
Security Evaluation of Rakaposhi Stream Cipher

Mohammad Ali Orumiehchiha1, Josef Pieprzyk1, Elham Shakour2 and Ron Steinfeld3

1Center for Advanced Computing, Algorithms and Cryptography, Department of Computing,
Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia

(mohammad.orumiehchiha,josef.pieprzyk)@mq.edu.au
2Faculty of Mathematics, Amirkabir University,Tehran, Iran

elham.shakoor@gmail.com
3Clayton School of Information Technology

Monash University, Clayton VIC 3800, Australia
ron.steinfeld@monash.edu

Abstract. Rakaposhi is a synchronous stream cipher, which uses three main components a non-linear
feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering
function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits
and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The
work identifies weaknesses and properties of the cipher. The main observation is that the initialisation
procedure has the so-called sliding property. The property can be used to launch distinguishing and key
recovery attacks. The distinguisher needs four observations of the related (K, IV) pairs. The key recovery
algorithm allows to discover the secret key K after observing 29 pairs of (K, IV). In the proposed related-
key attack, the number of related (K, IV) pairs is 2(128+192)/4 pairs. The key recovery algorithm allows to
discover the secret key K after observing 29 related (K, IV) pairs.
Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then
the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial
state (and Secret Key and IV) can be recovered with complexity 263.87.
If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the
cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of
keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity
254.

Keywords: Rakaposhi Stream Cipher, Related Key Attack, Weak State, Cryptanalysis, Distinguish-
ing Attack, Key Recovery Attack.

1 Introduction

Stream ciphers are symmetric cipher systems, which provide confidentiality in many applications
ranging from mobile phone communication to private virtual networks. They may be implemented
efficiently in software and hardware and are a preferred choice when dealing with an environment that
has restricted computing resources (such as smart cards, RF tags). The inner work of stream ciphers is
controlled normally by two parameters: an initialisation vector (IV) and a key (K). The initialisation
vector is public and the key is secret.

There are many tools for analysis of stream ciphers. The most two prominent are the linear and
differential attacks. There are also many more “exotic” tools for analysis. One such tool is the related
key attack. This attack is especially dangerous when an adversary has access to many pairs of (IV,K).
This may happen if the adversary is able to experiment with a stream cipher device that has been left
unattended (so-called midnight or lunchtime attacks). The adversary may modify the unknown secret
key by forcing changes on few key bits, may try different IV s or may modify the clock procedure.

The Rakaposhi stream cipher was designed by Cid, Kiyomoto, and Kurihara in 2009 (see [1]). The
cipher is based on a non-linear feedback shift register (NLFSR) and a dynamic linear shift register
(DLFSR). The design was crafted to be suitable for lightweight implementations, where computing,
power and time resources are in short supply. The cipher offers the 128-bit security and has been
designed to complement the eStream portfolio for hardware-oriented stream ciphers. The designers
of the cipher claim that Rakaposhi is an efficient synchronous stream cipher that resists all known
attacks and they conjecture that it is also secure against other yet unknown attacks.

This work analyses the Rakaposhi cipher and shows its weaknesses. In particular, we

– examine the resistance of the cipher against the related key attack, where the adversary can access
related pairs (IV,K),

– study the security implications when NLFSR enters a short cycle,
– investigate the security level when DLFSR enters a short cycle.

1.1 Related Works

The related key attack is studied in the context the Rakaposhi cipher and its initialization procedure.
Similar analysis tools can be found in [3, 4, 8] but in a different context. The related key attack can
be seen as a member of the differential cryptanalysis toolbox. We use the slide attack published by
Canniere et. al. in [2] to launch the related key attack. The second part of our work is influenced by the
paper by Zhang and Wang [9], in which the authors study the security of the Grain stream cipher [5,
6]. While working on the paper, we have become aware of a paper by [7] that shows a similar analysis
of the initialization procedure of Rakaposhi.

The rest of the paper is structured as follows. Section 2 describes briefly the Rakaposhi stream
cipher. Section 3 presents the weaknesses of the cipher and investigate the security of the initialisation
procedure under the related key attack. Section 4 discusses the security implications when one of the
registers (either NLFSR or DLFSR) enters a short cycle. Section 5 concludes the work.

2 Description of Rakaposhi Stream Cipher

The Rakaposhi stream cipher consists of the following three building blocks (see Figure 1) :

– a 128-bit NLFSR also called the register A,
– a 192-bit DLFSR also called the register B,
– a non-linear function NLF

Fig. 1. Rakaposhi Stream Cipher

The NLSFR register A is defined by its feedback function:

g(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x3x9 ⊕ x1x7x9 ⊕ x5x8 ⊕ x2x5 ⊕
x3x8 ⊕ x2x7 ⊕ x9 ⊕ x8 ⊕ x7 ⊕ x6 ⊕
x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0 ⊕ 1,

where at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62) and at+i is ith bit of the
register A at clock t.

The DLFSR register B is controlled by two bits (c0, c1) taken from the state of NLFSR. The bits
choose one of four possible characteristic polynomials of DLFSR. The form of the polynomials is as
follows:

f(x) = x192 ⊕ x176 ⊕ c0x158 ⊕ (1⊕ c0)x155 ⊕ c0c1x136 ⊕
c0(1⊕ c1)x134 ⊕ c1(1⊕ c0)x120 ⊕ (1⊕ c0)(1⊕ c1)x107 ⊕ (1)

x93 ⊕ x51 ⊕ x49 ⊕ x41 ⊕ x37 ⊕ x14 ⊕ 1,

where the bits (c0, c1) are the 42th and 90th bits of the register A at clock t, respectively. The recursive
relation for DLFSR is as follows:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕
bt+93 ⊕ c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ c0 · c1 · bt+136 ⊕ (2)

c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176

where ci = 1⊕ ci denotes the negation of ci and bt+i is the ith bit of B at clock t.

Rakaposhi uses a non-linear filtering function NLF : GF (28)→ GF (2), which is based on the AES
S-Box. The function NLF is a balanced Boolean function of its algebraic degree equal to 7. NLF
takes 8-bit inputs (2 bits from A and 6 bits from B) according to the following relation

st = NLF (at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128),

where the two bits at+67, at+127 are taken from A and the other bits from B. Finally, the keystream
output is generated by linear combination of the outputs of both registers A and B with the output
of the NLF function. The reader interested in more detail is referred to the original paper [1].

2.1 Initialisation Procedure

The goal of the initialisation procedure is to mix IV and the secret key K. Assume that IV = [iv0, · · · ,
iv191] and K = [k0, · · · , k127]. IV and K are loaded to NLFSR and DLFSR, respectively so

ai = ki for 0 ≤ i ≤ 127

bj = ivj for 0 ≤ j ≤ 191,

where the bits of registers A and B are ai and bj , respectively. The registers A and B are then clocked
448 times without producing output keystream bits. This stage is divided into two phases:

Phase 1: the output of NLF is linearly combined with the feedback of the register B for the first
320 clocks.

Phase 2: the output of NLF is linearly combined with the feedback of the register A for the next
128 clocks.

After finishing Phase 2, the cipher starts producing keystream outputs.

3 Cryptanalysis of Rakaposhi Stream Cipher

Now, we show how we can launch the distinguishing and key recovery attacks on the Rakaposhi cipher.
The attacks use a sliding property of the cipher. An interesting property of the proposed attacks is
that their complexities are not affected by the number of clocks, which the cipher performs during the
initialisation process. This means that the attacks works even if the number of clocks is increased.

3.1 Properties of Rakaposhi Cipher

We present some cryptographic properties of the Rakaposhi stream cipher that corroborate the pro-
posed attacks.

1. The secret key and IV are loaded in two registers A and B, respectively. Consequently, at clock
t = 0, A contains K and B – IV .

2. The initialisation procedure applies the same primitives that are used during the keystream gen-
eration stage. This implies that the initialisation for the key and IV is similar to the initialisation
for the key and IV when they are shifted by one position. We refer to this characteristics as the
sliding property.

3. The register A (NLFSR) has a short cycle of the length 1. When the state of A becomes all ones,
then A stays in this state forever.

4. The register B (DLFSR) has a short cycle of the length 1. When the state of B becomes all zeros,
then B stays in this state forever.

The first two properties mean that the adversary may find related (K, IV) pairs, which produce
keystream outputs that are shifted. The third and fourth properties can be exploited by the adversary
so they can distinguish the cipher from a truly random binary source and recover internal state of the
cipher and finally corresponding secret key.

3.2 Related Key Attack on Rakaposhi

In our sliding attack we assume that we have two related pairs (K, iv) and (K̂, îv). Consider the
initialisation procedure for the two pairs. Let K = (k0, · · · , k127) and iv = (iv0, ..., iv191) be loaded
into the registers A and B, respectively. Denote the states of the registers A and B at the clock t by
At and Bt, respectively. The evolution of states over time is described below.

A0 = [k0, · · · , k127] B0 = [iv0, · · · , iv191]
A1 = [k1, · · · , k127, a128] B1 = [iv1, · · · , iv191, b192]
...

...

Phase 2 of Initialization
================⇒A192 = [a192, · · · , a319] B192 = [b192, · · · , b383]

...
...

Initialization finished
==============⇒ A320 = [a320, · · · , a447] B320 = [b320, · · · , b511]
Key Generation started
===============⇒A321 = [a321, · · · , a448] B321 = [b321, · · · , b512]

A322 = [a322, · · · , a449] B322 = [b321, · · · , b512]

The keystream output bits zi; i ≥ 0, are computed as follows:

z0 = a321 ⊕ b321 ⊕NLF (a320+67, a320+127, b320+23, b320+53, b320+77, b320+81, b320+103, b320+128)

z1 = a322 ⊕ b322 ⊕NLF (a321+67, a321+127, b321+23, b321+53, b321+77, b321+81, b321+103, b321+128)

...

The relation between keystreams generated by the cipher when initialised by the related pairs is
described by the following theorem.

Theorem 1. Given two pairs (K, iv) and (K̂, îv), where K = (k0, · · · , k127) and iv = (iv0, ..., iv191).
If the pair (K̂, îv) satisfies the following equations{

k̂i = ki+1 0 ≤ i ≤ 126, k̂127 = a128

îvi = ivi+1 0 ≤ j ≤ 190, îv191 = b192
(3)

then the keystream output bits ẑi = zi+1 for i ≥ 0 with probability 2−2.

Proof. By satisfying Equation (3), the internal states of [A191, B191] are equal to [Â190, B̂190]. But at
the next clock, the states may not be identical because the state [Â191, B̂191] is still at the first step
while [A192, B192] is running at the second step. If b̂383 = b382, which occurs with probability 1/2, then

[Â191, B̂191] = [A192, B192].

The same argument is valid for the states [A320, B320] and [Â319, B̂319]. The states are identical, when
â446 = b447, which also happens with probability 1/2. Consequently, ẑi = zi+1 for i ≥ 0 with total
probability 1/4. �

Table 1 presents some (K, IV) pairs, which produce shifted identical key stream outputs. According
to Theorem 1, the adversary can use this weakness to generate the same but l−bit shifted keystream
outputs by defining related (K, IV) pairs with probability 2−2·l. The discovered weakness allows the

Table 1. Shifted identical key stream outputs corresponding two related (K, IV) pairs

Key IV Output bits

1 1001101111001110101000
1000000011101001100000
0001100010110001001111
0111011101000001001001
0000000100110011001001
010011010111100111

010001111000000101000100011010110
000000000010000001101110000111110
011101010110000111110000110011001
110001011101101100000101001101100
010001110000000100100100101111001
101011010101100010110010101

0000011000010001110011
1100000101000101010010
1001010000110111100110
1010101011010000001101
1100111001000100011110
011110000011110101

———————————— —————————————————– ————————————
0011011110011101010001
0000000111010011000000
0011000101100010011110
1110111010000010010010
0000001001100110010010
100110101111001111

100011110000001010001000110101100
000000000100000011011100001111100
111010101100001111100001100110011
100010111011011000001010011011000
100011100000001001001001011110011
010110101011000101100101011

0000110000100011100111
1000001010001010100101
0010100001101111001101
0101010110100000011011
1001110010001000111100
111100000111101010

2 0000000001011111101100
1110110011100100010111
0111011011001111001010
1101110110000111001000
1101100000111001011010
100111100110110000

001110001011100011101110001011000
010001000111100001100101010010111
010110010001010000001101001100011
010010011011011100011100110101011
111110010100001100111001110111000
000001111001000110010110101

0111010010011000000111
0011001011000010111010
1111100110000111101110
1001111000010010011010
1110010000011100101000
100010110111101111

———————————— —————————————————– ————————————
0000000010111111011001
1101100111001000101110
1110110110011110010101
1011101100001110010001
1011000001110010110101
001111001101100001

011100010111000111011100010110000
100010001111000011001010100101110
101100100010100000011010011000110
100100110110111000111001101010111
111100101000011001110011101110000
000011110010001100101101011

1110100100110000001110
0110010110000101110101
1111001100001111011101
0011110000100100110101
1100100000111001010001
000101101111011111

adversary to distinguish the cipher from a random bit generator. Assume that the adversary can
apply related (K, IV) pairs, which does not know the exact values of secret key. Then, after applying
m (� 4) different (randomly generated) related (K, IV) pairs, on average m/4 of generated key
stream outputs have identical sequences with just one bit shift.

3.3 Recovery of Secret Keys

Now, we propose a key recovery attack that exploits the sliding property of pairs (K, IV). We show an
algorithm that allows to recover the 128-bit key after O(29) initialisation operations. The algorithm
needs 512 related (K, IV) pairs and it can find the secret key with probability one.

Assume that both (K, IV) and (K̂, ÎV) generate almost identical keystream bits, where the second
keystream is a shifted by one bit copy of the first keystream. At clock t = 321, the first generated bit

is b192, which is equal to:

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1⊕ c0)(1⊕ c1)b107
⊕ (1⊕ c0)c1b120 ⊕ c0(1⊕ c1)b134 ⊕ c0c1b136 ⊕ (1⊕ c0)b155 ⊕ c0b158 ⊕ b176
⊕NLF (a67, a127, b23, b53, b77, b81, b103, b128),

where c0 = a41 and c1 = a89. Since the contents of bi (0 ≤ i ≤ 191) are known and can be cho-
sen by the adversary, then Equation (4) is a non-linear relation based on only 4 unknown variables
a41, a89, a67, a127. We now take a closer look at the equation (4):

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1⊕ a41)(1⊕ a89)b107
⊕ (1⊕ a41)a89b120 ⊕ a41(1⊕ a89)b134 ⊕ a41a89b136 ⊕ (1⊕ a41)b155 ⊕ a41b158 ⊕ b176
⊕ a67a127b23b53b77b81b103 ⊕ a67a127b23b53b77b81 ⊕ a67a127b23b53b77b103
⊕ a67a127b23b53b81b103b128 ⊕ a67a127b23b53b81b103 ⊕ a67a127b23b53b81b128
⊕ a67a127b23b53b81 ⊕ a67a127b23b53b103b128 ⊕ a67a127b23b77b81b103
⊕ a67a127b23b77 ⊕ a67a127b23b81b103 ⊕ a67a127b23b81b128 ⊕ a67a127b23b128
⊕ a67a127b23 ⊕ a67a127b53b77b81b103b128 ⊕ a67a127b53b77b81b128
⊕ a67a127b53b77b81 ⊕ a67a127b53b77b128 ⊕ a67a127b53b77 ⊕ a67a127b53b103
⊕ a67a127b77b81b103b128 ⊕ a67a127b77b81b103 ⊕ a67a127b77b81b128 ⊕ a67a127b77b103b128
⊕ a67a127b77b128 ⊕ a67a127b81b103b128 ⊕ a67a127b81b103 ⊕ a67a127b81 ⊕ a67a127b103 (4)

⊕ a67a127 ⊕ a67b23b53b77b81b103 ⊕ a67b23b53b77b81b128 ⊕ a67b23b53b77 ⊕ a67b23b53b81b103b128
⊕ a67b23b53b81b103 ⊕ a67b23b53b81b128 ⊕ a67b23b53b103 ⊕ a67b23b77b81b103b128 ⊕ a67b23b81b103
⊕ a67b23b81 ⊕ a67b23b103b128 ⊕ a67b23b128 ⊕ a67b53b77b81b103b128 ⊕ a67b53b77b81b103
⊕ a67b53b77b81b128 ⊕ a67b53b77b81 ⊕ a67b53b77b128 ⊕ a67b53b81b103b128 ⊕ a67b53b81
⊕ a67b53b103 ⊕ a67b53 ⊕ a67b77b81b103 ⊕ a67b77b103b128 ⊕ a67b81b103
⊕ a67b103 ⊕ a67 ⊕ a127b23b53b77 ⊕ a127b23b53b81b103 ⊕ a127b23b53b81b128
⊕ a127b23b53b81 ⊕ a127b23b53 ⊕ a127b23b77b81b103 ⊕ a127b23b77b103 ⊕ a127b23b77
⊕ a127b23b81 ⊕ a127b23 ⊕ a127b53b77b81b103b128 ⊕ a127b53b77b81b128 ⊕ a127b53b77b103b128
⊕ a127b53b77b103 ⊕ a127b53b77 ⊕ a127b53b81b103 ⊕ a127b53b81 ⊕ a127b53b103
⊕ a127b53b128 ⊕ a127b77b81b103b128 ⊕ a127b77b81b128 ⊕ a127b81b103 ⊕ a127b81b128 ⊕ a127b81
⊕ a127b103b128 ⊕ a127b103 ⊕ a127 ⊕NLF ′(b23, b53, b77, b81, b103, b128)

where NLF ′ is a Boolean function including all monomials of NLF , in which variables a67, a127 do
not exist. Note that the adversary does not need to solve the equation. Instead, the adversary can
recover four bits of the secret key by choosing appropriate bits for IV s. For example, if{

bi = 0 i ∈ Φ
b158 = 1

where Φ = {0, 14, 37, 41, 49, 51, 93, 107, 120, 134, 136, 155, 176, 23, 53, 77, 81, 103, 128}, then b192 = a41.
Consequently, îv191 = k41. In this way, the adversary is able to retrieve other four secret key bits.
The number of the required related pairs (K, IV) is 4. On the average, to find the valid pairs, the
adversary needs 16 pairs. In other words, to retrieve 4 secret key bits, the adversary should run the
initialisation algorithm 16 times for the related (K, IV) pairs. Now, the adversary can keep going and
continue the attack finding consecutive 4-bit parts of the secret key. Finally, to determine the whole
128-bit secret key, the adversary needs to apply 512 = 32× 16 related (K, IV) pairs on the average.

4 Weak (K, IV) Pairs

In this section we study the security implications of short cycles of the two registers A and B. Note
that the initialisation procedure takes K and IV loads them to A and B, respectively and then the

cipher is clocked 448 times. At the end of the initialisation, the cipher can be set in the following weak
states:

– the register A contains all ones and the state loops forever. To identify the collection of pairs
(K, IV) that leads to this state of A, it is enough to set A = 1 and to set B to an arbitrary
192-bit vector and clock backwards. This process will generate 2192 pairs (K, IV) that leads the
initialisation to weak states.

– the register B contains all zeros and the state loops forever. Again, to identify the collection of
pairs (K, IV) that leads to this state of B, it is enough to set B = 0 and to set A to an arbitrary
128-bit vector and clock backwards. This process will generate 2128 pairs (K, IV) that leads the
initialization to weak states.

– both registers A = 1 and B = 0. There is a single pair of (K, IV) only. To identify it, set registers
appropriately and clock backwards. This case is not very interesting as it can be easily identified.

4.1 Weak (K, IV) Pairs Leading to A = 1

It may happen that after the initialisation, the pair (K, IV) leads to A = 1. An immediate consequence
of this is that the register A contains all ones and it stays in this state for all clocks. The adversary
is able to identify this case and they are also able to recover the weak pair (K, IV) that has led to
A = 1. Clearly, if the adversary knows IV , then the task of finding K is easier.

Note that the cipher with the register A in the state of all ones is equivalent to a 192-bit LFSR
whose outputs are filtered by a non-linear Boolean function h with an 6-bit input. The function h is
the non-linear function NLF with two bits set to ones (those that are coming from A). The function is
a balanced function from h : GF (26)→ GF (2) of degree 5 and non-linearity 20 and it is given below.

h(x1, x2, x3, x4, x5, x6) = 1⊕ x1 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x4 ⊕ x3x4 ⊕ x2x3x4 ⊕ x5
⊕ x1x2x5 ⊕ x2x3x5 ⊕ x1x4x5 ⊕ x3x4x5 ⊕ x1x3x4x5 ⊕ x2x3x4x5
⊕ x1x6 ⊕ x2x6 ⊕ x1x3x6 ⊕ x1x2x3x6 ⊕ x4x6 ⊕ x1x4x6 ⊕ x1x2x4x6
⊕ x3x4x6 ⊕ x1x3x4x6 ⊕ x2x3x4x6 ⊕ x1x2x3x4x6 ⊕ x5x6 ⊕ x2x3x5x6
⊕ x4x5x6 ⊕ x2x4x5x6 ⊕ x1x2x4x5x6 ⊕ x2x3x4x5x6

The function can be approximated by a linear Boolean function 1⊕ x1 ⊕ x1 ⊕ x6 with probability:

Pr(h = (1 + x1 + x2 + x6)) =
44

64
= 0.6875 = 0.5 + 2−2.415

The algebraic immunity of the function is 3 and the number of the annihilators is 10. To recover the
contents of the register B, we may apply a basic algebraic attack the needs 222.75 observations of the
keystream bits and whose complexity is 263.87. Once the adversary knows the contents of B at the end
of the initialization, they can clock backwards to recover the weak pair (K, IV).

4.2 Weak (K, IV) Pairs Leading to B = 0

The second class of weak (K, IV) pairs leads to the state with B = 0. In this case the register B stays
in the zero state for all clocks. Consequently, all the outputs of DLFSR are zeros, which is equivalent
to removal of the register B from the cipher. The goal of the adversary is to recover the pair (K, IV).
Now we show that the adversary is able to recover the initial state (and the secret key by clocking
NLFSR backwards) faster than in 254 steps.

Note that the NLF function is now used with its 6 bits coming from the register B set to zero.
Consequently, the keystream output function that is a linear combination of the least significant bit
of the register A with the output of the NLF function. The keystream output function is denoted by
` : {0, 1}3 → {0, 1} and is of the following form:

l(x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2 ⊕ x3.

The function ` is a non-linear balanced Boolean function of degree 2. One of the best approximations
of ` is the linear function x3. It is easy to check that

Pr(l = x3) =
6

8
= 0.75 = 0.5 + 2−2 (5)

Distinguishing Attack If B = 0, then the adversary may distinguish the generated keystream bits
from a random bit generator. Consider the keystream output bits at clocks t+ 0, t+ 6, t+ 7, t+ 11,
t+ 16, t+ 28, t+ 36, t+ 45, t+ 55, t+ 62. If we use the approximation (see Equation (5)) then we
can write

Pr(zt+128 = g(zt+0, zt+6, zt+7, zt+11, zt+16, zt+28, zt+36, zt+45, zt+55, zt+62)) ≈ 0.502 (6)

This means that the adversary requires around 217 observations of the keystream output bits to tell
apart the cipher from a random bit generator with negligible error probability.

Recovery Attack To recover the pair (K, IV), the adversary may use the linear approximation of
` and try to guess the contents of A. The probability of the correct guess for the state is (0.75)128 =
2−53.12, which is so far from the probability 2−128. In other words, the cipher has at most 54 bits
security.

5 Conclusions

In this paper, we analysed the initialisation algorithm of the Rakaposhi stream cipher. We started
from observations about cryptographic weak points of the cipher. We discovered the so-called sliding
property of the pairs (K, IV). This property can be exploited by launching distingushing and key
recovery attacks. We showed that there is a distinguishing attack that needs four related (K, IV)
pairs only. Our key recovery attack recovers all bits of the secret key K after observing 29 related
(K, IV) pairs.

In the second part of the work, we studied the security of Rakaposhi when either the register A or
B enters a short cycle at the end of the initialisation procedure. When the register A loops in the all-
ones state, then the adversary is able to recover the pair (K, IV). Rakaposhi in this case degenerates
to a LFSR cipher with a non-linear filter function. It is shown that the initial state of the register B
can be discovered by an algorithm of time complexity 263.87.

If the register B enters the zero state at the end the initialisation procedure, then we showed
two efficient algorithms: one to distinguish Rakaposhi from a random bit generator and the other to
recover the pair (K, IV). The distinguisher needs 217 keystream bit observations. The key recovery
algorithm requires around 254 operations. Note that this cryptographic weakness can be explored by
the adversary when they have access to the cipher device and are allowed to play with the device by
running it for different IV s.

References

1. C. Cid, S. Kiyomoto, and J. Kurihara, The rakaposhi stream cipher, in Proceedings of the 11th international
conference on Information and Communications Security, ICICS’09, Berlin, Heidelberg, 2009, Springer-Verlag, pp. 32–
46.

2. C. De Cannière, O. Küçük, and B. Preneel, Analysis of grain’s initialization algorithm, in Proceedings of the
Cryptology in Africa 1st international conference on Progress in cryptology, AFRICACRYPT’08, Berlin, Heidelberg,
2008, Springer-Verlag, pp. 276–289.

3. H. Englund, T. Johansson, and M. Snmez Turan, A framework for chosen iv statistical analysis of stream ciphers,
in Progress in Cryptology INDOCRYPT 2007, K. Srinathan, C. Rangan, and M. Yung, eds., vol. 4859 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2007, pp. 268–281.

4. E. Filiol, A new statistical testing for symmetric ciphers and hash functions, in Proceedings of the 4th Interna-
tional Conference on Information and Communications Security, ICICS ’02, London, UK, UK, 2002, Springer-Verlag,
pp. 342–353.

5. M. Hell, T. Johansson, and W. Meier, Grain - a stream cipher for constrained environments, ECRYPT Stream
Cipher Project.

6. , Grain ; a stream cipher for constrained environments, Int. J. Wire. Mob. Comput., 2 (2007), pp. 86–93.
7. T. Isobe, T. Ohigashi, and M. Morii, Slide cryptanalysis of lightweight stream cipher rakaposhi, in Advances in

Information and Computer Security, G. Hanaoka and T. Yamauchi, eds., vol. 7631 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2012, pp. 138–155.

8. M. juhani O. Saarinen, Chosen-iv statistical attacks on estream stream ciphers, in eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/013, 2006, pp. 5–19.

9. H. Zhang and X. Wang, Cryptanalysis of stream cipher grain family, in Cryptology ePrint Archive, Report 2009/109,
2009.

