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Abstract. In the context of Ciphertext-Policy Attribute-Based Encryption (CP-ABE), if a decryption
device associated with an attribute set SD appears on eBay, and is alleged to be able to decrypt any
ciphertexts with policies satisfied by SD, no one including the CP-ABE authorities can identify the
malicious user(s) who build such a decryption device using their key(s). This has been known as a
major practicality concern in CP-ABE applications, for example, providing fine-grained access control
on encrypted data. Due to the nature of CP-ABE, users get decryption keys from authorities associated
with attribute sets. If there exists two or more users with attribute sets being the supersets of SD,
existing CP-ABE schemes cannot distinguish which user is the malicious one who builds and sells such
a decryption device. In this paper, we extend the notion of CP-ABE to support Blackbox Traceability
and propose a concrete scheme which is able to identify a user whose key has been used in building a
decryption device from multiple users whose keys associated with the attribute sets which are all the
supersets of SD. The scheme is efficient with sub-linear overhead and when compared with the very
recent (non-traceable) CP-ABE scheme due to Lewko and Waters in Crypto 2012, we can consider this
new scheme as an extension with the property of fully collusion-resistant blackbox traceability added, i.e.
an adversary can access an arbitrary number of keys when building a decryption device while the new
tracing algorithm can still identify at least one particular key which must have been used for building
the underlying decryption device. We show that this new scheme is secure against adaptive adversaries
in the standard model, and is highly expressive by supporting any monotonic access structures. Its
additional traceability property is also proven against adaptive adversaries in the standard model.
As of independent interest, in this paper, we also consider another scenario which we call it “found-
in-the-wild”. In this scenario, a decryption device is found, for example, from a black market, and
reported to an authority (e.g. a law enforcement agency). The decryption device is found to be able
to decrypt ciphertexts with certain policy, say A, while the associated attribute set SD is missing. In
this found-in-the-wild scenario, we show that the Blackbox Traceable CP-ABE scheme proposed in this
paper can still be able to find the malicious users whose keys have been used for building the decryption
device, and our scheme can achieve selective traceability in the standard model under this scenario.
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1 Introduction

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), introduced by Goyal et al. [11], is a ver-
satile one-to-many encryption mechanism which enables fine-grained access control over encrypted
data. Suppose Alice wants to encrypt a message for all PhD students and alumni in the Department
of Mathematics, but she does not know or is not possible to find out the identities of all the eligible
receivers, and the set of eligible receivers could also be dynamic. Intuitively, Alice, in this example,
is to encrypt a message under “(Mathematics AND (PhD Student OR Alumni))”, which is an access
policy defined over descriptive attributes, so that only those receivers who have their decryption
keys associated with the attributes which satisfy this policy can decrypt.



Traditional public key encryption and identity-based encryption [23,3] are inefficient to realize
the requirement in the example above as they are for one-to-one encryption. Broadcast Encryption
(BE) [8] may not be suitable either as the encryptor in BE has to know and specify the exact
identities/indices of the receivers. In CP-ABE, an authority issues different decryption keys to each
user based on the attributes the user possesses. During encryption, an encryptor specifies an access
policy for the resulting ciphertext. If and only if a receiver’s attributes satisfy the access policy of
the ciphertext can the receiver decrypt the ciphertext.

Among the CP-ABE schemes recently proposed [2,7,10,24,15,20,12,16], progress has been made
on the schemes’ security, access policy expressivity, and efficiency. In [16], Lewko and Waters pro-
posed a new proofing technique and obtained a CP-ABE which is fully secure (i.e. provably secure
against adaptive adversaries in the standard model), highly expressive (i.e. supporting any mono-
tonic access structures) and efficient, and additionally eliminates the one-use restriction that previ-
ous schemes [15,20] have. Specifically, the security proof in [15,20] relies on the one-use restriction
that a single attribute can only be used once in a policy, and directly extending the schemes in
[15,20] to allow attribute reuse would incur significant tradeoffs in efficiency.

One of the major practicality issues of CP-ABE to date is the lacking of effective solutions
to identify malicious users which intentionally expose their secret decryption keys, for example,
for financial gain. Due to the nature of CP-ABE, access policies associated with the ciphertexts
do not have to contain the exact identities of the eligible receivers. Instead, access policies are
role-based and the attributes are generally shared by multiple users. For example, both Bob (with
attributes {Bob, Alumni, Mathematics}) and Tom (with attributes {Tom, Alumni, Mathematics})
could share a decryption key corresponding to attributes {Alumni, Mathematics} and be able to
decrypt the ciphertext in the example above, while the key has no identity information. As a result,
a malicious user, with his attributes shared with multiple other users, might have an intention to
leak the corresponding decryption key or some decryption privilege in the form of a decryption
blackbox/device in which the decryption key is embedded, for example, for financial gain or for
some other incentives, as there is little risk of getting caught.

This is an interesting problem in practice as leaking a decryption key or a more advanced
decryption device/blackbox may entail financial gain and even better, the malicious user has very
little risk of getting caught. To address this problem, we require a CP-ABE system to support
traceability. There are two levels of traceability. Level one is Whitebox Traceability, by which given
a well-formed decryption key as input, a tracing algorithm can find out the user which owns the
key. This also includes a scenario that a malicious user sells a new well-formed decryption key for
financial gain, and the new decryption key is created from his own key.

Level two is Blackbox Traceability, by which given a decryption blackbox/device, while the de-
cryption key and even the decryption algorithm could be hidden, the tracing algorithm, which
treats the decryption blackbox as an oracle, can still find out the malicious user whose key must
have been used in constructing the decryption blackbox.

The problem of building a secure CP-ABE supporting traceability has recently been studied in
[18,17,19]. However, as we will review that an expressive Blackbox Traceable CP-ABE is yet to be
built: (1) the ciphertext access policies in [18,17] only support a single AND gate with wildcard;
(2) the traceable CP-ABE in [19] is as fully secure, highly expressive and efficient as a conventional
CP-ABE such as the one in [15], but it only supports level one Whitebox Traceability, i.e., it
deters malicious users from leaking or selling well-formed decryption keys, but it cannot deter them
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from selling decryption blackboxes/devices. Below is an example on the importance of achieving
Blackbox Traceability.

Key-like Decryption Blackbox for Sale. Using his decryption key (or the decryption keys
from multiple colluded malicious users), a malicious user builds a decryption blackbox/device (i.e.
a CP-ABE Decryption Blackbox) and sells it on eBay for financial gain. To invalidate the possible
whitebox tracing algorithms, the seller keeps the embedded decryption keys and (possibly compli-
cated) algorithms hidden and the device works as a decryption blackbox. Then, to attract potential
buyers, the seller describes and advertises that the decryption blackbox functions like a decryption
key associated with an attribute set SD, i.e., if a ciphertext access policy can be satisfied by SD, the
device can decrypt the ciphertext. For simplicity, we call such a decryption blackbox as a key-like
decryption blackbox . In practice, such a key-like decryption blackbox could be quite useful and
deemed to be very attractive to potential buyers, and the resulting financial gain could be a big
incentive for malicious users to build and sell such a blackbox.

1.1 Our Results

In this paper, we propose a new CP-ABE which is fully secure (i.e. provably secure against adaptive
adversaries in the standard model), highly expressive (i.e. supporting any monotonic access struc-
tures), and blackbox traceable. Furthermore, this new CP-ABE achieves fully collusion-resistant
blackbox traceability, that is, the tracing algorithm can find out at least one of the malicious users
even if there are an arbitrary number of malicious users colluding by pulling all of their decryption
keys together when building a key-like decryption blackbox. Note that collusion-resistant trace-
ability is orthogonal to collusion-resistant security, which is the primary requirement of CP-ABE.
In this paper, traceability is regarded as an additional feature besides the traditional CP-ABE full
security, high expressivity and efficiency.

In addition, the traceability of the scheme is public, that is, anyone can run the tracing al-
gorithm with no additional secret needed. When compared with the most efficient conventional
(non-traceable) highly expressive CP-ABE currently available, this new scheme adds the public
and fully collusion-resistant blackbox traceability with the price of adding only O(

√
K) elements

in the ciphertext and public key, rather than expanding the sizes linearly with K, where K is the
number of users in the system, while the private key size and decryption efficiency mainly remain
comparable and are independent of the value of K.

To the best of our knowledge, this is the first CP-ABE that simultaneously supports public
and fully collusion-resistant blackbox traceability, full security, high expressivity, and without the
one-use restriction, and for a system with fully collusion-resistant blackbox traceability, sub-linear
overhead is the most efficient one to date. Table 1 compares our scheme with that in [15,16,19] in
terms of performance and features (i.e. traceability and one-use restriction), as all the four schemes
are fully secure and highly expressive.

In Sec. 2, following the standard definition of conventional CP-ABE, we give a ‘functional’
definition of CP-ABE, in which we specify a unique index k ∈ {1, . . . ,K} to each decryption key,
that later will enable us to define a tracing algorithm Trace which supports fully collusion-resistant
blackbox traceability against key-like decryption blackbox. We call the resulting scheme a Blackbox
Traceable CP-ABE (or BT-CP-ABE for short).

On the construction of BT-CP-ABE, instead of building one directly, we first define a simpler
primitive called Augmented CP-ABE (or AugCP-ABE for short), then we extend it to BT-CP-ABE.
In Sec. 3.1, we define AugCP-ABE as (SetupA,KeyGenA,EncryptA, DecryptA), which is similar to
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Ciphertext Private Key Public Key Pairing Computation Traceability Without One-Use
Size Size Size in Decryption Restriction

[15] 2l + 2 |S|+ 2 |U|+ 3 2|I|+ 1 No ×
[16] 2l + 3 |S|+ 3 |U|+ 4 2|I|+ 2 No

√

[19] 2l + 3 |S|+ 4 |U|+ 4 2|I|+ 1 whitebox ×
this work 2l |S|+ 4 |U|+ 3 2|I|+ 10 public, blackbox,

√

+17
√
K +4

√
K fully collusion-resistant

1 All the four schemes are fully secure and highly expressive (i.e. supporting any monotonic access structures).
2 Let l be the size of an access policy, |S| the size of the attribute set of a private key, |U| the size of the

attribute universe, and |I| the number of attributes in a decryption key that satisfies a ciphertext’s access
policy.

Table 1. Comparison with the conventional CP-ABE in [15,16] and the traceable CP-ABE in [19]

BT-CP-ABE, except that the encryption algorithm EncryptA(PP,M,A, k̄) takes one more parameter
k̄ ∈ {1, . . . , K + 1}, and the encrypted message M can be recovered using a decryption key SKk,S ,
which is identified by k ∈ {1, . . . ,K} and described by an attribute set S, provided that (k ≥
k̄) ∧ (S satisfies A), where A is an access policy. Also, we define the security of AugCP-ABE using
message-hiding and (encryption) index-hiding games. In Sec. 3.2, we show how to transform an
AugCP-ABE scheme with message-hiding and index-hiding properties to a fully secure BT-CP-
ABE scheme. In Sec. 4, we propose an efficient and highly expressive AugCP-ABE scheme, and
show that it is message-hiding and index-hiding against adaptively adversaries in the standard
model. Combining it with the result in Sec. 3.2, we obtain an efficient, fully secure and highly
expressive BT-CP-ABE scheme.

In Sec. 5, we consider the blackbox traceability for another type of decryption blackboxes,
which we refer to as policy-specific decryption blackbox . A policy-specific decryption black-
box is a decryption blackbox that is able to decrypt ciphertexts with some specific access policy,
say AD. In other words, unlike a key-like decryption blackbox which has an attribute set, for ex-
ample, SD attached as the alleged decryption capability as the blackbox advertised by the seller,
a policy-specific decryption blackbox is only known to be able to decrypt ciphertexts with some
specific policy AD. The policy-specific decryption blackbox reflects a different (and possibly more
sophisticated) attacking scenario which we call it “found-in-the-wild.” In this scenario, a decryption
blackbox is found, for example, from a black market, and reported to an authority which could be
a law enforcement agency. The decryption blackbox’s associated attribute set SD is missing as it
is “found-in-the-wild” while after some testing, it is found that the blackbox can decrypt cipher-
texts with certain access policy, say AD. Interestingly, we show that our BT-CP-ABE scheme is
also traceable (where the traceability definition needs to be modified accordingly, the modification
is minor) against this policy-specific decryption blackbox, although the traceability can only be
proven against selective adversaries.

2 Definitions

We first review the definition of CP-ABE which is based on the work of [15,16] with the exception
that in our ‘functional’ definition, we explicitly assign and identify users using unique indices, and
let K be the number of users in a CP-ABE system. Then we introduce the traceability definition
against key-like decryption blackbox. Predefining the number of users is indeed a weakness as well
as a necessary cost for achieving blackbox traceability, but we stress that in practice, this should
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not incur much concern, and all the existing blackbox traceable systems (e.g. [14,5,6,9]) have the
same setting. Also being consistent with the conventional definition of CP-ABE [15,16], the user
indices are not used in normal encryption (i.e. the encryptors do not need to know the indices of any
users in order to encrypt) and different users (with different indices) may have the same attribute
set.

2.1 CP-ABE and Security Models

A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) system consists of four algorithms:

Setup(λ,U ,K) → (PP,MSK). The algorithm takes as input a security parameter λ, the attribute
universe U , and the number of users K in the system, then runs in polynomial time in λ, and
outputs the public parameter PP and a master secret key MSK.

KeyGen(PP,MSK, S)→ SKk,S . The algorithm takes as input the public parameter PP, the master
secret key MSK, and an attribute set S, and outputs a private decryption key SKk,S , which is
assigned and identified by a unique index k ∈ {1, . . . ,K}.

Encrypt(PP,M,A) → CT . The algorithm takes as input the public parameter PP, a message
M , and an access policy A over U , and outputs a ciphertext CT such that only users whose
attributes satisfy A can recover M . A is implicitly included in CT .

Decrypt(PP, CT, SKk,S) → M or ⊥. The algorithm takes as input the public parameter PP, a
ciphertext CT , and a private key SKk,S . If S satisfies CT ’s access policy, the algorithm outputs
a message M , otherwise it outputs ⊥ indicating the failure of decryption.

Now we define the security of a CP-ABE system using a message-hiding game, which is a typical
semantic security game and is based on that for conventional CP-ABE [15,16] security against
adaptive adversaries, except that each key is identified by a unique index. Although the index
of each user is assigned by the KeyGen algorithm, to capture the security that an attacker can
adaptively choose keys to corrupt, we allow the adversary to specify the index when he makes a key
query, i.e., to query a private decryption key for an attribute set S, the adversary submits (k, S)
to the challenger, where k is the index to be assigned to the corresponding decryption key.

It is worth noticing that: (1) for clarity, for i = 1 to q, the adversary submits (index, attribute
set) pair (ki, Ski) to query a private key for attribute set Ski , where q ≤ K, ki ∈ {1, . . . ,K}, and
ki 6= kj ∀1 ≤ i 6= j ≤ q (this is to guarantee that each user/key can be uniquely identified by an index);
and (2) for ki 6= kj we do not require Ski 6= Skj , i.e., different users/keys may have the same attribute
set. We remark that these two points apply to the rest of the paper.

GameMH. The Message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter PP to A.
Phase 1. For i = 1 to q1, A adaptively submits (ki, Ski), and the challenger responds with SKki,Ski

.
Challenge. A submits two equal-length messages M0,M1 and an access policy A∗. The challenger

flips a random coin b ∈ {0, 1}, and gives A an encryption of Mb under A∗.
Phase 2. For i = q1 +1 to q, A adaptively submits (ki, Ski), and the challenger responds with

SKki,Ski
.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that A∗ cannot be satisfied by any of the queried
attribute sets Sk1 , . . . , Skq . The advantage of A is defined as MHAdvA = |Pr[b′ = b]− 1

2 |.

Definition 1. A K-user CP-ABE system is secure if for all polynomial-time adversaries A the
advantage MHAdvA is negligible in λ.
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It is clear that a secure CP-ABE system defined as above has all the appealing properties that
a conventional CP-ABE system [15,16] has, that is, fully collusion-resistant security, fine-grained
access control on encrypted data, and efficient one-to-many encryption.

2.2 BT-CP-ABE: Traceability

Now we define the traceability against key-like decryption blackbox, and call the new system a
Blackbox Traceable CP-ABE (or BT-CP-ABE for short). Our definition is loosely related to the
traitor tracing feature in broadcast encryption [6,9]. A key-like decryption blackbox D in our setting
is viewed as a probabilistic circuit that takes as input a ciphertext CT and outputs a message M or
⊥, and such a decryption blackbox does not need to be perfect, namely, we only require it to be able
to decrypt with non-negligible success probability. In particular, the adversary (i.e. seller) describes
a key-like decryption blackbox D with a non-empty attribute set SD and a non-negligible probability
value ε (i.e. 0 < ε ≤ 1 is polynomially related to λ), and advertises that for any access policy A, if
it can be satisfied by SD, this blackbox D can decrypt the corresponding ciphertext associated with A
with probability at least ε. Note that ε is the lower-bound of D’s decryption ability, e.g., suppose A1

is a ciphertext’s access policy satisfied by SD and D can decrypt the ciphertext with probability 0.1,
even if D can decrypt ciphertexts under other valid access policies (satisfied by D) with probability
1, the seller can only declare an ε ≤ 0.1. Obviously for some attribute set SD, ε is closer to 1, which
implies that the decryption ability of D is closer to that of a private key with attribute set SD, and
hence D is more attractive to potential buyers who are interested in decrypting ciphertexts with
access policies which can be satisfied by SD. We now define a tracing algorithm as follows.

TraceD(PP, SD, ε) → KT ⊆ {1, . . . ,K}. This is an oracle algorithm that interacts with a key-like
decryption blackbox D. By given the public parameter PP, a non-empty attribute set SD, and a
probability value (lower-bound) ε, the algorithm runs in time polynomial in λ and 1/ε, and outputs
an index set KT ⊆ {1, . . . ,K} which identifies the set of malicious users. Note that ε has to be
polynomially related to λ.

The following Tracing Game captures the notion of fully collusion-resistant traceability.
In the game, the adversary targets to build a decryption blackbox D that functions as a private
decryption key with attribute set SD (as the name of key-like decryption blackbox implies). The
tracing algorithm, on the other side, is designed to extract the index of at least one of the malicious
users whose decryption keys have been used for constructing D.

GameTR. The Tracing Game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter PP to A.
Key Query. For i = 1 to q, A adaptively submits (ki, Ski), and the challenger responds with

SKki,Ski
.

(Key-like) Decryption Blackbox Generation. A outputs a decryption blackbox D associated
with a non-empty attribute set SD ⊆ U and a non-negligible probability (lower-bound) value ε.

Tracing. The challenger runs TraceD(PP, SD, ε) to obtain an index set KT ⊆ {1, . . . ,K}.

Let KD = {ki|1 ≤ i ≤ q} be the index set of keys corrupted by the adversary. We say that the
adversary A wins the game if the following conditions hold:

1. For any access policy A that is satisfied by SD, we have

Pr[D(Encrypt(PP,M,A)) = M ] ≥ ε,
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where the probability is taken over the random choices of message M and the random coins
of D. A decryption blackbox satisfying this condition is said to be a useful key-like decryption
blackbox.

2. KT = ∅, or KT 6⊆ KD, or (SD 6⊆ Skt ∀kt ∈ KT ).

We denote by TRAdvA the probability that adversary A wins this game.

Definition 2. A K-user Blackbox Traceable CP-ABE system is traceable if for all polynomial-time
adversaries A the advantage TRAdvA is negligible in λ.

Remark: For a useful key-like decryption blackbox D, the traced KT must satisfy (KT 6= ∅)∧ (KT ⊆
KD)∧(∃kt ∈ KT s.t. Skt ⊇ SD) for traceabililty. (1) (KT 6= ∅)∧(KT ⊆ KD) captures the preliminary
traceability that the tracing algorithm can extract at least one malicious user and the coalition of
malicious users cannot frame any innocent user. Note that such a preliminary traceability is a weak
traceability that may not be useful enough in practice. Specifically, consider a key-like decryption
blackbox D built from the private decryption keys of users k1 and k2 who were authorized high-
value attribute set Sk1 and low-value attribute set Sk2 , respectively, and assume that Sk2 6⊇ Sk1

and the decryption ability of D is described by SD = Sk1 , e.g., SD = Sk1 = {Senior Manager}, and
Sk2 = {Intern}. A scheme is considered to be weak traceable if its Trace algorithm only extracts k2

from D as the malicious user. This may not be satisfactory in practice as D having the decryption
ability of attribute set {Senior Manager} implies that there must be some user having attribute
“Senior Manager” participated in building D yet the algorithm was only able to trace D to an
“Intern”, who has less to lose. (2) (∃kt ∈ KT s.t. Skt ⊇ SD) captures strong traceability that the
Trace algorithm can extract at least one malicious user whose private key enables D to have the
decryption ability corresponding to SD, i.e., whose attribute set is a superset of SD. As a related
work, comparable weak and strong traceability notions in the setting of predicate encryption were
considered in [14]. In this paper we focus on the strong traceability of CP-ABE, and unless stated
otherwise, by the traceability we mean the strong traceability.

Note that the tracing game above does not limit the number of colluded users. Also note that, as
of [5,6,9,14], we are modeling a stateless (resettable) decryption blackbox – the decryption blackbox
is just an oracle and maintains no state between activations.

3 Augmented CP-ABE

Following the routes of [5,6,9], instead of constructing a BT-CP-ABE directly, we define a simpler
primitive called Augmented CP-ABE (or AugCP-ABE for short) and its security notions first,
then we show that a secure AugCP-ABE can be transformed to a secure and traceable BT-CP-
ABE scheme. In Sec. 4, we propose a concrete construction of AugCP-ABE.

3.1 Definitions

An AugCP-ABE system consists of the following four algorithms, in particular, different from a
conventional CP-ABE, the encryption algorithm takes one more parameter k̄ ∈ {1, . . . ,K + 1}.

SetupA(λ,U ,K)→ (PP,MSK). The algorithm takes as input a security parameter λ, the attribute
universe U , and the number of users K in the system, then runs in polynomial time in λ, and
outputs the public parameter PP and a master secret key MSK.
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KeyGenA(PP,MSK, S) → SKk,S . The algorithm takes as input PP, the master secret key MSK,
and an attribute set S, and outputs a private key SKk,S , which is assigned and identified by a
unique index k ∈ {1, . . . ,K}.

EncryptA(PP,M,A, k̄)→ CT . The algorithm takes as input PP, a message M , an access policy A
over U , and an index k̄ ∈ {1, . . . ,K+ 1}, and outputs a ciphertext CT . A is included in CT ,
but the value of k̄ is not.

DecryptA(PP, CT,SKk,S) → M or ⊥. The algorithm takes as input PP, a ciphertext CT , and
a private key SKk,S . If S satisfies CT ’s access policy, the algorithm outputs a message M ,
otherwise it outputs ⊥ indicating the failure of decryption.

Correctness. For any attribute set S ⊆ U , k ∈ {1, . . . ,K}, access policy A over U , k̄ ∈ {1, . . . ,K+
1}, and message M , suppose (PP,MSK)← SetupA(λ,U ,K), SKk,S ← KeyGenA( PP,MSK, S), CT ←
EncryptA(PP,M,A, k̄). If (S satisfies A) ∧(k ≥ k̄) then DecryptA(PP, CT,SKk,S) = M .

It is worth noticing that during decryption if the attribute set S of a private decryption key
satisfies the access policy A of a ciphertext, the decryption works, regardless of the value of key
index k or encryption index k̄, but whether the output message is equal to the encrypted message is
determined by the values of k and k̄. i.e., if and only if (S satisfies A)∧ (k ≥ k̄), can SKk,S correctly
decrypt a ciphertext encrypted using (A, k̄). Note that if we always set k̄ = 1, then the functions of
AugCP-ABE are identical to that of BT-CP-ABE. Actually, the idea behind converting an AugCP-
ABE scheme to a BT-CP-ABE scheme is to construct an AugCP-ABE scheme with (encryption)
index-hiding property, and then always set k̄ = 1 in normal encryption, while use k̄ ∈ {1, . . . ,K+1}
in generating ciphertexts for tracing.

Security. We define the security of AugCP-ABE in the following three games, where the first two
are for message-hiding, and the third one is for the index-hiding property. In the first two message-
hiding games between a challenger and an adversary A, k̄ = 1 (the first game, GameAMH1

) and

k̄ = K + 1 (the second game, GameAMHK+1
).

Setup. The challenger runs SetupA(λ,U ,K) and gives the public parameter PP to A.
Phase 1. For i = 1 to q1, A adaptively submits (ki, Ski), and the challenger responds with SKki,Ski

.
Challenge. A submits two equal-length messages M0,M1 and an access policy A∗. The challenger

flips a random coin b ∈ {0, 1}, and sends CT ← EncryptA(PP,Mb,A∗, k̄) to A.
Phase 2. For i = q1 + 1 to q, A adaptively submits (ki, Ski), and the challenger responds with

SKki,Ski
.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

GameAMH1
. In the Challenge phase the challenger sends CT ← EncryptA(PP,Mb,A∗, 1) to A. A wins

the game if b′ = b under the restriction that A∗ cannot be satisfied by any of the queried attribute
sets Sk1 , . . . , Skq . The advantage of A is defined as MHA

1 AdvA = |Pr[b′ = b]− 1
2 |.

GameAMHK+1
. In the Challenge phase the challenger sends CT ← EncryptA(PP,Mb,A∗,K+ 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHA
K+1AdvA = |Pr[b′ = b]− 1

2 |.

Definition 3. A K-user Augmented CP-ABE system is message-hiding if for all polynomial-time
adversaries A the advantages MHA

1 AdvA and MHA
K+1AdvA are negligible in λ.

GameAIH. In the third game, index-hiding game, for any non-empty attribute set S∗ ⊆ U , we define
the strictest access policy as AS∗ =

∧
x∈S∗ x, and require that an adversary cannot distinguish
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between an encryption using (AS∗ , k̄) and (AS∗ , k̄ + 1) without a private decryption key SKk̄,Sk̄

where Sk̄ ⊇ S∗. The game takes as input a parameter k̄ ∈ {1, . . . ,K} which is given to both the
challenger and the adversary A. The game proceeds as follows:

Setup. The challenger runs SetupA(λ,U ,K) and gives the public parameter PP to A.
Key Query. For i = 1 to q, A adaptively submits (ki, Ski), and the challenger responds with

SKki,Ski
.

Challenge. A submits a message M and a non-empty attribute set S∗. The challenger flips a
random coin b ∈ {0, 1}, and sends CT ← EncryptA(PP,M,AS∗ , k̄ + b) to A.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried pairs {(ki, Ski)}1≤i≤q can
satisfy (ki = k̄) ∧ (Ski satisfies AS∗), i.e. (ki = k̄) ∧ (Ski ⊇ S∗). The advantage of A is defined as
IHAAdvA[k̄] = |Pr[b′ = b]− 1

2 |.

Definition 4. A K-user Augmented CP-ABE system is index-hiding if for all polynomial-time
adversaries A the advantages IHAAdvA[k̄] for k̄ = 1, . . . ,K are negligible in λ.

3.2 Reducing BT-CP-ABE to AugCP-ABE

We now show that an AugCP-ABE with message-hiding and index-hiding implies a secure and
traceable BT-CP-ABE. Let ΣA = (SetupA,KeyGenA,EncryptA,DecryptA) be an AugCP-ABE with
message-hiding and index-hiding, define Encrypt(PP,M,A) = EncryptA(PP,M,A, 1), then Σ =
(SetupA,KeyGenA,Encrypt,DecryptA) is a BT-CP-ABE derived from ΣA, and the tracing algorithm
is defined as

TraceD(PP, SD, ε) → KT ⊆ {1, . . . ,K}: Given a key-like decryption blackbox D associated with a
non-empty attribute set SD and probability ε > 0, the tracing algorithm works as follows: 3

1. For k = 1 to K + 1, do the following:

(a) The algorithm repeats the following 8λ(K/ε)2 times:

i. Sample M from the message space at random.
ii. Let CT ← EncryptA(PP,M,ASD , k), where ASD is the strictest access policy of SD.
iii. Query oracle D on input CT which contains ASD , and compare the output of D with

M .
(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.

2. Let KT be the set of all k ∈ {1, . . . ,K} for which p̂k − p̂k+1 ≥ ε/(4K). Then output KT as the
index set of the private decryption keys of malicious users.

Remark: Note that the strictest access policy used in the index-hiding game GameAIH and the tracing
algorithm Trace does not impose any limitation to traceable CP-ABE. Instead, it is an efficient way
to ensure that the traced malicious users are the reasonable suspects. As a key-like decryption
blackbox D is advertised that it functions like a private decryption key with attribute set SD,
a ciphertext associated with the strictest access policy ASD will be decrypted by D accordingly.
Although it might look more appealing to have the index-hiding property for any access policy, the
following Theorem 1 shows that the strictest access policy is sufficient for ensuring the traceability
against key-like decryption blackbox for the derived BT-CP-ABE scheme.

3 The tracing algorithm uses a technique based on that in broadcast encryption by [5,6,9].
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Theorem 1. If ΣA is an AugCP-ABE with message-hiding and index-hiding properties, then Σ is
a secure and traceable BT-CP-ABE.

Proof. Note that Σ is a special case of ΣA where the encryption algorithm always sets k̄ = 1. Hence,
GameMH for Σ is identical to GameAMH1

for ΣA, which implies that MHAdvA for Σ in GameMH is

equal to MHA
1 AdvA for ΣA in GameAMH1

, i.e., if ΣA is message-hiding (in GameAMH1
), then Σ is secure.

Now we show that if ΣA is message-hiding (in GameAMHK+1
) and index-hiding, Σ is traceable.

In the proof sketch below, which is based on that of [5,6,9], we show that if the key-like decryption
blackbox output by the adversary is a useful one then the traced KT will satisfy (KT 6= ∅)∧ (KT ⊆
KD) ∧ (∃kt ∈ KT s.t. Skt ⊇ SD) with overwhelming probability, which implies that the adversary
can win the game GameTR only with negligible probability, i.e., TRAdvA is negligible.

Let D be the key-like decryption blackbox output by the adversary, and SD be the attribute
set describing D. Define

pk̄ = Pr[D(EncryptA(PP,M,ASD , k̄)) = M ],

where the probability is taken over the random choice of message M and the random coins of D.
We have that p1 ≥ ε and pK+1 is negligible. The former follows the fact that D is a useful key-like
decryption blackbox, and the later follows that ΣA is message-hiding (in GameAMHK+1

). Then there
must exist some k ∈ {1, . . . ,K} such that pk − pk+1 ≥ ε/(2K). By the Chernoff bound it follows
that with overwhelming probability, p̂k − p̂k+1 ≥ ε/(4K). Hence, we have KT 6= ∅.

For any k ∈ KT (i.e., p̂k−p̂k+1 ≥ ε
4K), we know, by Chernoff, that with overwhelming probability

pk − pk+1 ≥ ε/(8K). Clearly (k ∈ KD) ∧ (Sk ⊇ SD) since otherwise, D can be directly used to win
the index-hiding game for ΣA. Hence, we have (KT ⊆ KD) ∧ (SD ⊆ Sk ∀k ∈ KT ).

4 An Efficient Augmented CP-ABE

Now we construct an AugCP-ABE scheme that is as secure and expressive as the CP-ABE scheme
in [16]. To obtain traceability in the derived BT-CP-ABE scheme we will use the standard tracing
techniques which were used by [5,6,9] in the setting of broadcast encryption. The challenge is to
apply the tracing techniques to the setting of CP-ABE securely and efficiently.

4.1 Preliminaries

Before proposing a concrete construction for AugCP-ABE, we first review some preliminaries.

Linear Secret-Sharing Schemes. As of previous work, we use linear secret-sharing schemes
(LSSS) to realize monotonic access structures which specify the access policies associated with
ciphertexts. The formal definitions of access structures and LSSS can be found in [24,15,16]. Infor-
mally, an LSSS is a share-generating matrix A whose rows {Ai} are labeled by attributes through
a function ρ. When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret
to be shared and r2, . . . , rn ∈ Zp are randomly chosen, Av is the vector of l shares of the secret s,
and the share λi = (Av)i, i.e. the inner product Ai · v, belongs to attribute ρ(i). A user’s attribute
set S satisfies the LSSS access matrix if the rows labeled by the attributes in S have the linear
reconstruction property, which means that there exist constants {ωi} such that, for any valid shares
{λi} of a secret s according to the LSSS matrix, we have

∑
i ωiλi = s. Essentially, a user will be
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able to decrypt a ciphertext with access matrix A if and only if the rows of A labeled by the user’s
attributes include the vector (1, 0, . . . , 0) in their span.

Composite Order Bilinear Groups. Let G be a group generator, which takes a security pa-
rameter λ and outputs (p1, p2, p3,G,GT , e) where p1, p2, p3 are distinct primes, G and GT are
cyclic groups of order N = p1p2p3, and e : G × G → GT a map such that: (1) (Bilinear)
∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G such that e(g, g) has
order N in GT . Assume that group operations in G and GT as well as the bilinear map e are
computable in polynomial time with respect to λ. Let Gp1 , Gp2 and Gp3 be the subgroups of order
p1, p2 and p3 in G, respectively. These subgroups are “orthogonal” to each other under the bilinear
map e: if hi ∈ Gpi and hj ∈ Gpj for i 6= j, then e(hi, hj) = 1 (the identity element in GT ). More
details can be found in [15,16].

Complexity Assumptions. The message-hiding property of our AugCP-ABE scheme will rely on
four assumptions (the Assumption 1 in [16], the General Subgroup Decision Assumption, the 3-Party
Diffie-Hellman Assumption in a Subgroup, and the Source Group q-Parallel BDHE Assumption in a
Subgroup), which are used in [16] to achieve full security of their CP-ABE scheme while eliminating
the one-use restriction. The index-hiding property will rely on two assumptions (3-Party Diffie-
Hellman Assumption and Decisional Linear Assumption) that are used in [9] to achieve traceability
in the setting of broadcast encryption. We refer to [16,9] for the details of these assumptions.

Notations. Suppose the number of users K in the system equals m2 for some m 4. We arrange
the users in an m × m matrix and uniquely assign a tuple (i, j) where 1 ≤ i, j ≤ m, to each
user. A user at position (i, j) of the matrix has index k = (i − 1) ∗ m + j. For simplicity, we
directly use (i, j) as the index where (i, j) ≥ (̄i, j̄) means that ((i > ī) ∨ (i = ī ∧ j ≥ j̄)). The
use of pairwise notation (i, j) is purely a notational convenience, as k = (i − 1) ∗ m + j defines
a bijection between {(i, j)|1 ≤ i, j ≤ m} and {1, . . . ,K}. For a positive integer, say m, by [m]
we mean the set {1, 2, . . . ,m}. For a given vector v = (v1, . . . , vd), by gv we mean the vector
(gv1 , . . . , gvd). Furthermore, for gv = (gv1 , . . . , gvd) and gw = (gw1 , . . . , gwd), by gv · gw we mean
the vector (gv1+w1 , . . . , gvd+wd), i.e. gv · gw = gv+w, and by ed(g

v, gw) we mean
∏d
k=1 e(g

vk , gwk),

i.e. ed(g
v, gw) =

∏d
k=1 e(g

vk , gwk) = e(g, g)(v·w) where (v · w) is the inner product of v and w.
Given a bilinear group order N , one can randomly choose rx, ry, rz ∈ ZN , and set χ1 = (rx, 0, rz),
χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Let span{χ1,χ2} be the subspace spanned
by χ1 and χ2, i.e. span{χ1,χ2} = {ν1χ1 + ν2χ2|ν1, ν2 ∈ ZN}. We can see that χ3 is orthogonal
to the subspace span{χ1,χ2} and Z3

N = span{χ1,χ2,χ3} = {ν1χ1 + ν2χ2 + ν3χ3|ν1, ν2, ν3 ∈ ZN}.
For any v ∈ span{χ1,χ2}, we have (χ3 · v) = 0, and for random v ∈ Z3

N , (χ3 · v) 6= 0 occurs with
overwhelming probability.

4.2 Our Approach

Note that the Traitor Tracing schemes in broadcast encryption [5,6,9] achieved fully collusion-
resistant blackbox traceability at the cost of sub-linear overhead, which is the most efficient level to
date. It will be tempting to try in a straightforward way to combine such a Traitor Tracing system
and a CP-ABE for obtaining a BT-CP-ABE. However, the resulting system cannot achieve the
desired security (i.e. strong traceability). Consider the following (misguided) approach. Suppose
that we created both a CP-ABE and a Traitor Tracing system each for K users, where each user

4 If the number of users is not a square, we add some “dummy” users to pad to the next square.
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has the same index in both systems. To encrypt a message M , an algorithm splits the message
randomly into two pieces MP and MI such that MP ·MI = M , then encrypts MP under CP-ABE
and MI under the Traitor Tracing system. To decrypt, we need to decrypt under both systems.
However, such an approach can only provide weak traceability5. In particular, if two users, Alice
with attribute set SA in CP-ABE and index kA in both systems, and Bob with attribute set SB in
CP-ABE and index kB in both systems, collude to make a decryption blackbox D with attribute
set SD ⊆ SA, while SB ∩ SA = ∅. The blackbox uses Alice’s key (the part corresponding to SA) to
decrypt the ciphertext from the CP-ABE system and Bob’s key (the part corresponding to kB) to
decrypt the ciphertext from the Traitor Tracing system. The tracing algorithm would identify Bob
as a malicious user, but SB is uncorrelated to SD.

The idea behind the techniques of achieving strong traceability is to set a user’s private de-
cryption key such that it must be simultaneously used in both CP-ABE and the Tracing part in
a BT-CP-ABE. Boneh and Waters [6] handled a similar situation where they intertwined a broad-
cast encryption scheme [4] and a Traitor Tracing scheme [5] to build an Augmented Broadcast
Encryption (AugBE) scheme. Inspired by their approach, we tried to intertwine a CP-ABE [16]
and a Traitor Tracing system [9] to build an AugCP-ABE scheme. The obstacle comes from the
setting that in CP-ABE the decryption privilege of a user is determined by his attributes rather
than by his index as in broadcast encryption. In particular, in AugBE [6,9], the indices of users
are simultaneously used to determine users’ decryption privilege (for broadcast encryption part)
and to identify users (for Tracing), and the construction and the proof of index-hiding of AugBE
[6,9] are based on this fact. In contrast, in BT-CP-ABE, the attributes are used to determine users’
decryption privilege (for CP-ABE part) while the indices are used to identify users (for Tracing
part), and to intertwine the two essentially uncorrelated parts, we need new ideas and techniques.

A straightforward combination will result in schemes that are either not provable or inefficient
with ciphertext of size O(

√
K·|A|) where |A| is the size of an access policy. In the following, based on

the CP-ABE in [16] with our particular designs and contructions, we propose a secure AugCP-ABE
which is also efficient with ciphertext of size O(

√
K + |A|).

4.3 AugCP-ABE Construction

SetupA(λ,U ,K = m2) → (PP,MSK). Let G be a bilinear group of order N = p1p2p3 (3 distinct
primes, whose size is determined by λ), Gpi the subgroup of order pi in G (for i = 1, 2, 3), and
g, f, h ∈ Gp1 , g3 ∈ Gp3 the generators of corresponding subgroups. The algorithm randomly
chooses exponents

{αi, ri, zi ∈ ZN}i∈[m], {cj ∈ ZN}j∈[m], {ax ∈ ZN}x∈U .

The public parameter PP includes the description of the group and the following elements:(
g, f, h, {Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m],

{Hj = gcj}j∈[m], {Ux = gax}x∈U
)
.

The master secret key is set to

MSK = ( α1, . . . , αm, r1, . . . , rm, c1, . . . , cm, g3 ).

A counter ctr = 0 is implicitly included in MSK.

5 A similar approach was used in [14] to introduce weak traceability to predicate encryption.
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KeyGenA(PP,MSK, S) → SK(i,j),S . The algorithm first sets ctr = ctr + 1 and computes the cor-
responding index in the form of (i, j) where 1 ≤ i, j ≤ m and (i − 1) ∗m + j = ctr. Then it
randomly chooses σi,j , δi,j ∈ ZN and R,R′, R′′, R′′′, Rx(x ∈ S) ∈ Gp3 , and outputs a private key
SK(i,j),S = (

Ki,j = gαigricjfσi,jhδi,jR,

K ′i,j = gσi,jR′, K ′′i,j = gδi,jR′′, K ′′′i,j = Z
σi,j
i R′′′,

{Ki,j,x = U
σi,j
x Rx}x∈S

)
.

The value of (i, j) is implicitly contained in SK(i,j),S .

EncryptA(PP,M,A = (A, ρ), (̄i, j̄))→ CT . A is an l × n LSSS matrix and ρ maps each row Ak of
A to an attribute ρ(k) ∈ U . The algorithm randomly chooses

κ, τ, s1, . . . , sm, t1, . . . , tm ∈ ZN ,
vc, w1, . . . ,wm ∈ Z3

N ,

ξ1, . . . , ξl ∈ ZN , u = (π, u2, . . . , un) ∈ ZnN .

In addition, it randomly chooses rx, ry, rz ∈ ZN , and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it randomly chooses

vi ∈ Z3
N ∀i ∈ {1, . . . , ī},

vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},

and creates the ciphertext 〈(A, ρ), (Ri,R
′
i, Qi, Q

′
i, Q
′′
i , Q

′′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k)
l
k=1〉 as

follows:

1. For each row i ∈ [m]:

– if i < ī: randomly chooses ŝi ∈ ZN , and sets

Ri = gvi , R′i = gκvi ,

Qi = gsi , Q′i = fsiZtii f
π, Q′′i = hsi , Q′′′i = gti ,

Ti = E ŝii .

– if i ≥ ī: sets

Ri = Gsivii , R′i = Gκsivii ,

Qi = gτsi(vi·vc), Q′i = f τsi(vi·vc)Ztii f
π, Q′′i = hτsi(vi·vc), Q′′′i = gti ,

Ti = M · Eτsi(vi·vc)i .

2. For each column j ∈ [m]:

– if j < j̄: randomly chooses µj ∈ ZN , and sets Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j̄: sets Cj = Hτvc
j · gκwj , C ′j = gwj .

3. For each k ∈ [l]: sets Pk = fAk·uU−ξkρ(k) , P ′k = gξk .
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DecryptA(PP, CT,SK(i,j),S)→M or ⊥. The algorithm parses CT to CT = 〈(A, ρ), (Ri,R
′
i, Qi, Q

′
i,

Q′′i , Q
′′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k)
l
k=1〉. If S does not satisfy (A, ρ), the algorithm outputs

⊥, otherwise it

1. Computes constants {ωk ∈ ZN} such that∑
ρ(k)∈S ωkAk = (1, 0, . . . , 0), then computes

DP =
∏

ρ(k)∈S

(
e(K ′i,j , Pk)e(Ki,j,ρ(k), P

′
k)
)ωk

=
∏

ρ(k)∈S

(
e(gσi,j , fAk·u)

)ωk = e(gσi,j , f)π.

2. Computes DI =
e(Ki,j ,Qi)·e(K′′′i,j ,Q′′′i )

e(K′i,j ,Q
′
i)·e(K′′i,j ,Q′′i )

· e3(R′i,C
′
j)

e3(Ri,Cj)
.

3. Computes M ′ = Ti/(DP ·DI) as the output message. Assume the encrypted message is M
and the encryption index is (̄i, j̄), it can be verified that only when (i > ī) or (i = ī∧ j ≥ j̄),
M ′ = M will hold. The correctness details can be found in Appendix A.

Remark: In EncryptA, π is the secret shared according to the LSSS (A, ρ), and is for generating
ciphertext components (Pk, P

′
k)
l
k=1, so that only users with eligible attribute sets can recover DP =

e(g, f)πσi,j . To intertwine the CP-ABE part and Tracing part, fπ is embedded in Q′i, i.e., in Tracing
ciphertext components, although (Ri,R

′
i, Qi, Ti, Cj ,C

′
j) are the same as that of [9], Q′i is different

and Q′′i and Q′′′i are new components we introduced. We stress that Ztii (in Q′i) is the crucial
component that intertwines the Tracing part (i.e. f τsi(vi·vc) for i ≥ ī and fsi for i < ī) and
the CP-ABE part (i.e. fπ) securely and efficiently. In a straightforward combination without Ztii
(i.e. Q′i = f τsi(vi·vc)fπ for i ≥ ī and Q′i = fsifπ for i < ī), the index-hiding property will be
hard to prove, and to obtain provable index-hiding, different πi has to be used for different i (i.e.
Q′i = f τsi(vi·vc)fπi for i ≥ ī and Q′i = f sifπi for i < ī), but this will make the CP-ABE part have
ciphertext size of O(

√
K · l), rather than O(l) as above. The using of Ztii (and the introduction of

Q′i, Q
′′
i and Q′′′i ) enables us to prove the index-hiding property while achieving (efficient) ciphertext

size of O(
√
K + l). In particular, when reducing the index-hiding property to the 3-Party Diffie-

Hellman assumption, f τsi(vi·vc) and fπ will contain terms of gbc and gac respectively, where the
simulator cannot compute, and only with the help of Ztii the simulator can cancel them and form
the challenge ciphertext, i.e., let Zi contain the term gc and ti contain the terms b and a, so that
the terms gbc and gac in f τsi(vi·vc) and fπ can be canceled out by those in Ztii , while Q′′′i = gti can
be formed using terms A = ga and B = gb. Details are given in Appendix B.2, i.e. the proof of
Lemma 1.

4.4 AugCP-ABE Security

The following Theorem 2 and 3 prove that our AugCP-ABE scheme is message-hiding, and Theo-
rem 4 prove that our AugCP-ABE scheme is index-hiding.

Theorem 2. Under the Assumption 1, the General Subgroup Decision Assumption, the 3-Party
Diffie-Hellman Assumption in a Subgroup, and the Source Group q-Parallel BDHE Assumption in
a Subgroup, no polynomial time adversary can win GameAMH1

with non-negligible advantage.
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Proof. Note that the structures of CP-ABE part of our AugCP-ABE scheme are similar to that of
the CP-ABE scheme in [16], the proof of Theorem 2 is also similar to that of [16]. For simplicity,
here we prove the theorem by reducing the message-hiding property of our AugCP-ABE scheme in
GameAMH1

to the security of CP-ABE scheme in [16]. The proof details can be found in Appendix B.1.

Theorem 3. No polynomial time adversary can win the game GameAMHK+1
with non-negligible ad-

vantage.

Proof. The argument for message-hiding in GameAMHK+1
is very straightforward since an encryption

to index K+ 1 = (m+ 1, 1) contains no information about the message. The simulator simply runs
actual SetupA and KeyGenA algorithms and encrypts the message Mb by the challenge access policy
A∗ and index (m + 1, 1). Since for all i = 1 to m, the values of Ti = E ŝii contains no information
about the message, the bit b is perfectly hidden and MHA

K+1AdvA = 0.

Theorem 4. Suppose that the 3-Party Diffie-Hellman Assumption in a Subgroup (defined in [16]),
the 3-Party Diffie-Hellman Assumption (defined in [9]) and the Decisional Linear Assumption hold.
Then no polynomial time adversary can win GameAIH with non-negligible advantage.

Proof. Theorem 4 follows from the following Lemma 1 and Lemma 2 immediately.

Lemma 1. Suppose that the 3-Party Diffie-Hellman Assumption in a Subgroup holds. Then no
polynomial time adversary can distinguish between an encryption to (̄i, j̄) and (̄i, j̄ + 1) in GameAIH
with non-negligible advantage.

Proof. In GameAIH, the adversary A will eventually behave in one of two different ways:

Case I: In Key Query phase, A will not submit ((̄i, j̄), S(̄i,j̄)) for some attribute set S(̄i,j̄) to query
the corresponding private key. In Challenge phase, A submits a message M and a non-empty
attribute set S∗. There is not any restriction on S∗.

Case II: In Key Query phase, A will submit ((̄i, j̄), S(̄i,j̄)) for some attribute set S(̄i,j̄) to query
the corresponding private key. In Challenge phase, A submits a message M and a non-empty
attribute set S∗ with the restriction that S(̄i,j̄) does not satisfy the corresponding strictest access
policy AS∗ (i.e. S∗ \ S(̄i,j̄) 6= ∅).

The Case I is easy to handle using the similar proof ideas in [9] as the adversary will not query
a private key with the challenge index (̄i, j̄). The Case II captures the index-hiding requirement
for CP-ABE in that even if a user has a key with index (̄i, j̄) he cannot distinguish between an
encryption to (AS∗ , (̄i, j̄)) and (AS∗ , (̄i, j̄ + 1)) if the corresponding attribute set S(̄i,j̄) does not
satisfies AS∗ . This is the most challenging part of achieving the strong traceability in CP-ABE
securely and efficiently, and our particular construction (of the crucial components Ztii (in Q′i) and
Q′′′i = gti in the ciphertext) is driven by and serves this aim. These ciphertext components are
crucial for the proof to use the underlying assumption to simulate the real attack game when A
behaves in Case II. The proof details of Lemma 1 can be found in Appendix B.2.

Lemma 2. Suppose that the 3-Party Diffie-Hellman Assumption in a Subgroup (defined in [16]),
the 3-Party Diffie-Hellman Assumption (defined in [9]) and the Decisional Linear Assumption hold.
Then no polynomial time adversary can distinguish between an encryption to (̄i,m) and (̄i + 1, 1)
in GameAIH with non-negligible advantage.
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Proof. Similar to the proof of Lemma 6.3 in [9], to prove this lemma we define the following hybrid
experiments: H1: Encrypt to (̄i, j̄ = m); H2: Encrypt to (̄i, j̄ = m+1); and H3: Encrypt to (̄i+1, 1).
Lemma 2 follows from the following Claim 1 and Claim 2.

Claim 1. Suppose that the 3-Party Diffie-Hellman Assumption in a Subgroup holds. Then no poly-
nomial time adversary can distinguish between experiments H1 and H2 with non-negligible advan-
tage.

Proof. The proof is identical to that of Lemma 1.

Claim 2. Suppose that the 3-Party Diffie-Hellman Assumption and the Decisional Linear Assump-
tion hold. Then no polynomial time adversary can distinguish between experiments H2 and H3 with
non-negligible advantage.

Proof. The indistinguishability of H2 and H3 can be proved using a proof similar to that of
Lemma 6.3 in [9], which was used to prove the indistinguishability of similar hybrid experiments
for their Augmented Broadcast Encryption (AugBE) scheme. For simplicity, we will prove Claim 2
by a reduction from our AugCP-ABE scheme to the AugBE scheme in [9]. The proof details can
be found in Appendix B.3.

5 Policy-Specific Decryption Blackbox

In previous sections, we considered the traceability against key-like decryption blackboxes, which
allow a seller (on eBay) to advertise the alleged decryption privilege of a blackbox D by an attribute
set SD. The seller can claim that D can decrypt a ciphertext (with at least a non-negligible proba-
bility) if the ciphertext access policy A is satisfied by SD. Note that A can be any arbitrary access
policy as long as it can be satisfied by SD. This type of decryption blackboxes are very powerful and
therefore, could also be one of the most crucial issues to solve in practice using a blackbox tracing
algorithm. In this section, we focus our attention on another interesting scenario which requires
us to deal with another type of decryption blackboxes, which we call it a policy-specific decryption
blackbox.

Policy-Specific Decryption Blackbox on Sale. Attempting to invalidate the possible tracing
algorithm (such as the one we proposed above), a malicious user may build and sell a decryption
blackbox which decrypts ciphertexts with a specific access policy only. Such a decryption blackbox,
which we call it a policy-specific decryption blackbox, has weaker decryption ability than that of
the previous key-like decryption blackbox, as it decrypts ciphertexts with a specific access policy
only rather than any arbitrary access policy as long as it is satisfied by a specific attribute set. In
practice, a seller or a malicious user may set the price lower for such a policy-specific decryption
blackbox, and advertises that it can decrypt any ciphertexts associated with access policy AD.
Below is another scenario, which we call it “found-in-the-wild”, where policy-specific decryption
blackboxes may be concerned.

A law enforcement agency gets a warrant to search a suspect’s computer and finds a decryption
blackbox. As the suspect might try to destroy evidence, the explicit description of the blackbox’s
(decryption) ability might be gone, while the law enforcement agency only has certain clue on the
certain access policy associated to the ciphertexts that the blackbox can decrypt.

Though the corresponding attribute set is not available and only a specific access policy AD is
known that the associated ciphertexts can be decrypted by a policy-specific decryption blackbox,
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interesting, we notice that the AugCP-ABE scheme in Sec. 4 also implies a fully secure BT-CP-ABE
scheme with (selective) traceability against this policy-specific decryption blackbox. On its formal
definition, it is similar to that of key-like decryption blackbox, with the following differences:

1. Trace algorithm: The tracing algorithm takes an access policy AD as input, i.e. TraceD(PP,AD, ε)
and the rest is the same as before.

2. GameTR: In the (Policy-specific) Decryption Blackbox Generation phase, the adversary A outputs
a decryption blackbox D associated with an access policy AD and a non-negligible probability
ε. A wins GameTR if

(a) Pr[D(Encrypt(PP,M,AD)) = M ] ≥ ε, where the probability is taken over the random choices
of message M and the random coins of D.

(b) KT = ∅, or KT 6⊆ KD,
or (∀kt ∈ KT , Skt does not satisfy AD ).

3. GameIH: We do not need the concept of strictest access policy here, i.e., in the Challenge
phase, A submits a message M and an access policy A∗, and the challenger sends CT ←
EncryptA(PP,M,A∗, k̄ + b) to A. Here we have to define a weaker model of GameIH, where A is
required to declare A∗ before seeing the public parameter, and the defined index-hiding property
is referred to as selective index-hiding.

4. Similar to Theorem 1, we can show that an AugCP-ABE with message-hiding and (selective)
index-hiding properties implies a secure and (selectively) traceable BT-CP-ABE against policy-
specific decryption blackbox.

To prove the message-hiding and index-hiding properties of the AugCP-ABE scheme under
the definition above for policy-specific decryption blackbox, we only need to modify a few proofing
details of Lemma 1, and the proof idea is similar to the current one for key-like decryption blackbox.
In the proof of Lemma 1 for key-like decryption blackbox, as the challenge ciphertext is generated
using the strictest access policy of the challenge attribute set S∗, we can have a guess on a particular
attribute x̄ and consequently prove the index-hiding against adaptive adversaries. However, in the
case of policy-specific decryption blackbox, the challenge ciphertext is generated using the challenge
access policy A∗, where it is hard to have a successful guess unless we consider only the selective
adversaries. In summary, the resulting BT-CP-ABE scheme is fully secure and selectively traceable
against policy-specific decryption blackbox.

6 Related Work

Sahai and Waters [22] introduced Attribute-Based Encryption (ABE) for addressing the fuzzy
identity matching problem in IBE. Goyal et al. [11] later formalized the notions of CP-ABE and Key-
Policy ABE (KP-ABE). KP-ABE systems available in the literature include [21,15,20,1], however,
these systems do not address the traceability problem.

Katz and Schröder [14] introduced the notion of traceability in the context of predicate encryp-
tion [13], where they proposed a generic construction that adds traceability to any inner-product
predicate encryption (IPE) scheme with the price of adding overhead linear in K (the number of
users) to the original scheme. Note that although IPE (e.g., the most expressive schemes to date
in [13]) implies IBE, BE and KP-ABE, it cannot efficiently implement the functions of expressive
CP-ABE. The advances of our work is making are twofold in the sense that we add traceability
(1) to an existing expressive CP-ABE scheme (2) at the expense of sub-linear (i.e.

√
K) overhead,

although our result is specific rather than generic as [14] is.
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7 Conclusion

In this paper, we proposed a new CP-ABE scheme that simultaneously supports fully collusion-
resistant (and public) blackbox traceability and high expressivity (i.e., supporting any monotonic
access structures), as well as without the one-use restriction. The scheme is proved secure against
adaptive adversaries in the standard model. For the traceability against key-like decryption black-
box, the scheme is proved traceable against adaptive adversaries in the standard model, and for
the traceability against policy-specific decryption blackbox, the scheme can be proved traceable
against selective adversaries in the standard model. Compared with the most efficient conventional
(non-traceable) CP-ABE schemes currently available with high expressivity and full security in the
standard model, the new CP-ABE adds fully collusion-resistant (and public) blackbox traceability
with the price of adding only O(

√
K) elements in the ciphertext and public key.
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12. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In:
Public Key Cryptography. Lecture Notes in Computer Science, vol. 6056, pp. 19–34. Springer (2010)

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner
products. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 4965, pp. 146–162. Springer (2008)
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A Correctness

Correctness. Assume the encrypted message is M and the encryption index is (̄i, j̄). For i ≥ ī we
have

e(Ki,j , Qi) · e(K ′′′i,j , Q′′′i )

e(K ′i,j , Q
′
i) · e(K ′′i,j , Q′′i )

=
e(gαigricjfσi,jhδi,jR, gτsi(vi·vc))e(Z

σi,j
i R′′′, gti)

e(gσi,jR′, f τsi(vi·vc)Ztii f
π)e(gδi,jR′′, hτsi(vi·vc))

=
e(gαi , gτsi(vi·vc))e(gricj , gτsi(vi·vc))

e(gσi,j , fπ)
.

If i ≥ ī ∧ j ≥ j̄: we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , Hτvc
j · gκwj )

=
1

e3(grisivi , gcjτvc)

=
1

e(g, g)risicjτ(vi·vc)
,

If i > ī ∧ j < j̄: note that for i > ī, we have (vi · χ3) = 0 (since vi ∈ span{χ1,χ2}), then we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))
=

1

e(g, g)risicjτ(vi·vc)
,

19



If i = ī∧j < j̄: note that for i = ī, we have that (vi ·χ3) 6= 0 happens with overwhelming probability
(since vi is randomly chosen from Z3

N ), then we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))
=

1

e(g, g)risicjτ((vi·vc)+µj(vi·χ3))
,

Thus from the values of Ti, DP and DI , for M ′ = Ti/(DP ·DI) we have that: (1) if (i > ī) ∨ (i =
ī ∧ j ≥ j̄), then M ′ = M ; (2) if i = ī ∧ j < j̄, then M ′ = M · e(g, g)τsiricjµj(vi·χ3); (3) if i < ī, then
M ′ has no relation with M .

B Proofs

B.1 Proof of Theorem 2

Theorem 2 follows from the following Lemma 3 and Lemma 4.

Lemma 3. [16] Under the Assumption 1, the General Subgroup Decision Assumption, the 3-Party
Diffie-Hellman Assumption in a Subgroup, and the Source Group q-Parallel BDHE Assumption in
a Subgroup, the CP-ABE scheme in [16] is fully secure.

Proof. It follows from Theorem 1 of [16] immediately.

Lemma 4. Suppose the CP-ABE scheme in [16] is fully secure. Then for our AugCP-ABE scheme
no polynomial time adversary can win GameAMH1

with non-negligible advantage.

Proof. Suppose there is a PPT adversaryA that can break our AugCP-ABE scheme ΣA in GameAMH1

with non-negligible advantage MHA
1 AdvA, we construct a PPT algorithm B to break the CP-ABE

scheme (denoted by Σcpabe) in [16] with advantage AdvBΣcpabe, which equals to MHA
1 AdvA.

Setup. B receives the public parameter6 PPcpabe = (N, g3, g, g
a, gb, e(g, g)α, {Ux = gax}x∈U )

from the challenger, where g ∈ Gp1 and g3 ∈ Gp3 are the generators of subgroups Gp1 and Gp3

respectively, and a, b, α, ax(x ∈ U) ∈ ZN are random exponents. B randomly chooses {α′i, ri, zi ∈
ZN}i∈[m], {cj ∈ ZN}j∈[m], then gives A the public parameter PP:

g, f = ga, h = gb, {Ei = e(g, g)αe(g, g)α
′
i}i∈[m],

{Gi = gri , Zi = gzi}i∈[m], {Hj = gcj}j∈[m], {Ux}x∈U .

Note that B implicitly chooses {αi ∈ ZN}i∈[m] such that {α+ α′i ≡ αi mod p1}i∈[m].

6 Note that: (1) we slightly changed the variable names in the underlying CP-ABE scheme to better suit our proof;
and (2) in the original scheme of [16] g3 is in the master secret key rather than in the public parameter, as g3 is
never used in encryption or decryption. Publishing g3 in the public parameter will not affect the security of the
scheme, as in the proof the simulator receives g3 explicitly from the underlying assumptions and can provide it to
the adversary in the public parameter.
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Phase 1. To respond to A’s query for ((i, j), S(i,j)), B submits S(i,j) to the challenger, and receives

a private key SKcpabe
S(i,j)

=
(
K̃ = gαgaσgbδR, K̃ ′ = gσR′, K̃ ′′i,j = gδR′′, {K̃x = UσxRx}x∈S(i,j)

)
, where

σ, δ ∈ ZN , R,R′, R′′, Rx(x ∈ S(i,j)) ∈ Gp3 are randomly chosen and unknown to B. B randomly
chooses R′′′ ∈ Gp3 , then gives A

SK(i,j),S(i,j)
=
(
Ki,j , K

′
i,j , K

′′
i,j , K

′′′
i,j , {Ki,j,x}x∈S(i,j)

)
=
(
K̃gα

′
igricj , K̃ ′, K̃ ′′, (K̃ ′)ziR′′′, {K̃x}x∈S(i,j)

)
.

Note that R′′′ makes the Gp3 part of K ′′′i,j uncorrelated to the Gp3 part of K ′i,j , this is why our
simulator needs g3. The distribution of the private keys is same with that of the real scheme, where
σi,j and δi,j are implicitly chosen such that σi,j = σ, δi,j = δ.

Challenge. A submits to B an LSSS matrix (A∗, ρ) and two equal length messages M0,M1. B
submits ((A∗, ρ), M0,M1) to the challenger, and receives the challenge ciphertext in the form of
CT cpabe =

〈 (A∗, ρ), C̃ = Mb · e(g, g)απ̃, C̃0 = gπ̃, C̃ ′0 = gbπ̃,

{C̃k = gaA
∗
k·ũU−ξ̃kρ(k) , C̃

′
k = gξ̃k}lk=1 〉,

where ũ = (π̃, ũ2, . . . , ũn) ∈ ZnN and {ξ̃k ∈ ZN}lk=1 are randomly chosen and unknown to B.
B randomly chooses κ, τ, s′1, . . . , s

′
m, t1, . . . , tm ∈ ZN , vc, w1, . . . ,wm ∈ Z3

N , ξ
′
1, . . . , ξ

′
l ∈

ZN , u′ = (π′, u′2, . . . , u
′
n) ∈ ZnN , and rx, ry, rz ∈ ZN . Then it sets χ1 = (rx, 0, rz), χ2 =

(0, ry, rz),χ3 = (−ryrz,−rxrz, rxry), and creates the challenge ciphertext CT = 〈(A∗ρ), (Ri,R
′
i, Qi,

Q′i, Q
′′
i , Q

′′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k)
l
k=1〉 for (̄i = 1, j̄ = 1) as follows:

1. For each i ∈ [m]: since ī = 1, it randomly chooses v1 ∈ Z3
N and vi ∈ span{χ1,χ2} for i > 1. It

sets

Ri = G
s′ivi
i · C̃

ri
τ(vi·vc)

vi

0 , R′i = G
κs′ivi
i · C̃

κri
τ(vi·vc)

vi

0 ,

Qi = gτs
′
i(vi·vc)C̃0, Q′i = f τs

′
i(vi·vc)Ztii f

π′ ,

Q′′i = hτs
′
i(vi·vc)C̃ ′0, Q′′′i = gti ,

Ti = C̃ · e(gα′i , C̃0) · Eτs
′
i(vi·vc)

i .

2. For each j ∈ [m]: Cj = Hτvc
j · gκwj , C ′j = gwj .

3. For each k ∈ [l]: Pk = fA
∗
k·u
′
U
−ξ′k
ρ(k)/C̃k, P ′k = gξ

′
k/C̃ ′k.

Note that B implicitly chooses s1, . . . , sm, ξ1, . . . , ξl ∈ ZN and u = (π, u2, . . . , un) ∈ ZnN such that

s′i +
π̃

τ(vi · vc)
≡ si mod p1 ∀i ∈ {1, . . . ,m},

ξ′k − ξ̃k ≡ ξk mod p1 ∀k ∈ {1, . . . , l},
π′ − π̃ ≡ π mod p1, u′d − ũd ≡ ud mod p1 ∀d ∈ {2, . . . , n}.

Phase 2. Same with Phase 1.

Guess. A gives B a b′. B gives b′ to the challenger.

Note that the distributions of the public parameter, private keys and challenge ciphertext that
B gives A are same as the real scheme, we have AdvBΣcpabe = MHA

1 AdvA.
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B.2 Proof of Lemma 1

Proof. Suppose there exists a polynomial time adversary A that breaks the index-hiding game with
advantage ε. We build a PPT algorithm B to solve a 3-Party Diffie-Hellman problem instance in a
subgroup as follows.
B receives the 3-Party Diffie-Hellman challenge in a subgroup from the challenger as (N,G,GT , e,

g, g2, g3, A = ga, B = gb, C = gc, T ), where G is a bilinear group of order N = p1p2p3, Gpi is the
subgroup of order pi in G (i = 1, 2, 3), g, g2 and g3 are generators of Gp1 , Gp2 and Gp3 respectively,
and a, b, c are randomly chosen from ZN . B’s goal is to determine T = gabc or T is a random element
from Gp1 .

Setup. Firstly, B randomly chooses an attribute x̄ ∈ U to guess that x̄ will be in the challenge
attribute set S∗ (regardless of whether A behaves in Case I or Case II) and will not be in S(̄i,j̄)

if A behaves in Case II. Then B randomly chooses

{αi ∈ ZN}i∈[m], {ri, z′i ∈ ZN}i∈[m]\{̄i}, {cj ∈ ZN}j∈[m]\{j̄},

{ax ∈ ZN}x∈U\{x̄}, r′ī, zī, c
′
j̄ , a

′
x̄ ∈ ZN ,

and η, θ ∈ ZN . B gives A the public parameter PP:(
g, f = Cη, h = gθ, {Ei = e(g, g)αi}i∈[m],

{Gi = gri , Zi = Cz
′
i}i∈[m]\{̄i}, Gī = Br′

ī , Zī = gzī

{Hj = gcj}j∈[m]\{j̄}, Hj̄ = C
c′
j̄ ,

{Ux = gax}x∈U\{x̄}, Ux̄ = Ca
′
x̄

)
.

Note that B implicitly chooses rī, cj̄ , ax̄ ∈ ZN and {zi ∈ ZN}i∈[m]\{̄i} such that

br′ī ≡ rī mod p1, cc′j̄ ≡ cj̄ mod p1, ca′x̄ ≡ ax̄ mod p1,

cz′i ≡ zi mod p1 ∀i ∈ [m] \ {̄i}.

Key Query. To respond to A’s query for ((i, j), S(i,j)),

– if (i, j) 6= (̄i, j̄): B randomly chooses σi,j , δi,j ∈ ZN and R,R′, R′′, R′′′, Rx(x ∈ S(i,j)) ∈ Gp3 , then
creates the private key SK(i,j),S(i,j)

=
(
Ki,j , K

′
i,j , K

′′
i,j , K

′′′
i,j , {Ki,j,x}x∈S(i,j)

)
as

Ki,j =


gαigricjfσi,jhδi,jR, : i 6= ī, j 6= j̄

gαiBr′icjfσi,jhδi,jR, : i = ī, j 6= j̄

gαiCric
′
jfσi,jhδi,jR, : i 6= ī, j = j̄

K ′i,j = gσi,jR′, K ′′i,j = gδi,jR′′, K ′′′i,j = Z
σi,j
i R′′′,

Ki,j,x = U
σi,j
x Rx ∀x ∈ S(i,j).

– if (i, j) = (̄i, j̄): it means that A behaves in Case II. If x̄ ∈ S(i,j), then B aborts and outputs
a random b′ ∈ {0, 1} to the challenger. Otherwise, B randomly chooses σ′

ī,j̄
∈ ZN and sets the

value of σī,j̄ by implicitly setting σ′
ī,j̄
− br′

ī
c′
j̄
/η ≡ σī,j̄ mod p1. In addition B randomly chooses
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δī,j̄ ∈ ZN and R,R′, R′′, R′′′, Rx(x ∈ S(i,j)) ∈ Gp3 . B creates the private key SK(̄i,j̄),S(̄i,j̄)
=(

Kī,j̄ , K
′
ī,j̄
, K ′′

ī,j̄
, K ′′′

ī,j̄
, {Kī,j̄,x}x∈S(̄i,j̄)

)
as

Kī,j̄ = gαīf
σ′
ī,j̄hδī,j̄R, K ′ī,j̄ = g

σ′
ī,j̄B

−r′
ī
c′
j̄
/η
R′,

K ′′ī,j̄ = gδī,j̄R′′, K ′′′ī,j̄ = (g
σ′
ī,j̄B

−r′
ī
c′
j̄
/η

)zīR′′′,

Kī,j̄,x = (g
σ′
ī,j̄B

−r′
ī
c′
j̄
/η

)axRx ∀x ∈ S(i,j).

Challenge. A submits a message M and an attribute set S∗. If x̄ /∈ S∗ then B aborts and outputs
a random b′ ∈ {0, 1} to the challenger. Otherwise, B constructs the LSSS matrix (A∗, ρ) for AS∗ .
Let l × n be the size of (A∗, ρ). Note that S∗ \ {x̄} does not satisfy AS∗ , B first computes a vector
ū ∈ ZnN that has first entry equal to 1 and is orthogonal to all of the rows A∗k of A∗ such that
ρ(k) ∈ S∗ \ {x̄} (such a vector must exist since S∗ \ {x̄} fails to satisfy (A∗, ρ), and it is efficiently
computable). B randomly chooses

τ ′, s1, . . . , sī−1, s
′
ī, sī+1, . . . , sm ∈ ZN ,

t′1, . . . , t
′
ī−1, t̄i, t

′
ī+1, . . . , t

′
m ∈ ZN ,

w1, . . . ,wj̄−1,w
′
j̄ , . . . ,w

′
m ∈ Z3

N ,

{ξ′k ∈ ZN}∀k∈[l] s.t. ρ(k)=x̄, {ξk ∈ ZN}∀k∈[l] s.t. ρ(k)6=x̄,

π′ ∈ ZN , u′ ∈ ZnN ,

with the first entry of u′ equal to zero. It also randomly chooses rx, ry, rz ∈ ZN , and sets χ1 =
(rx, 0, rz),χ2 = (0, ry, rz),χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry).
B randomly chooses (νc,1, νc,2, νc,3) ∈ Z3

N . Let vpc = νc,1χ1 + νc,2χ2 and vqc = νc,3χ3, implicitly
setting vc = a−1vpc+v

q
c, B creates the ciphertext 〈(A, ρ), (Ri,R

′
i, Qi, Q

′
i, Q
′′
i , Q

′′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1,

(Pk, P
′
k)
l
k=1〉 as follows:

1. For each row i ∈ [m]:
– if i < ī: it randomly chooses vi ∈ Z3

N and ŝi ∈ ZN , then sets

Ri = gvi , R′i = Bvi , Qi = gsi , Q′i = fsiZ
t′i
i f

π′ ,

Q′′i = hsi , Q′′′i = gt
′
iAητ

′s′
ī
(vī·v

q
c)/z

′
i , Ti = E ŝii .

– if i = ī: it randomly chooses vī ∈ Z3
N , then sets

Ri = gr
′
ī
s′
ī
vī , R′i = Br′

ī
s′
ī
vī ,

Qi = gτ
′s′
ī
(vī·v

p
c )Aτ

′s′
ī
(vī·v

q
c), Q′i = Cητ

′s′
ī
(vī·v

p
c )Z

t̄i
i f

π′ , Q′′i = Qθi , Q
′′′
i = gt̄i ,

Ti = M · e(gαi , Qi).

– if i > ī: it randomly chooses vi ∈ span{χ1,χ2}, then sets

Ri = grisivi , R′i = Brisivi ,

Qi = Bτ ′si(vi·vpc ), Q′i = Z
t′i
i f

π′ , Q′′i = Qθi , Q
′′′
i = gt

′
iB
−ητ ′s′i(vi·v

p
c )

z′
i A

ητ ′s′
ī
(vī·v

q
c)

z′
i ,

Ti = M · e(gαi , Qi).
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2. For each j ∈ [m]:

– if j < j̄: it randomly chooses µ′j ∈ ZN and implicitly sets the value of µj such that

(ab)−1µ′jνc,3 − νc,3 ≡ µj mod N , then sets

Cj = Bcjτ
′vpc · gcjτ

′µ′jv
q
c ·Bwj , C ′j = gwj .

– if j = j̄: Cj = T
c′
j̄
τ ′vqc ·Bw

′
j , C ′j = g

w′
j̄ · C−c

′
j̄
τ ′vpc .

– if j > j̄: Cj = Bcjτ
′vpc ·Bw

′
j , C ′j = gw

′
j ·A−cjτ ′v

q
c .

3. For each k ∈ [l]:

– if ρ(k) 6= x̄: it sets Pk = fA
∗
k·u
′
U−ξkρ(k) , P ′k = gξk .

– if ρ(k) = x̄: it sets

Pk = fπ
′A∗k·ūfA

∗
k·u
′
C−ax̄ξ

′
k ,

P ′k = gξ
′
kA−ητ

′s′
ī
(vī·v

q
c)(A

∗
k·ū)/ax̄ .

Note that B implicitly chooses κ, τ, sī, ti(i ∈ [m] \ {̄i}) ∈ ZN , wj ∈ Z3
N (j ∈ {j̄, . . . ,m}), π ∈ ZN ,

u ∈ ZnN , and {ξk ∈ ZN}k∈[l] s.t. ρ(k)=x̄ such that

b ≡ κ mod p1, abτ ′ ≡ τ mod p1, s′ī/b ≡ sī mod p1,

∀i ∈ {1, . . . , ī− 1} : t′i + ηaτ ′s′ī(vī · v
q
c)/z

′
i ≡ ti mod p1,

∀i ∈ {̄i+ 1, . . . ,m} :

t′i − ηbτ ′s′i(vi · vpc)/z′i + ηaτ ′s′ī(vī · v
q
c)/z

′
i ≡ ti mod p1,

w′j̄ − cc
′
j̄τ
′vpc ≡ wj̄ mod p1,

∀j ∈ {j̄ + 1, . . . ,m} : w′j − acjτ ′vqc ≡ wj mod p1,

π′ − aτ ′s′ī(vī · v
q
c) ≡ π mod p1, u = πū+ u′,

∀k ∈ [l] s.t. ρ(k) = x̄ :

ξ′k − ηaτ ′s′ī(vī · v
q
c)(A

∗
k · ū)/ax̄ ≡ ξk mod p1.

If T = gabc, then the ciphertext is a well-formed encryption to the index (̄i, j̄). If T is randomly
chosen, say T = gr for some random r ∈ ZN , the ciphertext is a well-formed encryption to the
index (̄i, j̄ + 1) with implicitly setting µj̄ such that ( r

abc − 1)νc,3 ≡ µj̄ mod p1.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger.

Note that when B does not abort, the distributions of the public parameter, private keys and
challenge ciphertext are same as the real scheme. As S∗ 6= ∅ and if A behaves in Case II then the
attribute set S(̄i,j̄) must satisfy S∗ \ S(̄i,j̄) 6= ∅, the event that B does not abort will happen with
probability at least 1/|U|. Thus, B’s advantage in the 3-Party Diffie-Hellman game will be at least
ε/|U|. As of the fully secure CP-ABE schemes in [15,20,16], the size of attribute universe (i.e. |U|)
in our scheme is also polynomial in the security parameter λ. Thus a degradation of O(1/|U|) in
the security reduction is acceptable.
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B.3 Proof of Claim 2

Garg et al. [9, Sec. 5.1] proposed an AugBE schemeΣAugBE = (SetupAugBE,EncryptAugBE,DecryptAugBE)
and proved that ΣAugBE has index-hiding property. In their proof of Lemma 6.3 in [9], two hybrid
experiments

– HAugBE
2 : Encrypt to (̄i,m+ 1), (i.e. H2 in [9])

– HAugBE
3 : Encrypt to (̄i+ 1, 1), (i.e. H5 in [9])

were defined and proved indistinguishable by a sequence of hybrid sub-experiments. Our Claim 2
follows from the following Claim 3 and 4.

Claim 3. [9] Suppose that the 3-Party Diffie-Hellman Assumption and the Decisional Linear As-
sumption hold. Then for scheme ΣAugBE no polynomial time adversary can distinguish between

experiments HAugBE
2 and HAugBE

3 with non-negligible advantage.

Proof. This claim follows from the Lemma 6.3 in [9].

Claim 4. Suppose that for scheme ΣAugBE no polynomial time adversary can distinguish between

experiments HAugBE
2 and HAugBE

3 with non-negligible advantage. Then for our AugCP-ABE scheme
ΣA no polynomial time adversary can distinguish between experiments H2 and H3 with non-negligible
advantage.

Proof. Suppose there is a PPT adversaryA that can distinguish between H2 and H3 for our AugCP-
ABE scheme ΣA with non-negligible advantage, we construct a PPT algorithm B to distinguish
between HAugBE

2 and HAugBE
3 for ΣAugBE with non-negligible advantage.

The game of B distinguishing between HAugBE
2 and HAugBE

3 is played in the subgroup Gp1 of
order p1 in a composite order group GN of order N = p1p2p3. B is given the values of p1, p2 and
p3, and can chooses for itself everything in the subgroup Gp3 .

Setup. The challenger gives B the public key PKAugBE, and due to (̄i,m+1) /∈ {(i, j)|1 ≤ i, j ≤ m},
the challenger gives B all private keys in the set {SKAugBE

(i,j) |1 ≤ i, j ≤ m}:
7

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m],

{Hj = gcj , fj}j∈[m]

)
,

SKAugBE
(i,j) =

(
K̃i,j , K̃

′
i,j , {K̃i,j,j̃}1≤j̃≤m,j̃ 6=j

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,j

j̃
}1≤j̃≤m,j̃ 6=j

)
,

where generator g ∈ Gp1 , elements f1, . . . , fm ∈ Gp1 and exponents {αi, ri ∈ Zp1}i∈[m], {cj ∈
Zp1}j∈[m], σi,j(1 ≤ i, j ≤ m) ∈ Zp1 are randomly chosen.
B randomly chooses θ, z1, . . . , zm, ax(x ∈ U) ∈ ZN , then gives A the following public parameter

PP:

g, f =
∏

1≤j≤m
fj , h = gθ, {Ei, Gi, Zi = gzi}i∈[m],

{Hj}j∈[m], {Ux = gax}x∈U .
7 Note that we slightly changed the variable names in the underlying AugBE scheme to better suit our proof.
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Key Query. To respond to A’s query for ((i, j), S(i,j)), B randomly chooses δi,j ∈ ZN and
R,R′, R′′, R′′′, Rx(x ∈ S(i,j)) ∈ Gp3 , and creates the private key SK(i,j),S(i,j)

=
(
Ki,j , K

′
i,j , K

′′
i,j ,

K ′′′i,j , {Ki,j,x}x∈S(i,j)

)
from SKAugBE

(i,j) as

Ki,j = K̃i,j ·
∏

j̃∈[m]\{j}

K̃i,j,j̃ · h
δi,j ·R,

K ′i,j = K̃ ′i,j ·R′, K ′′i,j = gδi,j ·R′′, K ′′′i,j = (K̃ ′i,j)
zi ·R′′′,

Ki,j,x = (K̃ ′i,j)
ax ·Rx ∀x ∈ S(i,j).

Challenge. A submits a message M and an attribute set S∗. Note that (̄i,m+1) /∈ {(i, j)|1 ≤ i, j ≤
m}, B sets Y = {(i, j)|1 ≤ i, j ≤ m} and submits (M,Y ) to the challenger. The challenger gives B
the challenge ciphertext CTAugBE = 〈(R̃i, R̃

′
i, Q̃i, Q̃

′
i, T̃i)

m
i=1, (C̃j , C̃

′
j)
m
j=1, Y 〉, which is encrypted

to (i∗, j∗) ∈ {(̄i,m+ 1), (̄i+ 1, 1)} and in the form of

1. For each i ∈ [m]:
– if i < i∗: R̃i = gvi , R̃′i = gκvi , Q̃i = gsi ,

Q̃′i = (
∏
ĵ∈Yi fĵ)

si , T̃i = E ŝii .

– if i ≥ i∗: R̃i = Gsivii , R̃′i = Gκsivii , Q̃i = gτsi(vi·vc),

Q̃′i = (
∏
ĵ∈Yi fĵ)

τsi(vi·vc), T̃i = M · Eτsi(vi·vc)i .
2. For each j ∈ [m]:

– if j < j∗: C̃j = H
τ(vc+µjχ3)
j · gκwj , C̃ ′j = gwj .

– if j ≥ j∗: C̃j = Hτvc
j · gκwj , C̃ ′j = gwj .

where κ, τ, si(1 ≤ i ≤ m), ŝi(1 ≤ i < i∗), µj(1 ≤ j < j∗) ∈ Zp1 , vc,wj(1 ≤ j ≤ m),vi(1 ≤
i ≤ i∗) ∈ Z3

p1
, and vi(i > i∗) ∈ span{χ1,χ2} are randomly chosen (where χ1 = (rx, 0, rz),χ2 =

(0, ry, rz),χ3 = (−ryrz,−rxrz, rxry) are for randomly chosen rx, ry, rz ∈ Zp1), and Yi = {j|(i, j) ∈
Y }.

Note that Y = {(i, j)|1 ≤ i, j ≤ m} so that Yi = {1, . . . ,m} for all 1 ≤ i ≤ m, we have that
Q̃′i = (

∏
ĵ∈Yi fĵ)

si = fsi for i < i∗ and Q̃′i = (
∏
ĵ∈Yi fĵ)

τsi(vi·vc) = f τsi(vi·vc) for i ≥ i∗.
B constructs the LSSS matrix (A∗, ρ) for AS∗ . Let A∗ be an l × n matrix, B randomly chooses

t1, . . . , tm, ξ1, . . . , ξl ∈ ZN , u = (π, u2, . . . , un) ∈ ZnN , then creates the ciphertext 〈(A, ρ), (Ri,R
′
i,

Qi, Q
′
i, Q
′′
i , Q

′′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k)
l
k=1〉 as follows:

1. For each i ∈ [m]: Ri = R̃i, R
′
i = R̃′i, Qi = Q̃i, Q

′
i = Q̃′i ·Z

ti
i f

π, Q′′i = Qθi , Q
′′′
i = gti , Ti = T̃i.

2. For each j ∈ [m]: Cj = C̃j , C
′
j = C̃ ′j .

3. For each k ∈ [l]: Pk = fA
∗
k·uU−ξkρ(k) , P ′k = gξk .

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer

to distinguish between HAugBE
2 and HAugBE

3 for scheme ΣAugBE.

As the exponents are applied only to the elements in the subgroup Gp1 , from the view of A,
the distributions of the public parameter, private keys and challenge ciphertext that B gives A are
same as the real scheme. Thus B’s advantage in distinguishing between HAugBE

2 and HAugBE
3 for

scheme ΣAugBE will be exactly equal to A’s advantage in distinguishing between H2 and H3 for
scheme ΣA.
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