, since there has been no simulated
protocol transcript so far in the given sub-session.
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Between the second message and the fourth. The simulated value e is uniform; so the simulation is
perfect.

After the fourth message. Since the adversary is given only the erased state (m0,m1,pk0, Z0,pk1, Z1),
the simulation is indististinguisahble to the real-world execution due to the hard-subset
membership property and the smoothness of the underlying hash proof system.

Dealing with adaptive corruption of receiver Pj.

Before the first message. The simulation is simply perfect, since there has been no simulated
protocol transcript so far in the given sub-session.

Between the first message and the second. From the perfect hiding property of the commitment
scheme, the simulation is perfect.

Between the second message and the third. From the perfect hiding property of the commitment
scheme, the simulation is perfect.

Between the third message and the fourth. Note that (x0, x1,Φ) in the simulated transcript is such
that x1−b is a yes instance, and Φ = Enc(0). However, since the adversary is given only the
erased state (b, wb, X, a, r, z), the simulation is indistinguishable from the real-world execution
due to the hard subset membership property for x1−b and CCA security for Φ and zero-
knowledge property for Sigma protocol.

After the fourth message. Indistinguishability for simulating (b, wb, X, a, r, z) holds as in the above
case. Even when the simulator additionally returns (pk0, Z0,pk1, Z0) to the adversary A, the
simulation is indistinguishable (as with the sender corruption case).

6 Instantiations of Protocol 2 and Protocol 2∗

6.1 Instantiation from the DDH Assumption

We show a CCA-secure labeled public-key encryption scheme, a smooth hash proof system, and
an equivocal commitment scheme under the DDH assumption. We then obtain a four-round OT
protocol by combining these building blocks.

6.1.1 Decisional Diffie-Hellman Assumption

Let Gddh be a randomized algorithm that takes a security parameter λ and outputs desc = (p,G, g)
such that G is the description of group of prime order p, and g is a generator of G.

Definition 11 (Decisional Diffie-Hellman Assumption) The DDH problem is hard relative to
G if for all ppt algorithms A there exists a negligible function negl(λ) such that∣∣∣Pr[A(G, p, g, ga, gb, gc) = 1]− Pr[A(G, p, g, ga, gb, gab) = 1]

∣∣∣ ≤ negl(λ)

where in each case the probabilities are taken over the experiment in which the group-generating
algorithm outputs (G, p, g) and random a, b, c ∈ Zp are chosen.
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6.1.2 CCA-Secure Labeled Public-Key Encryption Scheme

Since the DDH assumption holds in G1, we can use Cramer-Shoup encryption scheme [CS98]. As
in the case for the DLIN assumption, we slightly change the scheme to support labels, that is, we
use collision resistant hash functions instead of UOWHF and apply labels to hash functions when
performing encryptions and decryptions.

Key generation (pk , sk)←Gen(desc): Choose random generators g1←G and exponents β1, β2,

γ1, γ2, δ1, δ2←Zp and compute c = gβ1
1 gβ2 , d = gγ1

1 g
γ2 , h = gδ11 g

δ2 . Choose a hash
function H←HF where HF is a family of collision-resistant hash functions. Now set
pk = (g1, g, c, d, h,H) and sk = (β1, β2, γ1, γ2, δ1, δ2).

Encryption C ← EncLpk (m; r): Given the message m ∈ G under label L, choose r←Zp and
compute u1 = gr1, u2 = gr, e = m ·hr. Then compute α = H(u1, u2, e, L) ∈ Zp and v = (cdα)r.
The ciphertext is C = (u1, u2, e, v).

Decryption DecLsk (C): Parse C = (u1, u2, e, v) and sk = (β1, β2, γ1, γ2, δ1, δ2); compute

α←H(u1, u2, e, L) and test if uβ1+αγ1
1 ·uβ2+αγ2

2
?
= v. If it does not, output reject. Otherwise,

output m = e/(uδ11 u
δ2
2 ).

6.1.3 Smooth Projective Hashing

We recall the smooth projective hashing based on the DDH assumption [CS98, CS02].

Parameter generation. Choose g1, g←G. Then pp = (g1, g,G).

Instance sampling. To sample a yes instance, choose t←Zp, and compute z1 = gt1, z2 = gt, and
then return x = (z1, z2). To sample a no instance, choose t←Zp, and then z1 = gt1, z2 = gt+1,
and then return x = (z1, z2).

Hash key generation. Choose θ1, θ2←Zp and compute f = gθ11 g
θ2 . Return hk = (θ1, θ2), and

pk = f .

Primary hashing. Given hk = (θ1, θ2) and x = (z1, z2), return y = zθ11 z
θ2
2 .

Projective hashing. Given a projective hash key pk = f , an instance x = (z1, z2), and its witness
w = t such that z1 = gt1, z2 = gt, return y = f t.

6.1.4 Equivocal Commitment

We use a variant of the famous equivocal commitment by Pedersen [Ped92]. The main difference
from the original Pedersen commitment is that collision resilient hash function H : {0, 1}∗→Zp is
used to commit to arbitrary long message very efficiently. In particular, given the CRS (g, h1) ∈ G2,

the commitment to a message m is grh
H(m)
1 . We note that the binding property is under the DLOG

assumption and the collision resilient property of the hash function. When a trapdoor ζ with h1 = gζ

is known, it easy to equivocate a commitment c = gs into any m by outputting r = s− ζ ·H(m).
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6.1.5 Oblivious Transfer

By plugging in these components into the generic framework for four-round OT, we obtain an OT
protocol based on the DDH assumption. Thus, it is only left to show the concrete Sigma protocol
that is used in the receiver side message.

Protocol detail. Ignoring the description desc of the group G, the CRS is crsot = (pp, pk , crscom)
where pp = (g1, g) pk = (g1, g, c, d, h,H) crscom = (h1, g). Therefore, the CRS can be represented
with 6 group elements of G and one hash function index, along with the description of the group
G.

Let x0 = (z01, z02), x1 = (z11, z12), and Φ = (u1, u2, e, v) with α = H(u1, u2, e, (sid, ssid, Pi, Pj)).
Then, we use a standard Sigma protocol for the following language:

L∗ =


(crsot, pk , x0, x1,Φ, α) :
∃(r, t) s.t. u1 = gr1, u2 = gr, e = hr, v = (cdα)r, z11 = gt1, z12 = gt+1

or u1 = gr1, u2 = gr, e = ghr, v = (cdα)r, z01 = gt1, z02 = gt+1

 .

1. Suppose that Φ = Enc(gb). Let b̄ = 1 − b. The prover chooses R, T←Zp, η←[0, 2λ), and
ρ, τ←Zp. Then, it computes and sends the verifier the following:

U1b = gR1 , U2b = gR, Eb = hR,
Vb = (cdα)R, Z1b = gT1 , Z2b = gT

U1b̄ = gρ1/u
η
1, U2b̄ = gρ1/u

η
2, Eb̄ = hρ/(e/gb̄)η,

Vb̄ = (cdα)ρ/vη, Z1b̄ = gτ1/z
η
b1, Z2b̄ = gτ/(zb2/g)η.

2. The verifier chooses ε←[0, 2λ) and sends it to the prover.

3. The prover computes the following:

εb = ε− η mod 2λ εb̄ = η
ρb = R+ rεb ρb̄ = ρ
τb = T + tεb τb̄ = τ.

Then, it sends (ε0, ρ0, τ0, ρ1, τ1) to the verifier.

4. The verifier computes ε1 = ε− ε0 mod 2λ. It also checks if the following holds for i ∈ {0, 1}.

gρi1 = U1i · uεi1 , gρi = U2i · uεi2 , hρi = Ei · (e/gi)εi ,
(cdα)ρi = Vi · vεi , gτi1 = Z1i · zεiī1, gτi = Z2i · (zī2/g)εi .

Communication complexity. The receiver message (x0, x1,Φ) needs 2 + 2 + 4 = 8 group
elements. The proof takes 13 elements in G and 7 elements in Zp. In particular, the first message
has one commitment (i.e., 1 element in G). The second message has 1 element in Zp4, and the third
messages has 5 elements in Zp along with the decommitment (i.e., 12 elements in G and 1 element
in Zp). The sender message (pk0, Z0, pk1, Z1) needs (1, 1, 1, 1) = 4 group elements in G. Therefore,
the total communication complexity amounts to 25 elements in G and 7 elements in Zp.

4In fact, the second message is in {0, 1}λ but we count it as an element of Zp for simplicity.
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Adaptive security: realizing an adaptively secure channel. Note that the non-committing encryp-
tion given in [BH92] runs in three rounds and needs one public key and one ciphertext of a
semantically secure public key encryption scheme. The NCE protocol messages can be overlapped
with the OT protocol messages, and thus the final OT protocol runs in four rounds. We can use
ElGamal encryption, and the communication overhead amounts to 3 group elements (the public
key consists of one element excluding the generator in the CRS, and the ciphertext consists of two
elements).

6.2 Instantiation from the DCR Assumption

We show a CCA-secure labeled public-key encryption scheme, a smooth hash proof system, and an
equivocal commitment under the DCR assumption. We then obtain a four-round OT protocol by
combining these building blocks.

6.2.1 Decisional Composite Residuosity Assumption (DCR)

Let N be a Blum integer, i.e., N = PQ for safe primes P,Q ≡ 3 mod 4 so that P = 2p + 1 and
Q = 2q+1 for primes p, q. The decision composite residuosity (DCR) assumption [Pai99] states that
given N , it is hard to distinguish random elements from Z∗N2 from random N -th power elements in
Z∗N2 . Let Primes(λ) denote the set of prime numbers between 2λ and 2λ+1.

Definition 12 (Decisional Composite Residuosity Assumption) We say the Decisional Com-
posite Residuosity assumption holds if for any λ ∈ N and any non-uniform polynomial time
adversary A, it holds that |p1 − p2| = negl(λ), where

p1 = Pr[p, q←Primes(λ);N = pq;x←Z∗N2 : A(N, x) = 1]

p2 = Pr[p, q←Primes(λ);N = pq;x←Z∗N2 : A(N, xN ) = 1].

6.2.2 CCA-Secure Labeled Public-Key Encryption Scheme

We use the variant of Camenisch-Shoup encryption scheme [CS03] described in [HK12].

Key Generation Choose p, q←Primes(λ) and compute N = PQ where P = 2p+1 and Q = 2q+1.
Choose g′←Z∗N2 and β, γ, δ←[N2/4], and compute the following:

g = (g′)2N c = gβ d = gγ h = gδ.

Choose a hash function H←HF where HF is a family of collision-resistant hash functions.
Now set pk = (N, g, c, d, h,H) and sk = (β, γ, δ).

Encryption C←EncLpk (m): Given the message m ∈ [M ] under label L, choose r←[N/4] and
compute the following:

u1 = gr, e = (1 +N)m · hr

Then compute α = H(u1, e, L) and v = |(cdα)r|, where |x| def
:= min{x,N2−x}. The ciphertext

is C == (u, e, v).
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Decryption DecLsk (C): Parse C = (u, e, v) and sk = (β, γ, δ); compute α = H(u, e, L) and z =
(e/uδ)N+1 mod N2. Check if the following conditions hold:

v
?
= |v|, u2(β+αγ) ?

= v2, z − 1 is divisible by N.

If so, output (z − 1)/N ; otherwise output reject.

6.2.3 Smooth Projective Hashing

We use the smooth projective hashing scheme described in [HK12].

Parameter Generation. Choose two random prime numbers p, q←Primes(λ) and compute N =
PQ, where P = 2p+ 1, Q = 2q+ 1. Choose g′←Z∗N2 and compute g1 = (g′)N mod N2. Then
the parameter is pp = (N, g1).

Instance Sampling. Randomly choose w←Z∗N . For a yes instance, set x = gw1 mod N2 and
return (x,w); for a no instance, return x = gw1 · (1 +N) mod N2.

Hash Key Generation. Randomly choose θ←ZN and compute f = gθ1 mod N2. Return hk = θ,
and pk = f .

Primary Hashing Given a primary hash key hk = θ and an instance x, return y = xθ mod N2.

Projective Hashing Given a projective hash key pk = f , an instance x, and its witness w such
that x = gw1 , return y = fw mod N2.

6.2.4 Equivocal Commitment

CRS generation: The common reference string consists of (N,g). Here, N = PQ and P = 2p+1,
Q = 2q + 1 where p, q←Primes(λ). g = (g′)N mod N2, where g′←Z∗N is the equivocation
trapdoor.

Committing: To commit a value m, randomly choose r ∈ Z∗N . The commitment value is c =
gH(m)rN mod N2, and the decommitment value is (m, r).

Equivocation: In the committing stage, the simulation algorithm Scom2 chooses s←Z∗N and
outputs sN mod N2. Given a message m, the equivocation algorithm Scom3 computes
r = (g′)−H(m)s mod N . Observe that gH(m)rN = ((g′)N )H(m)((g′)−H(m)s)N = sN mod N2.

6.2.5 Oblivious Transfer

Now we are ready to describe the protocol based on the DCR assumption.

CRS. The reference string crsot = (pp, pk , crscom) is as follows:

pp = (N, g1)

pk = (N, g, c, d, h,H)

crscom = (N,g)
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Protocol detail. It suffices to describe how to generate the proof in the receiver side message
M1 given crsot = (pp, pk , crscom). Let Φ = (u, e, v) with α = H(u, e, (sid, ssid, Pi, Pj)). We show a
Sigma protocol for the following language:

L =


(crsot, x0, x1,Φ, α) : ∃(r, t) s.t.

(u = gr, e = hr, v2 = (cdα)2r, x1 = gt1 · (1 +N))
or

(u = gr, e = (1 +N)hr, v2 = (cdα)2r, x0 = gt1 · (1 +N))

 .

The concrete Sigma protocol proceeds as follows:

1. The prover chooses R, T←ZN , η←[1, 2λ), and ρ, τ,←ZN . Let b̄ = 1 − b. Then, it computes
and send the verifier the following:

Ub = gR, Eb = hR, Vb = (cdα)2R, Xb = gT1 ,

Ub̄ = gρ/uη, Eb̄ = hρ/(e/(1 +N)b̄)η, Vb̄ = (cdα)2ρ/v2η, Xb̄ = gτ1/(xb/(1 +N))η,

2. The verifier chooses ε←[1, 2λ) and sends it to the prover.

3. The prover computes the following:

εb = ε− η mod 2λ εb̄ = η
ρb = R+ εb · r mod N ρb̄ = ρ
τb = T + εb · t mod N τb̄ = τ

Then, it sends ε0, and {ρi, τi}i∈{0,1} to the verifier.

4. The verifier computes ε1 = ε− ε0 mod 2λ. It also checks if the following holds for i ∈ {0, 1}.

gρi1 = Ui · uεi ,
hρi = Ei · (e/(1 +N)i)εi ,
(cdα)2ρi = Vi · v2εi

gτi1 = Xi · (x1−i/(1 +N))εi

Communication complexity. We will count a value in [0, 2λ) as one element in ZN . Consider
the receiver message (x0, x1,Φ, π). Firstly, the part (x0, x1,Φ) amounts to 5 = 1 + 1 + 3 elements
in ZN2 . For the Sigma protocol for π, the first message has one elements in ZN2 , the second
message has one element in {0, 1}λ, and the third message has one element in {0, 1}λ and four
elements in ZN , along with the decommitment with eight elements in ZN2 and one element in
ZN . Thus, communication complexity for the proof π amounts to 9 = 1 + 8 elements in ZN2 and
7 = 1 + (1 + 4 + 1)) elements in ZN . The sender message (pk0, Z0, pk1, Z1) needs (1, 1, 1, 1) = 4
group elements in ZN2 . Therefore, the total communication complexity amounts to 18 elements in
ZN2 and 7 elements in ZN .

Adaptive security: realizing an adaptively secure channel. Note that the non-committing encryp-
tion given in [BH92] runs in three rounds and needs one public key and one ciphertext of a
semantically secure public key encryption scheme. The NCE protocol messages can be overlapped
with the OT protocol messages, and thus the final OT protocol runs in four rounds. We can use
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the variant of Camenisch-Shoup encryption scheme [CS03] described in [HK12] (we don’t need the
last checking element for semantic security) and the communication overhead amounts to 3 group
elements in ZN2 (the public key consists of one element excluding the generator in the CRS, and
the ciphertext consists of two elements).
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A Constructions Following the Approach of Garay et al.

Garay et al. [GWZ09] presented an elegant solution that addresses the drawbacks of [PVW08].
In the protocol, both parties execute a coin-tossing protocol (which could be realized using UC
commitment), whose outcome is used as a CRS for the OT protocol of Peikert et al. [PVW08],
which hereafter we denote by PVW.

A.1 DDH-Based Construction

We first consider the instantiation under the DDH assumption. The CRS in the PVW protocol
is (g, h, c, d). We can put (g, h) in the CRS, and use coin flipping only to determine (c, d). This
requires UC commitments to two group elements. We use Lindell’s commitment scheme [Lin11].

Static case. We start with the protocol with static security.

CRS size is seven. The commitment scheme needs seven group elements for the CRS. We can reuse
them for the CRS of the PVW protocol.

Round complexity is six. The commitment scheme needs one round for committing and four rounds
for opening. However, the second message of the coin-tossing protocol can be overlapped with
one of the four rounds in the opening. This implies that the coin-tossing stage needs five
rounds. The PVW protocol needs two rounds, but the last round of the coin-tossing protocol
and the first round of PVW protocol can also be overlapped. Overall, the round complexity
is six.

Communication complexity is 38. The commitment and the proof part of the opening requires 14
group elements [FLM11, Table 1]. Recall that we need two random group elements from
the coin-tossing protocol. Therefore, considering the committed messages themselves and
the second move of the coin-tossing protocol, communication complexity of the coin tossing
protocol is 32 = 2(14 + 1 + 1). The PVW protocol has communication complexity of 6.
Overall, the communication complexity is 38.

Adaptive case. The CRS size remains the same as the static case. We consider the other
measures.
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Round complexity is eight. In the adaptive case, we don’t know whether the protocol remains secure
once we overlap the messages in the same round. Therefore, the round complexity is eight.

Communication complexity is 48. For the adaptive case, the commitment and the proof part of the
opening requires 19 group elements [FLM11, Table 1]. This implies that the communication
complexity increases by 10 elements.

Realizing an adaptively secure channel. Note that the non-committing encryption given in [BH92]
runs in three rounds and needs one public key and one ciphertext of a semantically secure
public key encryption scheme. The NCE protocol messages can be overlapped with the
OT protocol messages. We can use ElGamal encryption, and the communication overhead
amounts to 3 group elements (the public key consists of one element excluding the generator
in the CRS, and the ciphertext consists of two elements).

A.2 DLIN-Based Construction

Now, we consider the instantiation under the DLIN assumption. The commitment of the Groth-
Sahai proof can be adapted to the PVW protocol. We first recall the Groth-Sahai commitment.

CRS. The common reference string consists of three vectors g1,g2,g3 ∈ G3, where g1 = (g1, 1, g),

g2 = (1, g2, g) for some g1, g2 ∈ G. In the soundness mode, g3 is set as g3 = gζ11 · g
ζ2
2 with

ζ1, ζ2←Z∗p. In the ZK mode, g3 is set as g3 = gζ11 · g
ζ2
2 · (1, 1, gu) with ζ1, ζ2, u←Z∗p. Under

the DLIN assumption, the two kinds of CRS are indistinguishable.

Commit to a message m. Committing to an exponent m ∈ G needs three group elements. In
particular, the commitment is computed as C = (1, 1,m) · gr1 · gs2 · gt3 with r, s, t←Z∗p.

In the soundness mode, the commitment becomes (gr+ζ1t1 , gs+ζ2t2 , gr+s+t(ζ1+ζ2) ·m), and it is
perfectly binding, and it can be decrypted using a1 = logg g1, a2 = logg g2 [BBS04]. In the

ZK mode, it becomes C = (gr+ζ1t1 , gs+ζ2t2 , gr+s+t(ζ1+ζ2) · mgtu), and it is a perfectly hiding,
since it is a random tuple for any m ∈ G.

The PVW protocol. The PVW protocol can be instantiated as follows:

1. The receiver, with input choice bit b, computes g′3 = gξ11 · g
ξ2
2 and sends g = g′3 · gb3.

2. The sender encrypts the message mσ by using the Groth-Sahai commitment under CRS
(g1,g2,g/g

σ
3 ) for σ = 0, 1. This ensures that one commitment is perfectly binding and

the other perfectly hiding.

The CRS in the PVW protocol is (g1,g2,g3). We can put (g1,g2) in the CRS, and use coin
flipping only to determine g3. This requires UC commitments to three group elements. We use the
commitment scheme of Fischlin et al.[FLM11] (hereafter FLM).

CRS size is 12. The FLM commitment scheme needs 12 group elements for the CRS. We can reuse
them for the CRS of the PVW protocol.

Round complexity is four. The FLM scheme is non-interactive. Therefore, we need three rounds
for the coin-tossing protocol. The PVW protocol needs two rounds, but the last round of the
coin-tossing protocol and the first round of PVW protocol can be overlapped. Overall, the
round complexity is four.
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Communication complexity is 78. In FLM, the commitment and the proof part of the opening
requires 21 group elements [FLM11, Table 1]. Recall that we need three random group
elements from the coin-tossing protocol. Therefore, considering the committed messages
themselves and the second move of the coin-tossing protocol, communication complexity of
the coin tossing protocol is 69 = 3(21 + 1 + 1). The PVW protocol has communication
complexity of 9. Overall, the communication complexity is 78.

Realizing an adaptively secure channel. Note that the non-committing encryption given in [BH92]
runs in three rounds and needs one public key and one ciphertext of a semantically secure
public key encryption scheme. We can use linear encryption [BBS04], and the communication
overhead amounts to 5 group elements (the public key consists of two elements excluding the
generator in the CRS, and the ciphertext consists of three elements).
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