
Fast Cryptography in Genus 2
(Two is Greater than One)

Joppe W. Bos1, Craig Costello1?, Huseyin Hisil2, and Kristin Lauter1

1 Microsoft Research, Redmond, USA
2 Yasar University, Izmir, Turkey

Abstract. In this paper we highlight the benefits of using genus 2 curves in public-key cryp-
tography. Compared to the standardized genus 1 curves, or elliptic curves, arithmetic on genus 2
curves is typically more involved but allows us to work with moduli of half the size. We give a
taxonomy of the best known techniques to realize genus 2 based cryptography, which includes fast
formulas on the Kummer surface and efficient 4-dimensional GLV decompositions. By studying
different modular arithmetic approaches on these curves, we present a range of genus 2 imple-
mentations. On a single core of an Intel Core i7-3520M (Ivy Bridge), our implementation on the
Kummer surface breaks the 125 thousand cycle barrier which sets a new software speed record
at the 128-bit security level for constant-time scalar multiplications compared to all previous
genus 1 and genus 2 implementations.

1 Introduction

Since its invention in the 1980’s, elliptic curve cryptography [40, 49] has become a popular
and standardized approach to instantiate public-key cryptography. The use of elliptic curves,
or genus 1 curves, has been well studied and consequently all of the speed records for fast
curve-based cryptography are for elliptic curves (cf. the ECRYPT online benchmarking tool
eBACS [10]). Jacobians of hyperelliptic curves of high genus have also been considered for
cryptographic purposes, but for large genus there are “faster-than-generic" attacks on the
discrete logarithm problem [2, 26, 22, 19]. Such attacks are not known, however, for genus 2
curves. In [28], Gaudry showed that scalar multiplication on the Kummer surface associated
with the Jacobian of a genus 2 curve can be more efficient than scalar multiplication on the
Jacobian itself. Thus, it was proposed (cf. [6]) that hyperelliptic curve cryptography in genus 2
has the potential to be competitive with its genus 1 elliptic curve cryptography counterpart.
One significant hurdle for genus 2 cryptography to overcome is the difficulty of generating
secure genus 2 curves: that is, such that the Jacobian has a large prime or almost prime
group order. In particular, for fast cryptographic implementations it is advantageous to work
over special prime fields, where the underlying field arithmetic is fast, and to generate curves
over those fields with suitable group orders. A major catalyst for this work is that genus 2
point counting methods and complex multiplication (CM) methods for constructing genus 2
curves with a known group order have become more practical. Hence, the time is ripe to give
a taxonomy and a cross-comparison of all of the best known techniques for genus 2 curves
over prime fields. The focus on prime fields is motivated by the recommendations made by
the United States’ National Security Agency Suite B of Cryptographic Protocols [54].

? Part of this work was done while the second author was working in the Department of Mathematics and
Computer Science at the Technische Universiteit Eindhoven, Netherlands.

?? This article is based on an earlier article: Fast Cryptography in Genus 2, EUROCRYPT, LNCS, Vol. 7881,
pp. 194-210, c©IACR 2013, 10.1007/978-3-642-38348-9_12.

2 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

In this paper we set new performance speed records at the 128-bit security level using
genus 2 hyperelliptic curves. For instance, using the Kummer surface given by Gaudry and
Schost [33], we present the fastest curve based scalar multiplication over prime fields to date
— this improves on the recent prime field record for elliptic curves from Longa and Sica which
was presented at Asiacrypt 2012 [47]. As an additional bonus, our implementations on the
Kummer surface inherently run in constant-time, which is one of the major steps towards
achieving a side-channel resistant implementation [41]. Thus, we present the fastest constant-
time software for curve based cryptography compared to all prior implementations.

Another advantage for genus 2 curves is that the endomorphism ring is larger than for
genus 1 curves, so higher dimensional scalar decomposition is possible without passing to an
extension field [25, 24]. For prime fields we implement 4-dimensional GLV decompositions on
Buhler-Koblitz (BK) curves [15] and on Furukawa-Kawazoe-Takahashi (FKT) curves [23], both
of which are faster than all prior eBACS-documented implementations. To optimize overall
performance, we present implementations based on two different methods that allow fast
modular arithmetic: one based on the special form of the prime using “NIST-like” reduction [62]
and another based on the special form of the prime when using Montgomery multiplication [50].

In addition, we put forward a multi-faceted case for (a special class of) Buhler-Koblitz
curves of the form y2 = x5 + b. The curves we propose are particularly flexible in applications
because they facilitate both a Kummer surface implementation and a GLV decomposition.
Thus, a simple Diffie-Hellman style key exchange can be instantiated using the fast formulas
on the Kummer surface, but if a more complicated protocol requires further group operations,
one has the option to instead exploit a 4-dimensional GLV implementation using the same
curve.

The paper is organized as follows. In Section 2 we recall the necessary background for this
work. Section 3 outlines the two different approaches for the modular arithmetic. Section 4, 5
and 6 summarize the state-of-the-art in “generic”, Kummer surface and GLV implementations
respectively, together with the specific choices and optimizations we made in each scenario.
Section 7 presents our performance results. In Section 8 we propose a particular family of
curves that allow both Kummer surface and GLV implementations. Section 9 concludes the
paper.

2 Preliminaries

We start by recalling some basic facts and notation concerning genus 2 curves in Section 2.1.
In Section 2.2 we outline the CM method, which is used several times in this work to generate
secure curves. In Section 2.3 we briefly review the main techniques used to compute scalar
multiplications.

2.1 Genus-2 Curves

A hyperelliptic genus 2 curve over a field of odd characteristic K can be defined by an affine
model C : y2 = f(x), where f(x) has degree 5 or 6 and has no double roots. We call C a real
hyperelliptic curve if the degree of f is 6, and if such an f(x) has a rational root in K, then
we can birationally transform the curve so that f has degree 5 instead, in which case we say
C is an imaginary hyperelliptic curve. Arithmetic is currently slightly faster in the imaginary
case.

Fast Cryptography in Genus 2 (Two is Greater than One) 3

Unlike genus 1 elliptic curves, in genus 2, the points on the curve do not form a group.
Roughly speaking, unordered pairs of points on the curve form a group, where the group
operation adds two pairs of points by passing a cubic through the four points, finding the
other two points of intersection with the curve, and then reflecting them over the x-axis. More
formally, we denote this group by Jac(C), the Jacobian of C, which consists of degree zero
divisors on the curve modulo principal divisors. For genus 2 hyperelliptic curves, each class has
a unique reduced representative divisor consisting of at most two rational points (which are
not reflections of each other) minus the point(s) at infinity. General Jacobian elements can be
represented by encoding these two points via a pair of polynomials, where the x-coordinates
of the points are the roots of the first polynomial and the second polynomial is a line passing
through the two points. Throughout this paper we use the Mumford representation of general
divisors D = (x2 + u1x+ u0, v1x+ v0) ∈ Jac(C), and instead write D = (u1, u0, v1, v0). This
avoids confusion when x and y are used as two of the Kummer coordinates in Section 5. When
working in homogeneous projective space, we write such divisors as D = (U1 : U0 : V1 : V0 : Z),
where ui = Ui/Z and vi = Vi/Z for i ∈ {0, 1} and Z 6= 0.

2.2 The CM Method

There are two high-level strategies for constructing cryptographically strong genus 2 curves.
The first strategy is point counting, which typically involves fixing a particular genus 2 curve
C (over an underlying field) and using the classical Schoof-Pila [60, 57] algorithm to compute
#Jac(C), repeating the process for different curves until this group order is prime or almost
prime. Until recently, using this technique to compute the group orders of Jacobians of curves
which target the 128-bit security level was infeasible. However, in their record-breaking work,
Gaudry and Schost [33] presented a fast version of the general Schoof-Pila algorithm that
manages to compute the order of the Jacobian corresponding to any such a curve in around
1000 CPU hours. They further integrated an early abort strategy into this extended point
counting routine to find a 128-bit secure curve in over 1,000,000 CPU hours. The Kummer
surface associated to the curve they found is especially attractive for fast implementations, and
we use it to obtain record performance numbers in this work. Even more recently, on families of
curves which have been constructed to have known real multiplication (RM), Gaudry, Kohel
and Smith [32] gave an accelerated Schoof-Pila algorithm and set a record for RM point
counting, computing a 128-bit secure Jacobian in about 3 hours.

The second strategy for finding cryptographically secure genus 2 curves is the CM method,
which we use several times throughout this paper to find curves defined over special prime
fields that facilitate fast field arithmetic. The CM method works as follows. For a smooth,
projective, irreducible genus 2 curve, C, over a prime field Fp with ordinary Jacobian Jac(C),
the Frobenius endomorphism has a quartic characteristic polynomial f(t) = t4− s1t3 + s2t

2−
ps1t + p2. Let K be the quartic CM field defined by the polynomial f and fix an embedding
of K into the complex numbers. We denote by π a complex root of the polynomial f(t). The
roots of f consist of conjugate pairs (π, π) and (π′, π′), with the property π′π′ = ππ = p. If
a solution to ππ = p exists in the field K, then the ideal p = (π) in OK has relative norm
pp = p. Thus, given a CM field K and a prime p, the ordinary genus 2 curves over Fp with
CM by K (i.e. with End(Jac(C)) ∼= OK) correspond to generators of principal ideals with
relative norm p such that |π| =

√
p. Note that a generator may have to be scaled by a unit

in K to ensure that |π| = √p. Since #Jac(C)(Fp) = (1 − π)(1 − π)(1 − π′)(1 − π′), in order
to know the possible group orders for genus 2 curves with CM by K, it suffices to find the

4 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

prime ideal decomposition of p in OK (which determines all possible π’s). For primes which
split completely into principal ideals in the reflex field of K, there are always 2 possible group
orders when K 6= Q(ζ5) is Galois cyclic and 4 possible group orders when K is non-Galois
(see [21, Proposition 4] for the possibilities).

When a CM field K gives rise to a suitable group order over Fp, the next problem is to
construct a genus 2 curve with the desired number of points. We use Shimura’s theory which
shows that CM abelian varieties correspond to ideal classes in OK , and their invariants are
values of genus 2 Siegel modular functions defined by Igusa; these invariants can be computed
modulo p as roots of the Igusa class polynomials. These Igusa class polynomials have coeffi-
cients in Q and are computationally expensive to compute. There are three general methods
of approaching this computation: the complex analytic method [70], the Chinese remainder
theorem (CRT) method [21], and the p-adic method [31]. All of the class polynomials we used
in this work were taken from Kohel’s comprehensive Echidna database [42]. Upon computing
the Igusa invariants, we can then reconstruct the curve C/Fp using the Mestre-Cardona-Quer
algorithm [48].

Depending on the scenario, we use the CM method in one of two ways. We either start by
fixing a prime field Fp before searching through many CM fields until we find a curve whose
Jacobian has prime or almost prime group order, or conversely, we start with a fixed CM field
K and then search over many prime fields until we find a suitable curve. The first approach is
used when we do not require curves corresponding to a particular CM field or when the defining
equation for C is not important, which is the case when searching for “generic” curves (see
Section 4.2) and for curves facilitating arithmetic on the Kummer surface (see Section 5.5).
Alternatively, we use the second approach when we need either a certain defining equation for
C (e.g. the GLV curves in Section 6.2), or if we need to fix a particular CM field (e.g. the van
Wamelen curves in Section 8.5). Roughly speaking, if we can afford flexibility in the curves we
search for, then this allows us to be picky with the underlying fields we choose. Conversely,
being picky with the curves we seek usually means we have to be more flexible with the primes
we search with.

2.3 Scalar Multiplication

There are many different ways to compute the scalar multiplication. Most approaches, like
the double-and-add algorithm, are based on addition chains [59] and a typical optimization to
lower the number of point additions is using windows [13] of a certain width w > 1. Given the
input point P , we compute a lookup table consisting of the multiples [c]P such that 0 ≤ c < 2w,
and perform a point addition once every w bits (instead of at most once per bit). After adding
a precomputed multiple, we can “slide” to the next set-bit in the binary representation of the
scalar; such sliding windows [66] lower the number of point additions required and halve the
size of the lookup table since only the odd multiples of P are required. When computing the
negation of a group element is inexpensive, which is the case for both elliptic and genus 2
curves, we can either add or subtract the precomputed point3, reducing the total number of
group operations even further; this is called the signed windows approach [53]. See [9] for a
summary of these techniques.

Adding an affine point to a projective point to obtain another projective point, often
referred to as mixed addition, is usually faster than adding two projective points. In order
3 When referring to group elements, the term ‘point’ becomes ‘divisor’ in the case of hyperelliptic curves, but
remains as ‘point’ for Kummer surface arithmetic in Section 5.

Fast Cryptography in Genus 2 (Two is Greater than One) 5

to use these faster formulas, a common approach is to convert the precomputed projective
points into their affine form. This requires an inversion for each point in the table. Using
Montgomery’s simultaneous inversion method [51], I independent inversions can be replaced
by 3(I − 1) multiplications and a single inversion, which is typically much faster.

3 Fast Modular Arithmetic using Special Primes

When performing arithmetic modulo a prime p in practice, it is common to use primes of a
special form since this may allow fast reduction. For instance, in the FIPS 186-3 standard [67],
NIST recommends the use of five prime fields when using the elliptic curve digital signature
algorithm (but see also [4]). A study of a software implementation of the NIST-recommended
elliptic curves over prime fields on the x86 architecture is given by Brown et al. [14], and in [11]
a comparison is made between the performance when using Montgomery multiplication [50]
and specialized multiplication using the NIST primes. In this section we describe two different
approaches to obtain fast modular arithmetic. We use the prime p1271 = 2127 − 1 to illustrate
both methods, since this prime is used in some of our implementations (cf. Section 4 and
Section 5).

3.1 Generalized Mersenne Primes

Primes that enable fast reduction techniques are usually of the form 2s ± δ, where s, δ ∈ Z+,
and δ � 2s. The constant δ is also small compared to the word-size of the target architecture,
which is typically 32 or 64 bits. Another popular choice is using a generalized Mersenne
prime of the form 2s +

∑
i∈S i, where S is a set of integers ±2j such that |2j | < 2s and the

cardinality of S is small. For example, fast reduction modulo p = 2s−δ can be done as follows.
For integers 0 ≤ a, b, ch, c`, δ < 2s, write c = a · b = ch · 2s + c` ≡ c` + δch (mod 2s − δ) where
0 ≤ c`+δch < (δ+1)2s. At the cost of a multiplication by δ (which might be a shift depending
on the form of δ) and an addition, compute c′ ≡ c (mod p) where c′ is (much) smaller than c,
depending on the size of δ. This is the basic idea behind Solinas’ reduction scheme [62], which
is used to implement fast arithmetic modulo the NIST primes [67]. We refer to this type of
reduction as NIST-like reduction. When computing a · b mod p1271 with 0 ≤ a, b < p1271, one
can first compute the multiplication c = a · b = c1 · 2128 + c0, where 0 ≤ c1, c0 < 2128. A first
reduction step can be computed as c′ = (c0 mod 2127)+2 ·c1+bc0/2127c ≡ c (mod p1271), such
that 0 ≤ c′ < 2128. One can then reduce c′ further using conditional subtractions. Modular
reduction in the case of p1271 can therefore be computed without using any multiplications.

3.2 Montgomery-Friendly Primes

Montgomery multiplication [50] involves transforming each of the operands into their Mont-
gomery representations and replacing the conventional modular multiplications by Mont-
gomery multiplications. One of the advantages of this method is that the computational
complexity is usually better than the classical method by a constant factor.

Let r = 2b be the radix of the system and b > 2 be the bit-length of a word. Let p be
an n-word odd prime such that rn−1 ≤ p < rn, and suppose we have an integer 0 ≤ X < p.
The Montgomery radix R = rn is a fixed integer such that gcd(R, p) = 1. The Montgomery
residue of X is defined as X̃ = X · R mod p. The Montgomery product of two integers is
defined as M(X̃, Ỹ) = X̃ · Ỹ · R−1 mod p. Practical instances of Montgomery multiplication

6 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

use the precomputed value µ = −p−1 mod r. The interleaved Montgomery multiplication
algorithm, in which multiplication and reduction are combined, computes C = M(A,B) for
0 ≤ A,B < p. Let A =

∑n−1
i=0 ai · ri, where 0 ≤ ai < r, and start with C = 0. For all i ∈ Z

such that 0 ≤ i < n, the result C is updated as

C ← C + ai ·B, C ←
(
C + ((µ · C) mod r) · p

)/
r.

The division by r can be implemented by a shift, since the precomputed value µ ensures that
the least significant digit (b bits) of (C + ((µ · C) mod r) · p) is zero. It can be shown that
the final Montgomery product C is bounded as 0 ≤ C < 2 · p, and therefore a final condi-
tional subtraction is needed when complete reduction is required. In order to avoid handling
additional carries in the Montgomery multiplication, which requires more instructions, our
implementations prefer 127-bit moduli over 128-bit moduli. In [44] it is noticed that fixing
part of the modulus can have advantages for Montgomery multiplication. For instance, the
precomputation of µ can be avoided when −p−1 ≡ ±1 (mod r), which also avoids computing
a multiplication by µ for every iteration inside the Montgomery multiplication routine. This
technique has been suggested in [39, 1, 35] as well. When µ is small, e.g. µ = ±1, one could
lower the cost of the multiplication of p with (µ·c0) mod r by choosing the n−1 most significant
words of p in a similar fashion as for the generalized Mersenne primes: bp/2bc = 2s +

∑
i∈S i.

Consider the prime p1271 on 64-bit architectures: r = 264 and we have µ = −p−11271 mod
264 = 1, so that the multiplication by µ can be avoided. Write C = c2·2128+c1·264+c0 with 0 ≤
c2, c1, c0 < 264. Due to the shape of the most-significant word of p1271 = (263−1)·264+(264−1),
the result of C+((µ·C) mod r)·p

r can be obtained using only two shift and two 64-bit addition
instructions by computing c2 ·264+c0 ·263+c1. Similar to the NIST-like reduction, Montgomery
reduction in the setting of p1271 can be computed without using any multiplications.

3.3 Other Arithmetic Operations

Besides fast multiplication and reduction, the whole spectrum of modular operations is re-
quired to implement curve arithmetic. Here we outline the different approaches we use.

Modular Inversion. When using the regular representation of integers, one can either use the
(binary) extended GCD algorithm to compute the modular inversion or use the special form
of the modulus to compute the inverse by using modular exponentiations. For instance, in the
case of p1271, one can exploit the congruence a2127−2 ≡ a−1 (mod p1271). The situation when
working in Montgomery form is slightly different. Given the Montgomery form ã = a2bn mod p
of an integer a, we want to compute the Montgomery inverse ã−122bn ≡ a−12bn (mod p).
This would require a classical inversion and modular multiplication, however we found that
the approach presented in [12] (which uses the binary version of the Euclidean algorithm
from [37]) is faster in practice. The first step of this approach computes a value ã−12k ≡
a−12k−bn (mod p), for some 0 ≤ k < 2bn. This value is then corrected via a Montgomery
multiplication with 23bn−k. This last multiplication typically requires a lookup table with the
different precomputed values 23rn−k mod p. In the case of p = 2127 − 1, one can avoid this
lookup table since 2t mod 2127 − 1 = 2t mod 127.

Modular Addition/Subtraction. Let 0 ≤ a, b < 2k−c. We compute (a+b) mod (2k − c) as
((((a+c)+b) mod 2k)−c ·(1−carry((a+c)+b, 2k))) mod 2k. The carry function carry(x, y)

Fast Cryptography in Genus 2 (Two is Greater than One) 7

returns either zero or one if x < y or x ≥ y respectively. The output is correct and bounded
by 2k − c, since if a + b + c < 2k, then a + b < 2k − c, while if a + b + c ≥ 2k, then
(a + b + c) mod 2k = a + b − (2k − c) < 2k − c. Note that since a + c < 2k, the addition
requires no carry propagation. Furthermore, c is multiplied with either one or zero such that
this multiplication amounts to data movement.

The modular subtraction (a − b) mod (2k − c) is performed by computing (((a − b) mod
2k)−c·borrow(a−b)) mod 2k. Analogous to the carry function, the borrow function borrow(x)
returns zero or one if x ≥ 0 or x < 0 respectively. If a < b, then 0 ≤ (a − b) mod 2k − c =
a − b + (2k − c) < 2k − c, and if a ≥ b, then 0 ≤ a − b < 2k − c. In some scenarios one can
compute additions as (((a+ b) mod 2k) + c · carry((a+ b), 2k)) mod 2k, but we note that here
the output may not be completely reduced and can be greater than or equal to 2k − c.

4 “Generic” Genus-2 Curves and their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer surface or when
exploiting GLV endomorphisms, we also consider the generic scenario that employs neither
technique.

4.1 Explicit formulas

We make use of the fast formulas for arithmetic on imaginary quadratic curves from [18],
which employ homogeneous projective coordinates, and focus on reducing the total number
of multiplications in projective point doublings, point additions and mixed additions.4 Due to
the small size of our fields, the cost of modular addition and subtraction compared to modular
multiplication is relatively high. Hence, we optimize the formulas from [18] for 128-bit fields
by trading some addition and subtractions for multiplications (see Algorithms 1, 2 and 3).

We assume that our curves are of the form C : y2 = x5 +f3x
3 +f2x

2 +f1x+f0, and count
multiplications by the fi as full multiplications, unless they are zero.5 Letting m, s and a be
the cost of Fp-multiplications, Fp-squarings and Fp-additions or subtractions respectively, we
summarize the modified counts as follows. For D = (U1 : U0 : V1 : V0 : Z), one can compute
[2]D in 34m + 6s + 34a – see Algorithm 1. For the special GLV curves in Section 6, which
have f2 = f3 = 0, the projective doubling can be computed using 32m + 6s + 32a. For
D = (U1 : U0 : V1 : V0 : Z) and D′ = (U ′1 : U ′0 : V ′1 : V ′0 : Z ′), one can compute the projective
addition D + D′ in 44m + 4s + 29a – see Algorithm 2. For the mixed addition between the
projective point D = (U1 : U0 : V1 : V0 : Z) and the affine point D′ = (u′1 : u′0 : v′1 : v′0), one can
compute the projective result D + D′ in 37m + 5s + 29a – see Algorithm 3. Full and mixed
additions cost the same on the special GLV curves. Given these operation counts, our “generic”
implementations performed fastest when using 4-bit signed sliding windows (see Section 2.3).

4.2 Curves

To find “generic” curves for comparison against the GLV and Kummer techniques, we searched
Kohel’s Echidna database [42] with two fixed primes that facilitate our chosen techniques for
field arithmetic. We terminated the search when we found curves with Jacobians of prime
4 Note that the formulas to compute the projective doubling from [18] can be sped up since the first multi-
plication to compute UU is redundant.

5 Over prime fields it is standard to zero the coefficient of the x4 term via an appropriate substitution.

8 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Algorithm 1 Projective
doubling for general divisors
on the Jacobian of C : y2 =
x5 + f3x

3 + f2x
2 + f1 + f0.

Input: P = (U1 : U0 : V1 : V0 : Z)
and f2, f3 (curve constants)

Output: [2]P
= (U ′′1 : U ′′0 : V ′′1 : V ′′0 : Z′′).

U ′′0 ← U0 · Z, t1 ← Z2,
t2 ← U2

1 , t3 ← 2 · t2,
t4 ← 2 · U ′′0 , t5 ← t3 + t4,
t5 ← t5 · U1, t6 ← V 2

1 ,
t7 ← f2 · t1, t6 ← t7 − t6,
t6 ← t6 · Z, t6 ← t6 + t5,
t1 ← f3 · t1, t1 ← t1 + t2,
t4 ← t1 − t4, t4 ← t4 + t3,
V ′′0 ← V0 · Z, t1 ← U1 · V1,
t2 ← 2 · t1, t1 ← t1 + V ′′0 ,
t2 ← t2 − V ′′0 , t3 ← t3 + U ′′0 ,
t3 ← V1 · t3, t5 ← t3 · t4,
t7 ← t6 · t2, t5 ← t5 − t7,
t6 ← t6 · V1, t4 ← t4 · t1,
t4 ← t4 − t6, t3 ← t3 · V1,
t1 ← t1 · t2, t3 ← t3 − t1,
t1 ← t5 · t4, t2 ← t3 · t4,
t4 ← t24, t6 ← U ′′0 · t4,
t7 ← t4 · Z, t4 ← t4 · U1,
t3 ← 2 · t3, t3 ← t23,
t3 ← t3 · Z, t2 ← 2 · t2,
U ′′0 ← t2 · Z, V ′′1 ← V1 · U ′′0 ,
V ′′0 ← V ′′0 · t2, t2 ← t1 − t4,
t5 ← t25, t8 ← 2 · t3,
t8 ← t8 − t2, t8 ← t8 − t1,
t8 ← t8 · U1, t8 ← t8 + t5,
t5 ← 2 · V ′′1 , t8 ← t8 + t5,
V ′′1 ← t6 + V ′′1 , t6 ← t6 · t2,
U ′′1 ← 2 · t2, U ′′1 ← U ′′1 − t3,
t2 ← U ′′1 − t2, t4 ← t4 − U ′′1 ,
t4 ← t4 · t2, t4 ← t4 · Z,
Z′′ ← U ′′0 · Z, t1 ← t1 − U ′′1 ,
U ′′1 ← U ′′1 · Z′′, U ′′0 ← t8 · U ′′0 ,
V ′′1 ← V ′′1 − t8, V ′′1 ← V ′′1 · t7,
V ′′1 ← t4 − V ′′1 , V ′′0 ← V ′′0 · t7,
t1 ← t1 · t8, t1 ← t1 − t6,
V ′′0 ← t1 − V ′′0 , Z′′ ← Z′′ · t7

Algorithm 2 Projective ad-
dition between general divi-
sors on the Jacobian of C :
y2 = x5+f3x

3+f2x
2+f1+f0.

Input: P = (U1 : U0 : V1 : V0 : Z),
Q = (U ′1 : U ′0 : V ′1 : V ′0 : Z′).

Output: P +Q
= (U ′′1 : U ′′0 : V ′′1 : V ′′0 : Z′′).

U ′′1 ← U1 · Z′, U ′′0 ← U0 · Z′,
t1 ← V0 · Z′, t2 ← V ′0 · Z,
t1 ← t1 − t2, t2 ← U ′0 · Z,
t3 ← U ′1 · Z, t4 ← t3 · t2,
t2 ← t2 − U ′′0 , t5 ← U ′′1 − t3,
t6 ← U ′′1 · U ′′0 , t4 ← t4 − t6,
t6 ← V ′1 · Z, Z′′ ← Z · Z′,
t7 ← V1 · Z′, t8 ← t7 − t6,
t6 ← t7 + t6, t9 ← U ′′21 ,
t10 ← Z′′ · t2, t10 ← t9 + t10,
t11 ← t23, t3 ← U ′′1 + t3,
t12 ← t10 − t11, t11 ← t9 + t11,
t9 ← t4 · t8, t4 ← t4 · t5,
t5 ← t1 · t5, t1 ← t1 · t12,
t8 ← t2 · t8, t2 ← t2 · t12,
t1 ← t9 + t1, t5 ← t5 + t8,
t2 ← t2 − t4, t4 ← t5 · Z′′,
t8 ← t2 · t4, t2 ← t22,
t5 ← t5 · t4, t4 ← t1 · t4,
U ′′1 ← U ′′1 · t5, t9 ← 2 · t4,
t9 ← t9 − t2, t12 ← t5 · t3,
t9 ← t9 − t12, t2 ← t9 − t2,
t2 ← t2 · t3, t11 ← t5 · t11,
t2 ← t2 + t11, t2 ← t2/2,
t12 ← Z′′ · t5, U ′′0 ← U ′′0 · t12,
t12 ← t8 · t12, t11 ← Z′ · t12,
V ′′0 ← t11 · V0, V ′′1 ← t11 · V1,
t11 ← t4 − t9, t4 ← U ′′1 − t4,
t1 ← t21, t6 ← t8 · t6,
t1 ← t1 · Z′′, t1 ← t1 + t6,
t1 ← t1 − t2, t2 ← t1 − U ′′0 ,
t5 ← t2 · t5, t2 ← t9 · t11,
t11 ← t1 · t11, t6 ← U ′′1 · t4,
t6 ← t6 + t2, t5 ← t6 + t5,
t4 ← U ′′0 · t4, t11 ← t4 + t11,
t9 ← t9 · t8, U ′′1 ← t9 · Z′′,
U ′′0 ← t1 · t8, t5 ← t5 · Z′′,
V ′′1 ← t5 − V ′′1 , V ′′0 ← t11 − V ′′0 ,
Z′′ ← Z′′ · t12

Algorithm 3 Mixed addi-
tion between general divisors
on the Jacobian of C : y2 =
x5 + f3x

3 + f2x
2 + f1 + f0.

Input: P = (U1 : U0 : V1 : V0 : Z),
Q = (u1, u0, v1, v0).

Output: P +Q
= (U ′′1 : U ′′0 : V ′′1 : V ′′0 : Z′′).

t1 ← v0 · Z, V ′′0 ← V0 − t1,
t1 ← v1 · Z, t2 ← t1 + V1,
t1 ← t1 − V1, V ′′1 ← u1 · Z,
t3 ← V ′′1 + U1, t4 ← u0 · Z,
t5 ← V ′′1 · t4, t6 ← U1 · U0,
t6 ← t6 − t5, U ′′0 ← U0 − t4,
t5 ← V ′′21 , t7 ← U2

1 ,
U ′′1 ← V ′′1 − U1, t8 ← t5 − t7,
t5 ← t5 + t7, t7 ← Z · U ′′0 ,
t8 ← t7 + t8, t7 ← t6 · t1,
t1 ← U ′′0 · t1, U ′′0 ← U ′′0 · t8,
t6 ← t6 · U ′′1 , U ′′1 ← V ′′0 · U ′′1 ,
t8 ← V ′′0 · t8, t7 ← t7 − t8,
t1 ← t1 − U ′′1 , U ′′0 ← U ′′0 − t6,
t8 ← U ′′20 , t6 ← t1 · Z,
U ′′0 ← U ′′0 · t6, t1 ← t1 · t6,
V ′′1 ← t1 · V ′′1 , t5 ← t1 · t5,
V ′′0 ← t7 · t6, t6 ← t26,
t7 ← t27, t4 ← t4 · t6,
t6 ← U ′′0 · t6, U ′′1 ← 2 · V ′′0 ,
U ′′1 ← U ′′1 − t8, t2 ← U ′′0 · t2,
t7 ← t7 · Z, t7 ← t7 + t2,
t2 ← t1 · t3, U ′′1 ← U ′′1 − t2,
t8 ← U ′′1 − t8, t3 ← t3 · t8,
t3 ← t3 + t5, t3 ← t3/2,
t7 ← t7 − t3, t8 ← V ′′1 − V ′′0 ,
V ′′0 ← V ′′0 − U ′′1 , t5 ← t7 − t4,
V ′′1 ← V ′′1 · t8, t1 ← t1 · t5,
t1 ← t1 + V ′′1 , V ′′1 ← U ′′1 · V ′′0 ,
V ′′1 ← V ′′1 + t1, t4 ← t4 · t8,
V ′′0 ← V ′′0 · t7, V ′′0 ← t4 + V ′′0 ,
t4 ← t6 · v1, V ′′1 ← V ′′1 − t4,
U ′′1 ← U ′′1 · Z, U ′′1 ← U ′′1 · U ′′0 ,
U ′′0 ← t7 · U ′′0 , V ′′1 ← Z · V ′′1 ,
Z′′ ← Z · t6, t7 ← Z′′ · v0,
V ′′0 ← V ′′0 − t7

order. While these curves are not general in the sense that their CM field is chosen in advance,
there is no reason that the corresponding timings obtained will differ from any other generic
curves over the same prime fields, unless such curves are real (degree-6) curves which cannot
be transformed into imaginary (degree-5) curves.

Fast Cryptography in Genus 2 (Two is Greater than One) 9

Generic curve over Fp with p = 2127 − 1. The CM field K = Q[x]/(x4 + 137x + 4429)
has class number 6 [42] and gives rise to a curve C over Fp whose Jacobian has prime order

r = 28948022309329048848169239995659025138451177973091551374101475732892580332259,

which is 254 bits. A possible degree 5 model is C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0, where

f3 = 34744234758245218589390329770704207149, f2 = 132713617209345335075125059444256188021,

f1 = 90907655901711006083734360528442376758, f0 = 6667986622173728337823560857179992816.

Generic curve over Fp with p = 2128 − 173. The CM field K = Q[x]/(x4 + 41x + 389)
has class number 1 [42] and gives rise to a curve C over Fp whose Jacobian has prime order

r = 115792089237316195429342203801033554170931615651881657307308068079702089951781,

which is 257 bits. A possible degree 5 model is C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0, where

f3 = 318258242717201709453901384328569236653, f2 = 75380722035796344355219475510170298006,

f1 = 129416082603460579272847694630998099237, f0 = 143864072772599444046778416709082679388.

5 The Kummer Surface

Gaudry [28] built on earlier observations by Chudnovsky and Chudnovsky [16] to show that
scalar multiplication in genus 2 can be greatly accelerated by working on the Kummer surface
associated to a Jacobian, rather than on the Jacobian itself. Although the Kummer surface is
not technically a group, it is close enough to a group to be able to define scalar multiplications
on it, and is therefore an attractive setting for Diffie-Hellman like protocols that do not require
any further group operations [61].

5.1 The Squares-only Kummer Routine

The Kummer surface that was originally proposed for cryptography in [28] is a surface whose
constants are parameterized by the four fundamental Theta constants (ϑ1(0), ϑ2(0), ϑ3(0),
ϑ4(0)), and whose coordinates come from the four fundamental Theta functions (ϑ1(z), ϑ2(z),
ϑ3(z), ϑ4(z)), all of which are values of the classical genus 2 Riemann Theta function. Bern-
stein [6] pointed out that one can work entirely with the squares of the fundamental Theta
constants without any loss of efficiency. This provides more flexibility when transforming a
given genus 2 curve into an associated Kummer surface, and makes it easier to control the size
of squared fundamental Theta constants, for which small values can give worthwhile speedups.
For example, it might be the case that the fundamental Theta constants associated to a genus 2
curve cannot be defined over Fp, but all of their squares can be.

Cosset [17] formally presented the “squares-only” setting, in which the Kummer surface K is
completely defined by the squared fundamentals (a2, b2, c2, d2) = (ϑ1(0)2, ϑ2(0)2, ϑ3(0)2, ϑ4(0)2)
as

K : E′xyzt = ((x2 + y2 + z2 + t2)− F (xt+ yz)−G(xz + yt)−H(xy + zt))2,

10 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Algorithm 4 The Hadamard
transform (H).
Input: (x, y, z, t).
Output: H(x, y, z, t).
1. t1 ← x+ y, t2 ← z + t,
t3 ← x− y, t4 ← z − t.

2. x← t1 + t2, y ← t1 − t2,
z ← t3 + t4, t← t3 − t4.

3. return (x, y, z, t).

Algorithm 5 Doubling, K(DBL).
Input: P = (x : y : z : t) and constants y0, z0, t0, y′0, z′0, t′0.
Output: [2]P = DBL(P).
1. x, y, z, t← H(x, y, z, t).
2. x← x2, y ← y2, z ← z2, t← t2.
3. y ← y · y′0, z ← z · z′0, t← t · t′0.
4. x, y, z, t← H(x, y, z, t).
5. x← x2, y ← y2, z ← z2, t← t2.
6. y ← y · y0, z ← z · z0, t← t · t0.
7. return (x : y : z : t).

where E′ = 4E2a2b2c2d2, E =
ABCD

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
,

F =
a4 − b4 − c4 + d4

a2d2 − b2c2
, G =

a4 − b4 + c4 − d4

a2c2 − b2d2
, H =

a4 + b4 − c4 − d4

a2b2 − c2d2
,ABC

D

 =

 1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


a

2

b2

c2

d2

 . (1)

We write (x : y : z : t) = (ϑ1(z)2 : ϑ2(z)2 : ϑ3(z)2 : ϑ4(z)2) for the coordinates of a projective
point on K. We present here the four algorithms needed to achieve scalar multiplication on a
Kummer surface using the squared coordinates. Algorithm 4, the Hadamard transform (H),
is a building block used to improve efficiency throughout the entire routine: the linear alge-
bra involved in computing A,B,C,D from (a2, b2, c2, d2) in (1) appears numerous times in
the formulas for arithmetic on K, and this is an optimized way to do those operations [6].
Algorithm 5, K(DBL), computes the doubling [2]P ∈ K of a point P ∈ K, while Algorithm 6,
K(DBLADD), computes the pseudo-addition of the distinct points P,Q ∈ K with known differ-
ence P−Q ∈ K. Both of these algorithms are the squares-only formulas from [17]. Algorithm 7
computes the scalar multiple [k]P ∈ K of P ∈ K using a genus 2 version [28] of the Montgomery
ladder [51]. The six surface constants that appear in the algorithms are defined as

y0 =
a2

b2
, z0 =

a2

c2
, t0 =

a2

d2
, y′0 =

A

B
, z′0 =

A

C
, t′0 =

A

D
. (2)

Although the formulas in Algorithm 6 are presented for general inputs P , Q and P − Q,
the inputs to K(DBLADD) in the laddering algorithm are always of the form [m]P and [m+1]P ,
so their difference is always the initial point P (see lines 4 and 6 of Algorithm 7). Thus, the
inversions in Line 9 of Algorithm 6 can all be precomputed. In fact, since K is projective we
can multiply each coordinate in this line by any scalar, say x̄, such that Line 9 is modified to
compute 3 multiplications: y′ ← Y ·(x̄/ȳ), z′ ← Z ·(x̄/z̄), and t′ ← T ·(t̄/ȳ), where the quotients
in the parentheses are precomputed and stay fixed throughout the scalar multiplication [28,
6].

Fast Cryptography in Genus 2 (Two is Greater than One) 11

Algorithm 6 Combined doubling and pseudo-
addition, K(DBLADD).
Input: P = (x : y : z : t), Q = (x′ : y′ : z′ : t′),

P −Q = (x̄ : ȳ : z̄ : t̄), and y0, z0, t0, y′0, z′0, t′0.
Output: ([2]P, P +Q) = DBLADD(P,Q, P −Q).
1. x, y, z, t← H(x, y, z, t), x′, y′, z′, t′ ← H(x′, y′, z′, t′).
2. X ← x · x′, Y ← y · y′0, Z ← z · z′0, T ← t · t′0.
3. x← x2, y ← y · Y , z ← z · Z, t← t · T .
4. Y ← Y · y′, Z ← Z · z′, T ← T · t′.
5. x, y, z, t← H(x, y, z, t), X,Y, Z, T ← H(X,Y, Z, T).
6. x← x2, y ← y2, z ← z2, t← t2.
7. X ← X2, Y ← Y 2, Z ← Z2, T ← T 2.
8. y ← y · y0, z ← z · z0, t← t · t0.
9. x′ ← X/x̄, y′ ← Y/ȳ, z′ ← Z/z̄, t′ ← T/t̄.
10. return (x : y : z : t), (x′ : y′ : z′ : t′).

Algorithm 7 Scalar multiplication,
K(SMUL).
Input: P = (x : y : z : t) and integer

n =
∑`−1
i=0 ni2

i with n > 2.
Output: [n]P ∈ K.
1. Pm ← P , Pp = DBL(P).
2. for i = `− 2 down to 0 do
3. if ni = 1 then
4. (Pp, Pm)← K(DBLADD)(Pp, Pm, P)
5. else
6. (Pm, Pp)← K(DBLADD)(Pm, Pp, P)
7. (x : y : z : t)← Pm.
8. return (x : y : z : t).

5.2 Extracting the Squared Kummer Surface Parameters from C

In [28] Gaudry showed the relationship between the Kummer surface and the isomorphic
Rosenhain model of the genus 2 curve C, given as

CRos : y2 = x(x− 1)(x− λ)(x− µ)(x− ν), (3)

where the Rosenhain invariants λ, µ and ν are linked to the squared fundamentals by

λ =
a2c2

b2d2
, µ =

c2(AB + CD)

d2(AB − CD)
, ν =

a2(AB + CD)

b2(AB − CD)
,

with A,B,C,D as in (1). Since the three Rosenhain invariants are functions of the four
squared fundamentals, there is a degree of freedom when inverting the equations to compute
(a2, b2, c2, d2) from (λ, µ, ν). Thus, we can set d2 = 1 [30] and compute the other squared
fundamentals as

c2 =

√
λµ

ν
, b2 =

√
µ(µ− 1)(λ− ν)

ν(ν − 1)(λ− µ)
, a2 = b2c2

ν

µ
.

Given a hyperelliptic curve C of genus 2, there are up to 120 unique Rosenhain triples
λ, µ, ν that give an isomorphic representation CRos

∼= C over the algebraic closure [27, §2.2].
So for a given curve with rational 2-torsion, we can expect that there may be at least one
Rosenhain triple for which the square roots above lie in the same field as λ, µ and ν, such that
the Kummer surface is also defined over the same field (but see Section 8.3). If the 2-torsion
is rational, then 16 must divide the cardinality of Jac(C) [28].

5.3 Mapping from K to Jac(C)

The maps from K to Jac(C) were originally given by Gaudry [28] and tweaked for the squares
only case by Cosset [17]. We reproduce them here for completeness, correcting a sign mis-
take introduced in the computation of v0 in [17]. It should be noted that the map below

12 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

is not directly to the Jacobian of C, but rather to the Jacobian of the isomorphic curve
CRos in Rosenhain form. The map takes P = (x : y : z : t) ∈ K to D = (u1, u0, v1, v0) or
D = (u1, u0,−v1,−v0), where the choice between these two possibilities is made when we
choose the square root in the computation of v0 in (5).

We expand the first part of the map (to the u-polynomial of D), to write it as

u0 =
uxx+ uyy + uzz + utt

dxx+ dyy + dzz + dtt
and u1 =

u′xx+ u′yy + u′zz + u′tt

dxx+ dyy + dzz + dtt
− u0 − 1,

where

ux = −ϑ21ϑ23ϑ28ϑ25ϑ29, u′x = −ϑ27ϑ49ϑ25ϑ28, dx = −ϑ22ϑ24ϑ210ϑ26ϑ27,
uy = −ϑ21ϑ23ϑ28ϑ26ϑ27, u′y = ϑ27ϑ

4
9ϑ

2
5ϑ

2
10, dy = −ϑ22ϑ24ϑ210ϑ25ϑ29,

uz = ϑ21ϑ
2
3ϑ

2
8ϑ

2
5ϑ

2
7, u′z = ϑ47ϑ

2
9ϑ

2
5ϑ

2
8, dz = ϑ22ϑ

2
4ϑ

2
10ϑ

2
6ϑ

2
9,

ut = ϑ21ϑ
2
3ϑ

2
8ϑ

2
6ϑ

2
9, u′t = −ϑ47ϑ29ϑ25ϑ210, dt = ϑ22ϑ

2
4ϑ

2
10ϑ

2
5ϑ

2
7. (4)

For the computation of v0 and v1, we have

` =−
(
ϑ212(z)ϑ7(z)2b2c2ϑ49 + ϑ211(z)ϑ29(z)a2d2ϑ47 + 2a2b2c2d2(xz + yt)

+
(
x2 + y2 + z2 + t2 − F (xt+ yz)−G(xz + yt)−H(xy + zt)

) a2c2 + b2d2

E

)
,

v0 =

√
` · ϑ28ϑ

4
3ϑ

4
1ϑ

2
14(z)

(ϑ216(z)b2d2ϑ210)
3
,

v1 =
u30 − u20(u21 + u1 + (u1 + 1)(λ+ µ+ ν) + λµ+ νλ+ νµ) + u0λµν + u1v

2
0

2v0u0
, (5)

where the λ, µ and ν are the particular choice of Rosenhain invariants corresponding to CRos

in (3). The six Theta constants ϑ2i with i = 5, . . . , 10 and the six Theta functions ϑ2j (z) with
j ∈ {7, 9, 11, 12, 14, 16} are all exactly as in [28, §7.3-7.4].

5.4 Twist Security

There is an additional security consideration when working on the Kummer surface because
a random point on K can map to either the curve CRos

∼= C or its twist C ′Ros
∼= C ′ [28, §5.2].

As long as the public generator P ∈ K is chosen so that it maps back to Jac(CRos), then
any honest party participating in a Diffie-Hellman style protocol computes with multiples of
P that also map back to Jac(CRos). However, an attacker could feed a party another point
P ′ ∈ K that (unbeknownst to the party) maps back to C ′Ros, and on return of [s]P ′, attack
the discrete logarithm problem on the twist instead. It is undesirable to include a check of
which curve the Kummer points map to, because the maps above are overly involved. The
best solution is to compute curves where both Jac(C) and Jac(C ′) have large prime order
subgroups. The ideal situation is to have Jac(C) = 16 · r and Jac(C ′) = 16 · r′, where r and r′

are large primes (or almost primes) of the same size. Such curves and their associated Kummer
surfaces are called twist-secure [33, 32].

Fast Cryptography in Genus 2 (Two is Greater than One) 13

5.5 Curves and their Kummers

Our implementations use two different Kummer surfaces defined over the prime fields with
p = 2127 − 1 and p = 2128 − 34827. In the case of p = 2127 − 1, we use the twist-secure curve
found by Gaudry and Schost [33]. For the prime p = 2128 − 34827, we used the CM method
to generate a twist-secure genus 2 curve.

Kummer Surface over p = 2127−1. Gaudry and Schost [33] label the curve as C11,−22,−19,−3,
since the squared fundamental Theta constants are (a2, b2, c2, d2) = (11,−22,−19,−3). A cor-
responding degree 5 isomorphic Rosenhain model is given by the constants

λ = 28356863910078205288614550619314017618, µ = 154040945529144206406682019582013187910,
ν = 113206060534360680770189432771018826227.

The group orders of Jac(C) ∼= Jac(CRos) and Jac(C ′) ∼= Jac(C ′Ros) are given by 24 ·r and 24 ·r′
respectively, where

r = 1809251394333065553414675955050290598923508843635941313077767297801179626051,
r′ = 1809251394333065553571917326471206521441306174399683558571672623546356726339,

which are 250- and 251-bit primes respectively. The corresponding Kummer surface K is
parameterized by

E′ = 37299146226279590906389874065895056737, F = 145242473685766417331928186098925456110,
G = 81667768061025231231209905783624370749, H = 54058235547640725801037772083642107170.

Since the curve is twist-secure, we are free to choose any generator, for example the generator
P = (Px : Py : Pz : Pt) = [2](1 : 1 : 1 : 78525529738642755703105688163803666634)

has order r on K. The identity element is O = (a2 : b2 : c2 : d2) ∈ K.

Kummer Surface over p = 2128−34827. For this prime we found a twist-secure Kummer
surface with CM by the quartic field K = Q[x]/(x4+25x+155) which has class number 4 [42].
One choice of the Rosenhain model is given by the constants

λ = 4577873896448729347807790734465324421, µ = 234789861994364729479821884660190521407,
ν = 174333573523192164016359058694895260480.

The group orders of Jac(C) ∼= Jac(CRos) and Jac(C ′) ∼= Jac(C ′Ros) are given by 24 ·r and 24 ·r′
respectively, where

r = 7237005577332262213873777499831869959603008537304907265194947995580039622121,
r′ = 7237005577332262214072595626254115559239653709785542361513021741721255316601,

which are 252- and 253-bit primes respectively. One choice of the squared fundamentals cor-
responding to the above Rosenhain triple is

a2 = 201243713144713214956272800789965999200, b2 = 14683676287690243626376147504319634360,
c2 = 337904041799211257424383908244663970063, d2 = 1.

The corresponding Kummer surface K is parameterized by
E′ = 253880210280671006989033320516440357350, F = 159016999959358912503454506705451672908,
G = 7299826301158047577381442639475232907, H = 13793062916001283675618873430828756806.

A generator on K with order r that maps back to Jac(CRos) is P = (Px : Py : Pz : Pt) where
Px = 1, Py = 295122894880835761537997219301486683608,

Pz = 116829357115721232420761146513526735912 and Pt = 99251552912154476320478841520348830750.

The identity element O = (a2 : b2 : c2 : d2) ∈ K.

14 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

5.6 Implementation Details and Side-channel Resistance

From Algorithm 7 it is clear that for every bit in the scalar, except the first one, the combined
double and pseudo-addition routine (Algorithm 6) is called. The main branch, i.e. checking
if the bit is set (or not), can be converted into straight-line code by masking the in- and
output appropriately. In this case, since no lookup tables are used, the algorithm and runtime
become independent of the input. The only input-dependent value is the scalar n whose bit-
size can differ, meaning that the total runtime could potentially leak the value of the most
significant bits. In order to make the implementation run in constant time, we can either
increase the scalar via addition of the subgroup order, or we can artificially increase the
running time by computing on dummy values such that the computation of K(DBLADD) occurs
exactly dlog2(r)e − 1 times after calling K(DBL) once only.

We note that we incur a cost of 16m+ 9s+ 32a each time K(DBLADD) is called, where 6 of
the multiplications are by surface constants. For the curve over p = 2127− 1 found by Gaudry
and Schost (see Section 5.5), the 6 surface constants are y0 = −1/2, z0 = −11/19, t0 = −11/3,
y′0 = −3, z′0 = −33/17 and t′0 = −33/49, where it is immediately clear that the multiplications
by y0 and y′0 are less expensive than full Fp multiplications. As we mentioned in Section 5.1,
the projective nature of K allows us to simultaneously multiply the coordinates of any point on
K by a constant factor. From Algorithm 6, we can see that this also permits us to rescale either
set of the surface constants, i.e. we are free to scale those appearing on Line 2 (y0, z0 and t0)
and/or those appearing on Line 8 (y′0, z′0 and t′0) of Algorithm 6 by any non-zero factor in Fp.
To determine the best scaling of the surface constants, we must first note that the expressions
in (2) were already scaled so that two original constants x0 and x′0 both became 1 (and were
thus omitted), meaning that any scaling must be simultaneously applied to the four constants
x0, y0, z0, and t0 or the four constants x′0, y′0, z′0, and t′0. As it stands, multiplications by
z0 = −11/19 and t0 = −11/3 are treated as full multiplications in Fp, so suppose we clear the
denominators of this first set of constants to instead take (x0, y0, z0, t0) = (−114, 57, 66, 418).
In this case all four of the multiplications are now by “single-word” constants, which are
naturally faster than full Fp multiplications where both operands occupy two machine words.
In our implementations however, we found that the code ran faster when the constants were
essentially left unchanged, save for the scaling of (x0, y0, z0, t0) = (1,−1/2,−11/19,−11/3) to
(x0, y0, z0, t0) = (2,−1,−22/19,−22/3), where the multiplication by 2 is slightly faster than
the division by 2. We optimized all of the obvious combinations of scalings at the assembly
level, such as clearing the smallest denominator only, but this always destroyed one of the
constants being 1, which was not made up for by the benefit of reducing two-word constants
into one-word constants.

6 GLV in Genus-2

The Gallant-Lambert-Vanstone (GLV) method [25] significantly speeds up scalar multipli-
cation on algebraic curves that admit an efficiently computable endomorphism φ of degree
d > 1, by decomposing the scalar k into d “mini-scalars”, all of which have bit-lengths that
are approximately 1/d that of k. The d scalar multiplications corresponding to each of these
mini-scalars can then be computed as one multi-scalar multiplication of length ≈ log2 (k)/d,
which effectively reduces the number of required doublings by a factor of d.

Fast Cryptography in Genus 2 (Two is Greater than One) 15

6.1 Endomorphisms

In general, algebraic curves over prime fields do not come equipped with a useful endomorphism
φ, which means that we have to use special curves to take advantage of the GLV method. For
genus 1 elliptic curves, Gallant et al. suggested the curves y2 = x3 + b and y2 = x3 + ax,
which both allow a 2-dimensional decompositions over prime fields. On the other hand, the
genus 2 analogues of these curves, Buhler-Koblitz (BK) curves of the form y2 = x5+b [15] and
Furukawa-Kawazoe-Takahashi (FKT) curves of the form y2 = x5 + ax [23], have φ’s whose
minimal polynomials are of degree 4, which means that we can achieve 4-dimensional scalar
decompositions on genus 2 curves over prime fields. Besides the two families above that offer 4-
dimensional GLV decompositions, families of genus 2 curves with RM facilitate 2-dimensional
scalar decompositions [43, 32]. To give an idea of the expected performance in such scenarios,
we also present timings for a 2-dimensional GLV decomposition on FKT curves.

Dimension-4 GLV on BK Curves. To achieve a 4-dimensional GLV on curves of the form
C : y2 = x5 + b, we require p ≡ 1 (mod 10), so that the non-trivial fifth roots of unity are
in Fp. Buhler and Koblitz showed how we can compute the group order of Jac(C) efficiently
in this scenario [15] (also see [23, §6]), and we note that Jacobians of these curves can have
prime order. Take any ξ5 6= 1 such that 1 = ξ55 ∈ Fp and observe that if (x, y) ∈ C, then
(ξ5x, y) ∈ C. This induces an endomorphism φ on the Jacobian that is defined on full degree
elements as φ : (u1, u0, v1, v0) 7→ (ξ5u1, ξ

2
5u0, ξ

4
5v1, v0), which costs only 3 multiplications in Fp

because the ξji are all precomputed. The minimal polynomial of φ is T 4 +T 3 +T 2 +T +1 = 0.

Dimension-4 GLV on FKT Curves. Curves of the form C : y2 = x5 + ax need to be
defined over fields of characteristic p ≡ 1 (mod 8), so that the eighth roots of unity are all
found in Fp. Computing the cardinality of Jac(C) in this scenario is also efficient [23]. Since
the point (x, y) = (0, 0) ∈ C induces a point of order 2 on Jac(C), the best we can do is to
find a curve whose Jacobian is of order two times a prime. Let ξ8 6= 1 be a primitive eighth
root of unity in Fp, and observe that if (x, y) ∈ C, then (ξ28x, ξ8y). The induced endomorphism
on full degree Jacobian elements is φ : (u1, u0, v1, v0) 7→ (ξ28u1, ξ

4
8u0, ξ

7
8v1, ξ8v0), which costs 4

multiplications in Fp and which satisfies the minimal polynomial T 4 + 1 = 0.

Dimension-2 GLV on FKT Curves. The reason we chose FKT curves for the 2-dimensional
example is because we can take the endomorphism φ2 : (u1, u0, v1, v0) 7→ (ξ48u1, u0, ξ

6
8v1, ξ

2
8v0),

which has minimal polynomial T 2 + 1 = 0. For the Buhler-Koblitz curves, we can still get
a 2-dimensional decomposition by defining φ : (x, y) 7→ ((ξ5 + ξ−15)x, y) on C and extending
Z-linearly to general divisors under the canonical embedding of C in Jac(C). In this case φ
satisfies the minimal polynomial T 2 + T − 1 on Jac(C).

6.2 Curves

We searched for BK and FKT curves over prime fields Fp for 127-bit primes that are suited to
Montgomery style reduction and for 128-bit primes that are suited to the NIST-style modular
reduction. There are only a few isomorphism classes for both types of curves over any particular
prime field, so we had to search numerous primes before we found cryptographically suitable
curves. Since the definitions of both prime forms encompass a vast number of primes, we were
able to find a field (in both cases) that simultaneously gave a prime order BK and an FKT
curve with an optimal cofactor of 2.

16 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Table 1. Statistics for 1,000,000 scalar decompositions in each of the GLV scenarios. Each row reports a
different scenario and the columns across a row show the percentage frequency corresponding to decompositions
with a maximum “mini-scalar” length. The final column accounts for all decompositions whose maximum “mini-
scalar” length were below a particular bound.

curve/prime- r max{|k`|} (bits) / freq. (%)
GLV dimension (bits)
CBK/Fp127m - 4 254 64/21.0401 63/ 59.2356 62/18.1809 61/14.456 60/0.0928 ≤ 59/0.0050
CFKT/Fp127m - 4 253 63/1.0009 62/60.2852 61/35.6103 60/2.9155 59/0.1773 ≤ 58/0.0108
CFKT/Fp127m - 2 253 126/50.0546 125/37.3918 124/9.3992 123/2.3752 122/0.5803 ≤ 121/0.1989
CBK/Fp128n - 4 256 65/0.0006 64/37.5937 63/56.1647 62/5.8495 61/0.3660 ≤ 60/0.0255
CFKT/Fp128n - 4 255 64/23.3766 63/64.2568 62/11.6045 61/0.7160 60/0.0433 ≤ 59/0.0028
CFKT/Fp128n - 2 255 127/50.0756 126/37.4652 125/9.3466 124/2.3331 123/0.5841 ≤ 122/0.1954

GLV Curves Over a 127-bit Prime Field. Let p127m = (263 − 27443) · 264 + 1. This
is a Montgomery-friendly prime (see Section 3.2) where µ = −p−1127m mod 264 = −1. The
Jacobians of the curves CBK/Fp127m : y2 = x5 + 17 and CFKT/Fp127m : y2 = x5 + 17x have
orders #Jac(CBK) = r and #Jac(CFKT) = 2 · r′, where

r = 28948022309328876595115567994214488524823328209723866335483563634241778912751,

r′ = 14474011154664438299023932553432254007696198466166455661883334092795880233441

are 254- and 253-bit primes respectively.

GLV Curves Over a 128-bit Prime Field. Let p128n = 2128−24935. The Jacobians of the
curves CBK/Fp128n : y2 = x5+37 and CFKT/Fp128n : y2 = x5+37x have orders #Jac(CBK) = r
and #Jac(CFKT) = 2 · r′ respectively, where

r = 115792089237316195401210495125503591471546519982099914586091636775415022457661,

r′ = 57896044618658097706542424143127279595817201688638085882569066869306899160801.

are 256- and 255-bit primes respectively.

6.3 Scalar Decomposition via Division

At Eurocrypt 2002, Park, Jeong and Lim [56] gave an algorithm for performing GLV decompo-
sition via division in the ring Z[φ] generated by φ. This algorithm is very simple and effective
in decomposing the scalar k quickly: in the 4-dimensional cases (BK and FKT) it takes 20
multiplications to fully decompose k, and in the 2-dimensional case the decomposition totals
just 6 multiplications. For the curves we used, this algorithm performed slightly better on av-
erage than the (conservative) numbers quoted in [56, Table 4]. Table 1 gives the statistics from
1, 000, 000 decompositions of random scalars in [0, r) in each scenario. Each of the columns
report the percentage frequency at which k decomposed into vectors with the given maximal
bit length. For example, consider the top row which reports the statistics corresponding to
4-dimensional decompositions on Buhler-Koblitz curves with r being 254 bits. The first col-
umn indicates that around 21% of scalars decomposed to 4 mini-scalars where the maximum
bit length was 64, whilst the second column reports that around 59% of scalars decomposed
to 4 mini-scalars {k1, k2, k3, k4} where the maximum bit length was 63. The most common
maximum length and its percentage frequency are shown in bold for each scenario.

Fast Cryptography in Genus 2 (Two is Greater than One) 17

6.4 Computing the Scalar Multiplication

We describe two approaches to implement the scalar multiplication. The d-dimensional de-
composition of the scalar k results in d smaller scalars k`, for 0 ≤ ` < d. The first approach
precomputes the 2d different points Li =

∑d−1
`=0

(⌊
i
2`

⌋
mod 2

)
· P` for 0 ≤ i < 2d and stores

them in a lookup table. When processing the jth bit of the scalar, the precomputed multiple
Li is added, for i =

∑d−1
`=0 2`

(⌊
k`
2j

⌋
mod 2

)
. Hence, besides the minor bit-fiddling overhead to

construct the lookup table index, this requires computing at most a single curve addition and
a single curve doubling per bit of the maximum of the k`’s. The second approach [24] is very
similar to using signed windows for a single scalar (see Section 2.3). We start by precomputing
the multiples L`(c) = [c]P` for d different tables: one corresponding to each scalar k`. When
computing the scalar multiplication, the jth part (of width w bits) in the scalar k` determines
which point needs to be added (or subtracted), namely

∑d−1
`=0 ±L`

(⌊
k`
2wj

⌋
mod 2w

)
, where the

addition or subtraction depends on the addition-subtraction chain used. Thus, an addition to
the running value has to be made only once every w bits and combining the lookup table
values takes at most d−1 additions, so one needs at most d additions per w bits. The optimal
value for w depends on the dimension d, the bit-size of k` and the cost of (mixed) additions
and doublings. There are multiple ways to save computations in this latter approach. After
computing the multiples in the first lookup table L0, the values for the d− 1 other tables can
be computed by applying the map φ to the individual point in the lookup table [24]. Since the
computation of the map φ only takes three or four multiplications (depending on the curve
used), this is a significant saving compared to computing the group operation which is an
order of magnitude slower. Furthermore, since the endomorphism costs the same in affine or
projective space, one can convert the points in L0 to affine coordinates using Montgomery’s
simultaneous inversion method (see Section 2.3), and obtain all of the affine points in the
other lookup tables very efficiently through the application of φ. This means the faster mixed
addition formulas can be applied when adding any element in a lookup table. In our imple-
mentations, the first approach is faster in the 4-dimensional case and the second approach is
faster in the 2-dimensional case.

7 Results and Discussion

In Section 7.1 we discuss our code and the benchmarking environment we used. We present
the main results in Section 7.2 and discuss them further in Section 7.3. In Section 7.4 we
report timings in the case of key-pair generation, i.e. when a fixed public generator allows for
precomputation before the scalar is known.

7.1 Benchmark Setting and Code

All of the implementations in Table 2 were run on an Intel Core i7-3520M (Ivy Bridge)
processor at 2893.484 MHz with hyperthreading turned off and over-clocking (“turbo boost”)
disabled. The implementations labeled (a) use the Montgomery-friendly primes. They have
been compiled using Microsoft Visual Studio 2012 and run on 64-bit Windows, where the
timings are obtained using the time stamp counter instruction rdtsc over several thousand
scalar multiplications. The implementations labeled (b) use the NIST-like approach and have
been compiled with gcc 4.6.3 to run on 64-bit Linux, where the timings are obtained using

18 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Table 2. Performance timings in 103 cycles of various programs calculating a dlog2(r)e-bit scalar multiplication,
using genus g arithmetic. The curve characteristics, such as the prime p, the cardinality r, the size of the
automorphism group #Aut, and the security level s = log2(

√
πr

2#Aut), are stated as well. Here p1 = 2256 −
2224 + 2192 + 296 + 1 and p2 = 264 · (263 − 27443) + 1. If an implementation runs in constant-time (CT), we
indicate this with ‘X’, if not with ‘5’, and if unknown with ‘?’.

Primitive g CT field char p dlog2(r)e #Aut s 103 cycles

curve25519 [4, 8] 1 X 2255 − 19 253 2 125.8 182
ecfp256e [36] 1 5 2256 − 587 255 2 126.8 227
2-GLV [47] 1 5 2256 − 11733 256 6 127.0 145
surf127eps [34] 2 X 2127 − 735 251 2 124.8 236
NISTp-224 [67, 38] 1 X 2224 − 296 + 1 224 2 111.8 302
NISTp-256 [67] 1 ? 2256 − 2224 + 2192 + 296 − 1 256 2 127.8 658

(a) generic127 2 5 2127 − 1 254 2 126.8 295
(b) generic127 2 5 2127 − 1 254 2 126.8 248
(b) generic128 2 5 2128 − 173 257 2 127.8 364
(a) Kummer 2 X 2127 − 1 251 2 124.8 139
(b) Kummer 2 X 2127 − 1 251 2 124.8 122
(b) Kummer 2 X 2128 − 237 253 2 125.8 174
(a) GLV-4-BK 2 5 264 · (263 − 27443) + 1 254 10 125.7 156
(a) GLV-4-FKT 2 5 264 · (263 − 27443) + 1 253 8 125.3 156
(a) GLV-2-FKT 2 5 264 · (263 − 27443) + 1 253 8 125.3 220
(b) GLV-4-BK 2 5 2128 − 24935 256 10 126.7 164
(b) GLV-4-FKT 2 5 2128 − 24935 255 8 126.3 167
(b) GLV-2-FKT 2 5 2128 − 24935 255 8 126.3 261

the SUPERCOP toolkit for measuring the performance of cryptographic software (see [10]).
The implementations labeled (b) are made publicly available through [10]. Both (a) and (b)
perform a final modular inversion to ensure that the output point is in affine form: this is the
standard setting when computing a Diffie-Hellman key-exchange.

7.2 Results

Table 2 summarizes the performance and characteristics of various genus g curve implemen-
tations. For the security estimate we assume that the fastest attacks possible are the “generic
algorithms”, where we specifically use the complexity of the Pollard rho [58] algorithm that
exploits additional automorphisms [20, 71]. If r is the largest prime factor of a group with
#Aut automorphisms, we compute the security level s as s = log2(

√
πr

2#Aut). We also indicate
if the implementation runs in constant time, an important step towards achieving side channel
resistance [41].

The implementations in the top part of the table are obtained from eBACS, except for [67]
and [47]. The standardized NIST curves [67], one of which is at a lower security level, are
both obtained from the benchmark program included in OpenSSL 1.0.1.6 The implementation
from [47] is not publicly available, but the authors gave us a precompiled binary which reported
its own cycle count so that we could report numbers obtained in our test-environment. All of
these implementations were run on our hardware.

6 Note that to enable this implementation using the techniques described in [38], OpenSSL needs to be
configured using “./Configure enable-ec_nistp_64_gcc_128”.

Fast Cryptography in Genus 2 (Two is Greater than One) 19

7.3 Discussion

The first thing to observe from Table 2 is that the standard NISTp-256 curve and the genus 2
curve “generic128” (see Section 4) offer the highest level of security. This “generic” genus 2
implementation is our slowest performing implementation, yet is it still 1.80 times faster than
the NIST curve at the same security level. Interestingly, all our Kummer and 4-dimensional
GLV implementations manage to outperform the previous fastest genus 2 implementation [34].
Prior to this work, the fastest curve arithmetic reported on eBACS was due to Bernstein [4],
whilst Longa and Sica [47] held the overall software speed record over prime fields. We note
that the former implementation runs in constant time, while the latter does not. Even though
our GLV implementations do not currently run in constant time, we note that they can
be transformed into constant time implementations following, for instance, the techniques
from [47]. Our approach (b) on the Kummer surface sets a new software speed record by
breaking the 125k cycle barrier for constant time implementations at the 128-bit security
level.

We note that Table 2 reports implementations over prime fields only. For elliptic curves de-
fined over quadratic extensions of large prime fields, Longa and Sica [47] report a non-constant
time scalar multiplication in 91,000 cycles on the Sandy Bridge architecture, while their con-
stant time version runs in 137,000 cycles. Over binary fields, Aranha et al. [3] perform a scalar
multiplication on the Koblitz curve K-283 in 99,000 cycles on Sandy Bridge, while Oliveira et
al. [55] recently announced a new speed record of 75,000 cycles on the same architecture. We
note that both of these binary field implementations do not run in constant time.

With respect to the different arithmetic approaches from Section 3, we conclude that
when using the prime 2127 − 1, the NIST-like approach is the way to go. In the more general
comparison of 2128 − c1 versus 264 · (263 − c2) ± 1 for NIST-like and Montgomery-friendly
primes respectively, we found that the Montgomery-friendly primes outperform the former
in practice. This was a surprising outcome and we hope that implementers of cryptographic
schemes will consider this family of primes as well. The implementations (b) of “generic” and
Kummer surface arithmetic highlight the practical advantage of the prime 2127 − 1 over the
prime 2128 − c1: in both instances the former is around 1.4 times faster than the latter.

7.4 Generating key-pairs with precomputation

Two cycle counts are reported for all of the implementations of Diffie-Hellman secret sharing
benchmarked on eBACS [10]. The first is the “time to compute a shared secret”, which corre-
sponds to the variable point scalar multiplications that we reported in Table 2. The second
is the “time to generate a key pair", which corresponds to fixed-point scalar multiplications
that allow precomputations on a known public generator. Our timings for the second case are
reported in Table 3, where our fixed-point scalar multiplications employ the fixed-point comb
method [46] and simultaneous addition technique [45]. In both settings precomputed tables
larger than 512 KB did not lower the cycle count. This is due to the size of the cache on our
Intel Core i7, but this threshold size might be different on other platforms. We note that this
technique (and the performance numbers in Table 3) only applies to the generic and GLV
curves, and that precomputation will not give rise to such drastic speedupss in the case of the
Kummer surface implementations.

20 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Table 3. Performance timings in 103 cycles of y2 = f(x),deg(f) = 5 with NIST-like reduction and precom-
putation.

field char storage (KB) 103 cycles field char storage (KB) 103 cycles

2127 − 1

64 53

2128 − c

64 81
128 42 128 62
256 36 256 53
512 33 512 49
1024 33 1024 49
2048 33 2048 49

8 Kummer Chameleons

In this section we explore curves that facilitate both efficient scalar multiplications on the
Kummer surface and efficient scalar multiplications on the Jacobian using a GLV decompo-
sition. Such curves give cryptographers the option of taking either route depending on the
protocol at hand: for Diffie-Hellman protocols, working on the associated Kummer surface is
the most efficient option, but if the pseudo-addition law on the Kummer surface is insufficient,
the GLV method can be used on an associated curve. Since these curves can morph depending
on the scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate 4-dimensional GLV decompositions.
We start with the FKT family of curves to show an unfortunate drawback which prohibits
us from using this Kummer/GLV duality over prime fields. We then move to the BK fam-
ily of curves which does allow this duality in practice, and provide some example Kummer
chameleons in this case. For these special families, we also show the benefits of computing the
Kummer surface parameters analytically (i.e. over C). This approach tells us when we can
(or cannot) expect to find practical Kummer parameters using the technique of extracting
K from CRos in Section 5.2. It can additionally reveal when we are likely to find small sur-
face constants, which guarantees solid speedups in practice. For an overview of computations
involving the analytic Jacobian of a hyperelliptic curve, we refer to [69].

8.1 Recognising Kummer Parameters over C

We use an analytic approach to assist us in generating Kummer surfaces which are associated
to a particular CM field. For each CM field, there is a collection of period matrices which
correspond to the isomorphism classes of Jacobians of genus 2 curves with CM by that field,
and thus with known possible group orders (see [69]). The theta functions can be evaluated
at these period matrices, and approximations of the complex values of the associated theta
constants can be used to recognize the minimal polynomials that they satisfy.

Although it can be difficult to analytically recognize the theta constants themselves, for
special families it is often possible to recognize quotients of certain theta constants. In Tables 4
and 6 we give the minimal polynomials satisfied by all of the parameters required for the
Kummer surface implementation for the FKT and BK families: the values E′, F , G, H, y0, z0,
t0, y′0, z′0 and t′0 (as defined in Section 5). The coefficients of these minimal polynomials can
be reduced modulo any prime p, and so for any p for which the polynomials have a consistent
choice of roots modulo p, they can be used to define a Kummer surface over Fp such that the
associated group order of Jac(C) is known (from the CM field).

Fast Cryptography in Genus 2 (Two is Greater than One) 21

Table 4. Kummer parameters (and their minimal polynomials) over C for the FKT family.

Kummer parameter E F , G, H y0, t0 z0 y′0, t′0 z′0

Value (over C) 17 + 31i (3 + i)/2 1 1− i 3 + 4i −3− 4i

Min. polynomial x2 − 34x+ 1250 2x2 − 6x+ 5 x− 1 x2 − 2x+ 2 x2 − 6x+ 25 x2 + 6x+ 25

8.2 The Kummer Surface of FKT Curves

For curves of the form y2 = x5 + ax, the complex values (and corresponding minimal poly-
nomials) of the required Kummer parameters are given in Table 4. We note that once we
choose i =

√
−1 by sufficiently extending Fp (if necessary), all of the required constants are

determined. Observe that two of the six surface constants that appear in each iteration of
K(SMUL) (of Algorithm 6) are 1, which immediately results in two fewer multiplications.

We further note that it is possible to recognize quotients of theta constants that appear
in the maps from K to Jac(CRos) in (4). In the case of FKT curves, Table 5 gives the values
of all the quotients we need, which allows us to simplify the expressions in the map to the
u-polynomial of a divisor D ∈ Jac(CRos) as

u0 =
(2− 2i)x− (1 + i)y + 2iz + 2it

(i− 1)x− (2 + 2i)y + 2z + 2t
, u1 =

(2 + 2i)x− 2y − 2z + (1− i)t
(i− 1)x− (2 + 2i)y + 2z + 2t

− u0 − 1.

Although the expressions for the v-polynomial expand to be more complicated, leaving them
in factored form allows similar simplifications. The above maps take points on the Kummer
surface points on K to divisors on Jac(CRos) or Jac(C ′Ros), where CRos : y2 = x(x−1)(x−λ)(x−
µ)(x− ν), and for which we can also recognize the Rosenhain invariants in C as λ = (i+ 1)/2,
µ = i and ν = i + 1. Now, to reduce these values modulo p, we note that if p ≡ 1 (mod 4),
then i =

√
−1 ∈ Fp and the Rosenhain model defined by those values is defined over Fp. The

curve C : y2 = x5 + ax can be rewritten as y2 = x(x− α)(x+ α)(x− αi)(x+ αi), where α is
a non-trivial fourth root of −a. Clearly C and CRos can only be isomorphic over Fp if α ∈ Fp,
which implies that Jac(C) is isogenous over Fp to the product of two elliptic curves [23, Lemma
4]. Thus C is not suitable for cryptographic applications in this case, since the group order of
Jac(C) is a product of factors of at most half the size of the total. If instead p ≡ 3 (mod 4),
then i ∈ Fp2\Fp, and from Table 4 it follows that the Kummer surface is defined over Fp2 ,
which destroys the arithmetic efficiency of the group law algorithms. Therefore, we conclude
that the FKT family does not yield a secure and efficient Kummer surface over prime fields.

8.3 The Kummer Surface of BK Curves

For curves of the form y2 = x5 + b, the minimal polynomials for the required Kummer pa-
rameters are given in Table 6. Since these polynomials have degree larger than two, writing

Table 5. Quotients appearing in the maps from K to the u-polynomial of D ∈ Jac(CRos) for FKT curves.

ux/ut uy/ut uz/ut u′x/u
′
t u′y/u

′
t u′z/u

′
t dx/dt dy/dt dz/dt ut/dt u′t/dt

−1− i i− 1

2
1 2i −1− i −1− i i− 1

2
−1− i 1 i

1− i
2

22 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

Table 6. Kummer parameters (and their minimal polynomials) over C for the Buhler-Koblitz family.

Kummer parameter Minimal polynomial

E, F , G, H x2 − 20x− 400, x8 − 11x6 + 46x4 − 96x2 + 121, x8 − 11x6 + 46x4 − 96x2 + 121, x2 + x− 1

y0, z0 x4 − x3 + x2 − x+ 1, x8 − 4x6 + 6x4 + x2 + 1

t0, y′0 x8 − x6 + x4 − x2 + 1, x4 − 16x3 + 46x2 − 16x+ 1

z′0, t′0 25x8 − 100x7 + 460x6 + 580x5 + 286x4 + 36x3 − 4x2 − 4x+ 1

down the correct root corresponding to each Kummer parameter becomes more involved.
Furthermore, these polynomials tell us that we can not expect any Kummer constants to au-
tomatically be small. Nevertheless, they do help us deduce when it is possible to find practical
Kummer parameters. For example, t0 is a root of Φ5(−x2), which does not have any roots in
Fp when p ≡ 11 (mod 20), yet splits into linear factors when p ≡ 1 (mod 20). In fact, all of
the polynomials in Table 6 split into linear factors in Fp for p ≡ 1 (mod 20); this agrees with
our experiments which always extracted working Kummer parameters for BK curves when
p ≡ 1 (mod 20), and always failed to do so when p ≡ 11 (mod 20).

The only minor drawback for the Kummer surface associated to the BK family is that, for
primes congruent to 1 modulo 5, if the 2-torsion of Jac(C) or Jac(C ′) is defined over Fp, then
5 divides at least one of the two group orders. Hence, even in the best case the two group
orders have cofactors of 16 and 80, which means either the curve or its twist will be around
1 bit less secure than the other. In this case, generators on the Kummer surface should be
chosen which map back to the curve with cofactor 16. We give two examples of these Kummer
chameleons below.

BK Kummer Chameleon over a 127-bit Prime Field. Let p = 264 · (263−1035383) + 1,
and let C/Fp : y2 = x5 + 75, the quadratic twist C ′ of which can be written as C ′ : y2 =
7(x5 + 75). The group orders are #Jac(C) = 24 · r and #Jac(C ′) = 24 · 5 · r′, where

r = 1809251394332659353210044721779965716777199535768060758956615770711891100371,

r′ = 361850278866531870644657474375793908062332565172509431488359127778261331091,

are 250- and 248-bit primes respectively. A degree 5 Rosenhain model CRos isomorphic to C
is given by the constants

λ = 10661186819665911293108276192639592333, µ = 41446607883878104474654728233964584014,
ν = 127213099918419761245342755241553487702,

for which one choice of the squared fundamental theta constants is

a2 = 84491026685045794598730782355659170339, b2 = 33186841131699432035082366865570982234,
c2 = 85766492034541656770688027007588903688, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 13918006086331812549080199159745305770, F = 18762584066480003760134595205485259983,
G = 137599581973583773482954213814600348679, H = 85766492034541656770688027007588903688.

A generator on K with order r that maps back to Jac(CRos) is

P = [2](1, 1, 1, 86011366689699880330600293725419043935).

Fast Cryptography in Genus 2 (Two is Greater than One) 23

BK Kummer Chameleon over a 128-bit Prime Field. Let p = 2128−12091815, and let
C/Fp : y2 = x5+175, the quadratic twist C ′ of which can be written as C ′ : y2 = 17(x5+175).
The group orders are #Jac(C) = 24 · r and #Jac(C ′) = 24 · 5 · r′, where

r = 7237005577332262215080031836658877787354274212851606663878680202836635096291,

r′ = 1447401115466452442573268257885216407322324444568217420589854251119792109811,

are 253- and 250-bit primes respectively. A degree 5 Rosenhain model CRos isomorphic to C
is given by the constants

λ = 69750747073243793503741945404989703593, µ = 150179622307743074988869416441414313355,
ν = 227997816177602308074873451087733623676,

for which one choice of the squared fundamental theta constants is

a2 = 311378520185987879249636451466710084857, b2 = 194692299483499628396825108659644530161,
c2 = 77818193869859233086004034646319310321, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 195234409713430807866582263199361727876, F = 142475655262409749610168226227930172175,
G = 25789434559921498757356883420864617479, H = 77818193869859233086004034646319310321.

A generator on K with order r that maps back to Jac(CRos) is

P = [2](1, 1,−1, 330547215562037048968388688956419952626).

8.4 Kummer Chameleons with 2-dimensional GLV

Although we have focused on two families of genus 2 curves that offer 4-dimensional GLV
over prime fields, there are many more families that offer 2-dimensional GLV [43, 64, 32]. We
especially mention the family due to Mestre [48], which was studied further in [32, §4.4]. This
family might be particularly attractive since the techniques in [32] make it practical to find
twist-secure instances over Fp with p = 2127− 1. Working analytically, we observed that small
Kummer constants are often obtained if we take special instances of the families with efficiently
computable RM. An example from the family due to Tautz, Tops and Verberkmoes [65] (also
see [43, §5.1]) is the Kummer surface associated to the curve y2 = x(x4 − x2 + 1), which
yields t0 = 1 over C, so the techniques in [32, §4.4] could be used (over many primes) to find
twist-secure curves that can take advantage of this.

8.5 GLV on the Kummer Surface?

Gaudry [29] observed that there is a certain class of Kummer surfaces that come equipped
with a simple endomorphism on the Kummer surface itself. If the squared fundamental theta
constants are related by b2 = a2−c2−d2, then the doubling step in Algorithm 5 can be seen as
a map φ : K → K composed with itself, which means φ2 = [2], and we must have that φ = [

√
2]

on K. It is natural to go looking for these Kummers within families of genus 2 curves that have
RM by

√
2, whether the RM is explicit and efficiently computable7 on the Jacobian or not.

One such instance comes from the curves defined over the rationals by van Wamelen [68], the
second example of which has CM by the quartic CM field Q(

√
−2 +

√
2). Over the two forms

of prime field we prefer, we used the CM method to find many instances of these curves, and
7 These terms are made precise in [32, Def. 1,2].

24 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

indeed we were always able to extract several Kummer parameterizations with b2 = a2−c2−d2:
two twist-secure examples of these are given at the end of this subsection. The question now
becomes: can we exploit this endomorphism and perform GLV on the Kummer surface itself?

Since we are limited to pseudo-additions on K, the standard GLV technique of merging the
mini-scalars and proceeding with a standard addition chain does not apply in this scenario.
In this case, to compute [k]P from P and φ(P), we need a two-dimensional differential-
addition chain. Such chains have already been well studied because of their application to
multi-exponentiations in Montgomery coordinates [52, 5, 63]: in the two-dimensional case this
means computing [m]P + [n]Q from the three starting values P , Q and P − Q. This brings
forward the main hurdle in achieving GLV on the Kummer surface, in that after computing
Q = φ(P), we only have two of the three values that are needed to start the addition chain.
In order to proceed we need either Q+ P or Q− P on K, which equivalently means we need
an explicit and efficient way of computing the map φ+ = φ+ [1] or the map φ− = φ− [1] on
K.

In estimating the performance gain that finding these maps would offer, we must mention
two caveats. Firstly, we note that since the input difference into the pseudo-addition algorithm
is no longer constant throughout the routine, we suffer an extra 6 Fp multiplications each
time it is called - the inverses that were precomputed are now projectively scaled to on-
the-fly multiplications. Furthermore, we are no longer performing additions and doublings
concurrently throughout, and we therefore lose the benefit of the constant overlap between
them. Nevertheless, using either of the chains given in [52, 5] would mean performing less
than half the total number of doubling and pseudo-addition operations than in the standard
Kummer case, and this is more than enough motivation to pose the problem of finding a
setting where φ+ and/or φ− are efficiently computable.

VanWamelen “[
√
2]-on-K” Curve over a 127-bit Prime Field. Let p be the Montgomery-

friendly prime p = 264 · (263 − 107125) + 1. The group orders of the Jacobian of C/Fp :
y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x + 1 and its twist C ′ are given as #Jac(C) = 25 · r and
#Jac(C ′) = 24 · r′, where

r = 904625697166511763040116799547618814004487139266761754879956154884593483799,

r′ = 1809251394333023526590934270642281340029094439228748499659037824507445397703,

are 249- and 250-bit primes respectively. An isomorphic Rosenhain model CRos of C is defined
by the triple

λ = 168171229223321177769186812485517969948, µ = 9417430203573952280833540215738464957,
ν = 158753799019747225488353272269779504992,

for which one choice of the squared fundamental theta constants is

a2 = 150321345934746312135040529601365675926, c2 = 96985692613693010230188339033665775936,

with d2 = 1 and b2 = a2− c2− d2. The corresponding Kummer surface K is parameterized by

E′ = 16, F = 112722080887356168648583571057476016874,
G = 39639675051441886978375755957603131604, H = 133526895531650151065292246583602218570.

A compact generator on K is

P = [2](1, 1,−1, 129889658466772916887665811107285236509).

Fast Cryptography in Genus 2 (Two is Greater than One) 25

Van Wamelen “[
√
2]-on-K” Curve over a 128-bit Prime Field. Let p be the prime p =

2128−6404735. The group orders of the Jacobian of C/Fp : y2 = −x5+3x4+2x3−6x2−3x+1
and its twist C ′ are given as #Jac(C) = 25 · r and #Jac(C ′) = 24 · r′, where

r = 3618502788666131107463347962322673561312709571881084013989949351691450367367,

r′ = 7237005577332262213019677201440096504580481109273330370637841367829704337687,

are both 252-bit primes. An isomorphic Rosenhain model CRos of C is defined by the triple

λ = 338853613323961976541294628448051393997, µ = 161826994076915014352261046382941880808,
ν = 177026619247046962189033582065109513190,

for which one choice of the squared fundamental theta constants is

a2 = 186055185429089423029499828889903742105, c2 = 293311051702477990348906969535446463740,

with d2 = 1 and b2 = a2− c2− d2. The corresponding Kummer surface K is parameterized by

E′ = 16, F = 308566990761521795503609453351512063008,
G = 308454362983698080867749557083716129230, H = 293367365591389847666836917669344430628.

A compact generator on K is

P = [2](1, 1,−1, 328931498180381025899390285257510062396).

9 Conclusions

We have given a taxonomy of the state-of-the-art in genus-2 arithmetic over prime fields, with
respect to its application in public-key cryptography. We studied two different approaches
to achieve fast modular arithmetic and implemented these techniques in three settings: on
“generic” genus-2 curves, on special genus-2 curves facilitating 2-and 4-dimensional GLV de-
compositions, and on the Kummer surface proposed by Gaudry [28]. Furthermore, we pre-
sented Kummer chameleons; curves which allow fast arithmetic on the Kummer surface as well
as efficient arithmetic on the Jacobian that results from a GLV decomposition. Ultimately, we
highlighted the practical benefits of genus-2 curves with our Kummer surface implementation -
this sets a new software speed record at the 128-bit security level for computing constant time
scalar multiplications compared to all previous elliptic curve and genus-2 implementations.

Acknowledgements. We wish to thank Pierrick Gaudry for his Kummer help when this
project began, Dan Bernstein and Tanja Lange for several fruitful discussions during the
preparation of this work, Patrick Longa for his advice on optimizing the GLV routines and
extensive comments on this work, Michael Naehrig for proofreading early versions of this
paper, and the anonymous Eurocrypt reviewers for their useful comments.

After the publication of this paper, the follow-up work in [7] pointed out that our on-
line Kummer implementation contained a mistake which might leak secret information to
side-channel adversaries. We updated the code accordingly8 and the subsequent performance
numbers are stated in Table 2. We would like to thank the authors of [7] for finding this
mistake.
8 http://hhisil.yasar.edu.tr/files/hisil20140312genus2.tar.gz

26 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

References

1. T. Acar and D. Shumow. Modular reduction without pre-computation for special moduli. Technical report,
Microsoft Research, 2010.

2. L. Adleman, J. DeMarrais, and M. Huang. A subexponential algorithm for discrete logarithms over
hyperelliptic curves of large genus over GF(q). Theoretical Computer Science, 226(1-2):7–18, 1999.

3. D. F. Aranha, A. Faz-Hernández, J. López, and F. Rodríguez-Henríquez. Faster implementation of scalar
multiplication on Koblitz curves. In A. Hevia and G. Neven, editors, LATINCRYPT, volume 7533 of
Lecture Notes in Computer Science, pages 177–193. Springer, 2012.

4. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer
Science, pages 207–228. Springer, Heidelberg, 2006.

5. D. J. Bernstein. Differential addition chains. URL: http://cr.yp.to/ecdh/diffchain-20060219.pdf,
February 2006.

6. D. J. Bernstein. Elliptic vs. Hyperelliptic, part I. Talk at ECC (slides at http://cr.yp.to/talks/2006.
09.20/slides.pdf), September 2006.

7. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: new DH speed
records. Cryptology ePrint Archive, Report 2014/134, 2014. http://eprint.iacr.org/.

8. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures.
In B. Preneel and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages
124–142. Springer, 2011.

9. D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-scalar multiplication. In
G. L. Mullen, D. Panario, and I. E. Shparlinski, editors, Finite Fields and Applications, volume 461 of
Contemporary Mathematics Series, pages 1–19. American Mathematical Society, 2008.

10. D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to, accessed 4 October 2012.

11. J. W. Bos. High-performance modular multiplication on the Cell processor. In M. A. Hasan and T. Helle-
seth, editors, Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of Lecture Notes in Computer
Science, pages 7–24. Springer, Heidelberg, 2010.

12. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Solving a 112-bit prime
elliptic curve discrete logarithm problem on game consoles using sloppy reduction. International Journal
of Applied Cryptography, 2(3):212–228, 2012.

13. A. Brauer. On addition chains. Bulletin of the American Mathematical Society, 45:736–739, 1939.
14. M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementation of the NIST elliptic curves

over prime fields. In D. Naccache, editor, CT-RSA, volume 2020 of Lecture Notes in Computer Science,
pages 250–265. Springer, Heidelberg, 2001.

15. J. Buhler and N. Koblitz. Lattice basis reduction, Jacobi sums and hyperelliptic cryptosystems. Bulletin
of the Australian Mathematical Society, 58(1):147–154, 1998.

16. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by addition in formal groups
and new primality and factorization tests. Advances in Applied Mathematics, 7:385–434, December 1986.

17. R. Cosset. Factorization with genus 2 curves. Math. Comput., 79(270):1191–1208, 2010.
18. C. Costello and K. Lauter. Group law computations on Jacobians of hyperelliptic curves. In A. Miri and

S. Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science,
pages 92–117. Springer, 2011.

19. C. Diem. On the discrete logarithm problem in class groups of curves. Mathematics of Computation,
80:443–475, 2011.

20. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation on curves with
automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing, editors, Asiacrypt 1999, volume 1716 of Lecture
Notes in Computer Science, pages 103–121. Springer, Heidelberg, 1999.

21. K. Eisentrager and K. Lauter. A CRT algorithm for constructing genus 2 curves over finite fields. AGCT-
11, 2007.

22. A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential
time. Mathematics of Computation, 71:729–742, 2002.

23. E. Furukawa, M. Kawazoe, and T. Takahashi. Counting points for hyperelliptic curves of type y2= x5 +
ax over finite prime fields. In M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography,
volume 3006 of Lecture Notes in Computer Science, pages 26–41. Springer, 2003.

24. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography on a large
class of curves. J. Cryptology, 24(3):446–469, 2011.

Fast Cryptography in Genus 2 (Two is Greater than One) 27

25. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on elliptic curves with efficient
endomorphisms. In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
190–200. Springer, 2001.

26. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. Eurocrypt, 1807:19–
34, 2000.

27. P. Gaudry. Algorithmique des courbes hyperelliptiques et applications à la cryptologie. PhD thesis, École
polytechnique, http:/www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/, 2000.

28. P. Gaudry. Fast genus 2 arithmetic based on theta functions. Journal of Mathematical Cryptology JMC,
1(3):243–265, 2007.

29. P. Gaudry. Genus 2 formulae based on Theta functions and their implementation. Talk at ECC http:
//mathsci.ucd.ie/~gmg/ECC2007Talks/ecc07-gaudry2.pdf, September 2007.

30. P. Gaudry. Personal communication, 2011.
31. P. Gaudry, T. Houtmann, D. R. Kohel, C. Ritzenthaler, and A. Weng. The 2-adic CM method for genus

2 curves with application to cryptography. In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of
Lecture Notes in Computer Science, pages 114–129. Springer, 2006.

32. P. Gaudry, D. R. Kohel, and B. A. Smith. Counting points on genus 2 curves with real multiplication. In
D. H. Lee and X. Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
504–519. Springer, 2011.

33. P. Gaudry and É. Schost. Genus 2 point counting over prime fields. J. Symb. Comput., 47(4):368–400,
2012.

34. P. Gaudry and E. Thomé. The mpFq library and implementing curve-based key exchanges. In Software
Performance Enhancement for Encryption and Decryption – SPEED 2007, pages 49–64, 2007. www.loria.
fr/~gaudry/publis/mpfq.pdf.

35. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309,
2012. http://eprint.iacr.org/.

36. H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. In J. Pieprzyk,
editor, Asiacrypt 2008, volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer,
Heidelberg, 2008.

37. B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transactions on Computers,
44(8):1064–1065, 1995.

38. E. Käsper. Fast elliptic curve cryptography in OpenSSL. In G. Danezis, S. Dietrich, and K. Sako, editors,
Financial Cryptography Workshops, volume 7126 of Lecture Notes in Computer Science, pages 27–39.
Springer, 2012.

39. M. Knežević, F. Vercauteren, and I. Verbauwhede. Speeding up bipartite modular multiplication. In
M. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of Lecture
Notes in Computer Science, pages 166–179. Springer Berlin / Heidelberg, 2010.

40. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.
41. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.

In N. Koblitz, editor, Crypto 1996, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, Heidelberg, 1996.

42. D. R. Kohel. Databases for Elliptic Curves and Higher Dimensional Analogues (Echidna). http://
echidna.maths.usyd.edu.au/kohel/dbs/.

43. D. R. Kohel and B. A. Smith. Efficiently computable endomorphisms for hyperelliptic curves. In F. Hess,
S. Pauli, and M. E. Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages
495–509. Springer, 2006.

44. A. K. Lenstra. Generating RSA moduli with a predetermined portion. In K. Ohta and D. Pei, editors,
Asiacrypt’98, volume 1514 of Lecture Notes in Computer Science, pages 1–10. Springer Berlin / Heidelberg,
1998.

45. C. H. Lim and H. S. Hwang. Speeding up elliptic scalar multiplication with precomputation. In J. Song, ed-
itor, Information Security and Cryptology - ICISC’99, volume 1787 of Lecture Notes in Computer Science,
pages 102–119. Springer, 2000.

46. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In Y. Desmedt, editor,
CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 95–107. Springer, 1994.

47. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In X. Wang
and K. Sako, editors, Asiacrypt 2012, volume 7658 of Lecture Notes in Computer Science, pages 718–739.
Springer, 2012.

48. J.-F. Mestre. Couples de jacobiennes isogenes de courbes hyperelliptiques. Preprint, arXiv http://arxiv.
org/abs/0902.3470, or see http://www.lix.polytechnique.fr/~smith/Mestre---families.pdf, 2009.

28 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

49. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Crypto 1985, volume 218 of
Lecture Notes in Computer Science, pages 417–426. Springer, Heidelberg, 1986.

50. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

51. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
Computation, 48(177):243–264, 1987.

52. P. L. Montgomery. Evaluating recurrences of form xm+n = f(xm, xn, xm−n) via lucas chains. URL:
ftp://ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz, 1992.

53. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using addition-subtraction
chains. Informatique Théorique et Applications/Theoretical Informatics and Applications, 24:531–544,
1990.

54. National Security Agency. Fact sheet NSA Suite B Cryptography. http://www.nsa.gov/ia/programs/
suiteb_cryptography/index.shtml, 2009.

55. T. Oliveira, F. Rodríguez-Henríquez, and J. López. New timings for scalar multiplication using a new set
of coordinates. Rump session talk at ECC 2012, October 2012.

56. Y.-H. Park, S. Jeong, and J. Lim. Speeding up point multiplication on hyperelliptic curves with efficiently-
computable endomorphisms. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in
Computer Science, pages 197–208. Springer, 2002.

57. J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp,
55(192):745–763, 1990.

58. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation,
32(143):918–924, 1978.

59. A. Scholz. Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereingung, 47:41–42, 1937.
60. R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp,

44(170):483–494, 1985.
61. N. P. Smart and S. Siksek. A fast Diffie-Hellman protocol in genus 2. J. Cryptology, 12(1):67–73, 1999.
62. J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99–39, Centre for Applied Cryp-

tographic Research, University of Waterloo, 1999.
63. M. Stam. Speeding up Subgroup Cryptosystems. PhD thesis, Technische Universiteit Eindhoven, May 2003.
64. K. Takashima. A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their crypto-

graphic application. IEICE Transactions, 89-A(1):124–133, 2006.
65. W. Tautz, J. Top, and A. Verberkmoes. Explicit hyperelliptic curves with real multiplication and permu-

tation polynomials. Canad. J. Math, 43(5):1055–1064, 1991.
66. E. G. Thurber. On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r). Duke Mathematical

Journal, 40:907–913, 1973.
67. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Stan-

dard (DSS). FIPS-186-3, 2009. http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.
68. P. B. van Wamelen. Examples of genus two CM curves defined over the rationals. Math. Comput.,

68(225):307–320, 1999.
69. P. B. van Wamelen. Computing with the analytic Jacobian of a genus 2 curve. In W. Bosma, J. Cannon,

M. Bronstein, A. M. Cohen, H. Cohen, D. Eisenbud, and B. Sturmfels, editors, Discovering Mathematics
with Magma, volume 19 of Algorithms and Computation in Mathematics, pages 117–135. Springer Berlin
Heidelberg, 2006.

70. A. Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography. Mathematics of Compu-
tation, 72(241):435–458, 2003.

71. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In S. Tavares and
H. Meijer, editors, Selected Areas in Cryptography – (SAC) 1998, volume 1556 of Lecture Notes in Computer
Science, pages 190–200. Springer New York, 1999.

