
Proofs of Retrievability with Public Verifiability and
Constant Communication Cost in Cloud

Jiawei Yuan
University of Arkansas at Little Rock

Little Rock, USA
jxyuan@ualr.edu

Shucheng Yu
University of Arkansas at Little Rock

Little Rock, USA
sxyu1@ualr.edu

ABSTRACT
For data storage outsourcing services, it is important to al-
low data owners to efficiently and securely verify that the
storage sever stores their data correctly. To address this is-
sue, several proof-of-retrievability (POR) schemes have been
proposed wherein a storage sever must prove to a verifier
that all of a client’s data are stored correctly. While ex-
isting POR schemes offer decent solutions addressing var-
ious practical issues, they either have a non-trivial (linear
or quadratic) communication complexity, or only support
private verification, i.e., only the data owner can verify the
remotely stored data. It remains open to design a POR
scheme that achieves both public verifiability and constant
communication cost simultaneously.
In this paper, we solve this open problem and propose

the first POR scheme with public verifiability and constant
communication cost: in our proposed scheme, the message
exchanged between the prover and verifier is composed of a
constant number of group elements; different from existing
private POR constructions, our scheme allows public ver-
ification and releases the data owners from the burden of
staying online. We achieved these by tailoring and uniquely
combining techniques such as constant size polynomial com-
mitment and homomorphic linear authenticators. Thorough
analysis shows that our proposed scheme is efficient and
practical. We prove the security of our scheme based on the
Computational Diffie-Hellman Problem, the Strong Diffie-
Hellman assumption and the Bilinear Strong Diffie-Hellman
assumption.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; D.4.6 [Security and Protection]: Cryptographic
controls

General Terms
Storage, Integrity, Security, Algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudComputing’13, May 8, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-2067-2/13/05 ...$15.00.

Keywords
Proofs of Retrievability, Cloud Storage, Public Verification,
Integrity Check, Constant Communication, Polynomial Com-
mitment

1. INTRODUCTION
Due to a number of unprecedented advantages – resource

elasticity, on-demand self-service, location independent re-
source polling, etc[22], cloud storage is increasingly attract-
ing customers including both organizations and individuals.
Currently, millions of users have been using cloud storage
services including Amazon S3, Microsoft Skydrive, Google
Cloud Storage, iCloud, and Dropbox. The users can access
their cloud storage services from various devices such as lap-
tops and mobile phones through wired or wireless networks.

Despite the proliferation of cloud storage service, there
also raise security concerns since outsourcing data to the
cloud make the data owner lose physical control over the
storage sites. One significant concern, among the many,
is data integrity, i.e., whether or not the cloud server in-
deed stores its clients’ data correctly. Recently, a number
of data loss events have been reported for best-known stor-
age providers[2, 1, 3, 4], including Amazon S3 and Dropbox.
To ensure the clients’ confidence in the integrity of data re-
motely stored in the cloud, a reliable proof-of-retrievability
(POR)[16] system is desirable. Specifically, in a POR system
the data storage server must prove that it indeed stores the
clients’ data correctly. And the client shall be able to verify
whether or not the proof generated by the server is valid. In
practice the performance of a POR system is mainly deter-
mined by the following factors: 1) the communication cost
between server and client during the verification process; 2)
the way of verification, i.e., private verifiability or public ver-
ifiability; 3) the storage overhead on server side and client
side; 4) the computation cost introduced to the server and
the client for each verification. Toward designing a practi-
cal POR system, in past years several techniques[20, 11, 15]
have been proposed.

Utilizing the idea of aggregating block integrity values,
Shacham andWaters (SW)[20] proposed two POR schemes –
one supports private POR verification and the other achieves
public POR verification. While the two proposed schemes
offer fast and flexible verification, their communication costs
both grow linearly to the number of elements in the data
block. For the integrity check of large data files, such a com-
munication complexity represents a considerable cost to the
system and can even make the POR system unaffordable to
some bandwidth constrained users (e.g., mobile phone users

with limited data plan). In Ref.[10], Dodis et al. enhanced
the SW schemes by reducing the challenge message size, but
the response size is still linear to the number of elements
in the data block. To overcome the limitation in Ref.[20],
Xu et al.[15] constructed a POR scheme with constant com-
munication cost by utilizing a recently proposed polynomial
commitment technique. The main drawback of this scheme,
however, is that it only supports private verification, which
means that all the verifications must be performed by the
data owner. In large-scale systems with many clients, this
kind of verification will cause a heavy burden to the data
owner in terms of both communication cost and computa-
tion cost because all the integrity check requests from other
clients have to be performed by the owner. And the owner
also has to stay online to provide the verification service.
To our best knowledge, there is no existing POR solution
that offers public verifiability with a constant communica-
tion cost [15].
In this paper, we fill this gap with our proposed secure and

practical POR scheme, namely PCPOR. The main idea of
our scheme can be summarized as follows: the data owner
first breaks an erasure coded file into n blocks {mi},1 ≤
i ≤ n and generates an authentication tag {σi} for each
block. Then, all the data blocks and tags are outsourced to
the cloud storage server. When a client wants to retrieve
the data from the server and check whether the data are
stored correctly, he generates a challenge message and sends
it to the cloud server. On receiving the challenge message,
the cloud server generates a proof of the correctness of data
storage based on the received message, the public key in-
formation and the previously stored tags, and then returns
it to the client as the response. The client, having received
the response, executes the verification algorithm to check
data integrity using the public key information. In our PC-
POR scheme, any client or auditing third-party can perform
the verification process without contacting the data owner.
Therefore, the data owner can stay off-line after having out-
sourced his data. To reduce the communication complex-
ity, we first tailor a constant size polynomial commitment
technique and design a novel proof generation algorithm in
which the proof information is aggregated into a polynomial.
With our design, the size of the proof is made constant and
independent to the number of elements in the data block.
We further reduce the complexity of the challenge message
to a constant level with the idea of homomorphic linear au-
thenticators with PCPOR. Despite the constant overall com-
munication complexity, the storage overhead and the com-
putational complexity introduced by PCPOR for integrity
check are still comparable to existing schemes[20, 11, 15]
thanks to our novel design. We conduct thorough analysis
and show that our proposed scheme is efficient and practi-
cal. Based on the Computational Diffie-Hellman Problem
(CDH), the Strong Diffie-Hellman (SDH) assumption and
the Bilinear Strong Diffie-Hellman (BSDH) assumption, we
prove the correctness and soundness of our proposed scheme.
Our main contributions can be summarized as below.

• We construct the first secure and efficient POR scheme
with constant communication cost and public verifia-
bility.

• Our proposed scheme omits the necessity for trade-off
between communication cost and storage cost as in the
public SW scheme[20].

• We formally prove the security of our proposed scheme
based on the Computational Diffie-Hellman Problem,
the Strong Diffie-Hellman assumption and the Bilinear
Strong Diffie-Hellman assumption. Thorough analysis
validates the advantages of our proposed scheme.

The rest of this paper is organized as follows. In Section 2,
we review and discuss the related works; Section 3 describes
the system model, security model and assumptions; We in-
troduce the technique preliminaries of our work in Section
4, which is followed by the construction and security proof
of our proposed scheme in Section 5. We evaluate the per-
formance of our scheme in Section 6. Discussions about our
paper are provided in Section 7. We conclude the paper in
Section 8

2. RELATED WORK
In Ref.[16], Juels et al. first defined the POR formally,

which allows a storage server to convince a client that it can
correctly retrieve a file previously stored at the server. In
their proposed POR scheme, disguised blocks hidden among
regular file blocks are utilized to detect data modified by the
server. However, the communication cost in this scheme is
linear to the number of elements in each erasure coded file
block. What is more, the number of challenges supported by
this scheme is fixed a priori and thus limits its application.
With similar purpose of Ref.[16], Ateniese et al.[5] proposed
an efficient but weaker provable data possession model using
homomorphic authentication tag. Nevertheless, an adver-
sary was later introduced for this scheme by Shacham and
Waters[20], which can answer a fraction of queries correctly
with non-negligible probabilities.

To omit the limitation in Juels et al.’s POR scheme[16],
Shacham and Waters (SW) [20] proposed two fast POR
schemes based on the homomorphic linear authenticators[5],
which enables the storage server to reduce the proof com-
plexity by aggregating the authentication tags of individ-
ual file blocks. In their constructions, one proposed POR
schemes supports private verification based on pseudoran-
dom functions (PRFs) [12] and the other one achieves public
verifiability by utilizing BLS signatures[7]. Compared with
the scheme in Ref.[16], the communication cost for proof re-
sponse in Ref.[20] is reduced to 1

λ
of Ref.[16]’s and it can

support unlimited number of challenges. At the same time,
they first provide a security proof against arbitrary adver-
saries in the formal POR model. However, in SW schemes,
the communication complexity for proof response is still lin-
ear to the number of elements in each erasure coded file
block.

Following SW schemes[20], several POR schemes are pro-
posed recently to enhance it in terms of communication cost.
In Ref.[10], by using a (γ, δ)− hitter introduced by Goldre-
ich[18], Dodis et.al. reduce the size of challenge message to
1
λ

of Ref.[20]’s. Nevertheless, no change is made to the re-
sponse size in this scheme, which is still linear to the number
of elements in a data block. To further improve POR scheme
and overcome the limitations in previous ones, Xu et.al[15]
proposed a private POR scheme with constant communi-
cation cost with a polynomial based construction. In their
scheme, the limitation of communication cost in SW’s pri-
vate POR scheme is omitted. However, their scheme requires
the data owner to stay online and help the client to perform
all the verification tasks. These onerous tasks will inevitably

introduce heavy communication cost and computation cost
to the data owner, especially when multiple clients submit
verification requests at the same time. How to support POR
scheme with public verifiability and constant communication
cost is pointed out as an open problem.

3. MODEL AND ASSUMPTION

3.1 System Model
In this work, we follow the POR model that is consistent

with most existing POR schemes[16, 20, 8, 15]. We consider
a POR system that has three participating entities: Data
owner, Client, and Cloud server. Data owner has a collec-
tion of data and stores them on cloud server after erasure
coding together with the corresponding authentication tags.
The client who shares the stored data with the owner can
access it with integrity check, which can also be performed
as an independent procedure. To check the integrity of data
files, the client generates a challenge message and sends it to
the cloud server. The cloud server then responds the com-
puted proof for the selected file blocks to the client. After
receiving the proof, the client can verify the integrity of data
files through the verification algorithm. W.l.o.g., we define
the 1-round version of our POR model, which contains four
algorithms, KeyGen, Setup, Prove and Verify, as below:

• KeyGen: Given a selected security parameter λ, the
randomizedKeyGen algorithm outputs the system pub-
lic key and private key as (PK,SK).

• Setup: Given a data file M ∈ {0, 1}∗ and the public-
private key pair (PK,SK), the Setup algorithm gen-

erates the encoded file M̂ as well as the correspond-
ing authentication tag σ, which will be stored on the
server.

• Prove: Given the public key PK, encoded file M̂ ,
authentication tag σ and a challenge message Chall,
the Prove algorithm produces a proof response Prf.

• Verify: Given the public key PK and the Prf, the
Verify algorithm checks the data integrity and outputs
result as either accept or reject.

3.2 Security Model
We consider the storage server as untrusted and poten-

tially malicious, which is consistent with existing POR schemes
[16, 20, 15]. In our construction, we would like our POR
scheme to be correct and sound. For the correctness of
our scheme, we require that our Verify algorithm accepts a
valid proof generated from all key pairs (PK,SK), all files

M ∈ {0, 1}∗, all encoded files M̂ and authentication tags
σ. For the soundness of our scheme, if any malicious cloud
server can generate a proof and convince the Verify algo-
rithm that it actually stores M̂ correctly, it has to yield up
the right M̂ for the proof generation. By following Ref.[16,
20, 15], we define the security game for the soundness of our
POR scheme as below.

Definition 3.1. Let ∇ = (KeyGen, Setup, Prove, V eiry)
be a POR scheme and A be a probabilistic polynomial-time
adversary. Consider the following security game among a
trust authority, a challenger and A.

• The trust authority runs KeyGen(1λ) → (PK,SK)
and gives PK to the adversary A.

• The adversary A chooses a data file M and sends
it to the trust authority. The authority then runs
Setup(M,SK, PK) → (σ, M̂) and responds the en-

coded data file M̂ together with the authentication
tag σ back to A.

• With regard to the data fileM chosen by adversary A,
the challenger generates a random challenge message
Chall and sends it to A.

• According to the received challenge Chall, the adver-
sary A generates a file M̂ ′, M̂ ′ 6= M̂ since he might
have modified or lost some part of M̂ . A then pro-
duces a proof response Prf by running an arbitrary al-
gorithm Art(M̂ ′, σ, PK)→ Prf rather than the Prove
algorithm. The proof response Prf is sent back to the
challenger.

• The challenger verifies Prf by running Verify algo-
rithm with Prf and PK. The output of V erify(Prf, PK)
is denoted as Rst.

• The adversary wins the game if and only if he can pro-
duce a Prf with data file M̂ ′, M̂ ′ 6= M̂ and make the
challenger generate Rst as accept through the Verify
algorithm.

We say that ∇ is sound if any probabilistic polynomial-time
adversary A can win the game with at most a negligible
probability.

3.3 Assumption

Definition 3.2. Computational Diffie-Hellman (CDH)
Problem[9]

Let a, b
R
← Z∗

p . Given input as (g, ga, gb), where g is a gen-
erator of a cyclic group G of order p. It is computationally
intractable to compute the value gab.

Definition 3.3. t-Strong Diffie-Hellman (t-SDH) As-
sumption[6]

Let α
R
← Z∗

p . Given input as a (t+1)−tuple (g, gα, · · · , gα
t

)
∈ Gt+1, where G is a cyclic group of prime order p and g
is the generator of G. For any probabilistic polynomial time
adversary(PPTAdv), the probability Pr[PPTAdv(g, g

α, · · · ,

gα
t

) = (c, g
1

α+c)] is negligible for any value of c ∈ Z∗
p/−α.

Definition 3.4. t-Bilinear Strong Diffie-Hellman (t-
BSDH) Assumption[13]

Let α
R
← Z∗

p . Given input as a (t+1)−tuple (g, gα, · · · , gα
t

)
∈ Gt+1, where G is a multiplicative cyclic group of prime or-
der p and g is the generator of G. For any probabilistic poly-
nomial time adversary (PPTAdv), the probability Pr[PPTAdv

(g, gα, · · · , gα
t

) = (c, e(g, g)
1

α+c)] is negligible for any value
of c ∈ Z∗

p/−α.

4. TECHNIQUE PRELIMINARIES

4.1 Bilinear Map
A bilinear map[7] is a map e : G×G→ G1, where G and

G1 are two multiplicative cyclic groups of the same prime
order p. A bilinear map has the following properties:

• Bilinear: For all g1, g2 ∈ G and a, b
R
← Z∗

p , e(g
a
1 , g

b
2) =

e(g1, g2)
ab.

• Computable: There exists a computable algorithm
that can compute e efficiently.

• Non-degenerate: For g ∈ G, e(g, g) 6= 1

4.2 Constant Size Polynomial Commitment
A secure polynomial commitment scheme enables a com-

mitter to commit to a polynomial with a short string, which
can be used by a verifier to confirm claimed evaluations of
the committed polynomial. Utilizing an algebraic property
of polynomials f(x) ∈ Z[x]: (x − r) perfectly divides the

polynomial f(x) − f(r), r
R
← Z∗

p , Kate et.al.[17] proposed a
polynomial commitment scheme with constant communica-
tion size. In their scheme, a committer of polynomial f(x)
can generate a proof with constant size to verify the correct-
ness of the polynomial evaluation f(r), where x = r is an
index on the polynomial. Specifically, we summarize Kate
et.al.’s scheme[17] as below.

• Setup(1λ, s): Given a security parameter λ and a fixed
number s, a trust authority generates a public-private
key pair (PK, SK):

PK = (G,G1, g, g
α, · · · , gα

s−1

) SK = α
R
← Z∗

p

where G and G1 are two multiplicative cyclic groups
with prime order p(λ bits security), g is the generator
of G and e : G×G→ G1.

• Commit(PK, f~m(x)): For polynomial f~m(x) ∈ Zp[x]

with coefficient vector ~m = (m0,m1, · · · ,ms−1)
R
← Z∗

p ,

a committer computes the commitment C = gf~m(α) ∈
G and publishes C.

• CreateWitness(PK, f~m(x), r): For any index r
R
←

Z∗
p , the committer divides polynomial f~m(x) − f~m(r)

with (x − r) and outputs ~w as result, where ~w =

(w0, w1, · · · , ws−1) and f~w(x) ≡
f~m(x)−f~m(r)

(x−r)
. Then,

the witness ψ is computed as ψ =
∏s−1
j=0 (g

αj

)
wj

=

gf~w(α) based on PK.

• V erifyEval(PK,C, r, f~m(r), ψ): A verifier verifies that
f~m(r) is the evaluation at the index r of the polynomial
committed to by C as:

e(C, g)
?
= e(ψ, gα/gr) · e(g, g)f~m(r)

Due to the space limitation, please refer to Ref.[17] for the
detail correctness and security proofs of this scheme.

5. CONSTRUCTION OF PCPOR

5.1 Scheme Description
Let e : G × G → G1 and H be the one-way hash func-

tion[14], where G is a multiplicative cyclic group of prime
order p and g, u be two random generators of G. We define
f~c(x) as a polynomial with coefficient vector ~c = (c0, c1, · · · ,
cs−1), where s is the number of elements in each data block.
Our PCPOR scheme is described as follows.

• KeyGen(1λ)→ (PK,SK):

Choose a random prime p(λ bits security) and generate

a random signing key-pair ((spk, ssk)
R
← SKg) using

BLS signature[6]. Choose two random numbers α, ǫ
R
←

Z∗
p and compute v ← gǫ, κ← gαǫ as well as {gα

j

}s−1
j=0.

Then, the public and private keys are

PK = {p, v, κ, spk, u, {gα
j

}s−1
j=0}, SK = {ǫ, ssk, α}

• Setup(PK,SK,M)→ (M∗, σ, τ):

Given a data file M , obtain M ′ by applying erasure
code(e.g., Reed-Solomon code[19]). Split M ′ into n
blocks, each of which is s elements long: {mij}, 1 ≤
i ≤ n, 0 ≤ j ≤ s − 1. Choose a random file name
name from some sufficiently large domain (e.g., Z∗

p).
Let τ0 be “name||n”; the file tag τ is τ0 together with
a signature on τ0 under ssk: τ ← τ0||SSigssk(τ0). For
each data blocki, 1 ≤ i ≤ n, an authentication tag is
computed as:

σi = (uH(name||i) ·

s−1
∏

j=0

gmijα
j

)ǫ (1)

= (uH(name||i) · g
f ~βi

(α)
)ǫ

where ~βi = {βi,0, βi,1, · · · , βi,s−1} and βi,j = mi,j .
The processed file M∗ together with the authentica-
tion tags σi are outsourced for storage, where M∗ is
{mi,j}, 1 ≤ i ≤ n, 0 ≤ j ≤ s− 1.

• V erify(PK, τ)→ Chall:

Stage 1: Verify the signature on τ : if the signature is
not valid, reject and halt; otherwise, parse τ to recover
name and n. Now, choose a random l−element sub-

set I of the set [1, n] and a random number ρ
R
← Z∗

p .
Produce the challenge message as

Chall = {r, ρ, I}

where r
R
← Z∗

p . Challenge the data storage server with
Chall.

• Prove(PK,M∗, Chall, τ)→ (ψ, y, σ):

Parse the challenge message Chall as {r, ρ, I} and gen-
erate a l-element set Q = {(i, vi)}, where i ∈ I, vi =
ρi mod p. Based on the processed fileM∗ = {mi,j}, 1 ≤
i ≤ n, 0 ≤ j ≤ s− 1 and σi, compute

σ =
∏

(i,vi)∈Q

σvii (2)

We denote vector

~A = (
∑

(i,vi)∈Q

vimi,0, · · · ,
∑

(i,vi)∈Q

vimi,s−1)

Compute

y = f ~A(r) (3)

As we mentioned before, polynomials f(x) ∈ Z[x] have
the algebraic property that (x−r) perfectly divides the

polynomial f(x)−f(r), r
R
← Z∗

p . Now, divide the poly-
nomial f ~A(x)−f ~A(r) with (x−r) using polynomial long
division, and denote the coefficients vector of the re-
sulting quotient polynomial as ~w = (w0, w1, · · · , ws−1),

that is, f~w(x) ≡
f ~A

(x)−f ~A
(r)

x−r
. Produce

ψ =

s−1
∏

j=0

(gα
j

)wj = gf~w(α) (4)

Respond Prf= {ψ, y, σ}.

• V erify(PK,Prf)→ Rst:

Stage 2: After receiving the proof response Prf, com-
pute

ηi = uH(name||i)vi , (i, vi) ∈ Q (5)

η =
∏

(i,vi)∈Q

ηi (6)

Parse Prf as {ψ, y, σ} and check

e(η, v) · e(ψ, κ · v−r)
?
= e(σ, g) · e(g−y, v) (7)

where v = gǫ, κ = gǫα in PK. If Eq.7 holds, then
output Rst as accept; otherwise, output Rst as reject.

• Correctness:

For a storage server who honestly responds to the chal-
lenge with a Prf = {ψ, y, σ}, we can analyze the cor-
rectness of Eq.7 as:
Left Part:

e(η, v) · e(ψ, κ · v−r) (8)

= e(u, g)
ǫ(

∑
(i,vi)∈Q ti) · e(gf~w(α), gǫ(α−r))

= e(u, g)
ǫ(

∑
(i,vi)∈Q ti) · e(g, g)

f ~A
(α)−f ~A

(r)

α−r
·ǫ(α−r)

= e(u, g)
ǫ(

∑
(i,vi)∈Q ti) · e(g, g)ǫ(f ~A

(α)−f ~A
(r))

Right Part:

e(σ, g) · e(g−y, v) (9)

= e(u
ǫ(

∑
(i,vi)∈Q ti) · gǫf ~A

(α), g) · e(g−y, v)

= e(u
ǫ(

∑
(i,vi)∈Q ti), g) · e(gǫf ~A

(α), g) · e(g, g)−ǫf ~A
(r)

= e(u, g)
ǫ(

∑
(i,vi)∈Q ti) · e(g, g)ǫ(f ~A

(α)−f ~A
(r))

where ti = H(name||i)vi. From the above Eq.8 and
Eq.9, it is easy to see that the scheme is correct if the
storage sever generate the Prf honestly.

5.2 Security Proof
In this section, we prove that the underlying authenticator

is unforgeable.

Theorem 5.1. If gf~c(α) can be forged by an existed prob-
abilistic polynomial time adversary A, we can construct an
algorithm B that uses A to efficiently compute the solution
to t-SDH problem.

Proof. Suppose there exists a probabilistic polynomial
time adversity A that can forge f ~c1(α) such that gf ~c1

(α) =

gf~c(α), where f~c(x) and f ~c1(x) are known to A. A can con-
struct another polynomial f ~c2(x) = f~c(x) − f ~c1(x) and ob-

tain gf ~c2
(α) = gf~c(α)/gf ~c1

(α) = gf~c(α)−f ~c1
(α) ∈ Zp[x]. Since

f ~c1(α) = f~c(α) and f ~c2(α) = 0, i.e., α is a root of polynomial
f ~c2(x). By factoring f ~c2(x)[21], B can easily find SK = α
and solve the instance of the t-SDH problem given by the
system parameters.

Theorem 5.2. If the signature scheme used for file tags
is existentially unforgeable, the CDH problem is hard, the t-
SDH assumption and the t-BSDH assumption hold. In our
proposed scheme, the prover’s response Prf = (y, ψ, σ) is
unforgeable.

Proof. Suppose a probabilistic polynomial time adver-
sity can generate a forged proof response (y′, ψ′, σ′), (y′, ψ′, σ′)
6= (y, ψ, σ) after receiving a challenge message and make it
to be accepted by the verification algorithm, we can get the
following two equations:

e(η, g) · e(ψ, κ · v−r) = e(σ, g) · e(g−y, v) (10)

e(η, g) · e(ψ′, κ · v−r) = e(σ′, g) · e(g−y
′

, v) (11)

Dividing Eq.10 with Eq.11, we obtain:

(

e(ψ, g)

e(ψ′, g)

)ǫ(α−r)

=
e(σ, g)

e(σ′, g)
· e(g, g)ǫ(y

′−y) (12)

Now we do a case analysis on whether σ = σ′.

Case 1: σ 6= σ′.

As
(

e(ψ,g)
e(ψ′,g)

)ǫ(α−r)

, e(g, g)ǫ(y
′−y) and e(σ, g) are known to

the adversary, we rewrite Eq.12 as

e(σ′, g) = e(σ, g) ·Υ

e(σ′, g) = e(u
ǫ(

∑
(i,vi)∈Q ti), g) · e(gǫf ~A

(α), g) ·Υ(13)

where we denote Υ = e(g, g)ǫ(y
′−y)/

(

e(ψ,g)
e(ψ′,g)

)

as a known

value to the adversary and ti = H(name||i)vi.
Recall that in this proof, the CDH problem is hard. If

any probabilistic polynomial time adversity A can find σ′

with non-negligible probability and make Eq.13 hold, we can
construct an algorithm B that uses A to solve the instance
of the CDH problem. Specifically, given σ′ 6= σ found by
A, which makes Eq.13 hold, B can easily extract gǫfA(α).
With the given information, B can get gǫ, gfA(α), where ǫ
and fA(α) are unknown, and thus solve the CDH problem.
Therefore, no probabilistic polynomial time adversity can
find a valid forged response (y, ψ, σ) 6= (y′, ψ′, σ′) and σ 6= σ′

with non-negligible probability.
Case 2: y 6= y′.

Since σ = σ′, in this case, we can rewrite Eq.12 as:

(

e(ψ, g)

e(ψ′, g)

)ǫ(α−r)

= e(g, g)ǫ(y
′−y) (14)

From Eq.14 and y 6= y′, we can infer that α 6= r. In this
case, we show how to construct an algorithm B, using the
existed adversary, that can break the t-BSDH Assumption

with a valid solution (−r,
(

e(ψ,v)
e(ψ′,v)

) 1
y′−y

).

We denote ψ as gθ and ψ′ as gθ
′

, and then we can rewrite
Eq.14 as :

(

e(ψ, v)

e(ψ′, v)

)(α−r)

=
e(g, v)−y

e(g, v)−y′

θ(α− r) + y = θ′(α− r) + y′

(θ − θ′)

y′ − y
=

1

α− r
(15)

Note that the operations in Eq.15 are modular operations
with module p. Therefore, algorithm B can compute

(

e(ψ, v)

e(ψ′, v)

) 1
y′−y

= e(g, v)
θ−θ′

y′−y = e(g, g)
1

α−r (16)

and return (−r, e(g, g)
1

α−r) as a solution for t-BSDH in-
stance. It is easy to see that the success probability of solv-
ing the instance is the same as the success probability of the
adversity, and the time required is a small constant larger
than the time required by the adversary.
Case 3: ψ 6= ψ′.
In this case, since σ = σ′ and y = y′, we further rewrite

the Eq.14 as:

(

e(ψ, g)

e(ψ′, g)

)ǫ(α−r)

= 1 (17)

We know that ψ 6= ψ′, i.e., e(ψ,g)
e(ψ′,g)

6= 1, and ǫ 6= 0, we

can infer α = r from Eq.17. In our scheme, r is known
to the adversary. Thus, the adversary can find SK = α
and solve the instance of the t-SDH problem with solution

e(r, g
1

α+r) by given the system parameters. Therefore, no
valid forged response (y, ψ, σ) 6= (y′, ψ′, σ′) and ψ 6= ψ′ can
be found by probabilistic polynomial time adversity A with
non-negligible probability.

Therefore, Theorem 5.2 is proved.

6. PERFORMANCE EVALUATION
In this section, we numerically evaluate the performance

of our proposed PCPOR scheme in terms of communication
cost, computation cost and storage cost. We compare our
PCPOR scheme with existing POR techniques[20, 10, 15]
and summarize the result in Table 1. For simplicity, in the
following part of this paper, we denote the complexity of one
multiplication operation on Group G as MUL and that of
one exponentiation operation on GroupG as EXP1. Further-
more, we use ZADD and ZMUL to represent the addition
and multiplication operations on Z∗

p respectively. PRF is
used to denote pseudorandom function and |G| denotes the
size (in number of bits) of a group element on G.

6.1 Communication
In our proposed PCPOR scheme, the communication cost

comes from the challenge message Chall and the proof re-
sponse Prf in each verification request. The challenge mes-
sage consists of a l−element subset I and two random ele-

1
When the operation is on the elliptic curve, EXP means scalar mul-

tiplication operation and MUL means one point addition operation.

ments ρ, r ∈ Z∗
p . By utilizing Goldreich[12]’s (γ, δ)−hitter2,

we can represent the subset I with log|F | + 3log(1/δ) bits,
where |F | is the size of the encoded data file, and δ is the
error probability. In particular, given a data file less than
1024 TB (i.e. |F | = 243 bits, which is enough for most prac-
tical scenarios) and δ = 2−80 as in Ref.[15], the subset I can
be represented with 283 bits. As a result, the total cost of
Chall in our PCPOR scheme is 2λ+283 bits when the data
file size is smaller than 1024 TB. The proof responses in our
scheme are aggregated into 3 elements ψ, σ and y. Thus,
the total size of the proof response is 2|G| + λ bits, where
ψ and σ are two group elements and y the result of a poly-
nomial. For a system with reasonable security parameter
for our PCPOR scheme (e.g. set λ = 160 bits for ecliptic
curves, |G| = 1024 bits and the data file is less than 1024
TB), the total communication cost becomes constant size.
Therefore, the total complexity of communication cost in
our PCPOR scheme is O(1)

Now, we compare existing POR schemes [20, 10, 15] with
our PCPOR scheme and summarize the result in Table 1.
In Ref.[20], the complexity of challenge message and proof
response are O(1) and O(s) respectively, where s is the num-
ber of elements in each encoded block. Compared with our
PCPOR scheme, which has constant communication cost
in both challenge and response processes, this scheme have
a communication size of proof response linear to s and a
challenge message cost of λ times ours. The POR scheme
proposed by Dodis et al.[10] achieves the challenge message
size as same as our PCPOR scheme. However, the cost
of proof response in their scheme is still O(s). Considering
only private verification, Xu et al.[15] reduce communication
cost to constant size in each single verification. Neverthe-
less, their scheme only supports private verification, which
centralizes all the verification tasks to the data owner. If the
data owner wants to share his outsourced data with other in-
dividuals/organizations, it has to stay online and processes
all verifications by himself. Differently, with the public ver-
ifiability of our PCPOR scheme, each challenger is able to
conduct the verification independently with constant com-
munication cost and the data owner can go off-line after
outsourcing his data.

6.2 Computation
As shown in Section 5.1, our PCPOR scheme is composed

of 4 algorithms: KeyGen, Setup Prove and Verify. Among
these algorithms, KeyGen and Setup are performed off-line
by the data owner as data preparation process. To generate
the public key PK as well as the private key SK for the sys-
tem, the data owner performs (s+ 3)EXP operations using
the KeyGen algorithm. In the Setup procedure, to process
an encoded data file with n blocks, each of which has s ele-
ments, (s+2)n EXP and sn MUL operations are needed to
generate the authentication tags. Note that the data prepa-
ration process in our PCPOR scheme is one-time cost for
the data owner, it can go off-line after finishing this process.
For each verification request, the server needs to perform
(l+s−1)MUL, (2l+s−1)EXP, sl ZADD and s(l+2)ZMUL
operations to generate the proof response, where l is the
number of blocks chosen in each verification(Our discussion
in Section.7 shows that the value of l can be small in prac-

2
In Goldreich[12]’s (γ, δ) − hitter, it is guaranteed that any subset

Sub ⊂ [1, n] with size |Sub| ≥ |F |(1 − gamma), Pr[I ∩ Sub 6= ∅].
For more details, please refer to Ref.[12].

Scheme Public Comm. Comm. Comp. Comp. Storage Storage Data
verifiability complexity complexity Cost Cost Cost Cost Preparation

(Challenge) (Response) (Server) (Challenger) (Server) (Challenger)
(bits) (bits) (bits) (bits)

[20] Yes O(1) O(s) l(MUL+EXP)+ (s + l)MUL+ (1 + 1
s
)|F | λ + |G| sn MUL+

sl(ZADD+ZMUL) (s + l)EXP+ (s + 2)n EXP
2Pairing

[10] No O(1) O(s) (sl + l)(ZMUL (s + l)(ZMUL+ (1 + 1
s
)|F | 2λ l PRF+

+ZADD) ZADD)+l PRF n(ZMUL+ZADD)

[15] No O(1) O(1) (s − 1)(EXP+MUL)+ 2EXP+l PRF (1 + 1
s
)|F | 3λ + 80 l PRF+

(s + l + sl)(ZMUL l(ZMUL+ZADD) n(ZMUL+ZADD)
+ZADD)

PCPOR Yes O(1) O(1) (l + s − 1)MUL+ l MUL+ (1 + 1
s
)|F | λ + 4|G| sn MUL+

(2l + s − 1)EXP+ (2l + 2)EXP+ (s + 2)n EXP
sl ZADD+s(l + 2)ZMUL 5Pairing

Table 1: Complexity Summary: in this table, MUL is one multiplication operation on Group G, EXP is one exponentiation

operation on Group G, PRF denotes the pseudorandom function, ZADD and ZMUL represent the addition and multiplication

operations on Z∗
p respectively; λ is the security parameter, |G| is the size(in number of bits) of a group element on G, |F | is size

of data file, n is number of encoded blocks for the data file, s is the number of elements in each block and l is number of blocks

selected for verification. Note: given a system security parameter, the values of λ and |G| are fixed.
.

tical). On receiving the proof information, the challenger
first conducts l MUL and 2l EXP operations to generate η.
Then, 2 more EXP and 5 Pairing operations are needed for
the final verification. Therefore, as shown in Table 1, the
total computation cost for the challenger in one verification
is l MUL+(2l + 2)EXP+5Pairing.
We now compare our PCPOR scheme with existing POR

schemes[20, 10, 15] and show the result in Table 1. Com-
pared with the public POR scheme in Ref.[20], our PCPOR
will introduce s− 1 more MUL, l+ s− 1 more EXP and 2s
more ZMUL operations to the server side. But it achieves
the same computational complexity at the challenger side
(client). As the cloud sever is always much powerful than
the challenger (e.g. Amazon EC2 vs Mobile devices), the
additional computation cost brought to server side in our
PCPOR can be easily handled in practical scenarios and
have little influence on the scheme’s performance. Com-
pared with the two private POR schemes[10, 15] as shown
in Table 1, which have almost the same computation cost for
the challenger except for 2 more EXP operations in Ref.[15],
our PCPOR scheme will cause a relative higher computa-
tion cost by replacing the operations on Z∗

p with operations
on G in each verification. However, it is notable that the two
private POR schemes[10, 15] have to centralize all the ver-
ification tasks to the data owner(i.e., the computation cost
on the data owner is linear to the number of simultaneous
verification requests), which requires the data owner to keep
online. On the contrary, in our PCPOR, the computation
tasks for each verification is distributed to the challengers
without the participation of the data owner. This public ver-
ifiability makes our scheme easy to scale and have practical
computation cost on each challenger. For the computation
cost of data preparation, our PCPOR scheme achieves the
same as the public POR scheme in Ref.[20]. Since the data
preparation process is one-time cost in our scheme and will
not influence the realtime verification process, the additional
operations in this process can be acceptable in practical sce-
narios. Compared with the private POR schemes in Ref.[10,
15], as shown in Table 1, our PCPOR scheme and scheme in
Ref.[20] need relative higher computation cost for the prepa-
ration due to the requirement of group operations for the
public verifiability. Nevertheless, as mentioned above, these
additional one-time computation cost is acceptable in prac-
tice.

6.3 Storage

In this section, we first analyze the storage cost of our
PCPOR scheme on both the challenger side and server side,
and then compare it with existing POR schemes[20, 10, 15].
The results of our analysis are summarized in Table 1. At
the challenger side, our PCPOR scheme only requires the
challenger to store partial public key PK : {p, v, k, spk, g} in
order to generate the challenge message Chall and perform
the verification algorithm V erify. Thus, the size of storage
cost for each challenger is 4|G| + λ bits. Compared with
existing POR schemes[20, 10, 15], which require |G|+λ bits,
2λ bits and 3λ+ 80 bits respectively for the challenger side
storage cost, our PCPOR scheme achieves the same storage
cost level as demonstrated in Table 1. The storage overhead
on the server side mainly comes from the authentication tags
for the encoded data blocks. In our PCPOR scheme, each
authentication tag is a group element with λ bits, thus the
total size for tags is nλ bits. As the total encoded data file
size |F | = nsλ bits, we represent the total storage overhead
on the servers as (1 + 1

s
)|F | bits, which equals to Ref.[20,

10, 15]’s storage cost on servers when the values of s and λ
are the same.

Note that the communication cost in our PCPOR scheme
is independent to s as we mentioned in Section 6.1. There-
fore our scheme can reduce the storage cost by adjusting the
value of s without affecting the communication performance.
However, in Ref.[20, 10], as the communication cost for proof
response is linear to the value of s, reducing the storage cost
will lead to the sacrifice of communication performance.

7. DISCUSSION
In this section, we discuss the error detection probability

of our PCPOR scheme in Section.5.1. As we mentioned
in the Setup algorithm of PCPOR scheme, Reed-Solomon
code with rate ℓ is adopted for the data file encoding. For a
ℓ Reed-Solomon encoded data file (0 < ℓ < 1), any ℓ fraction
of encoded data blocks can recover the original file. If a data
file encoded with ℓ Reed-Solomon code cannot be recovered
from the erasure decoding, the probability of accessing a
uncorrupted encoded data block will be less than ℓ. In this
case, when we randomly choose l independent encoded data
blocks and all these blocks are uncorrupted, the probability
should be less than ℓl.

In our PCPOR scheme, we can set ℓ = 0.98 as previous
POR scheme[15] does. In this case, by checking 200 encoded
data blocks, the challenger can have at least 98.24% confi-

dence that the stored data on the server is not corrupted
if the V erify algorithm outputs result as accept. 99.99%
confidence can be guaranteed if 1000 encoded data blocks
are checked by the challenger.

8. CONCLUSIONS
Proofs of Retrievability (POR) technique enables individ-

uals and organizations to verify the integrity of their out-
sourced data on a untrusted server (e.g., public cloud stor-
age platform). While existing POR schemes have focused on
various practical issues, they still have limitations either the
communication cost is linear to the number of elements in a
data block, or the public verifiability is not supported. Such
limitations cause these POR schemes to suffer from a severe
scalability issue in terms of data file size or user number for
practical use. In this work, we proposed the first public POR
scheme with constant communication cost. By uniquely tai-
loring the polynomial commitment technique and design-
ing a novel authentication tag, our PCPOR scheme achieves
constant communication size, efficient computation perfor-
mance as well as low storage overhead. What is more, by
supporting the public verifiability, our scheme releases the
data owner from onerous verification tasks, which need to
be centralized to the data owner in previous private POR
scheme with constant communication size. We prove the
security of our scheme based on the CDH problem, the
SDH assumption and the BSDH assumption. Our thorough
analysis demonstrates the efficiency and scalability of our
scheme.

9. REFERENCES
[1] Amazon forum. major outage for amazon s3 and ec2,

https://forums.aws.amazon.com/thread.jspa?threadID
=19714&start=15&tstart=0.

[2] Amazon web service. summary of the amazon ec2 and
amazon rds service disruption in the us east region,
http://aws.amazon.com/message/65648/.

[3] Business insider. amazon’s cloud crash disaster
permanently destroyed many customers’ data,
http://www.businessinsider.com/amazon-lost-data-
2011-4.

[4] Dropbox. dropbox forums on data loss topic,
http://forums.dropbox.com/tags.php?tag=data-loss.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and
communications security, CCS ’07, pages 598–609,
New York, NY, USA, 2007. ACM.

[6] D. Boneh and X. Boyen. Short signatures without
random oracles. pages 56–73. Springer-Verlag, 2004.

[7] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the weil pairing. In Proceedings of the 7th
International Conference on the Theory and
Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’01, pages
514–532, London, UK, UK, 2001. Springer-Verlag.

[8] K. D. Bowers, A. Juels, and A. Oprea. Proofs of
retrievability: theory and implementation. In
Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, pages 43–54, New
York, NY, USA, 2009. ACM.

[9] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Trans. Inf. Theor., 22(6):644–654,
Sept. 1976.

[10] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In
Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography, TCC ’09,
pages 109–127, Berlin, Heidelberg, 2009.

[11] C. Erway, A. Küpçü, C. Papamanthou, and
R. Tamassia. Dynamic provable data possession. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 213–222,
New York, NY, USA, 2009. ACM.

[12] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. J. ACM, 33(4):792–807,
Aug. 1986.

[13] V. Goyal. Reducing trust in the pkg in identity based
cryptosystems. In Proceedings of the 27th annual
international cryptology conference on Advances in
cryptology, CRYPTO’07, pages 430–447, Berlin,
Heidelberg, 2007. Springer-Verlag.

[14] P. Hawkes, M. Paddon, and G. G. Rose. On corrective
patterns for the sha-2 family, 2004.

[15] X. Jia and C. Ee-Chien. Towards efficient provable
data possession. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’12, Seoul,
Korea, 2012.

[16] A. Juels and B. S. Kaliski, Jr. Pors: proofs of
retrievability for large files. In Proceedings of the 14th
ACM conference on Computer and communications
security, CCS ’07, pages 584–597, New York, NY,
USA, 2007. ACM.

[17] A. Kate, G. M. Zaverucha, and I. Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT, pages 177–194, 2010.

[18] G. Oded. A sample of samplers - a computational
perspective on sampling (survey). Electronic
Colloquium on Computational Complexity (ECCC),
4(20), 1997.

[19] I. S. Reed and G. Solomon. Polynomial Codes Over
Certain Finite Fields. Journal of the Society for
Industrial and Applied Mathematics, 8(2):300–304,
1960.

[20] H. Shacham and B. Waters. Compact proofs of
retrievability. In Proceedings of the 14th International
Conference on the Theory and Application of
Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’08, pages 90–107, Berlin,
Heidelberg, May 2008. Springer-Verlag.

[21] V. Shoup. A computational introduction to number
theory and algebra. Cambridge University Press, New
York, NY, USA, 2005.

[22] G. Timothy and M. M. Peter. The nist definition of
cloud computing. NIST SP - 800-145, September 2011.

