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Virtual isomorphisms of ciphers: is AES secure against 

differential / linear attack? 

In [eprint.iacr.org/2009/117] method of virtual isomorphisms of ciphers was proposed for 

cryptanalysis. Cipher is vulnerable to an attack iff isomorphic cipher is vulnerable to this attack. 

That method is based on conjugation, and it is not practical because all round operations except 

one become nonlinear. New isomorphism of AES is proposed, its image IAES has only one 

nonlinear operation IXOR - isomorphic image of XOR of 5 bytes. Maximal probabilities of byte 

differentials are increased about 10-11 times, maximal biases of linear sums are increased about 

3.6 times comparatively to original AES. IAES possesses computable family of differentials of 

IXOR with two active input bytes, zero output difference and probability 1. Zero output 

difference decreases the rate of multiplication of active nonlinearities in differential 

characteristic of IAES. 

 

1. Introduction 

In [12] method of virtual isomorphisms of ciphers was proposed for amplifying 

known cryptanalytic attacks. Ciphers y = C(x, k) and  = (, ) are isomorphic if 

there exists an invertible computable in both directions map y  , x  , k  , 
C  . Usually cipher C is the real one. But family of its isomorphic images  is 

virtual; it exists in imagine of cryptanalyst. This explains the term “virtual” in the 

head of the article. Such technique is not absolutely new. Virtual injective 

homomorphism AES  BES was proposed in [9]. 

Isomorphism of ciphers is not equivalence because it does not act transitively: 

composition of computable maps is not necessary computable (key for one round 

of encryption is easy to compute, but for 10 rounds it is hard). 

Next theorem was proved in [12] for attacks based on known plaintexts and 

ciphertexts. 

Theorem 1. A cipher is vulnerable to a cryptanalytic attack iff isomorphic 

cipher is vulnerable to the attack.  

Hence search of weaknesses of a cipher can be replaced by search of proper 

isomorphism of the cipher. If  is arbitrary substitution and F is a function of 

round encryption, then conjugate function  = 
-1

F determines simple 

isomorphism  conjugation. 

Two substitutions are conjugate iff they have the same cycling type. Hence the 

substitution defined by inversion in field 
2n for sufficiently large n is 

approximately conjugate with affine substitution that consists of cycles of length 2, 

such as XOR with a non-zero constant. Considered in [12] simple virtual 



isomorphism based on conjugated byte substitution is not practical, because its 

image is affine byte substitution, but other byte operations become non-linear. 

There are many byte substitutions that map finite field inversion to affine map by 

conjugation. Used conjugating substitution  was chosen in such a way that it had 

many fixed points.  

The most popular cryptanalytic methods are linear [8] and differential [3] that 

take a large number of known pairs plaintext/ciphertext, and algebraic methods [5, 

6, 11], based on solving systems of polynomial equations that take one or few pairs 

plaintext/ciphertext. Combination of these methods is possible also [1]. 

Let n-bit substitution S maps input vector x = (x1, …, xn) to output vector y = 

(y1, …, yn). If xi, yi are independent variables, then linear function 
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    , ai, bi, c  2, is balanced one. But if xi, yi are algebraically 

dependent (as inputs/outputs of substitution), then probabilities P(f = 0), P(f = 1) 

can differ from 0.5. Difference P(0)  0,5 is the bias of substitution. Diffusion 

maps are usually affine and do not change absolute biases of linear sums. Linear 

operation XOR with the key does not change current linear sum. 

Linear cryptanalysis search such linear functions dependent on plaintext, 

ciphertext, key (and possibly intermediate texts) bits. If there is sufficient number 

of plaintext/ciphertext pairs, then the wanted key can be computed as the most 

likely one.  

Let x, x is a pair of n-bit binary inputs of substitution S, y = S(x), y = S(x). 

Denote x = x + x, y = y + y, where y = 0 iff x = 0. For a substitution S one 

can compute probability of differential (x, y). We can consider the “move” of 

input differential through the cipher. The maps used in the cipher can change the 

current differential and its probability. Probability of current differential equals to 

product of probabilities of corresponding differentials of maps of the cipher. Affine 

operations (XOR and diffusion map) has probabilities only 1 or 0, and hence they 

sometimes do not change probabilities of differentials. Differential cryptanalysis is 

based on property that distribution of probabilities of differentials of nonlinear 

substitution is not uniform. Linear cryptanalysis is similar to differential one. 

Usually nonlinear substitution of a cipher usually has special properties: its 

maximal probabilities of differentials and absolute biases of linear sums are as 

small as possible.  

Such substitution is used in standard AES. It is composition of finite field 

inversion and affine map. Its maximal probability of differential is 4/256 and 

maximal absolute bias of linear sum is 16/256. Diffusion map of AES (“shift rows” 

and “mix columns”) is linear and can be written as the block matrix. Apparently 

complexity of linear and differential attack exceeds the key enumeration. 

In this paper we show that conjugating substitution  that maps finite field 

inversion (with permuted 0 and 1) to XOR with a constant can have at most 130 

fixed points, there exist 2
42

 such substitutions. We propose new virtual 

isomorphism based on 4 auxiliary affine equivalent byte substitutions that maps 

AES to IAES (isomorphic AES). IAES has only one non-linear map, it is image of 



XOR operation that increments maximal probability of round differential reduced 

to one byte about 10-11 times and maximal absolute bias about 3,6 times 

comparatively to original AES. Brief estimation shows that probability of 

differential is changed from p in AES to p  in IAES, and then we can assume 

that complexity of differential cryptanalysis of IAES is about a square root of 

complexity of differential cryptanalysis of AES. Besides of that IAES has 

computable collisions that give a family of differentials with zero output difference 

that have probability 1. Zero output difference decreases the rate of multiplication 

of active nonlinearities in differential characteristic of IAES. 

 

2. Algebraic background 

If S, T are elements of symmetric group G, then map S: T  STS
-1

 is the 

conjugation. Conjugation is equivalence. If S runs through all group G, we obtain 

the class of T.  

Let G is subgroup of symmetric group of substitutions of n-bit words, G is 

generated by one, two or more substitutions, and x is input of substitution. Orbit of 

x is the set of n-bit words that is the union of images of x under action group G. 

Belonging two words to the same orbit is equivalence. Hence the set of n-bit words 

if union of orbits defined by G. Two orbits coincide or have no common elements. 

If G is generated by one substitution S, then orbits are cycles of S. List of 

lengths of cycles define cycling type of substitution. Conjugation maps cycle of 

one substitution to cycle of the same length of other substitution. Hence two 

substitutions are conjugate iff they have the same cycling type. 

Affine substitution is given by equation y = Lx + c, where L is invertible matrix 

over 2, if c = 0 substitution is linear. Affine substitutions form subgroup of 

symmetric group. Substitutions S, T are affine equivalent if the equality holds S = 

ATB for some affine substitutions A, B. Affine equivalence of substitutions can be 

effectively recognized [4]. 

Let y = T(x)  arbitrary map of the set of n-bit words to itself. This map can be 

given also using interpolating polynomials. Such polynomials form the finite ring. 

Usually ring of NAF polynomials is used: 

n[x] = 2[x1, …, xn]/(x1
2
 + x1, …, xn

2
 + xn). 

Ring n[x] is finite and hence it is Artinian and has dimension 0 [2]. In this ring 

intersection of ideals coincides with their product. Each prime ideal is the maximal 

one; it consists of polynomials that take zero in the given point. Any ideal can be 

uniquely represented as the product of prime ideals. There are 2
n
 prime ideals. For 

any f  n[x] equality holds f(f + 1) = 0, so non-constant polynomial divides 0. 

Prime ideal can be given by one polynomial, such as 1 + x1…xn. So each ideal 

can be given by one polynomial. Set of n-bit vectors form affine space n
. 



Automorphisms of ring n[x] preserves constants 0 and 1 and maps prime ideal 

to prime ideal (assumption that image of prime ideal is product of two different 

ideals leads to contradiction, because such map is no invertible). Each permutation 

of prime ideals (i.e. substitution that acts on the set of n-bit vectors) is 

automorphism of ring n[x] and back, any automorphism defines such substitution. 

Any substitution is defined by set of polynomials. A map of ring of polynomials 

to itself is regular if it is given by set of polynomials that define change of 

variables. If inverse regular map of the ring exists, this map is biregular. Hence all 

automorphisms of n[x] are biregular. 

Probabilities differentials of n-bit substitution can be written as square matrix of 

size 2
n
 [7]. Rows and columns of the matrix correspond to vectors x, y of 

differential (x, y), so any differential corresponds to element of the matrix. 

Elements of the matrix of differentials are numbers of appearance of given 

differential if x runs through all set of 2
n
 vectors.  

Similarly biases of linear sums i i j j

i j

a x b y   of n-bit substitution can be 

represented by square matrix of size 2
n
 which rows and columns correspond to 

i i

i

a x , j j

j

b y . Element of the matrix is the numbers of case when equality 

0i i j j

i j

a x b y    holds minus 2
n-1

, this defines the bias of linear sum. 

Any substitution y = S(x) can be given by set of polynomials of x, y that take 

zero if equality y = S(x) holds. Any set of polynomials defines ideal A, set of 

zeroes of the ideal is variety V(A), and back any set of points of n
 as variety 

defines some ideal. 

Let A  B is the sum of ideals. It is ideal generated by polynomials of A and 

B. Obviously A  B  A, V(A  B)  V(A). 

Define probability of differential 
1

( ,..., )
ki ix x x  of arbitrary ideal A  n[x]. 

Let A = (f(x)). Denote D(f, xi) partial derivative of f by variable xi. Denote 

D(f, {xi, xj}) = D(f, xi) + D(f, xj) + D(D(f, xi), xj),  

and farther by induction: 
1 1 1

( ,{ ,..., }) ( ( ,{ ,..., }), )
l l li i i i iD f x x D D f x x x


 . It is obvious 

that 
1

( ,{ ,..., })
ki iD f x x  is a polynomial and hence it defines corresponding ideal. 

Probability of differential 
1

( ,..., )
ki ix x x  of ideal A = (f) is 

1
# (( )) ( ( ,{ ,..., }))

# (( ))

ki iV f D f x x

V f


. 

This definition generalizes the definition if probability of differential of 

substitution. In such a way we can define probability of differential for any map of 

the set of s-bit words to the set of t-bit words. 



Similarly we can define nonlinearity of ideal as Hamming distance between 

polynomial that defines principal ideal and set of affine functions, but this distance 

is counted only in variety of ideal. This definition generalizes definitions of 

nonlinearity of Boolean functions and nonlinearity of substitutions. 

 

3. Isomorphisms of AES 

Let x, y, k are plaintext, ciphertext and key of cipher C, , ,  are plaintext, 

ciphertext and key of cipher . C and  are isomorphic (C  ) iff there exists 

computable in both directions bijection x  , y  , k   such that equalities y 

= C(x, k) and  = (, ) hold simultaneously. Cipher C is vulnerable with respect 

to some attack iff cipher  is vulnerable with respect to the same attack. 

Technique of virtual isomorphisms can be illustrated as application to AES. 

Standard AES has 10, 12 or 14 rounds, block size is 128 bits, key size is 128, 

192 or 256 bits [10]. Each round has next operations.  

1. Byte substitution S for all 16 bytes of the block. Substitution is defined as 

composition of exponentiation y = x
254

 in field 256 = 2[t]/(t
8
 + t

4
 + t

3
 + t + 1) and 

affine map over 2. Exponent y is presented as 8-bit vector y over 2, and output of 

S is z = Ly + c, where L = 

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

 
 
 
 
 
 
 
 
 

, c = 

1
1
0
0
0
1
1
0

 
 
 
 
 
 
 
 
 

. Any bit of vector c is the 

trace of corresponding row of matrix L (considered as element of 256). Denote 

M(x) = Lx + c. Substitution M consists of cycles of length 4. Maximal probability 

of differential of S is 4/256, maximal bias of linear sums is 16/256. 

2. Diffusion map (shift rows and mix columns) can be represented by matrix W 

over 256: 

W = 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0

t t
t t

t t
t t

t t
t t

t t
t t

t t
t t

t t

















1 0 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

t t
t t

t t
t t

t t

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
   

 



3. XOR addition of the text and the round key. This operation can be joined 

with XOR addition of bytes in diffusion map. 

So AES can be described in terms of byte exponentiation, byte affine 

substitution, byte multiplication in field 256 and byte XOR addition. 

Matrix W can be considered as block matrix over 2 with block size 8. Elements 

0, 1, t, 1 + t of W over 256 correspond to zero block, identity block E, block  

Lt = 

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 1 1 0 0 0

 
 
 
 
 
 
 
 
 

 and block Lt1 = Lt + E. Hence we can consider diffusion 

map as block matrix with four types of blocks. 

Since multiplication in 256 is commutative, there holds equality LtLt = Lt1Lt, but 

both conditions M(Lt(x) = Lt(M(x)), M(Lt1(x) = Lt1(M(x)) are impossible for any x. 

Denote U as exponentiation in 256. Farther we will decompose AES 

substitution S = UM and join affine substitution M to diffusion maps. So blocks of 

matrix W are changed. Zero block stays the zero block, identity block is changed 

by affine map M, block Lt is changed by affine map Mt = LtM, block Lt1 is changed 

by affine map Mt1 = Lt1M. XOR addition of bytes does not change. 

Substitution U has 127 cycles of length 2 and two cycles of length 1: U(0) = 0, 

U(1) = 1. We will approximately change U by substitution T: T(1) = 0, T(0) = 1, 

T(x) = U(x) for x  0, 1. Then equality U(x) = T(x) holds with high probability 

1  2
-7

 = 0,92. Substitution T has only cycles of length 2. 

T= {1, 0, 141, 246, 203, 82, 123, 209, 232, 79, 41, 192, 176, 225, 229, 199, 116, 180, 170, 75, 153, 43, 96, 95, 88, 

63, 253, 204, 255, 64, 238, 178, 58, 110, 90, 241, 85, 77, 168, 201, 193, 10, 152, 21, 48, 68, 162, 194, 44, 69, 146, 

108, 243, 57, 102, 66, 242, 53, 32, 111, 119, 187, 89, 25, 29, 254, 55, 103, 45, 49, 245, 105, 167, 100, 171, 19, 84, 

37, 233, 9, 237, 92, 5, 202, 76, 36, 135, 191, 24, 62, 34, 240, 81, 236, 97, 23, 22, 94, 175, 211, 73, 166, 54, 67, 244, 

71, 145, 223, 51, 147, 33, 59, 121, 183, 151, 133, 16, 181, 186, 60, 182, 112, 208, 6, 161, 250, 129, 130, 131, 126, 

127, 128, 150, 115, 190, 86, 155, 158, 149, 217, 247, 2, 185, 164, 222, 106, 50, 109, 216, 138, 132, 114, 42, 20, 159, 

136, 249, 220, 137, 154, 251, 124, 46, 195, 143, 184, 101, 72, 38, 200, 18, 74, 206, 231, 210, 98, 12, 224, 31, 239, 

17, 117, 120, 113, 165, 142, 118, 61, 189, 188, 134, 87, 11, 40, 47, 163, 218, 212, 228, 15, 169, 39, 83, 4, 27, 252, 

172, 230, 122, 7, 174, 99, 197, 219, 226, 234, 148, 139, 196, 213, 157, 248, 144, 107, 177, 13, 214, 235, 198, 14, 

207, 173, 8, 78, 215, 227, 93, 80, 30, 179, 91, 35, 56, 52, 104, 70, 3, 140, 221, 156, 125, 160, 205, 26, 65, 28}. 

It is reasonable to choose conjugate image  of T as affine substitution (for 

example, M
2
 or XOR with non-zero constant). Then probabilities of conjugate 

substitution  are only 0 and 1 and biases of linear sums are only 0, 0.5. 

Cryptanalyst may choose arbitrary isomorphism. Complexity of 

differential/linear attack on isomorphic cipher will be reduced if probabilities of 

differentials (biases of linear sums) will be sufficiently large. 

Define the distance d(S1, S2) between two n-bit substitutions as number of 

inputs for which inequality holds S1(x)  S2(x). Distance between substitution S(x) 

and group Aff of affine substitutions is min(d(S, A)), if A runs through all group 



Aff. Usually the nearer is S to Aff, the larger are probabilities of differentials and 

absolute biases of linear sums. 

If affine substitution A is the identity, then distance between  and identity 

substitution is number of points where inequality holds (x)  x. Hence if we want 

to increase probabilities of differentials, linear sums of substitution , it is 

sufficient to provide large number of fixed points of . 

Let G is group that acts on the set of n-bit vectors. Denote Orb(x, G) as the orbit 

of element x  M with respect to G. Choose conjugating substitution  in such a 

way that it would have many fixed points. For computing  at first find orbits of 

set of 8-bit vectors with respect to group T,  generated by substitutions T and 

. 

Theorem 2. Let S1, S2 are n-bit substitutions that consist of cycles of length 2, 

and S1, S2 is the group generated by those substitutions. Then #Orb(x, S1, S2) is 

even. 

Proof. Since S1
2
 = S2

2
 = E (identity substitution), group S1, S2 consists of 

substitutions {E, S1, S2, S1S2, S2S1, S1S2S1, S2S1S2, S1S2S1S2, …}. Length of orbit is 

at least 2. Assume that orbit of some x has length 3. Then S1(x) is in this orbit and 

S1S2S1(x) = x, so S1S2(x) = S1(x) and S2(x) = x  contradiction. Similarly one can 

proof that length of orbit is not 5, 7, etc.   

Corollary 1. Orb(x, T, ) have even cardinality for all x.  

Easy test shows that among 255 possible , given as XOR with constant, only 

lowest bit inversion gives two orbits of length 2 and 42 orbits of length 6. Other 

substitutions  give more long orbits. This limits the number of conjugating 

substitutions  as it is proved in theorem 3. 

Let 
-1

T = . If Orb(a, T, ) = {a, b}, then both points of the orbit can be 

fixed by . Indeed, if orbit consists of two elements (a, b), then T(a) = b, T(b) = a, 

(a) = b, (b) = a. Since 
-1

T = , we can set (a) = a, (b) = b. 

Theorem 3. Let n-bit substitutions S1, S2 consist of cycles of length 2, and 

length of orbit of element a defined by group S1, S2 exceeds 2. Then next 

statements are true. 

1. Orb(a, S1, S2) = Orb(a, S1, S1S2) = Orb(a, S1, S2S1) = Orb(a, S2, S1S2) = 

Orb(a, S2, S2S1). 

2. Orbit of element a can be written in cyclic form (a, S1(a), S2S1(a), S1S2S1(a), 

S2S1S2S1(a), …), where left multiples S1, S2 alternate. 

3. #Orb(a, S1, S2) = 2#Orb(a, S1S2). 

4. There exists conjugating substitution  such that S1 = 
-1

S2, and  fixes all 

elements in the odd or in the even positions of the orbit Orb(a, S1, S2) 

written in cyclic form (p. 2).  



5. There is no conjugating substitution  that fixes more points of an orbit then 

a half of length of the orbit. 

6. If S1 = 
-1

S2 and  fixes element on the odd (even) positions of orbit 

written in the cyclic form, then Orb(x, S1, S2) = Orb(x, S1, S2, ) for all x. 

Proof. (1). Since S1(S1S2) = S2 group S1, S2 can be generated by substitutions 

S1, S1S2. Since (S2S1)S1 = S2 we obtain S1, S2 = S1, S2S1. Similarly S1, S2 = S2, 

S1S2 = S2, S2S1. 

(2) and (3). Let length of cycle of element a for substitution S2S1 is k. Then k > 

1, because from equalities S2S1(a) = a and S1
2
(a) = a we obtain S1(a) = S2(a), and 

orbit consists of 2 elements  contradiction. Multiplying equality (S2S1)
k
(a) = a by 

S2, obtain (S1S2)
k1

S1(a) = S2(a). Hence the cycle contains S2(a). Similarly (S1S2)
k1

(a) 

= S2S1(a), (S1S2)
k2

S1(a) = S2S1S2(a). Hence cycle of p. 2 contains a, S1(a), S2(a), 

S1S2(a), S2S1(a), …, i.e. the whole of element a. Elements of this cycle based on 

odd positions correspond to cycle of element a for substitution S2S1. Since length 

of the orbit is even, it equals to double length of cycle for substitution S2S1. 

(4). For computing substitution  let (a) = a for some a. Element a is on odd 

position in cyclically written orbit. Then from equality S1(a) = 
-1

S2(a) = 


-1

(S2(a)) obtain 
-1

(S2(a)). Notice that S2(a) is situated on even position. Farther 

define next fixed point 
-1

(S2S1(a)) = S2S1(a) (it is on odd position) and obtain 


-1

(S2S1S2(a)) on even position, etc. So we obtain fixed points for all even positions 

of orbit written as the cycle (p. 2). Similarly we can fix elements on even positions 

of orbit of element a. It is sufficient to change a  S1(a). 

(5). Assume that we can fix all elements on odd positions of the orbit and one 

element on even position. Without loss of generality we can consider that this 

element is S1(a). Then substitution  fixes both a, S1(a) and we obtain S2S1(a) = a, 

that is contradiction (length of orbit exceeds 2 by condition). 

(6). Proof follows from the next reasoning: if y  Orb(x, S1, S2) and (y) = y, 

then (S2(y)) = S1(y), and S1(y)  Orb(x, S1, S2), S2(y)  Orb(x, S1, S2). Hence 

both input and output of  are in Orb(x, S1, S2).  

Experiment shows that if  is inversion of the lowest bit, then two orbits 

defined by group T,  have length 2: {{0, 1}, {188, 189}}, and other 42 orbits 

have length 6: {2, 3, 246, 247, 140, 141}, {4, 5, 82, 83, 202, 203}, {6, 7, 209, 208, 

122, 123}, …, {214, 215, 234, 235, 227, 226}. If substitution  defined by for 

XOR operation with another constant, the number of orbits decreases. 

From theorem 3 we have next corollary. 

Corollary 2. 1. For substitution T and lowest bit inversion substitution  there 

are 2
42

 different conjugating substitutions , satisfying equality  = 
-1

T that 

have 130 fixed points. 

2. There are no substitutions , defined as XOR with other nonzero constants 

such that holds the equality  = 
-1

T, and  has 130 or more fixed points. 



Theorem 4. There is no affine substitution  such that 2
 = E and  has only 

two fixed points. 

Proof. Consider such affine substitution (x) = Lx + c. Let Lx1 + c = x1, Lx2 + c 

= x2. Then L(x1 + x2) = x1 + x2 is unique solution, and we can consider only linear 

. Let La = a is a unique non-zero solution and equality L
2
x = x holds for all x, i.e. 

L
2
 = E. We have L(x + a) = Lx + a for all x. Without loss of generality we can set a 

= (1, 0, …, 0). Then first row and first column of L are a. Denote 7*7 block of L 

with undefined elements as L7. Then L7b = b is impossible for non-zero b 

(alternatively L must have four fixed points). Hence matrix L7 + E is invertible and 

L7
2
 = E. Then (L7 + E)

2
 = L7

2
 + E = 0 must be invertible  contradiction.   

Corollary 3. There is no affine substitution that is precisely conjugate with 

respect to inversion in finite field 256. 

 

4. Isomorphic AES for four auxiliary substitutions 

Conjugate AES has affine substitution and nonlinear diffusion maps (images of 

M, Mt, Mt1) and nonlinear image of XOR operation. Try to obtain more affine 

images. 

Notice that if  = 
-1

T and  is inversion of lowest bit then isomorphic image 

of XOR cannot be linear, because equality ((x) + (y)) = x + y is possible only 

if  is affine and  is linear. So try to obtain affine images , t, t1 of affine 

substitutions M, Mt, Mt1. 

Equality 
-1

((x) + (y)) = x + y can be true for many x, y if substitutions ,  

have many fixed points. Compute auxiliary substitutions , , 1, 2 so that next 

conditions are satisfied: 

1.  = 
-1

T, 

2.  = M = 
-1

M, 

3. t = Mt = 1
-1 

Mt
-1

, 

4. t1 = Mt1 = 2
-1

Mt1
-1

. 

If  is known, then , 1, 2 exist and are defined uniquely. Each of them has 

130 fixed points, as  has them. Indeed, if (x) = x, then 
-1

(x) = x, M(x) = M(x), 

(M(x)) = M(x).is the fixed point. The same is true for other auxiliary 

substitutions.  

Define isomorphic image of AES under those regular automorphisms of ring 

n[x] as IAES. 

Theorem 5. If , t, t1 are arbitrary affine substitutions and  = 
-1

M, t 

= 1
-1

Mt, t1 = 2
-1

Mt1, then , , 1, 2 are affine equivalent. 



Proof follows from definition of affine equivalence and from property that M, 

Mt, Mt1 are affine substitutions.   

Theorem 6. Maps  = 
-1

T,  = 
-1

M, t = 1
-1

Mt, t1 = 2
-1

Mt1 define 

isomorphism AES  IAES for each round of encryption.  

Proof. Consider one round in AES and IAES. Denote x1, …, x16 as bytes of 

input text of AES, k as round key byte for first byte in AES and i  
-1

(xi), i  


-1

(ki) as corresponding bytes in IAES. First byte of AES is transformed according 

equation 

x1  (k1 + MtT(x1) + Mt1T(x6) + MT(x11) + MT(x16)). 

Corresponding transformation of IAES is 

1  
-1

((1) + 1(Mt((1))) + 2(Mt1((6))) + (M((11))) + (M((16)))). 

Then first summand in the brackets in the right side for IAES transformation is k 

and coincides with first summand for AES. Second summand is  

1(Mt((1))) = 11
-1

Mt
-1

T(1) = MtT(x1), 

It coincides with the second summand for AES. Similarly other summands for 

IAES coincide with corresponding summands for AES. The same is true for other 

bytes and for other rounds.   

Hence the IAES has only one nonlinear operation, namely the image of XOR 

for 5 summands (image of substitution T is near to affine). Denote this nonlinear 

operation as IXOR. This nonlinear operation is defined by ideal of 48 variables (40 

input variables and 8 output variables) and hence possesses differentials with 

corresponding probabilities and linear sums with corresponding biases. 

Four auxiliary substitutions are affine equivalent. Since  = 
-1

M,  =  

M-1
. Similar equations can be obtained for 1, 2. They can be transformed 

using right-hand multiplication on an affine substitution, i.e. they can be arbitrary 

elements of corresponding coset. 

 

5. Results of experiment, security of AES and farther research 

Substitutions M, Mt, Mt1, , , 1, 2 and tables of maximal probabilities of 

differentials and biases of linear sums of the IXOR operation are given in the 

Appendix. Here IXOR as sum of 5 summands is considered as three families of 

substitutions where one byte is changed and sum of other bytes is fixed. Such 

differentials and linear sums are “truncated” ones of course. 

We have computed probabilities of differentials and linear sums for three 

families of substitutions: 


-1

((x) + y), 
-1

(1(x) + y), 
-1

(2(x) + y)  



for all 256 possible y. Since table of differentials for each family is very large, for 

each y only maximal probability of differential and maximal positive/negative 

biases of linear sums are performed. Any y defines some substitution that acts on 

set of bytes x. These three substitutions can be considered as sections of large table 

of differentials for whole IXOR operation. 

Maximal probability of differentials of original AES is 4/256. Three nonlinear 

substitutions that represent nonlinear IXOR have differentials with probabilities 

42/256, 44/256/ 46/256. So probabilities of differentials increase about 10.5 – 11.5 

times comparatively to original cipher. Maximal absolute biases of linear sums of 

IXOR substitutions are 58/256 for all three substitutions, biases are increased about 

3.6 times comparatively to original AES. 

Estimate complexity of differential attack on 10-round of AES according to [7]. 

Differential cryptanalysis proposes multiplication of probabilities of differentials in 

differential characteristic. Beginning from third round all 16 nonlinear IXOR in 

IAES and all 16 S-boxes in AES become active. Assume that probability of 

differential of AES in characteristic is p, and similar probability in IAES is 8p (i.e. 

instead of p we have p ). For original AES probability of differential is 2
-6*16*7

 = 

2
-672

, for IAES probability of differential is 2
-3*16*7

 = 2
-336

, so the strength of IAES 

seems to be a square root of the strength of AES. Notice that in the real 

cryptanalysis probabilities of differentials can significantly increase using parallel 

branches in differential characteristic, using boomerang technique, and meet-in-

the-middle technique, etc. Notice that there exist collisions of IXOR of probability 

1. 

In linear cryptanalysis biases of linear sum is proportional to product of biases 

of bits of the sum. It is common to consider the sum of 4 bytes that are used in 

IXOR. Mean of this sum contains 16 bits. If all bits of AES linear sum have bias 

16/256, then result bias is e
-34

. If all bits of IAES linear sum have bias 48/256, then 

result bias is e
-16.4

. This is approximately the square root of bias of AES. Hence we 

can assume that the strength of AES to linear attack can be significantly reduced 

too. Hence security of IAES (and hence of AES) to linear and differential attacks is 

non-evident and takes farther research. 

Such complexity estimation is very brief of course. More precise estimation 

needs modification of linear and differential attacks because probabilities of 

differentials depend on the key. On the other hand, this dependence can take some 

information about key byte. 

Next theorem shows that there exists a mechanism that gives differentials of 

probability 1 and retards the multiplication of active inputs of IAXORs in 

differential characteristic. This is possible because the differentials have zero 

output difference. 

Theorem 7. Let a, b, c, d are inputs of IXOR that define output sum  

z = 
-1

((a) + (b) + (c) + (d)). 

There exists differential of IXOR four bytes with input difference of kind {(a, a, c, 

d,), (a + , a + , c, d)} that gives outputs with difference 0. 



Proof. Notice that 
-1

(x) = 
-1

(y) iff x = y. Hence we can ignore 
-1

. Consider 

two sets of four bytes (a, b, c, d), (a1, b1, c1, d1), that define sums 

z = (a) + (b) + 1(c) + 2(d), z1 = (a1) + (b1) + 1(c1) + 2(d1). 

Then equalities a = b, a1 = b1, c = c1, d = d1 give z = z1 and hence equality of 

outputs of IXOR. So sets (a, a, c, d) with differences (, , 0, 0) give collision (as 

differential with zero output difference) with probability 1.  

We use affine . But this substitution is not an exact conjugation with finite 

field inversion. Probability of error is 2
-7

 for each byte. This lack can be eliminated 

if instead of affine  one uses quasi-affine , which lowest bit is given by 

polynomial y8 + x8 + (1 + x1)…(1 + x7). Then probabilities of differentials of  are 

1 or (more often) 252/256, but maximal biases of linear sums stay 128/256. Set of 

orbits with respect to U,  is slightly changed: instead of {0, 1} we obtain 

{0},{1}. Substitutions , , 1, 2 do not change. 

Presented material shows that virtual isomorphism is a useful tool for 

cryptanalysis.  

We used isomorphisms that act on cipher maps and have period 1 (initial 

distortion (x) is repeated for any round). Similarly one can use isomorphisms that 

have period of 2 or more rounds. Besides of that we can use quasi-periodic 

isomorphisms: isomorphisms for next round can differ from the isomorphism of 

previous round the next round using other  and other affine , t, t1. 

Proposed virtual isomorphism uses auxiliary substitutions with many fixed 

points. Possibly this criterion is not optimal for cryptanalysis. Choosing some 

affine substitution (or possibly non-linear substitution that possesses differentials 

or linear sums of probability 1) instead of  may be more useful. Decomposition 

of AES substitution S = MU, where U is finite field inversion, is not unique. 

Maybe there exists another decompositions with affine left-hand multiple and 

suitable cycling type of right-hand multiple that is more useful. 

Proposed technique shows that substitution S of some symmetric cipher is 

possibly weak if it admits decomposition S = AT, where A if affine and nonlinear 

substitution T is conjugate with some affine substitution (precisely or 

approximately with small error probability). There is no known method to 

recognize possibly weak substitutions. Also we do not know how many “non-

weak” substitutions there are, and does such “non-weak” substitution exist. 
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Appendix. Auxiliary substitutions, maximal probabilities of differentials and 

biases of linear sums of IAES 

Substitutions T, . 

T = {1, 0, 141, 246, 203, 82, 123, 209, 232, 79, 41, 192, 176, 225, 229, 199, 116, 180, 170, 75, 153, 43, 96, 95, 88, 

63, 253, 204, 255, 64, 238, 178, 58, 110, 90, 241, 85, 77, 168, 201, 193, 10, 152, 21, 48, 68, 162, 194, 44, 69, 146, 

108, 243, 57, 102, 66, 242, 53, 32, 111, 119, 187, 89, 25, 29, 254, 55, 103, 45, 49, 245, 105, 167, 100, 171, 19, 84, 

37, 233, 9, 237, 92, 5, 202, 76, 36, 135, 191, 24, 62, 34, 240, 81, 236, 97, 23, 22, 94, 175, 211, 73, 166, 54, 67, 244, 

71, 145, 223, 51, 147, 33, 59, 121, 183, 151, 133, 16, 181, 186, 60, 182, 112, 208, 6, 161, 250, 129, 130, 131, 126, 

127, 128, 150, 115, 190, 86, 155, 158, 149, 217, 247, 2, 185, 164, 222, 106, 50, 109, 216, 138, 132, 114, 42, 20, 159, 

136, 249, 220, 137, 154, 251, 124, 46, 195, 143, 184, 101, 72, 38, 200, 18, 74, 206, 231, 210, 98, 12, 224, 31, 239, 

17, 117, 120, 113, 165, 142, 118, 61, 189, 188, 134, 87, 11, 40, 47, 163, 218, 212, 228, 15, 169, 39, 83, 4, 27, 252, 

172, 230, 122, 7, 174, 99, 197, 219, 226, 234, 148, 139, 196, 213, 157, 248, 144, 107, 177, 13, 214, 235, 198, 14, 

207, 173, 8, 78, 215, 227, 93, 80, 30, 179, 91, 35, 56, 52, 104, 70, 3, 140, 221, 156, 125, 160, 205, 26, 65, 28}; 

 = {1, 0, 3, 2, 5, 4, 7, 6, …, 255, 254}. 

Orbits of group T, . 
Orb = {{0, 1}, {2, 3, 246, 247, 140, 141}, {4, 5, 82, 83, 202, 203}, {6, 7, 209, 208, 122, 123}, {8, 9, 79, 78, 233, 

232}, {10, 11, 192, 193, 40, 41}, {12, 13, 225, 224, 177, 176}, {14, 15, 199, 198, 228, 229}, {16, 17, 180, 181, 117, 

116}, {18, 19, 75, 74, 171, 170}, {20, 21, 43, 42, 152, 153}, {22, 23, 95, 94, 97, 96}, {24, 25, 63, 62, 89, 88}, 

{26, 27, 204, 205, 252, 253}, {28, 29, 64, 65, 254, 255}, {30, 31, 178, 179, 239, 238}, {32, 33, 110, 111, 59, 58}, 

{34, 35, 241, 240, 91, 90}, {36, 37, 77, 76, 84, 85}, {38, 39, 201, 200, 169, 168}, {44, 45, 68, 69, 49, 48}, {46, 47, 

194, 195, 163, 162}, {50, 51, 108, 109, 147, 146}, {52, 53, 57, 56, 242, 243}, {54, 55, 66, 67, 103, 102}, {60, 61, 

187, 186, 118, 119}, {70, 71, 105, 104, 244, 245}, {72, 73, 100, 101, 166, 167}, {80, 81, 92, 93, 236, 237}, {86, 87, 

191, 190, 134, 135}, {98, 99, 211, 210, 174, 175}, {106, 107, 223, 222, 144, 145}, {112, 113, 183, 182, 120, 121}, 

{114, 115, 133, 132, 150, 151}, {124, 125, 250, 251, 160, 161}, {126, 127, 130, 131, 128, 129}, {136, 137, 158, 

159, 154, 155}, {138, 139, 217, 216, 148, 149}, {142, 143, 164, 165, 184, 185}, {156, 157, 220, 221, 248, 249}, 

{172, 173, 231, 230, 207, 206}, {188, 189}, {196, 197, 212, 213, 219, 218}, {214, 215, 234, 235, 227, 226}}. 

Substitutions M, Mt, Mt1. 

M = {99, 124, 93, 66, 31, 0, 33, 62, 155, 132, 165, 186, 231, 248, 217, 198, 146, 141, 172, 179, 238, 241, 208, 207, 

106, 117, 84, 75, 22, 9, 40, 55, 128, 159, 190, 161, 252, 227, 194, 221, 120, 103, 70, 89, 4, 27, 58, 37, 113, 110, 79, 

80, 13, 18, 51, 44, 137, 150, 183, 168, 245, 234, 203, 212, 164, 187, 154, 133, 216, 199, 230, 249, 92, 67, 98, 125, 

32, 63, 30, 1, 85, 74, 107, 116, 41, 54, 23, 8, 173, 178, 147, 140, 209, 206, 239, 240, 71, 88, 121, 102, 59, 36, 5, 26, 

191, 160, 129, 158, 195, 220, 253, 226, 182, 169, 136, 151, 202, 213, 244, 235, 78, 81, 112, 111, 50, 45, 12, 19, 236,  

  243, 210, 205, 144, 143, 174, 177, 20, 11, 42, 53, 104, 119, 86, 73, 29, 2, 35, 60, 97, 126, 95, 64, 229, 250, 219, 

196, 153, 134, 167, 184, 15, 16, 49, 46, 115, 108, 77, 82, 247, 232, 201, 214, 139, 148, 181, 170, 254, 225, 192, 223, 

130, 157, 188, 163, 6, 25, 56, 39, 122, 101, 68, 91, 43, 52, 21, 10, 87, 72, 105, 118, 211, 204, 237, 242, 175, 176, 

145, 142, 218, 197, 228, 251, 166, 185, 152, 135, 34, 61, 28, 3, 94, 65, 96, 127, 200, 215, 246, 233, 180, 171, 138, 

149, 48, 47, 14, 17, 76, 83, 114, 109, 57, 38, 7, 24, 69, 90, 123, 100, 193, 222, 255, 224, 189, 162, 131, 156}; 

Mt = {177, 62, 46, 161, 143, 0, 16, 159, 205, 66, 82, 221, 243, 124, 108, 227, 73, 198, 214, 89, 119, 248, 232, 103, 

53, 186, 170, 37, 11, 132, 148, 27, 64, 207, 223, 80, 126, 241, 225, 110, 60, 179, 163, 44, 2, 141, 157, 18, 184, 55, 

39, 168, 134, 9, 25, 150, 196, 75, 91, 212, 250, 117, 101, 234, 210, 93, 77, 194, 236, 99, 115, 252, 174, 33, 49, 190, 

144, 31, 15, 128, 42, 165, 181, 58, 20, 155, 139, 4, 86, 217, 201, 70, 104, 231, 247, 120, 35, 172, 188, 51, 29, 146, 

130, 13, 95, 208, 192, 79, 97, 238, 254, 113, 219, 84, 68, 203, 229, 106, 122, 245, 167, 40, 56, 183, 153, 22, 6, 137, 

246, 121, 105, 230, 200, 71, 87, 216, 138, 5, 21, 154, 180, 59, 43, 164, 14, 129, 145, 30, 48, 191, 175, 32, 114, 253, 

237, 98, 76, 195, 211, 92, 7, 136, 152, 23, 57, 182, 166, 41, 123, 244, 228, 107, 69, 202, 218, 85, 255, 112, 96, 239, 

193, 78, 94, 209, 131, 12, 28, 147, 189, 50, 34, 173, 149, 26, 10, 133, 171, 36, 52, 187, 233, 102, 118, 249, 215, 88, 

72, 199, 109, 226, 242, 125, 83, 220, 204, 67, 17, 158, 142, 1, 47, 160, 176, 63, 100, 235, 251, 116, 90, 213, 197, 74, 

24, 151, 135, 8, 38, 169, 185, 54, 156, 19, 3, 140, 162, 45, 61, 178, 224, 111, 127, 240, 222, 81, 65, 206}; 

Mt1 = {210, 66, 115, 227, 144, 0, 49, 161, 86, 198, 247, 103, 20, 132, 181, 37, 219, 75, 122, 234, 153, 9, 56, 168, 95, 

207, 254, 110, 29, 141, 188, 44, 192, 80, 97, 241, 130, 18, 35, 179, 68, 212, 229, 117, 6, 150, 167, 55, 201, 89, 104, 

248, 139, 27, 42, 186, 77, 221, 236, 124, 15, 159, 174, 62, 118, 230, 215, 71, 52, 164, 149, 5, 242, 98, 83, 195, 176, 

32, 17, 129, 127, 239, 222, 78, 61, 173, 156, 12, 251, 107, 90, 202, 185, 41, 24, 136, 100, 244, 197, 85, 38, 182, 135, 

23, 224, 112, 65, 209, 162, 50, 3, 147, 109, 253, 204, 92, 47, 191, 142, 30, 233, 121, 72, 216, 171, 59, 10, 154, 26, 

138, 187, 43, 88, 200, 249, 105, 158, 14, 63, 175, 220, 76, 125, 237, 19, 131, 178, 34, 81, 193, 240, 96, 151, 7, 54, 



166, 213, 69, 116, 228, 8, 152, 169, 57, 74, 218, 235, 123, 140, 28, 45, 189, 206, 94, 111, 255, 1, 145, 160, 48, 67, 

211, 226, 114, 133, 21, 36, 180, 199, 87, 102, 246, 190, 46, 31, 143, 252, 108, 93, 205, 58, 170, 155, 11, 120, 232, 

217, 73, 183, 39, 22, 134, 245, 101, 84, 196, 51, 163, 146, 2, 113, 225, 208, 64, 172, 60, 13, 157, 238, 126, 79, 223, 

40, 184, 137, 25, 106, 250, 203, 91, 165, 53, 4, 148, 231, 119, 70, 214, 33, 177, 128, 16, 99, 243, 194, 82}. 

Auxiliary substitutions. 

fi = {0, 1, 246, 3, 82, 5, 209, 7, 79, 9, 192, 11, 225, 13, 199, 15, 180, 17, 75, 19, 43, 21, 95, 23, 63, 25, 204, 27, 64, 

29, 178, 31, 110, 33, 241, 35, 77, 37, 201, 39, 10, 41, 42, 152, 68, 45, 194, 47, 48, 44, 108, 51, 57, 53, 66, 55, 56, 

242, 58, 32, 187, 61, 62, 89, 254, 65, 103, 67, 49, 69, 105, 71, 100, 73, 74, 171, 76, 84, 78, 233, 92, 81, 202, 83, 36, 

85, 191, 87, 88, 24, 90, 34, 236, 93, 94, 97, 96, 22, 211, 99, 166, 101, 102, 54, 104, 244, 223, 107, 147, 109, 59, 111, 

183, 113, 133, 115, 116, 16, 60, 119, 112, 121, 6, 123, 250, 125, 130, 127, 126, 129, 128, 131, 132, 150, 86, 135, 

158, 137, 217, 139, 2, 141, 164, 143, 106, 145, 146, 50, 138, 149, 114, 151, 20, 153, 136, 155, 220, 157, 154, 159, 

124, 161, 162, 46, 184, 165, 72, 167, 168, 38, 170, 18, 231, 173, 98, 175, 176, 12, 239, 179, 117, 181, 182, 120, 142, 

185, 186, 118, 188, 189, 190, 134, 40, 193, 163, 195, 212, 197, 198, 228, 200, 169, 4, 203, 252, 205, 206, 172, 208, 

122, 210, 174, 219, 213, 234, 215, 216, 148, 218, 196, 248, 221, 222, 144, 224, 177, 226, 214, 14, 229, 230, 207, 

232, 8, 227, 235, 80, 237, 238, 30, 240, 91, 52, 243, 70, 245, 140, 247, 156, 249, 160, 251, 26, 253, 28, 255}; 

psi ={0, 47, 2, 87, 216, 5, 86, 13, 8, 9, 10, 11, 210, 150, 233, 50, 16, 17, 18, 19, 167, 46, 164, 91, 24, 25, 51, 27, 28, 

129, 30, 107, 32, 197, 34, 35, 36, 37, 140, 244, 192, 252, 61, 120, 44, 45, 58, 155, 48, 49, 255, 154, 52, 53, 54, 55, 

56, 57, 21, 77, 79, 97, 62, 41, 64, 65, 66, 67, 68, 230, 70, 71, 72, 73, 74, 75, 85, 92, 182, 195, 80, 81, 82, 83, 175, 

209, 115, 166, 208, 229, 90, 174, 59, 123, 193, 136, 96, 42, 98, 99, 100, 101, 102, 103, 93, 105, 212, 237, 108, 40, 4, 

111, 33, 113, 114, 6, 116, 117, 180, 119, 165, 251, 122, 104, 124, 214, 126, 29, 253, 127, 213, 22, 132, 133, 134, 

135, 143, 137, 138, 149, 190, 141, 139, 95, 144, 145, 130, 147, 148, 142, 7, 151, 14, 94, 26, 1, 156, 157, 158, 159, 

69, 161, 162, 78, 131, 43, 3, 219, 128, 169, 170, 171, 125, 173, 23, 189, 176, 177, 106, 179, 217, 121, 163, 183, 184, 

185, 186, 187, 188, 84, 38, 191, 109, 153, 204, 60, 196, 112, 198, 199, 200, 201, 202, 203, 232, 205, 206, 207, 240, 

76, 236, 211, 178, 146, 172, 225, 110, 118, 218, 20, 220, 221, 222, 223, 224, 231, 226, 227, 228, 238, 160, 215, 194, 

152, 234, 235, 12, 31, 89, 239, 88, 241, 242, 243, 245, 39, 246, 247, 248, 249, 250, 181, 63, 168, 254, 15}; 

hi1 = {0, 171, 236, 134, 4, 5, 105, 153, 8, 9, 23, 210, 12, 25, 192, 15, 226, 17, 18, 70, 126, 158, 22, 157, 24, 77, 26, 

27, 28, 166, 39, 20, 32, 33, 34, 35, 36, 37, 42, 97, 40, 41, 104, 57, 114, 45, 61, 224, 21, 49, 50, 51, 52, 234, 148, 2, 

16, 131, 58, 59, 82, 180, 62, 14, 254, 11, 66, 67, 71, 74, 223, 175, 72, 193, 199, 3, 47, 13, 78, 79, 80, 81, 149, 1, 84, 

85, 86, 139, 88, 89, 108, 91, 92, 93, 94, 95, 54, 30, 98, 99, 100, 101, 244, 103, 38, 246, 73, 214, 187, 109, 110, 111, 

243, 113, 119, 208, 204, 117, 143, 44, 172, 121, 250, 123, 124, 218, 31, 7, 151, 129, 130, 43, 132, 133, 75, 116, 136, 

137, 211, 173, 140, 141, 142, 181, 144, 145, 146, 122, 96, 60, 150, 205, 152, 127, 154, 155, 156, 10, 48, 159, 160, 

161, 115, 163, 164, 165, 174, 219, 168, 169, 215, 83, 232, 87, 29, 68, 176, 177, 178, 179, 46, 118, 182, 183, 184, 

185, 186, 90, 125, 189, 107, 191, 63, 106, 194, 195, 196, 197, 198, 69, 200, 201, 202, 203, 135, 128, 206, 207, 162, 

167, 65, 237, 64, 213, 190, 222, 216, 53, 188, 209, 220, 221, 170, 19, 76, 102, 56, 227, 228, 229, 230, 231, 120, 233, 

217, 112, 55, 138, 238, 239, 240, 241, 242, 235, 225, 245, 6, 247, 248, 249, 147, 251, 252, 253, 212, 255}; 

hi2 = {0, 1, 252, 124, 139, 5, 52, 7, 171, 9, 187, 11, 12, 13, 14, 180, 16, 17, 18, 65, 60, 21, 22, 42, 24, 25, 10, 27, 35, 

118, 30, 57, 61, 213, 104, 170, 36, 37, 235, 72, 40, 41, 215, 43, 44, 45, 46, 47, 48, 39, 50, 51, 89, 202, 158, 55, 136, 

167, 58, 59, 145, 130, 107, 163, 19, 64, 66, 191, 247, 69, 220, 71, 49, 206, 133, 75, 76, 77, 78, 79, 80, 63, 82, 83, 

137, 85, 129, 87, 88, 6, 90, 188, 92, 93, 94, 62, 96, 53, 98, 254, 100, 101, 102, 103, 162, 105, 127, 95, 108, 114, 110, 

197, 231, 33, 233, 70, 54, 151, 194, 119, 99, 121, 195, 123, 192, 74, 126, 185, 8, 184, 32, 131, 132, 125, 111, 135, 

244, 157, 138, 221, 140, 141, 15, 143, 222, 20, 146, 147, 148, 112, 150, 153, 152, 117, 154, 144, 246, 84, 116, 159, 

91, 161, 34, 81, 164, 165, 166, 31, 168, 169, 28, 128, 172, 173, 174, 175, 176, 177, 178, 179, 142, 205, 182, 183, 86, 

106, 186, 26, 160, 122, 68, 219, 3, 193, 29, 189, 196, 134, 198, 199, 240, 201, 97, 203, 200, 238, 223, 207, 208, 209, 

210, 211, 212, 113, 214, 23, 216, 217, 218, 67, 115, 4, 155, 73, 224, 225, 226, 227, 228, 229, 230, 149, 232, 109, 

234, 242, 236, 237, 181, 239, 204, 241, 38, 243, 56, 2, 249, 190, 248, 156, 250, 251, 245, 253, 120, 255}. 

Lists of maximal probabilities if differentials of substitutions that represent 

IXOR: 
-1

((x) + y), 
-1

(1(x) + y), 
-1

(2(x) + y) for y = 0, …, 255 (elements of 

the list are to be divided by 256). 

{30, 32, 32, 38, 32, 38, 34, 34, 30, 38, 36, 32, 28, 36, 28, 32, 32, 40, 32, 34, 34, 32, 26, 40, 36, 32, 30, 36, 34, 32, 30, 

40, 34, 38, 36, 32, 32, 38, 40, 32, 28, 38, 32, 34, 36, 38, 34, 34, 36, 36, 34, 32, 36, 32, 32, 42, 32, 34, 32, 34, 34, 38, 

34, 36, 32, 36, 32, 36, 42, 34, 38, 38, 30, 38, 36, 36, 32, 40, 28, 38, 34, 40, 38, 34, 34, 36, 32, 32, 28, 42, 32, 32, 32, 

36, 32, 34, 32, 34, 30, 40, 38, 36, 32, 42, 32, 38, 30, 30, 34, 32, 28, 42, 28, 36, 36, 38, 36, 36, 36, 34, 28, 38, 32, 38, 

32, 38, 34, 32, 30, 36, 34, 32, 36, 34, 28, 36, 38, 34, 34, 34, 34, 40, 36, 34, 32, 34, 38, 34, 34, 30, 30, 36, 32, 38, 38, 

28, 40, 32, 38, 42, 34, 38, 36, 38, 34, 34, 32, 36, 32, 36, 36, 32, 36, 36, 38, 38, 36, 36, 34, 34, 38, 32, 38, 42, 34, 36, 

38, 30, 34, 32, 32, 34, 32, 36, 30, 34, 38, 30, 36, 40, 32, 38, 34, 38, 30, 36, 34, 34, 34, 32, 32, 36, 34, 38, 36, 34, 34, 

32, 34, 32, 36, 38, 34, 34, 36, 34, 30, 36, 32, 30, 30, 36, 36, 36, 30, 40, 36, 32, 36, 36, 34, 32, 34, 34, 34, 36, 32, 38, 

34, 38, 38, 36, 34, 34, 34, 34}; 



{34, 34, 38, 34, 34, 36, 38, 34, 40, 34, 32, 36, 30, 34, 32, 40, 34, 34, 28, 34, 34, 36, 36, 38, 32, 40, 36, 36, 36, 40, 32, 

34, 36, 36, 38, 32, 34, 34, 42, 32, 40, 32, 30, 42, 34, 30, 34, 38, 36, 34, 32, 32, 36, 36, 34, 34, 36, 40, 32, 38, 32, 38, 

32, 30, 32, 38, 36, 34, 38, 38, 32, 34, 36, 40, 32, 34, 38, 32, 32, 34, 36, 34, 34, 34, 38, 30, 34, 34, 30, 34, 36, 32, 34, 

34, 36, 36, 34, 32, 36, 30, 38, 36, 36, 34, 38, 32, 34, 30, 36, 32, 34, 38, 38, 34, 44, 36, 36, 26, 38, 34, 34, 32, 38, 30, 

38, 32, 36, 34, 32, 34, 38, 34, 32, 36, 36, 38, 36, 32, 30, 36, 32, 32, 32, 40, 34, 34, 30, 36, 36, 36, 32, 34, 36, 42, 34, 

36, 34, 42, 34, 34, 30, 34, 38, 34, 34, 34, 42, 30, 36, 34, 30, 40, 38, 30, 34, 36, 36, 34, 32, 34, 34, 36, 32, 34, 38, 38, 

36, 36, 36, 38, 32, 32, 34, 38, 36, 32, 38, 38, 34, 30, 36, 38, 34, 36, 38, 32, 36, 34, 32, 34, 34, 34, 42, 28, 34, 32, 34, 

34, 38, 32, 36, 34, 36, 36, 34, 34, 36, 32, 40, 36, 38, 30, 38, 34, 32, 32, 36, 32, 32, 34, 40, 36, 44, 32, 38, 32, 36, 32, 

34, 30, 38, 30, 36, 32, 36, 34}; 

{30, 28, 30, 34, 40, 28, 36, 32, 38, 34, 46, 28, 32, 34, 32, 40, 30, 46, 34, 36, 36, 38, 38, 36, 34, 36, 30, 44, 32, 36, 30, 

40, 30, 40, 32, 34, 36, 38, 34, 36, 38, 30, 36, 30, 34, 38, 34, 38, 32, 36, 34, 36, 36, 28, 34, 30, 38, 32, 36, 34, 32, 36, 

32, 32, 32, 34, 32, 38, 36, 36, 34, 34, 36, 38, 30, 32, 32, 36, 30, 36, 34, 36, 36, 34, 40, 32, 34, 36, 40, 34, 44, 34, 38, 

36, 40, 36, 32, 38, 34, 34, 36, 34, 36, 32, 42, 36, 34, 32, 32, 38, 30, 38, 28, 34, 34, 36, 34, 36, 34, 34, 34, 36, 36, 34, 

28, 38, 30, 36, 36, 28, 38, 34, 40, 34, 30, 36, 30, 34, 38, 32, 40, 32, 36, 32, 36, 38, 36, 38, 26, 44, 32, 36, 30, 36, 32, 

38, 34, 38, 34, 42, 36, 36, 34, 34, 32, 34, 28, 36, 36, 38, 34, 40, 38, 38, 36, 36, 40, 32, 34, 30, 34, 36, 32, 36, 38, 36, 

34, 30, 36, 28, 36, 32, 30, 38, 36, 34, 32, 36, 30, 36, 32, 34, 30, 38, 34, 36, 34, 34, 36, 36, 34, 38, 30, 34, 34, 32, 36, 

38, 40, 34, 42, 30, 44, 32, 36, 30, 34, 30, 32, 38, 32, 34, 34, 36, 32, 38, 32, 38, 36, 38, 40, 34, 36, 36, 34, 38, 30, 36, 

32, 36, 30, 36, 36, 32, 36, 32}. 

List of minimal and maximal biases of substitutions 
-1

((x) + y) for y = 0, …, 

255 (elements of the list are to be divided by 256). 

{54, 48, 48, 50, 50, 50, 56, 48, 46, 52, 50, 46, 48, 46, 50, 48, 54, 54, 48, 56, 52, 44, 46, 50, 46, 48, 48, 50, 46, 48, 44, 

50, 48, 52, 46, 52, 46, 52, 50, 44, 48, 50, 52, 44, 48, 50, 44, 50, 48, 46, 46, 48, 50, 50, 46, 50, 50, 50, 48, 52, 46, 50, 

50, 52, 46, 50, 52, 52, 52, 48, 46, 48, 48, 50, 56, 50, 50, 48, 44, 56, 46, 54, 56, 50, 50, 52, 46, 52, 44, 54, 46, 54, 44, 

48, 46, 52, 48, 52, 44, 48, 48, 52, 52, 48, 46, 50, 52, 48, 50, 48, 44, 50, 46, 52, 46, 48, 48, 52, 52, 50, 48, 52, 50, 46, 

46, 48, 50, 52, 48, 50, 52, 44, 46, 50, 50, 54, 50, 50, 48, 44, 50, 48, 50, 44, 48, 50, 52, 52, 48, 46, 48, 48, 48, 54, 54, 

44, 52, 48, 50, 50, 52, 50, 48, 46, 52, 44, 48, 54, 48, 50, 50, 48, 52, 48, 48, 50, 50, 50, 46, 46, 48, 48, 50, 54, 46, 58, 

50, 44, 52, 50, 48, 44, 50, 52, 58, 48, 48, 46, 46, 46, 44, 50, 50, 58, 52, 50, 48, 46, 54, 44, 48, 48, 44, 50, 46, 48, 42, 

46, 52, 52, 48, 52, 46, 48, 50, 44, 46, 50, 48, 44, 50, 50, 46, 50, 46, 52, 54, 50, 46, 50, 54, 52, 46, 48, 48, 50, 48, 54, 

52, 50, 50, 46, 44, 50, 50, 46}; 

{-30, -48, -46, -58, -46, -56, -48, -54, -48, -46, -54, -44, -46, -48, -52, -48, -46, -50, -48, -50, -52, -44, -48, -50, -52, -

44, -46, -50, -48, -50, -46, -50, -48, -52, -52, -46, -48, -46, -46, -48, -46, -52, -44, -48, -50, -50, -50, -50, -52, -48, -

46, -56, -54, -46, -54, -50, -52, -44, -48, -50, -46, -46, -54, -46, -44, -52, -46, -50, -54, -48, -48, -52, -48, -54, -54, -

46, -50, -46, -44, -52, -44, -46, -48, -48, -44, -50, -50, -48, -54, -50, -50, -48, -46, -52, -48, -50, -46, -52, -48, -56, -

48, -52, -44, -50, -44, -54, -48, -52, -48, -48, -44, -50, -46, -52, -50, -48, -50, -46, -48, -50, -46, -52, -46, -48, -46, -

54, -48, -50, -46, -48, -54, -46, -46, -48, -46, -50, -54, -52, -52, -48, -48, -54, -48, -46, -48, -50, -46, -48, -48, -46, -

50, -50, -48, -48, -52, -48, -52, -48, -52, -46, -54, -48, -50, -44, -54, -48, -46, -50, -48, -48, -50, -48, -52, -50, -50, -

56, -46, -46, -48, -50, -48, -42, -48, -50, -48, -48, -50, -46, -50, -48, -46, -52, -48, -48, -50, -54, -50, -52, -50, -50, -

48, -48, -50, -54, -44, -48, -52, -46, -48, -48, -46, -50, -46, -48, -52, -50, -48, -50, -50, -48, -50, -54, -46, -50, -52, -

50, -42, -54, -46, -44, -52, -52, -50, -48, -44, -56, -52, -50, -52, -50, -46, -48, -50, -48, -44, -56, -48, -50, -48, -52, -

46, -50, -46, -50, -46, -48}. 

List of minimal and maximal biases of substitutions 
-1

(1(x) + y) for y = 0, …, 

255 (elements of the list are to be divided by 256). 

{54, 46, 50, 52, 46, 54, 44, 48, 48, 46, 48, 50, 44, 48, 48, 48, 50, 50, 46, 50, 52, 54, 48, 48, 46, 52, 48, 52, 48, 50, 50, 

52, 52, 46, 52, 46, 44, 50, 50, 48, 52, 40, 46, 46, 48, 52, 44, 46, 52, 46, 50, 50, 46, 46, 46, 50, 46, 52, 48, 50, 46, 52, 

48, 46, 48, 50, 48, 46, 44, 48, 48, 48, 48, 46, 46, 50, 52, 48, 52, 50, 48, 46, 44, 48, 52, 50, 46, 48, 50, 48, 50, 48, 50, 

54, 50, 50, 50, 58, 46, 44, 48, 50, 48, 48, 48, 46, 46, 52, 48, 46, 46, 52, 50, 52, 46, 50, 50, 46, 54, 48, 48, 52, 50, 46, 

50, 50, 46, 50, 48, 50, 52, 50, 48, 48, 48, 48, 48, 50, 46, 48, 56, 50, 48, 50, 48, 46, 50, 52, 52, 48, 46, 50, 46, 50, 50, 

52, 48, 52, 50, 46, 48, 50, 48, 46, 46, 48, 56, 46, 54, 46, 46, 52, 52, 46, 44, 48, 50, 48, 44, 50, 46, 52, 48, 48, 52, 48, 

58, 46, 48, 50, 48, 48, 48, 48, 52, 50, 48, 48, 52, 46, 46, 52, 50, 48, 54, 48, 42, 54, 46, 48, 52, 56, 48, 44, 48, 48, 48, 

50, 52, 46, 52, 48, 52, 52, 46, 46, 50, 46, 50, 50, 52, 46, 52, 44, 48, 52, 46, 46, 50, 50, 50, 44, 48, 48, 50, 54, 44, 46, 

48, 46, 48, 48, 50, 46, 54, 52}; 

{-30, -54, -46, -52, -46, -50, -46, -56, -52, -52, -44, -48, -46, -56, -46, -46, -48, -50, -44, -50, -46, -54, -46, -48, -46, -

52, -48, -48, -44, -48, -48, -54, -50, -50, -52, -46, -46, -58, -50, -46, -48, -48, -50, -50, -48, -48, -46, -50, -48, -52, -

48, -52, -48, -54, -42, -54, -48, -46, -50, -52, -48, -54, -52, -48, -52, -52, -48, -46, -50, -54, -46, -44, -48, -48, -48, -

50, -50, -46, -46, -50, -46, -44, -46, -48, -48, -48, -50, -50, -46, -50, -50, -44, -44, -50, -44, -48, -46, -46, -52, -48, -

46, -50, -46, -48, -48, -44, -52, -48, -48, -46, -46, -52, -46, -50, -56, -48, -52, -46, -50, -46, -52, -48, -52, -50, -48, -

50, -54, -48, -46, -46, -48, -50, -48, -56, -46, -48, -50, -50, -44, -46, -52, -44, -48, -50, -50, -54, -50, -48, -50, -48, -

44, -54, -48, -52, -44, -48, -50, -54, -48, -50, -46, -48, -46, -46, -48, -50, -52, -46, -56, -48, -48, -50, -54, -50, -52, -



48, -48, -50, -46, -50, -52, -52, -48, -46, -48, -48, -50, -46, -50, -46, -52, -46, -50, -50, -52, -44, -50, -50, -50, -50, -

48, -56, -46, -48, -46, -46, -46, -48, -46, -46, -50, -46, -48, -46, -50, -50, -48, -56, -46, -44, -48, -50, -50, -48, -48, -

46, -52, -50, -54, -50, -52, -50, -48, -44, -48, -50, -56, -48, -48, -50, -52, -48, -52, -48, -50, -44, -52, -48, -52, -50, -

52, -42, -54, -44, -50, -48}. 

List of minimal and maximal biases of substitutions 
-1

(2(x) + y) for y = 0, …, 

255 (elements of the list are to be divided by 256). 

{50, 46, 48, 46, 52, 46, 48, 46, 48, 44, 50, 44, 54, 50, 52, 50, 48, 50, 46, 50, 52, 48, 50, 48, 50, 48, 48, 62, 48, 56, 44, 

56, 42, 46, 50, 54, 44, 50, 46, 46, 52, 46, 50, 48, 48, 48, 46, 50, 44, 50, 52, 48, 50, 50, 50, 50, 50, 46, 50, 46, 48, 52, 

48, 46, 48, 50, 46, 50, 46, 48, 50, 48, 52, 52, 48, 52, 46, 48, 48, 50, 54, 50, 50, 46, 50, 50, 50, 50, 48, 48, 58, 48, 52, 

48, 52, 44, 44, 50, 54, 54, 50, 54, 52, 48, 48, 52, 48, 46, 44, 50, 46, 48, 50, 48, 50, 54, 50, 48, 50, 46, 50, 50, 50, 44, 

48, 50, 48, 48, 52, 44, 50, 46, 46, 48, 44, 50, 50, 50, 50, 46, 50, 42, 52, 48, 50, 48, 46, 52, 40, 50, 52, 54, 46, 52, 46, 

50, 50, 48, 46, 48, 48, 48, 50, 50, 50, 52, 48, 50, 48, 50, 50, 48, 50, 54, 44, 50, 50, 44, 54, 48, 48, 48, 44, 52, 46, 50, 

48, 46, 48, 44, 48, 46, 44, 44, 50, 48, 48, 50, 48, 52, 48, 54, 46, 52, 46, 50, 50, 52, 50, 48, 46, 46, 52, 50, 50, 48, 48, 

48, 50, 54, 48, 52, 46, 46, 52, 44, 48, 48, 54, 50, 48, 46, 48, 44, 50, 46, 50, 50, 50, 46, 52, 46, 46, 52, 46, 48, 50, 48, 

46, 50, 44, 54, 54, 46, 50, 46}; 

{-32, -44, -48, -48, -54, -44, -52, -52, -48, -46, -56, -46, -48, -48, -48, -48, -46, -48, -50, -48, -46, -52, -52, -46, -54, -

48, -42, -56, -46, -54, -44, -50, -44, -56, -44, -52, -50, -48, -48, -48, -50, -46, -46, -50, -48, -48, -48, -52, -46, -48, -

50, -46, -58, -46, -50, -50, -50, -50, -52, -46, -50, -48, -48, -48, -48, -50, -44, -52, -48, -46, -48, -50, -48, -46, -48, -

50, -48, -52, -54, -56, -50, -54, -50, -46, -52, -44, -52, -50, -48, -46, -48, -52, -48, -46, -48, -46, -42, -50, -48, -46, -

50, -44, -48, -50, -54, -48, -52, -44, -48, -52, -50, -48, -48, -50, -48, -50, -54, -46, -54, -48, -48, -44, -54, -44, -52, -

46, -46, -50, -50, -48, -48, -48, -50, -46, -44, -54, -48, -50, -50, -46, -52, -48, -50, -50, -52, -52, -50, -52, -44, -50, -

46, -48, -56, -48, -46, -52, -48, -46, -48, -48, -48, -48, -48, -46, -46, -50, -52, -52, -46, -50, -50, -50, -48, -46, -48, -

50, -50, -46, -48, -48, -48, -50, -46, -50, -46, -48, -46, -52, -48, -48, -50, -52, -58, -54, -50, -48, -54, -50, -48, -50, -

46, -50, -46, -56, -48, -52, -46, -44, -50, -48, -50, -48, -46, -52, -52, -48, -52, -48, -50, -46, -50, -54, -58, -52, -52, -

48, -48, -48, -46, -52, -46, -48, -50, -50, -46, -50, -46, -46, -48, -50, -48, -48, -48, -48, -48, -52, -44, -52, -46, -48, -

46, -48, -54, -48, -46, -44}. 

 


