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Abstract. Adding a Schnorr signature to ElGamal encryption is a popular proposal aiming at thwarting
chosen-ciphertext attacks by rendering the scheme plaintext-aware. However, there is no known security
proof for the resulting scheme, at least not in a weaker model than the one obtained by combining the
Random Oracle Model (ROM) and the Generic Group Model (Schnorr and Jakobsson, ASIACRYPT
2000). In this paper, we propose a very simple modification to Schnorr-Signed ElGamal encryption such
that the resulting scheme is semantically secure under adaptive chosen-ciphertext attacks (IND-CCA2-
secure) in the ROM under the Decisional Diffie-Hellman assumption. In fact, we even prove that our new
scheme is plaintext-aware in the ROM as defined by Bellare et al. (CRYPTO ’98). Interestingly, we also
observe that Schnorr-Signed ElGamal is not plaintext-aware (again, for the definition of Bellare et al.)
under the Computational Diffie-Hellman assumption. We show that our new scheme additionally achieves
anonymity as well as robustness, a notion formalized by Abdalla et al. (TCC 2010) which captures the
fact that it is hard to create a ciphertext that is valid under two different public keys. Finally, we study
the hybrid variant of our new proposal, and show that it is IND-CCA2-secure in the ROM under the
Computational Diffie-Hellman assumption when used with a symmetric encryption scheme satisfying
the weakest security notion, namely ciphertext indistinguishability under one-time attacks (IND-OT-
security).

Keywords: ElGamal encryption, Schnorr signature, chosen-ciphertext attacks, plaintext-aware en-
cryption, robust encryption, hybrid encryption

1 Introduction

ElGamal and variants. The ElGamal encryption scheme [ElG85] is one of the oldest discrete-log
based public key encryption scheme. It works as follows. Given a cyclic group G of prime order p
and a generator G, a secret/public key pair is a pair (x,X = Gx), where x is randomly drawn in
Z∗p. To encrypt a message M ∈ G, one draws a random integer r ∈ Z∗p, and computes R = Gr and
Y = MXr. The ciphertext is (Y,R), and can be decrypted by computing Y/Rx.

ElGamal encryption is one-way under the Computational Diffie-Hellman (CDH) assumption,
and its semantic security against chosen-plaintext attacks (IND-CPA-security) is equivalent to the
Decisional Diffie-Hellman (DDH) assumption [TY98]. However, it is not secure against adaptive1

chosen-ciphertext attacks since it is malleable: given a ciphertext (Y,R) corresponding to plaintext
M , one can easily generate a ciphertext corresponding to MGz as (Y Gz, R). This implies that the
scheme cannot be IND-CCA2-secure.

There have been mainly two approaches aiming at enhancing the security of ElGamal encryption
to resist adaptive chosen-ciphertext attacks in the Random Oracle Model (ROM). The first one
is to use the so-called hybrid (or hashed) variant of the scheme, where Xr is hashed through a

? An abridged version appears at CT-RSA 2013. This is the full version.
1 Regarding non-adaptive chosen-ciphertext attacks, i.e. IND-CCA1 security of ElGamal encryption, see [Lip10].



random oracle HK to give a secret key K subsequently used in a symmetric encryption scheme. The
resulting scheme is often referred to as DHIES [ABR01, CS03, KM04]. To establish the IND-CCA2-
security of hybrid ElGamal encryption, one has to rely on the IND-CCA2-security of the symmetric
encryption scheme2 and on the non-standard Strong Diffie-Hellman (SDH) assumption, which states
that the CDH problem remains hard even given access to an oracle solving the DDH problem.3
Recently, Cash et al. [CKS08] removed the need to rely on the SDH assumption by proposing the
Twin ElGamal encryption scheme, a variant of hybrid ElGamal which is IND-CCA2-secure under
the CDH assumption.

The second approach is to add a non-interactive proof of knowledge of the random integer r used
to encrypt the plaintext, with the hope to make the scheme plaintext-aware. The notion of plaintext
awareness was introduced in [BR94] and captures the intuitive idea that it should be impossible for an
attacker to create a valid ciphertext without knowing the corresponding plaintext, thereby rendering
the decryption oracle available to an IND-CCA2 adversary useless. The most natural idea is to add a
Schnorr signature [Sch91] to the ciphertext, as was proposed in [Jak98, TY98]: to encrypt a message
M ∈ G, in addition to the usual ElGamal ciphertext R = Gr, Y = MXr, a Schnorr signature (with
secret key r) is computed using a random oracle Hc by drawing a random integer a ∈ Z∗p, and setting
A = Ga, c = Hc(Y,R,A), and s = a+ cr mod p. The ciphertext is then (Y,R, c, s). To decrypt with
the secret key x, first check whether c = Hc(Y,R,GsR−c), then return Y/Rx = M (or ⊥ if the check
failed). We call this scheme Schnorr-Signed ElGamal (SS-EG for short) encryption.4

Intuitively, since the Schnorr proof of knowledge is extractable in the ROM [PS96, PS00], the
security reduction should be able to extract the integer r used to form a ciphertext (Y,R, c, s) and
answer decryption queries issued by an IND-CCA2 adversary without knowing the secret key x as
Y/Xr. However, no one knows how to turn this intuition into a formal security proof. As clearly
explained by Shoup and Gennaro [SG02, Sec. 7.2], the problem is that Schnorr signatures are not
known to be online (a.k.a. straight-line) extractable [Pas03, Fis05]: the extractor needs to rewind
the prover (here, the adversary) in order to extract r. This causes problems if the adversary orders
its random oracle and decryption queries in a certain way (e.g., if it asks n random oracle queries
ci = Hc(Yi, Ri, Ai) corresponding to the Schnorr signature for the encryption of n messages Mi, and
then asks the decryption queries for the messages in reverse order, that is for Mn, . . . ,M1). Tsiounis
and Yung [TY98] gave a proof that SS-EG encryption is IND-CCA2-secure using a strong assumption
on Schnorr signatures (which basically amounts to saying that they are online extractable). Schnorr
and Jakobsson [SJ00] showed that SS-EG encryption is IND-CCA2-secure by combining the ROM
and the Generic Group Model (GGM). However, as noted by Fischlin [Fis00], combining these two
idealized models may be even more problematic than considering each one independently.

Shoup and Gennaro [SG02] proposed two variants of SS-EG encryption named TDH1 and TDH2,
whose hybrid variants are IND-CCA2-secure in the ROM under respectively the CDH and the DDH
assumption (regarding non-hybrid variants, we show that they are IND-CCA2-secure in Appendix C).
They were primarily concerned with the context of threshold encryption, where it is necessary that

2 In fact, the weaker notion of indistinguishability under one-time chosen-ciphertext attacks (IND-OTCCA) is suffi-
cient [CS03, HHK10].

3 The SDH assumption is slightly weaker than the Gap Diffie-Hellman (GDH) assumption [OP01]: the first element
of the triplets submitted to the DDH oracle is fixed for the SDH problem, whereas it can be freely chosen for the
GDH problem.

4 A variant of the scheme is obtained by using (Y,R,A, s) for the ciphertext, i.e appending the traditional variant
of the Fiat-Shamir signature consisting of the challenge and the response. Since integers mod p are usually more
compact than group elements, the optimized variant of the signature consisting of the challenge and the response
(c, s) is often preferred. This has no impact on security for SS-EG, but we warn that this will not be the case for the
new scheme presented in Section 3.
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decryption servers be able to publicly verify (i.e. without knowing the secret key) the validity of a
ciphertext before starting the decryption process. This constraint leads to schemes which, though
efficient, are more complex than SS-EG. It is therefore a natural question whether removing the
necessity to be able to publicly verify the validity of a ciphertext could yield more efficient provably
IND-CCA2-secure variants of SS-EG encryption.
Robustness. Robustness for an encryption scheme informally means that it is hard to create a
ciphertext that decrypts to a valid plaintext under two different secret keys.5 This notion was only
recently formalized by Abdalla et al. [ABN10], and further studied by Mohassel [Moh10]. Robustness
can always be achieved by appending the public key of the intended receiver to the ciphertext
(and checking it on decryption). However, the notion becomes really interesting when coupled with
anonymity (a.k.a. key privacy) [BBDP01], which requires that a ciphertext does not reveal the public
key under which it was created—and then the previous solution for robustness becomes inadequate.
Anonymity and robustness not only help make encryption more resistant to misuse, but also are
inherently important properties for some applications of public key encryption such as encryption
with keyword search [ABC+08] or auction protocols [Sak00].

Basic ElGamal encryption can be shown anonymous under CPA-attacks assuming the DDH
problem is hard [BBDP01], however it is clearly not robust since any ciphertext is valid. This is also
true for Schnorr-Signed ElGamal6 since the validity check does not depend on the secret nor the
public key (anonymity and robustness for TDH1/2 are more subtle, but neither of them achieves
both anonymity and robustness, see Appendix C). It is claimed in [ABN10] that a very minimal
modification to DHIES [ABR01] (which is anonymous under CCA2-attacks) renders the scheme
robust. Though no formal proof is available, such a proof seems to require non-standard assumptions
on the MAC scheme used.7 We also note that all variants of ElGamal encryption with compact
ciphertexts where the decryption algorithm never rejects [KM04, Boy07, AKO09] cannot be robust
(independently of whether they are anonymous or not). Hence, it seems to be an open problem to
propose a simple variant of ElGamal encryption achieving both anonymity under CCA2-attacks and
robustness without additional non-standard assumption.
Contributions of this work. We propose a very simple variant of Schnorr-Signed ElGamal en-
cryption, and prove that it is IND-CCA2-secure in the ROM under the DDH assumption by showing
that it is IND-CPA-secure and plaintext-aware. Additionally, we show that the resulting encryption
scheme is not only anonymous under CCA2 attacks assuming the DDH problem is hard, but also
strongly robust (assuming the additional check at decryption that the randomness used to encrypt
was not 0). The proof of robustness only requires that the hash function used to instantiate the
random oracle be collision-resistant.

The modification only affects the way the random challenge c for the signature is generated;
in particular the key size remains unchanged compared with Schnorr-Signed ElGamal, whereas the
ciphertext size is the same as for the unoptimized variant of Schnorr-Signed ElGamal (the optimized
variant of the signature cannot be used as for SS-EG because in that case this leads to an insecure
scheme, see Remark 1 in Section 3). We name our new scheme Chaum-Pedersen-Signed ElGamal
(CPS-EG for short) encryption since it uses a proof of equality of discrete logarithms (introduced
by Chaum and Pedersen [CP92]) rather than a proof of knowledge of discrete logarithm. This idea

5 This is strong robustness. Weak robustness means that it is impossible to produce a plaintext that, once encrypted
under some public key, decrypts to some valid plaintext under the secret key corresponding to a second, different
public key.

6 Schnorr-Signed ElGamal can easily be seen to achieve anonymity under CPA-attacks. We expect however that
proving anonymity under CCA2-attacks will run into the same problems as a proof of IND-CCA2-security.

7 Personal communication with the authors of [ABN10].
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already proved fruitful for signature schemes [KW03, GJKW07]. In fact, our scheme can be seen as
an optimized variant of TDH2 [SG02]. A comparison of CPS-EG with existing related schemes can
be found in Table 1.

We prove our scheme to be in a sense minimal relatively to plaintext awareness: removing any in-
put to the random oracle when computing the challenge for the signature makes the scheme provably
(under some computational assumption) not plaintext-aware.8 In particular, we show that Schnorr-
Signed ElGamal encryption is not plaintext-aware as defined in [BDPR98] under the CDH assump-
tion. We think that this observation might help explain why progress has remained elusive regarding
IND-CCA2-security of this scheme.

We also analyze the hybrid version of our scheme, named HCPS-EG, and show that it is IND-
CCA2-secure in the ROM under the CDH assumption. As the non-hybrid variant, the scheme is
anonymous under CCA2-attacks (assuming the CDH problem is hard) and strongly robust (assuming
a collision-resistant hash function). An interesting feature of this scheme is that it achieves IND-
CCA2-security using the weakest form of security for the data encapsulation mechanism (DEM),
namely ciphertext indistinguishability under one-time attacks (IND-OT-security) [CS03, HHK10].
In more concrete terms, the HCPS-EG scheme can be safely used with AES in counter mode. This
is a property shared with other ElGamal variants, notably [Boy07, AKO09]. However for these two
schemes, the decryption algorithm never rejects (they aim at compact ciphertexts), and hence they
cannot be robust. A summary of results regarding HCPS-EG as well as a comparison with related
schemes can be found in Table 1. Fully detailed analysis is deferred to Appendix B.
Related work. Abe [Abe02] studied generic ways to combine a hybrid encryption scheme and a
signature scheme (which in particular applies to Hashed ElGamal and Schnorr signatures) to obtain
an IND-CCA2 encryption scheme in the ROM where validity of a ciphertext can be publicly checked.
Besides, a lot of efforts were devoted to variants of ElGamal encryption provably IND-CCA2-secure
in the standard model. This started with the “double-base” variant by Damgård [Dam91], which
is IND-CCA1-secure under the non-standard Diffie Hellman Knowledge (DHK) assumption [BP04].
Later, Cramer and Shoup [CS98] proposed their famous cryptosystem provably IND-CCA2-secure
under the DDH assumption, and formally introduced the notion of hybrid encryption [CS03]. Notable
subsequent work includes [KD04, KPSY09].
Organization. In Section 2, we recall the necessary background on ElGamal encryption and plaintext
awareness. We describe our new scheme and prove that it is plaintext-aware, hence IND-CCA2-secure
in Section 3. Then, we show in Section 4 that our scheme is in a sense minimal if one wants to obtain
plaintext awareness. In Section 5, we study anonymity and robustness of our new scheme.

2 Preliminaries

2.1 Basic Definitions
The security parameter will be denoted k. When S is a non-empty finite set, we write s←$ S to mean
that a value is sampled uniformly at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we
denote the operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . . with access
to oracles O1,O2, . . . (possibly none), and letting z be the output. PPT will stand for probabilistic
polynomial-time.

A (prime-order) group generator GpGen is a PPT algorithm that takes a security parameter 1k
and outputs a triplet (G, p,G) where G is a group9 of prime order p ∈ [2k−1, 2k[ and G is a generator

8 We stress that we refer here to the strong notion of plaintext awareness in the ROM as defined in [BDPR98]. Our
results seem unlikely to be extensible to weaker notions such as the PA2-RO notion suggested in [BP04].

9 More precisely it outputs the description of the group, but we confound it here for simplicity.
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Table 1. Comparison of variants of basic (non-hybrid) ElGamal encryption. The secret, resp. public key size is in number
of mod p integers, resp. group elements. The next two columns give the number of exponentiations per encryption and
decryption. For encryption, we separate off-line/online exponentiations. We count GsR−c as one single exponentiation
even though it is slightly more expensive. The ciphertext size is given in number of group elements plus mod p integers.
The IND column gives the assumption needed to prove IND-CCA2-security (all schemes except ElGamal use the ROM).
The ANON+SROB column indicates whether the scheme achieves ANON-CCA2-security and strong robustness, as
well as the assumptions needed. DDH stands for Decisional Diffie-Hellman, GGM for Generic Group Model, and CRHF
for Collision-Resistant Hash Function. Regarding the security properties of TDH1/2, see Appendix C.

scheme sk/pk size exp./enc. exp./dec. cip. size IND ANON+SROB Refs

ElGamal 1 2/0 1 2G DDH (CPA only) No [ElG85, TY98]

SS-EG 1 3/0 2 2G+ 2p GGM No [SJ00]
TDH1 1 3/2 3 3G+ 2p DDH No [SG02]
TDH2 1/2 5/0 3 3G+ 2p DDH No [SG02]

CPS-EG 1 4/0 4 3G+ p DDH Yes (DDH+CRHF) Sec. 3 & 5

Table 2. Comparison of variants of hashed ElGamal encryption. The first three columns are as for Table 1. The
ciphertext expansion is given in number of group elements, plus the size |τ | of a MAC in case an authenticated DEM
is needed. The DEM column indicates with which type of Data Encapsulation Mechanism the scheme is assumed to be
used (see App. A for definitions of AE-OT and IND-OT). SPRP means that the DEM must be a (variable-input length)
strong pseudorandom permutation. The IND and ANON+SROB columns are as for Table 1. For (Twin-)DHIES, the
star indicates that a non-standard assumption is needed for the MAC to achieve strong robustness. CDH stands for
Computational Diffie-Hellman, SDH for Strong DH, and GDH for Gap DH.

scheme sk/pk size exp./enc. exp./dec. cip. exp. DEM IND ANON+SROB Refs

DHIES 1 2 1 G+ |τ | AE-OT SDH Yes∗ [ABR01]
Twin-DHIES 2 3 2 G+ |τ | AE-OT CDH Yes∗ [CKS08]

KM 1 2 1 G SPRP SDH No [KM04]
Twin-KM 2 3 2 G SPRP CDH No [CKS08]
AKO 1 2 1 G IND-OT SDH No [AKO09]

Twin AKO 2 3 2 G IND-OT CDH No [AKO09]
Boyen 1 3 2 G IND-OT GDH No [Boy07]

HCPS-EG 1 4 3 G+ 2p IND-OT CDH Yes (CDH+CRHF) App. B
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of G. In all the following, we will assume that all algorithms are given (G, p,G) (e.g., as part of a
public key) and will not denote it explicitly. We denote 1G the identity element of G.

We say that the Computational Diffie-Hellman (CDH) problem is hard relatively to GpGen if the
following advantage:

Advcdh
GpGen,A(k) = Pr

[
(G, p,G)← GpGen(1k), x, y ←$ Zp, Z ← A(Gx, Gy) : Z = Gxy

]
is negligible for any PPT adversary A.

We say that the Decisional Diffie-Hellman (DDH) problem is hard relatively to GpGen if the
following advantage:

Advddh
GpGen,A(k) =

∣∣Pr
[
(G, p,G)← GpGen(1k), x, y ←$ Zp : 1← A(Gx, Gy, Gxy)

]
−

Pr
[
(G, p,G)← GpGen(1k), x, y, z ←$ Zp : 1← A(Gx, Gy, Gz)

] ∣∣
is negligible for any PPT adversary A.

Random oracles are used for three distinct goals in the various schemes considered in this paper,
and will be denoted as follows: Hc will denote the random oracle used to generate the challenge
for the signature, HK will denote the random oracle used to derive the key for the DEM in hybrid
schemes, and HG will denote a random oracle mapping to G (only used in TDH1). We will use H
as a shortcut for the set of random oracles accessed by a scheme.

Definition 1 (Encryption scheme). A public key encryption scheme PKE is a triplet of polynomial-
time algorithms (PKE.Kg, PKE.Enc, PKE.Dec) where:

– PKE.Kg, the (probabilistic) key generation algorithm, takes a security parameter 1k and returns a
secret/public key pair (sk, pk).

– PKE.Enc, the (probabilistic) encryption algorithm, takes a public key pk and a message M and
returns a ciphertext ψ.

– PKE.Dec, the (deterministic) decryption algorithm, takes a secret key sk and a ciphertext ψ and
returns either a message M or the special symbol ⊥ that indicates that the ciphertext is invalid.

We assume that a public key pk defines a message space MsgSp(pk) and for consistency we impose
that for any k:

Pr
[
(sk, pk)← PKE.Kg(1k),M ←$ MsgSp(pk), ψ ← PKE.Enc(pk,M) : PKE.Dec(sk, ψ) = M

]
= 1 .

We recall the usual security definitions for PKE schemes in Appendix A.
The ElGamal PKE encryption scheme is formally defined in Figure 1 (recall that the group

parameters (G, p,G) are implicitly included in pk, and here MsgSp(pk) = G).
The following classical security result regarding ElGamal encryption is due to Tsiounis and Yung.

Theorem 1 ([TY98]). The ElGamal encryption scheme is IND-CPA-secure if and only if the DDH
problem is hard relatively to GpGen.

Proof. We recall how to prove that hardness of DDH implies that ElGamal is IND-CPA-secure. Let
A = (A1,A2) be an IND-CPA adversary against ElGamal. We build a reduction R solving the DDH
problem. Let (G, p,G) ← GpGen(1k) and (X = Gx, R = Gr, R′) be the input to R. R runs A1 with
input pk = X, which outputs two plaintextsM0,M1. R draws b←$ {0, 1}, and gives ψ∗ = (MbR

′, R)
as the challenge ciphertext to A2. If A2 outputs b′ = b, then R outputs 1, otherwise it outputs 0.
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ElGamal PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p; X := Gx

sk := x; pk := X
Return (sk, pk)

PKE.Enc(pk = X,M)
r ←$ Z∗p
R := Gr; R′ := Xr

Y := MR′

Return ψ := (Y,R)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y,R)
R′ := Rx

Return M := Y/R′

Fig. 1. The ElGamal encryption scheme.

Clearly, when (X,R,R′) is a DDH tuple, the IND-CPA security experiment is perfectly simulated
by R, so that b′ = b with probability greater than 1/2+Advind−cpa

PKE,A (k). When (X,R,R′) is a random
triplet then the view of A is independent of b and b′ = b with probability exactly 1/2. Hence
Advind−cpa

PKE,A (k) ≤ Advddh
GpGen,R(k) which concludes the proof. ut

2.2 Plaintext Awareness in the ROM

The notion of plaintext awareness was first suggested in [BR94] to capture the idea that the only way
that an adversary can produce a valid ciphertext is to apply the encryption algorithm to the public key
and a message. The motivation was that IND-CPA-security coupled with plaintext awareness should
yield IND-CCA2-security, since this property would make the decryption oracle available to an IND-
CCA2 adversary useless. The original definition in [BR94], which was formalized in the ROM, was
found too weak to imply IND-CCA2-security, and was later adequately refined in [BDPR98]. Provid-
ing a satisfactory definition for the standard model turned out to be more subtle and was achieved
in [BP04]. Though it was initially thought as a simple tool geared towards proofs of IND-CCA2-
security, intrinsic motivations for studying plaintext awareness were later proposed, in particular in
order to securely instantiate the ideal encryption functions of the Dolev-Yao model [DY83, HLM03],
or to provide deniability to key exchange protocols [RGK06].

In this work, we use the definition of plaintext awareness in the ROM introduced in [BDPR98]
and we refer to this definition as ROM-PA-security. This definition involves two types of algorithms: a
ciphertext creator C and a plaintext extractor P. The ciphertext creator is given a public key pk and
has access to the random oracle H and to the encryption algorithm PKE.EncH

pk. All queries of C to the
random oracle and corresponding answers are recorded in a list LH . All answers (ciphertexts) received
from the encryption oracle are recorded in a list Lψ (the corresponding plaintexts are not recorded).
C outputs a ciphertext ψ /∈ Lψ. We write (LH , Lψ, ψ)← run CH,PKE.EncH

pk (pk). The plaintext extractor
P takes as input (LH , Lψ, ψ, pk) and aims at returning the plaintext corresponding to ψ.

Definition 2 (ROM-PA). Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be an encryption scheme. PKE is
said to be secure in the sense of plaintext awareness in the ROM (ROM-PA-secure) if there is a
PPT algorithm P (the plaintext extractor) such that for any PPT ciphertext creator C, the failure
probability of P relatively to C, defined as:

Failpa
PKE,P,C(k) = Pr

[
(pk, sk)← PKE.Kg(1k); (LH , Lψ, ψ)← run CH,PKE.EncH

pk (pk) :
P(LH , Lψ, ψ, pk) 6= PKE.DecH

sk(ψ)
]
,

is a negligible function (the probability is taken over the random tape of all algorithms and the answers
of the random oracle).

7



One may wonder why the ciphertext creator is given access to an encryption oracle since it can
encrypt plaintexts by itself using the public key. However, this reflects the fact that an adversary
may obtain ciphertexts it has not encrypted by itself (in particular, this is the case of the challenge
ciphertext in an IND-CCA2 security experiment), in which case it may not necessarily know the
corresponding random oracle queries (which are consequently not listed in LH). See [Sho02, BDPR98]
for a detailed discussion.

Bellare et al. [BDPR98] showed the following theorem.

Theorem 2 ([BDPR98]). If a PKE scheme is both IND-CPA-secure and ROM-PA-secure, then it
is IND-CCA2-secure.

They also showed that ROM-PA-security is strictly stronger than IND-CCA2-security: there exist
IND-CCA2-secure PKE schemes that are not ROM-PA-secure (provided IND-CCA2-secure PKE
schemes exist at all).

Note that in the above definition of ROM-PA-security, the plaintext extractor is not given access
to the random oracle: it must work with the list of random oracle queries of the ciphertext creator. If
one allows the plaintext creator to freely access the random oracle, one loses the intuitively appealing
constraint for the plaintext extractor to work given only the view of the ciphertext creator. However,
for the results of Appendix B, we will need this relaxation of the definition, and will call ROM-
PA’-security the resulting property. Fortunately, it can be checked that the proof of Theorem 2 can
be straightforwardly transposed to ROM-PA’-security, namely IND-CPA-security plus ROM-PA’-
security implies IND-CCA2-security.

Though the ElGamal encryption scheme does not use the ROM, it is clear that it cannot satisfy
any notion of plaintext awareness since an adversary can simply output a random pair (Y,R)←$ G2,
which implies that a plaintext extractor should be able to break the one-wayness of the scheme, which
holds under the CDH assumption. An attempt to make ElGamal encryption plaintext-aware is to
add a Schnorr signature, resulting in what we call the Schnorr-Signed ElGamal (SS-EG) encryption
scheme [TY98, Jak98]. Let Hc : G3 → Zp be a random oracle. It is defined in Figure 2.

SS-EG PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p; X := Gx

sk := x; pk := X
Return (sk, pk)

PKE.Enc(pk = X,M)
r, a←$ Z∗p
R := Gr; R′ := Xr

Y := MR′

A := Ga

c := Hc(Y,R,A)
s := a+ cr mod p
Return ψ := (Y,R, c, s)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y,R, c, s)
R′ := Rx

A := GsR−c

if Hc(Y,R,A) 6= c
Return ⊥

Return M := Y/R′

Fig. 2. The SS-EG encryption scheme.

As a warm-up for the proof of Theorem 4, we show below that this scheme inherits IND-CPA-
security in the ROM under the DDH assumption from basic ElGamal encryption.10 However, as
discussed in the introduction, there is no known proof that this scheme is IND-CCA2-secure in a
10 Note that in the standard model, one can easily come with instantiations of Hc that ruin even IND-CPA-security

of the scheme.
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weaker model than the combination of the ROM and the GGM. In Section 4, we prove that this
scheme is in fact provably not ROM-PA-secure under the CDH assumption.

Theorem 3. Assuming that the DDH problem is hard relatively to GpGen, the SS-EG encryption
scheme in IND-CPA-secure in the ROM.

Proof. Let A = (A1,A2) be an IND-CPA adversary against SS-EG making at most qh random
oracle queries. We proceed through a sequence of games as in [BR06]. Each game is a collection of
the following procedures:

– Init is called by the adversary at the beginning of the game; it runs the key generation algorithm
and returns the public key; it also initializes a hashtable H for keeping track of the random oracle
queries;

– Hc simulates the random oracle;
– EncChal(M0,M1) must be called once by the adversary, and returns the challenge ciphertext

for the IND-CPA security experiment;
– Finalize is called at the end of the game by the adversary when it outputs its guess b′, and the

output of this procedure is the output of the game ΓA.

When a game uses a flag Bad, it is always initialized to false. The games are defined in Table 3.
We start from game Γ0 which is simply the IND-CPA security experiment defined in Appendix A.

By definition:

Advind-cpa
SS-EG,A(k) =

∣∣∣∣Pr[ΓA0 = 1]− 1
2

∣∣∣∣ .
In game Γ1, we introduce a flag Bad that may be set to true at line 13. We also move lines 15

and 17 up in the code. Since R is random and independent of values in hashtable H, one has
PrΓ1 [Bad = true] ≤ qh/p. One can check that games Γ0 and Γ1 are identical until Bad is set to true,
hence: ∣∣∣Pr[ΓA0 = 1]− Pr[ΓA1 = 1]

∣∣∣ ≤ qh
p

.

In game Γ2, we modify lines 8 to 11. It is easy to see that games Γ1 and Γ2 are identical. Namely,
in game Γ2 these lines are equivalent to the following instructions:

c←$ Zp
s←$ Zp
a := s− rc mod p
A := Ga

which makes it clear that (r, c, s, a, A) is identically distributed in both games. Hence:

Pr[ΓA1 = 1] = Pr[ΓA2 = 1] .

In game Γ3, we simply change the way R′ is generated: it is now randomly drawn. Consider the
following distinguisher B for the DDH problem. It is given a tuple (X,R,R′) as input, runs A, and
simulates a game similar to games Γ2 and Γ3 where it uses X directly instead of line 4 of Init and
R and R′ instead of lines 5 and 6 of EncChal. Clearly, when (X,R,R′) is a DDH tuple, game Γ2 is
perfectly simulated by B, whereas when (X,R,R′) is a random tuple, game Γ3 is perfectly simulated.
Hence: ∣∣∣Pr[ΓA2 = 1]− Pr[ΓA3 = 1]

∣∣∣ ≤ Advddh
GpGen,B(k) .
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Table 3. Games used in the proof of Theorem 3. Differences from game to game are highlighted in gray.

1 Game Γ0:
2

3 procedure EncChal(M0,M1):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ := Xr

7 Y := MbR
′

8 a←$ Z∗p
9

10

11 A := Ga

12 if (Y,R,A) ∈ H then:
13 c := H(Y,R,A)
14 else \\(Y,R,A) /∈ H
15 c←$ Zp

16 H(Y,R,A) := c
17 s := a+ cr mod p
18 return (Y,R, c, s)

Game Γ1:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := Xr

Y := MbR
′

a←$ Z∗p
c←$ Zp

s := a+ cr mod p
A := Ga

if (Y,R,A) ∈ H then:
Bad := true

else \\(Y,R,A) /∈ H

H(Y,R,A) := c

return (Y,R, c, s)

Game Γ2:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := Xr

Y := MbR
′

c←$ Zp

s←$ Zp

A := GsR−c

if (Y,R,A) ∈ H then:
Bad := true

else \\(Y,R,A) /∈ H

H(Y,R,A) := c

return (Y,R, c, s)

1 Game Γ3:
2

3 procedure EncChal(M0,M1):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ ←$ G
7 Y := MbR

′

8

9 c←$ Zp

10 s←$ Zp

11 A := GsR−c

12 if (Y,R,A) ∈ H then:
13 Bad := true
14 else \\(Y,R,A) /∈ H
15

16 H(Y,R,A) := c
17

18 return (Y,R, c, s)

Game Γ4:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

Y ←$ G

c←$ Zp

s←$ Zp

A := GsR−c

if (Y,R,A) ∈ H then:
Bad := true

else \\(Y,R,A) /∈ H

H(Y,R,A) := c

return (Y,R, c, s)

Games Γ0 to Γ4:

procedure Init:
x←$ Z∗p; X := Gx

hashtable H := ∅
return X

procedure Hc(Y,R,A):
if (Y,R,A) /∈ H then
c←$ Zp

H(Y,R,A) := c
return H(Y,R,A)

procedure Finalize(b′):
return b′ = b

10



Finally, in game Γ4, we replace lines 6 and 7 and simply draw Y at random. Clearly, games Γ3
and Γ4 are identical since R′ is never used later in the code of these games. Moreover, the view of A
in game Γ4 is independent of the bit b drawn by EncChal, hence:

Pr[ΓA3 = 1] = Pr[ΓA4 = 1] = 1
2 .

Combining all of the above, we obtain:

Advind-cpa
SS-EG,A(k) =

∣∣∣Pr[ΓA0 = 1]− Pr[ΓA3 = 1]
∣∣∣

≤ Advddh
GpGen,B(k) + qh

p
.

This concludes the proof. ut

3 Chaum-Pedersen-Signed ElGamal Encryption

In this section, we describe our modification of the SS-EG encryption scheme and analyze its security.
We name the new scheme Chaum-Pedersen-Signed ElGamal (CPS-EG for short) encryption. The
change is quite small: we simply add two elements, R′ = Rx and A′ = Ax, in the inputs to the
random oracle Hc when computing the challenge c for the signature. This corresponds to moving
from a proof of knowledge of the discrete logarithm r = DLogG(R) to a Chaum-Pedersen [CP92]
proof of equality of discrete logarithms DLogG(R) = DLogX(R′). The scheme uses a random oracle
Hc : G5 → Zp. It is defined in Figure 3. Note that the signature added to the ciphertext is the
pair (A, s) rather than (c, s) (i.e. the usual Fiat-Shamir signature consisting of the commitment and
the response, rather than the optimized variant consisting of the challenge and the response), see
Remark 1 below.

CPS-EG PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p; X := Gx

sk := x; pk := X
Return (sk, pk)

PKE.Enc(pk = X,M)
r, a←$ Z∗p
R := Gr; R′ := Xr

Y := MR′

A := Ga; A′ := Xa

c := Hc(Y,R,R′, A,A′)
s := a+ cr mod p
Return ψ := (Y,R,A, s)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y,R,A, s)
R′ := Rx; A′ := Ax

c := Hc(Y,R,R′, A,A′)
if Gs 6= ARc or Xs 6= A′R′c

Return ⊥
Return M := Y/R′

Fig. 3. The CPS-EG encryption scheme.

Note that the correctness of a ciphertext cannot be checked publicly (i.e. without knowledge of
the secret key x). As for the Schnorr-Signed variant, the scheme remains IND-CPA-secure under the
DDH assumption for GpGen.

Theorem 4. Assume that the DDH problem is hard for GpGen. Then the CPS-EG encryption scheme
is IND-CPA-secure in the ROM.
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Table 4. Games used in the proof of Theorem 4. Differences from game to game are highlighted in gray. The symbol ∗
denotes any group element.

1 Game Γ0:
2

3 procedure EncChal(M0,M1):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ := Xr

7 Y := MbR
′

8 a←$ Z∗p; A := Ga

9

10

11 A′ := Xa

12 if (Y,R,R′, A,A′) ∈ H then:
13 c := H(Y,R,R′, A,A′)
14 else \\(Y,R,R′, A,A′) /∈ H
15 c←$ Zp

16 H(Y,R,R′, A,A′) := c
17 s := a+ cr mod p
18 return (Y,R,A, s)
19

20 procedure Finalize(b′):
21

22

23

24 return b = b′

Game Γ1:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := Xr

Y := MbR
′

a←$ Z∗p; A := Ga

c←$ Zp

s := a+ cr mod p
A′ := Xa

if (∗, ∗, ∗, ∗, A′) ∈ H then:
Bad := true

else \\(Y,R,R′, A,A′) /∈ H

H(Y,R,R′, A,A′) := c

return (Y,R,A, s)

procedure Finalize(b′):

return b = b′

Game Γ2:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := Xr

Y := MbR
′

a←$ Z∗p; A := Ga

s←$ Zp

return (Y,R,A, s)

procedure Finalize(b′):
A′ := Xa

if (∗, ∗, ∗, ∗, A′) ∈ H then:
Bad := true

return b = b′

1 Game Γ3:
2

3 procedure EncChal(M0,M1):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ ←$ G
7 Y := MbR

′

8 a←$ Z∗p; A := Ga

9 s←$ Zp

10 return (Y,R,A, s)
11

12 procedure Finalize(b′):
13 A′ := Xa

14 if (∗, ∗, ∗, ∗, A′) ∈ H then:
15 Bad := true
16 return b = b′

Game Γ4:

procedure EncChal(M0,M1):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

Y ←$ G
a←$ Z∗p; A := Ga

s←$ Zp

return (Y,R,A, s)

procedure Finalize(b′):
A′ := Xa

if (∗, ∗, ∗, ∗, A′) ∈ H then:
Bad := true

return b = b′

Games Γ0 to Γ4:

procedure Init:
x←$ Z∗p; X := Gx

hashtable H := ∅
return X

procedure Hc(Y,R,R′, A,A′):
if (Y,R,R′, A,A′) /∈ H then
c←$ Zp

H(Y,R,R′, A,A′) := c
return H(Y,R,R′, A,A′)
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Proof. Let A = (A1,A2) be an IND-CPA adversary against CPS-EG making at most qh random
oracle queries. We proceed through a sequence of games as in the proof of Theorem 3 (refer to this
proof for notations). The games are defined in Table 4.

We start from game Γ0 which is simply the IND-CPA security experiment defined in Appendix A.
By definition:

Advind-cpa
CPS-EG,A(k) =

∣∣∣∣Pr[ΓA0 = 1]− 1
2

∣∣∣∣ .
In game Γ1, we introduce a flag Bad that may be set to true at line 13 if H contains any entry

(∗, ∗, ∗, ∗, A′) where ∗ denotes any group element. We also move lines 15 and 17 up in the code. Since
A′ is random and independent of values in hashtable H, one has PrΓ1 [Bad = true] ≤ qh/p. One can
check that games Γ0 and Γ1 are identical until Bad is set to true, hence:∣∣∣Pr[ΓA0 = 1]− Pr[ΓA1 = 1]

∣∣∣ ≤ qh
p

.

In game Γ2, s is now randomly drawn, and we don’t program the random oracle anymore. Instead,
we move lines 11, 12 and 13 of EncChal to procedure Finalize, i.e. we check during procedure
Finalize whether there has been any query of the form (∗, ∗, ∗, ∗, A′) to the random oracle, where
∗ denotes any group element. Consider the game Γ ′1 which is identical to game Γ1 except that the
programming of the random oracle at line 16 is deferred to the (possible) point in the game where
the adversary makes the query Hc(Y,R,R′, A,A′), at which point the flag Bad is also set to true.
Clearly this does not change the output distribution of the game and Pr[ΓA1 = 1] = Pr[Γ ′A1 = 1].
Note that we can also set the flag Bad to true in game Γ2 as soon as a query Hc(∗, ∗, ∗, ∗, A′) occurs.
It is now easy to see that games Γ ′1 and Γ2 are identical until Bad is set to true, since when Bad
remains false in Γ ′1 the view of the adversary is independent of c and hence s looks perfectly random
as in Γ2. Hence: ∣∣∣Pr[ΓA1 = 1]− Pr[ΓA2 = 1]

∣∣∣ ≤ Pr
Γ2

[Bad = true] .

We now upper bound the probability that Bad is set to true in Γ2. For this, we construct an
algorithm B for the CDH problem as follows. B is given (X,A) where X = Gx and A = Ga as input.
It runs A, and simulates game Γ2 using X and A directly instead of lines 4 of procedure Init and
line 8 of EncChal. When A finishes, B picks a random tuple (∗, ∗, ∗, ∗, Z) ∈ H that has been queried
to the random oracle by the adversary A and outputs Z as its guess for Gax. Then, conditioned on
Bad being true, B is successful with probability at least 1/qh, so that the success probability of this
algorithm satisfies:

Advcdh
GpGen,B(k) ≥ Pr

Γ2
[Bad = true]/qh .

Hence: ∣∣∣Pr[ΓA1 = 1]− Pr[ΓA2 = 1]
∣∣∣ ≤ qhAdvcdh

GpGen,B(k) .

In game Γ3, we simply change the way R′ is generated: it is now randomly drawn. Exactly as in
the proof of Theorem 3, there is an algorithm B′ for the DDH problem such that:∣∣∣Pr[ΓA2 = 1]− Pr[ΓA3 = 1]

∣∣∣ ≤ Advddh
GpGen,B′(k) .

Finally, in game Γ4, we replace lines 6 and 7 and simply draw Y at random. Clearly, games Γ3
and Γ4 are identical since R′ is never used later in the code of these games. Moreover, the view of A
in game Γ4 is independent of bit b, hence:

Pr[ΓA3 = 1] = Pr[ΓA4 = 1] = 1
2 .
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Combining all the above, we obtain:

Advind-cpa
CPS-EG,A(k) =

∣∣∣Pr[ΓA0 = 1]− Pr[ΓA3 = 1]
∣∣∣

≤ qhAdvcdh
GpGen,B(k) + Advddh

GpGen,B′(k) + qh
p

.

This concludes the proof. ut

Remark 1. In a previous version of this paper, the ciphertext produced by the encryption algorithm
was (Y,R, c, s) as in SS-EG rather than (Y,R,A, s). However this yields an insecure variant of the
scheme, as was pointed out to us by Poettering [Poe13]. Indeed, consider the following IND-CPA
adversary A = (A1,A2). A1 receives the public key X = Gx, and simply outputs two arbitrary
messages M0 and M1. A2 then receives the challenge ciphertext (Y,R, c, s), where R = Gr, R′ = Xr,
Y = MbR

′, and c and s are computed by drawing a ←$ Zp, and computing A = Ga, A′ = Xa,
c = Hc(Y,R,R′, A,A′) and s = a+ cr mod p. Then A2 proceeds as follows: it computes A = GsR−c

as well as candidate values R′0 = Y/M0, A′0 = XsR′−c0 , and R′1 = Y/M1, A′1 = XsR′−c1 . Finally
it computes c0 = Hc(Y,R,R′0, A,A′0) and c1 = Hc(Y,R,R′1, A,A′1), and checks whether c0 or c1
matches c, returning b′ such that cb′ = c. This guess is correct with overwhelming probability.

The intuition regarding why the CPS-EG scheme is ROM-PA-secure is simple: since R′ is now
included in the random oracle queries, the plaintext extractor will directly be able to decrypt Y once
it has located the corresponding query. Namely, upon reception of a ciphertext (Y,R,A, s), it can
look throughout the list of random oracle queries to find all queries of the form (Y,R,R′i, A,A′i) with
corresponding answers ci, and check whether Gs = ARci and Xs = A′iR

′ci
i . The uniqueness of a query

passing both checks is ensured by the following lemma (which is the core of the proof of soundness
of the Chaum-Pedersen protocol [CP92], and also the base of the “twinning” technique of Cash et
al. [CKS08]).

Lemma 1. Fix X = Gx, x ∈ Z∗p. Let R = Gr, R′, A = Ga, A′ ∈ G be four group elements such that
r, a 6= 0 mod p, and R′ 6= Rx or A′ 6= Ax. Then there is at most one integer c ∈ Zp such that there
exists s ∈ Zp satisfying both Gs = ARc and Xs = A′R′c.

Proof. Denote R′ = Ry and A′ = Az, and assume that there exists (s1, c1) and (s2, c2) with c1 6= c2
satisfying Gsi = ARci and Xsi = A′R′ci for i = 1, 2. Then Gxsi = AxRxci = A′R′ci = AzRyci ,
which implies a(x − z) = rci(y − x) mod p. Hence if y 6= x, then c1 = c2 = a(x − z)/r(y − x)
mod p, contradicting the assumption that c1 6= c2. If y = x then z = x (since a 6= 0 mod p) which
contradicts the assumption that R′ 6= Rx or A′ 6= Ax. ut

We now give the formal proof that the scheme is ROM-PA-secure.

Theorem 5. The CPS-EG encryption scheme is ROM-PA-secure. Hence, it is IND-CCA2-secure
in the ROM under the assumption that DDH is hard for GpGen.

Proof. Consider a ciphertext creator C making at most qh random oracle queries and qe queries to
the encryption oracle. Let (LH , Lψ, ψ) be the output of a run of C on public key pk = X = Gx, where
ψ = (Y,R,A, s). The plaintext extractor P proceeds as follows: it looks throughout LH for all queries
of the form (Y,R, ∗, A, ∗), where ∗ denotes any group element. If there is no such query, it returns ⊥
(meaning that the ciphertext is invalid). Otherwise, denote (Y,R,R′i, A,A′i) all queries of this form
and ci the corresponding answers. For each i, P checks whether Gs = ARci and Xs = A′iR

′ci
i . If

there is no such query, it returns ⊥. If there is more than one such query, the plaintext extractor
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aborts. Otherwise, denoting (Y,R,R′, A,A′) the unique query for which both checks passed, P returns
M = Y/R′ as the plaintext.

We now analyze the failure probability of the plaintext extractor. For this, we define a bad event
as follows: event Bad happens if there exists some query (Y,R,R′i, A,A′i) in LH such that R′i 6= Rx

or A′i 6= Ax, and the corresponding answer ci passes both checks Gs = ARci and Xs = A′iR
′ci
i . Since

Lemma 1 ensures that for each query there is at most one possible answer c′i ∈ Zp such that both
checks may pass, we see that:

Pr[Bad] ≤ qh
p

.

We now consider three distinct cases that may occur.

1. Case 1: There is no query of the form (Y,R, ∗, A, ∗) in LH , or none of them passes the checks.
Here, we distinguish two sub-cases. The first one happens if there exists a ciphertext (Y,R,A, s′) ∈
Lψ with s′ 6= s (since ψ /∈ Lψ). Since (Y,R,A, s′) is necessarily valid, we see that the challenge
ciphertext (Y,R,A, s) is necessarily invalid and P is correct in returning ⊥. The second sub-
case happens if there is no ciphertext (Y,R,A, ∗) ∈ Lψ. In this case, the query (Y,R,Rx, A,Ax)
cannot have been issued to the random oracle during any of the qe calls of the ciphertext creator
to PKE.EncH

pk. Hence, if this query is not in LH , then the view of C and P is independent of the
value of Hc at this point. Thus, the ciphertext is valid with probability at most 1/p. Hence, by
returning ⊥, the plaintext extractor errs with probability at most 1/p.

2. Case 2: There are two distinct queries (Y,R,R′i, A,A′i) and (Y,R,R′j , A,A′j) in LH which pass
the checks. Then necessarily one of these two queries (say query i) is such that R′i 6= Rx or
A′i 6= Ax. But this implies that Bad has happened, so that this case occurs with probability less
than qh/p.

3. Case 3: There is a unique query (Y,R,R′, A,A′) such that both checks pass. If R′ = Rx and
A′ = Ax, then it is clear that the plaintext extractor returns the plaintext that would be returned
by PKE.DecH

sk. Else, R′ 6= Rx or A′ 6= Ax, and this implies that Bad must have happened. Hence
the plaintext extractor returns an incorrect plaintext with probability at most qh/p.

Collecting all cases, we have:

Pr[P errs] ≤ Pr[P errs|Case 1] + Pr[Case 2] + Pr[P errs|Case 3]

≤ 2qh + 1
p

,

which is negligible in the security parameter. The scheme is ROM-PA and it follows from Theorems 2
and 4 that the scheme is IND-CCA2-secure in the ROM under the assumption that DDH is hard for
GpGen. ut

We note that CPS-EG seems to be the simplest IND-CCA2-secure scheme in the ROM that
retains some kind of homomorphic property. Namely, given two ciphertexts (Y0, R0, A0, s0) and
(Y1, R1, A1, s1) corresponding respectively to plaintexts M0 and M1, one can compute the first two
elements of the ciphertext for M0M1 as for basic ElGamal encryption. It is however impossible to
“sign” the new ciphertext without knowledge of the random values used to encryptM0 andM1. This
property appears to be useful in e-voting applications [Wik08, BCP+11].

4 Minimality of CPS-EG Regarding Plaintext Awareness

In this section, we consider whether the CPS-EG encryption scheme remains ROM-PA-secure when
some inputs are removed from the call to the random oracle Hc. We are able to show that under an
adequate assumption, the resulting scheme cannot be ROM-PA-secure. Namely:
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– If we remove R′ and A′, we exactly recover the SS-EG scheme, and we can show that the scheme
is not ROM-PA-secure under the CDH assumption.

– If we remove one single element among R, R′, A, or A′, then the scheme is not ROM-PA-secure
under the DDH assumption. Moreover, removing Y trivially makes the scheme malleable, while
removing A′ yields a scheme which is not IND-CPA-secure.

This is captured by the following two theorems.

Theorem 6. Assume that the CDH problem is hard for GpGen. Then the SS-EG encryption scheme
is not ROM-PA-secure.

Proof. Assume for contradiction that SS-EG encryption is ROM-PA-secure, and let P be a plaintext
extractor. Note that this extractor must work for any plaintext creator, in particular for the ciphertext
creator C∗ working as follows: C∗ draws a random message M ←$ G, and encrypts it honestly. We
now build a reduction R that solves the CDH problem. Let (G, p,G) ← GpGen(1k) and (X =
Gx, R = Gr) denote the input to R. R simulates the run of the ciphertext creator C∗ as follows.
It draws two integers c, s ←$ Zp, a random group element Y ←$ G, computes A = GsR−c, and
programs the random oracle with Hc(Y,R,A) = c. Then it runs the plaintext extractor with input
LHc = ((Y,R,A), c), Lψ = ∅, ψ = (Y,R, c, s), and pk = X. It is clear that this is a perfect simulation
of a run of C∗ (in particular the ciphertext is valid, and that the simulation of the random oracle is
perfect). Hence, with overwhelming probability, P returns the plaintext M corresponding to ψ, from
which R can compute Grx = Y/M . ut

Since ROM-PA-security is strictly stronger than IND-CCA2-security, the result above does not
imply that SS-EG is not IND-CCA2-secure in the ROM. Would SS-EG be proved IND-CCA2-secure
this would yield a natural separation between this notion and ROM-PA-security (the separation
provided in [BDPR98] used a rather contrived counter-example, but without any computational
assumption). Also, there are many possible ways to weaken the definition of plaintext awareness in
the ROM. The theorem above seems to crucially rely on the impossibility for the plaintext extractor
to rewind the ciphertext creator or to program the random oracle: it must work online, and can only
observe the ciphertext creator queries. In particular, [BP04] proposed weaker notions of PA in the
ROM where the plaintext extractor is not black-box (it can depend on the code of the ciphertext
creator), and is given the random coins of the ciphertext creator, which enables to rewind it. Exploring
whether SS-EG may fulfill such weaker definitions is an interesting open question.

Regarding the minimality of CPS-EG, we have the following result.

Theorem 7. Consider the CPS-EG scheme where one of the five elements (Y,R,R′, A,A′) is omitted
from the inputs the Hc when generating c. Then one has the following:

(a) If Y is omitted, then the resulting scheme is malleable and hence is not IND-CCA2-secure.
(b) If A′ is omitted, then the resulting scheme is not IND-CPA-secure.
(c) If R, R′, A or A′ is omitted, then assuming that DDH is hard for GpGen, the resulting scheme is

not ROM-PA-secure.

Proof. We first show (a): removing Y from the inputs to Hc causes the encryption scheme to be mal-
leable. Suppose (Y,R,A, s) is a valid ciphertext for some message M , then the 4-tuple (Y Gz, R,A, s)
is a valid ciphertext for the message M ′ = MGz. As a consequence, the resulting scheme is not
IND-CCA2 secure.

We then show (b). Consider the scheme obtained when A′ is omitted, namely c is computed as
c := Hc(Y,R,R′, A). Consider the following IND-CPA attacker A = (A1,A2). A1 simply outputs
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two arbitrary messages M0 and M1. A2 receives the challenge ciphertext (Y,R,A, s). It computes
two candidate values R′0 = Y/M0 and R′1 = Y/M1, and queries c0 = Hc(Y,R,R′0, A) and c1 =
Hc(Y,R,R′1, A). Then it checks whether Gs = ARcb′ for b′ = 0 and 1, returning b′ such that the
check succeeds. This adversary has advantage close to 1.

We finally show (c). We focus on the case where R′ is omitted first, namely c is computed as
c := Hc(Y,R,A,A′). Assume for contradiction that the resulting scheme is ROM-PA-secure, and
let P be a plaintext extractor. Consider the two following ciphertext creators C∗ddh and C∗rand. C∗ddh
simply draws a random message M ←$ G and encrypts it honestly. C∗rand on the other hand behaves
as described in Table 5. Note that the ciphertext created by C∗rand is invalid with overwhelming
probability.

Table 5. Ciphertext creators C∗ddh and C∗rand.

1 procedure C∗ddh(pk = X):
2 M ←$ G
3 r ←$ Z∗p; R := Gr

4 R′ := Xr

5 Y := MR′

6 a←$ Z∗p; A := Ga

7 A′ := Xa

8 c := Hc(Y,R,A,A′)
9 s := a+ cr mod p

10 return (Y,R,A, s)

1 procedure C∗rand(pk = X):
2 M ←$ G
3 r ←$ Z∗p; R := Gr

4 R′ := Xr

5 Y := MR′

6 a←$ Z∗p; A := Ga

7 A′ ←$ G
8 c := Hc(Y,R,A,A′)
9 s := a+ cr mod p

10 return (Y,R,A, s)

We now build a reduction R solving the DDH problem. Let (G, p,G) ← GpGen(1k) and (X =
Gx, A = Ga, A′) be the input to R. R proceeds as follows: it draws two integers c, s←$ Zp, a random
group element Y ←$ G, computes R = (AG−s)−1/c (note that c 6= 0 with probability 1− 1/p), and
programs the random oracle with Hc(Y,R,A,A′) = c. Then it runs the plaintext extractor with input
LHc = ((Y,R,A,A′), c), Lψ = ∅, ψ = (Y,R,A, s) and pk = X. If the plaintext extractor outputs any
messageM , then R outputs 1. If the plaintext extractor outputs ⊥, then R outputs 0. One can check
that when (X,A,A′) is a DDH tuple, R perfectly simulates a run of C∗ddh, whereas when (X,A,A′) is
a random tuple, R perfectly simulates a run of C∗rand. Since in both cases the extractor must return
the correct answer with overwhelming probability, R solves the DDH problem with advantage close
to 1.

The reasoning is similar for the cases where R, A, or A′ are omitted. For completeness, we describe
the corresponding ciphertext creators C∗rand in Table 6. ut

5 Anonymity and Robustness of CPS-EG

The formal definition of anonymity for a PKE scheme is recalled in Appendix A. Informally, this re-
quires that an adversary cannot distinguish under which public key an (adversarially chosen) message
was encrypted. We start with showing that the CPS-EG scheme provides anonymity under CCA2
attacks.

Theorem 8. Assume that the DDH problem is hard for GpGen. Then the CPS-EG encryption scheme
is ANON-CCA2-secure.
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Table 6. Ciphertext creators C∗rand for the cases where R, A, or A′ are omitted.

(R omitted)

1 procedure C∗rand(pk = X):
2 M ←$ G
3 r ←$ Z∗p
4 R′ := Xr

5 Y := MR′

6 A←$ G
7 a←$ Z∗p; A′ := Xa

8 c := Hc(Y,R′, A,A′)
9 s := a+ cr mod p

10 R := (AG−s)−1/c

11 return (Y,R,A, s)

(A omitted)

1 procedure C∗rand(pk = X):
2 M ←$ G
3 r ←$ Z∗p; R := Gr

4 R′ ←$ G
5 Y := MR′

6

7 a←$ Z∗p; A′ := Xa

8 c := Hc(Y,R,R′, A′)
9 s := a+ cr mod p

10 A := GsR−c

11 return (Y,R,A, s)

(A’ omitted)

1 procedure C∗rand(pk = X):
2 M ←$ G
3 r ←$ Z∗p; R := Gr

4 R′ ←$ G
5 Y := MR′

6 a←$ Z∗p; A := Ga

7

8 c := Hc(Y,R,R′, A)
9 s := a+ cr mod p

10

11 return (Y,R,A, s)

Proof. We first show ANON-CPA-security. Let A = (A1,A2) be an ANON-CPA adversary against
CPS-EG making at most qh random oracle queries. We proceed through a sequence of games as in
the proof of Theorem 4 (refer to this proof for notations). The games are defined in Table 7.

We start from game Γ0 which is simply the ANON-CPA security experiment defined in Ap-
pendix A. By definition:

Advanon-cpa
CPS-EG,A(k) =

∣∣∣∣Pr[ΓA0 = 1]− 1
2

∣∣∣∣ .
The transitions from game to game are then exactly the same as in the proof of Theorem 4, and

we refer to this proof for a detailed analysis. The only difference stands in the way the probability
that Bad is set to true in game Γ2 is bounded. For this, we construct an algorithm B for the CDH
problem as follows. B is given (X,A) where X = Gx and A = Ga as input. It runs A, and simulates
game Γ2 by replacing lines 4 and 5 of Init as follows: it draws α0, α1 ←$ Z∗p, and computes X0 = Xα0

and X1 = Xα1 . It also uses its input A directly instead of line 8 of EncChal. When A finishes, B
takes a random tuple (∗, ∗, ∗, ∗, Z) that has been queried to the random oracle by the adversary A and
outputs Z1/αb as its guess for Gax. Clearly, game Γ2 is perfectly simulated by B. Then, conditioned
on Bad being true, B is successful with probability at least 1/qh, so that the success probability of
this algorithm satisfies:

Advcdh
GpGen,B(k) ≥ Pr

Γ2
[Bad = true]/qh .

As in the proof of Theorem 4, we obtain:

Advanon-cpa
CPS-EG,A(k) ≤ qhAdvcdh

GpGen,B(k) + Advddh
GpGen,B′(k) + qh

p
.

For the proof of ANON-CCA2-security, we use a composition theorem relying on the plaintext
awareness of the scheme. However, the definition of ROM-PA given in Section 2.2 is well-suited to
be composed with IND-CPA-security and not with ANON-CPA-security. Hence, we have to slightly
modify the definition of ROM-PA into a new notion that we name ROM-ANON-PA. The new def-
inition involves a ciphertext creator C which is given two random public keys pk0 and pk1. It has
access to the random oracle H and to the two encryption oracles PKE.EncH

pk0
and PKE.EncH

pk1
. All

queries of C to the random oracle and corresponding answers are recorded in a list LH . All answers
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Table 7. Games used in the proof of Theorem 8. Differences from game to game are highlighted in gray. The symbol ∗
denotes any group element.

1 Game Γ0:
2

3 procedure EncChal(M):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ := (Xb)r

7 Y := MR′

8 a←$ Z∗p; A := Ga

9

10

11 A′ := (Xb)a

12 if (Y,R,R′, A,A′) ∈ H then
13 c := H(Y,R,R′, A,A′)
14 else \\(Y,R,R′, A,A′) /∈ H
15 c←$ Zp

16 H(Y,R,R′, A,A′) := c
17 s := a+ cr mod p
18 return (Y,R,A, s)
19

20 procedure Finalize(b′):
21

22

23

24 return b = b′

Game Γ1:

procedure EncChal(M):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := (Xb)r

Y := MR′

a←$ Z∗p; A := Ga

c←$ Zp

s := a+ cr mod p
A′ := (Xb)a

if (∗, ∗, ∗, ∗, A′) ∈ H then
Bad := true

else \\(Y,R,R′, A,A′) /∈ H

H(Y,R,R′, A,A′) := c

return (Y,R,A, s)

procedure Finalize(b′):

return b = b′

Game Γ2:

procedure EncChal(M):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

R′ := (Xb)r

Y := MR′

a←$ Z∗p; A := Ga

s←$ Zp

H(Y,R,R′, A,A′) := c

return (Y,R,A, s)

procedure Finalize(b′):
A′ := (Xb)a

if (∗, ∗, ∗, ∗, A′) ∈ H then:
Bad := true

return b = b′

1 Game Γ3:
2

3 procedure EncChal(M):
4 b←$ {0, 1}
5 r ←$ Z∗p; R := Gr

6 R′ ←$ G
7 Y := MR′

8 a←$ Z∗p; A := Ga

9 s←$ Zp

10 return (Y,R,A, s)
11

12 procedure Finalize(b′):
13 A′ := (Xb)a

14 if (∗, ∗, ∗, ∗, A′) ∈ H then:
15 Bad := true
16 return b = b′

Game Γ4:

procedure EncChal(M):
b←$ {0, 1}
r ←$ Z∗p; R := Gr

Y ←$ G
a←$ Z∗p; A := Ga

s←$ Zp

return (Y,R,A, s)

procedure Finalize(b′):
A′ := (Xb)a

if (∗, ∗, ∗, ∗, A′) ∈ H then:
Bad := true

return b = b′

Games Γ0 to Γ4:

procedure Init:
x0 ←$ Z∗p, X0 := Gx0

x1 ←$ Z∗p; X1 := Gx1

hashtable H := ∅
return (X0, X1)

procedure Hc(Y,R,R′, A,A′):
if (Y,R,R′, A,A′) /∈ H then
c←$ Zp

H(Y,R,R′, A,A′) := c
return H(Y,R,R′, A,A′)
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(ciphertexts) received from the two encryption oracles are recorded in a list Lψ (neither the corre-
sponding plaintexts nor which oracle was queried are recorded). C outputs a ciphertext ψ /∈ Lψ and
a bit b. We write (LH , Lψ, ψ, b)← run CH,PKE.EncH

pk0,pk1 (pk0, pk1). The plaintext extractor P takes as
input (LH , Lψ, ψ, b, pk0, pk1) and aims at returning the plaintext corresponding to ψ and secret key
skb. PKE is said to be ROM-ANON-PA-secure if there is a PPT algorithm P (the plaintext extractor)
such that for any PPT ciphertext creator C, the failure probability of P relatively to C, defined as:

Failanon−pa
PKE,P,C (k) = Pr

[
(pk0, sk0)← PKE.Kg(1k); (pk1, sk1)← PKE.Kg(1k);

(LH , Lψ, ψ, b)← run CH,PKE.EncH
pk0,pk1 (pk0, pk1) : P(LH , Lψ, ψ, b, pk0, pk1) 6= PKE.DecH

skb
(ψ)

]
,

is a negligible function (the probability is taken over the random tape of all algorithms and the
answers of the random oracle).

One can then show that if a scheme is ANON-CPA-secure and ROM-ANON-PA secure, then it is
ANON-CCA2-secure. We sketch the justification of this fact. Let A = (A1,A2) be an ANON-CCA2
adversary against a PKE scheme. We build an ANON-CPA adversary B = (B1,B2) as follows. B1
is given two public keys pk0 and pk1, and runs A1 with the same public keys. It simply relays the
random oracle queries ofA1 to its own random oracle, updating a list LH of queries and corresponding
answers for the plaintext extractor. When A1 makes a decryption query for ψ and key b, B1 runs the
plaintext extractor P with input (LH , Lψ = ∅, ψ, b, pk0, pk1) and returns the corresponding output
as the answer to the decryption query of A1. When A1 outputs a message M , B1 outputs the same
message M , and receives a challenge ψ∗. In the second phase of the security experiment, B2 runs A2
on the same challenge ψ∗. As in the first phase, it simply relays the random oracle queries of A2 to
its own random oracle, updating the list LH accordingly. When A2 makes a decryption query for ψ
and key b, B2 runs the plaintext extractor P with input (LH , Lψ = (ψ∗), ψ, b, pk0, pk1) and returns
the corresponding output as the answer to the decryption query of A2. Finally, it returns the same
output as A2. The analysis of the advantage of B can be adapted from the proof of Theorem 4.2
of [BDPR98], and it can be shown to be negligibly close to the one of A.

Finally, it remains to show that CPS-EG indeed satisfies the ROM-ANON-PA notion. This can
be done with exactly the same extractor as in the proof of Theorem 5 (one simply has to replace
X by the public key Xb = Gxb corresponding to the bit b output by C). The analysis of the success
probability must be slightly adapted as follows. Denote pk0 = Gx0 and pk1 = Gx1 the public keys
given as input to C. Let ψ = (Y,R,A, s) be the challenge ciphertext output by C, and assume wlog
that C asks for the decryption of this ciphertext under secret key sk0 = x0 (b = 0 in the output of
C). The analysis of cases 2 and 3 is unchanged. For case 1, only the first sub-case (i.e. when there
exists some ciphertext ψ′ = (Y,R,A, s′) ∈ Lψ with s′ 6= s) is slightly modified. If this ciphertext
was returned in answer to some encryption query for pk0, then it is necessarily valid and hence
the challenge ψ is invalid. If this ciphertext was returned in answer to some encryption query for
pk1, then assuming wlog that x0 6= x1, the random oracle query to Hc made while computing this
ciphertext was (Y,R,Rx1 , A,Ax1). Hence the view of C and P is independent of the value of Hc on
input (Y,R,Rx0 , A,Ax0) so that the plaintext extractor errs by returning ⊥ with probability at most
1/p. ut

The definition of strong robustness is recalled in Appendix A. We will now see that the CPS-EG
scheme achieves strong robustness, assuming the following very simple tweak to the scheme (in fact,
the same was proposed for Cramer-Shoup encryption in [ABN10]). We define the CPS-EG∗ scheme
exactly as the CPS-EG scheme, with the additional check on decryption that R 6= 1G (if the check
fails, then the decryption algorithm returns ⊥).
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Theorem 9. Assume Hc is instantiated with a collision-resistant hash function family. Then the
CPS-EG∗ encryption scheme is SROB-CCA-secure.

Proof. Assume there is an adversary A with non-negligible advantage in the SROB-CCA game. Let
X0 = Gx0 and X1 = Gx1 (where x0 6= x1 with high probability) be the two public keys for which
the adversary must return a ciphertext that decrypts to a valid plaintext under both secret keys x0
and x1 (we can assume that the challenger knows these secret keys, so that it can correctly answer
any decryption query made by the adversary). Let ψ = (Y,R,A, s) be the ciphertext returned by
A, where R = Gr and A = Ga. The validity check under secret key x0 uses values R′0 = Rx0 and
A′0 = Ax0 , whereas the validity check under secret key x1 uses values R′1 = Rx1 and A′1 = Ax1 .
If the validity check succeeds in both cases, then necessarily R 6= 1G, so that R′0 6= R′1. Moreover,
denoting c0 = Hc(Y,R,R′0, A,A′0) and c1 = Hc(Y,R,R′1, A,A′1), one has s = a + c0r mod p and
s = a + c1r mod p, so that c0 = c1. This means that A succeeds in finding a collision for Hc,
a contradiction with the assumption of collision-resistance for the hash function family used to
instantiate Hc. ut
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A Additional Security Definitions

A.1 IND-ATK-security for a PKE scheme

Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be an encryption scheme, and let A = (A1,A2) be an adversary.
For atk ∈ {cpa, cca1, cca2} we define the advantage of A in breaking the indistinguishability of PKE
as:

Advind−atk
PKE,A (k) =

∣∣∣∣Pr
[
Expind−atk

PKE,A (k) = 1
]
− 1

2

∣∣∣∣ ,
where the experiment is defined as:

Experiment Expind−atk
PKE,A (k):

(sk, pk)← PKE.Kg(1k)
(St,M0,M1)← AO1

1 (pk)
b←$ {0, 1}
ψ∗ ← PKE.Enc(pk,Mb)
b′ ← AO2

2 (pk, ψ∗, St)
Return (b′ = b)

and the oracles O1 and O2 are defined as:
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atk O1(·) O2(·)
cpa ∅ ∅
cca1 PKE.Dec(sk, ·) ∅
cca2 PKE.Dec(sk, ·) PKE.Dec(sk, ·)

with the restriction that A2 cannot query O2 on the challenge ciphertext ψ∗. PKE is said IND-ATK-
secure if the advantage Advind−atk

PKE,A (k) is negligible for all PPT adversaries A.

A.2 ANON-ATK security for a PKE

Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be an encryption scheme, and let A = (A1,A2) be an adversary.
For atk ∈ {cpa, cca1, cca2} we define the advantage of A in breaking the anonymity of PKE as:

Advanon−atk
PKE,A (k) =

∣∣∣∣Pr
[
Expanon−atk

PKE,A (k) = 1
]
− 1

2

∣∣∣∣ ,
where the experiment is defined as:

Experiment Expanon−atk
PKE,A (k):

(sk0, pk0)← PKE.Kg(1k), (sk1, pk1)← PKE.Kg(1k)
(St,M)← AO1,0,O1,1

1 (pk0, pk1)
b←$ {0, 1}
ψ∗ ← PKE.Enc(pkb,M)
b′ ← AO2,0,O2,1

2 (pk0, pk1, ψ
∗, St)

Return (b′ = b)

and the oracles O1,i and O2,i are defined for i = 0, 1 as:

atk O1,i(·) O2,i(·)
cpa ∅ ∅
cca1 PKE.Dec(ski, ·) ∅
cca2 PKE.Dec(ski, ·) PKE.Dec(ski, ·)

with the restriction that A2 cannot query O2,0 nor O2,1 on the challenge ciphertext ψ∗. PKE is said
ANON-ATK-secure if the advantage Advanon−atk

PKE,A (k) is negligible for all PPT adversaries A.

A.3 SROB-ATK-security for a PKE

Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be an encryption scheme, and let A be an adversary. For
atk ∈ {cpa, cca} we define the advantage of A in breaking the strong robustness of PKE as:

Advsrob−atk
PKE,A (k) = Pr

[
Expsrob−atk

PKE,A (k) = 1
]
,

where the experiment is defined as:

Experiment Expsrob−atk
PKE,A (k):

(sk0, pk0)← PKE.Kg(1k), (sk1, pk1)← PKE.Kg(1k)
C ← AO0,O1(pk0, pk1)
M0 = PKE.Dec(sk0, C), M1 = PKE.Dec(sk1, C)
Return (M0 6= ⊥) ∧ (M1 6= ⊥)

and the oracles O0 and O1 are defined as:
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atk O0(·) O1(·)
cpa ∅ ∅
cca PKE.Dec(sk0, ·) PKE.Dec(sk1, ·)

PKE is said SROB-ATK-secure if the advantage Advsrob−atk
PKE,A (k) is negligible for all PPT adversaries

A.

A.4 Security notions for a DEM

Let DEM = (DEM.Enc, DEM.Dec) be a DEM, and let A = (A1,A2) be an adversary. The advantage of
A in breaking the ciphertext indistinguishability of DEM is:

Advind−ot
DEM,A (k) =

∣∣∣∣Pr
[
Expind−ot

DEM,A (k) = 1
]
− 1

2

∣∣∣∣ ,
where the experiment is defined as:

Experiment Expind−ot
DEM,A (k):

K ←$ DEM.KeySp(k)
(St,M0,M1)← A1(1k)
b←$ {0, 1}
χ∗ ← DEM.Enc(K,Mb)
b′ ← A2(1k, χ∗, St)
Return (b′ = b)

DEM is said IND-OT-secure if the advantage Advind−ot
DEM,A (k) is negligible for all PPT adversaries A.

The advantage of A in breaking the ciphertext integrity of DEM is:

Advint−ot
DEM,A (k) = Pr

[
Expint−ot

DEM,A (k) = 1
]
,

where the experiment is defined as:

Experiment Expint−ot
DEM,A (k):

K∗ ←$ DEM.KeySp(k)
(St,M)← A1(1k)
χ∗ ← DEM.Enc(K∗,M)
χ← A2(1k, χ∗, St)
If (χ 6= χ∗) and (DEM.Dec(K∗, χ) 6= ⊥)

Return 1
Return 0

DEM is said INT-OT-secure if the advantage Advint−ot
DEM,A (k) is negligible for all PPT adversaries A.

DEM is said AE-OT-secure if it is both IND-OT-secure and INT-OT-secure.

B Hybrid Variant of the Scheme

We recall the definition of a data encapsulation mechanism (DEM) introduced in [CS03] (we will not
need the notion of key encapsulation mechanism (KEM) to describe the hybrid variant of CPS-EG
since it does not exactly fit the KEM/DEM framework).
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Definition 3 (DEM). A data encapsulation mechanism (DEM) with key space DEM.KeySp(k) is a
pair of polynomial-time algorithms (DEM.Enc, DEM.Dec) where:

– DEM.Enc, the (deterministic) data encapsulation algorithm, takes a key K ∈ DEM.KeySp(k) and a
message M and returns a ciphertext χ.

– DEM.Dec, the (deterministic) data decapsulation mechanism, takes a key K ∈ DEM.KeySp(k) and
a ciphertext χ and returns either a message M or the special symbol ⊥ that indicates that the
ciphertext is invalid.

We will be interested in the following security notion for a DEM [KPSY09]: one-time indistinguisha-
bility (IND-OT), which requires that efficient adversaries fail to distinguish the encryption of two
messages of their choice. The formal definition is provided in Appendix A.

We now describe the hybrid variant of CPS-EG encryption (HCPS-EG for short), using some
DEM DEM = (DEM.Enc, DEM.Dec). Let Hc : {0, 1}∗ ×G4 → Zp and HK : G2 → ∪k∈NDEM.KeySp(k) be
two random oracles (we assume that HK is implicitly given the security parameter and selects the
according key space to generate its outputs). The scheme is defined in Figure 4. Note that unlike for
the CPS-EG scheme, we use here the optimized variant (c, s) of Schnorr signatures.

HCPS-EG PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p; X := Gx

sk := x; pk := X
Return (sk, pk)

PKE.Enc(pk = X,M)
r, a←$ Z∗p
R := Gr; R′ := Xr

K := HK(R,R′)
χ← DEM.Enc(K,M)
A := Ga; A′ := Xa

c := Hc(χ,R,R′, A,A′)
s := a+ cr mod p
Return ψ := (χ,R, c, s)

PKE.Dec(sk = x, ψ)
Parse ψ as (χ,R, c, s)
R′ := Rx

A := GsR−c; A′ := Ax

if Hc(χ,R,R′, A,A′) 6= c
Return ⊥

K := HK(R,R′)
Return M ← KEM.Dec(K,χ)

Fig. 4. The HCPS-EG encryption scheme.

Note that this does not fit exactly into the KEM/DEM framework since s and c depend on both
the encapsulated key R and χ. The corresponding Schnorr-Signed version was proved IND-CCA2-
secure in the ROM + GGM in [SJ00], where it was described with a one-time-pad rather than a
general IND-OT-secure DEM. Though we cannot use KEM/DEM composition theorems, we can
directly show that the scheme is ROM-PA’-secure (see Section 2.2) and IND-CPA-secure under the
CDH assumption and IND-OT-security for the DEM, hence IND-CCA2-secure.

Theorem 10. The HCPS-EG encryption scheme is ROM-PA’-secure.

Proof. The proof is quite similar to the proof of Theorem 5, and we only sketch it here. Let
(LH , Lψ, ψ) be the output of a run of a ciphertext creator C, with Ψ = (χ,R, c, s). The plain-
text extractor works as follows: it computes A = GsR−c and looks throughout LHc for all queries of
the form (χ,R, ∗, A, ∗), where ∗ denotes any group element, such that the answer was c. If there is no
such query, it returns ⊥ (meaning that the ciphertext is invalid). Otherwise, denote (χ,R,R′i, A,A′i)
all queries of this form whose answer was c. For each i, P checks whether Xs = A′iR

′c
i . If there is no
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such query, the extractor returns ⊥. If there is more than one such query, the extractor aborts. Oth-
erwise, denoting (χ,R,R′, A,A′) the unique query such that the check passed, P makes the query11

K := HK(R,R′), and returns M = DEM.Dec(K,χ). The analysis of the failure probability of the
plaintext extractor is exactly the same as for Theorem 5. ut

Note that the scheme cannot be proved ROM-PA-secure in general. Indeed, assure that DEM
is simply a one-time-pad: DEM.Enc(K,M) = K ⊕M . Consider the following ciphertext creator C:
it simply draws a random string χ, and generates a ciphertext ψ = (χ,R, c, s) by computing the
signature “honestly” (i.e. by drawing random integers r, a, etc.). Since the ciphertext creator does
not make the query HK(R,R′), the plaintext extractor cannot recover the corresponding message
M = χ ⊕HK(R,R′), unless it has free access to HK . However, this seems to be rather an artifact
of the ROM than a real problem: if HK were replaced by a standard key derivation function, the
problem would disappear.

Theorem 11. When DEM is IND-OT-secure and under the CDH assumption, the HCPS-EG encryp-
tion scheme is IND-CPA-secure (and hence also IND-CCA2-secure).

Proof. We use a sequence of games. Let A = (A1,A2) be an IND-CPA adversary against the en-
cryption scheme making at most qh queries in total to HK and Hc. We start from game Γ0 which is
simply the IND-CPA security experiment defined in Appendix A. Let S0 be the event that b′ = b in
game Γ0. By definition:

Advind−cpa
HCPS-EG,A(k) =

∣∣∣∣Pr[S0]− 1
2

∣∣∣∣ .
In game Γ1, we modify the way the challenge ciphertext ψ∗ = (χ∗, R, c, s) is generated. When A1
outputs the two messagesM0 andM1, they are forwarded to the challenger of an IND-OT experiment
for DEM, which returns some DEM ciphertext χ∗ used to build ψ∗. The remaining is unchanged
compared with Γ0. Let S1 denote the event that b′ = b in game Γ1. It is easy to see that combining
A with the adequate parts of the IND-CPA security experiment against PKE yields an adversary A′
against IND-OT of DEM. Again, by definition:

Advind−ot
DEM,A′ (k) =

∣∣∣∣Pr[S1]− 1
2

∣∣∣∣ .
Moreover, let Bad1 denote the event that A2 queries HK at (R,R′) in game Γ1. Again, it is easy to
see that games Γ0 and Γ1 are identical until Bad1 happens, so that:

|Pr[S1]− Pr[S0]| ≤ Pr[Bad1] .

It remains to upper bound Pr[Bad1]. For this, we build a reduction R that solves the CDH problem.
Let (G, p,G) ← GpGen(1k) and (X = Gx, R = Gr) denote the input to R. R simulates game Γ1 as
follows. It sets pk = X. All queries of A1 to HK or Hc are answered uniformly at random. When
A1 outputs the two messages M0 and M1, R draws a random key K ←$ DEM.KeySp(k), a random bit
b←$ {0, 1}, and encrypts χ∗ ← DEM.Enc(K,Mb). It also draws c, s←$ Zp, and gives ψ∗ = (χ∗, R, c, s),
where R is the second element of its CDH challenge, as the challenge ciphertext to A2. Queries of
A2 to HK are again answered uniformly at random. Queries of A2 to Hc are answered as follows
in order to ensure the validity of the challenge ciphertext. Denote A = GsR−c. When a query of the
form (χ∗, R, R̃, A, Ã) is made, the reduction checks whether Xs = ÃR̃c. If this holds, the reduction
11 This is where we need to authorize the plaintext extractor to make additional queries to H, in case this query is not

included in LHK
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answers this query with c. If the check fails, or for any other query not of the form (χ∗, R, ∗, A, ∗),
the reduction returns a uniformly random answer. At the end of the simulation, the reduction picks
one of the queries (R, ∗) which were made by A2 to HK and returns the second element of this
query as its answer to the CDH instance. Assume for a moment that the simulation of game Γ1 is
perfect. Then R solves the CDH problem with advantage greater than Pr[Bad1]/qh. By inspection,
the simulation deviates from perfection only in the simulation of Hc. Namely, the simulation fails if
the check Xs = ÃR̃c passes and R̃ 6= Rx or Ã 6= Ax. But according to Lemma 1, this can happen
with probability at most 1/p for each query. Hence, the simulation fails with probability at most qh/p
(the only other event which could make the simulation fail is if A1 had queried (χ∗, R,R′, A,A′), but
since A1’s view is independent of R, separating A1’s and A2’s queries shows that this probability
can be absorbed in qh/p). Hence one obtains:

Pr[Bad1] ≤ qhAdvcdh
GpGen,R(k) + qh

p
.

Collecting all inequalities yields:

Advind−cpa
HCPS-EG,A(k) ≤ qhAdvcdh

GpGen,R(k) + Advind−ot
DEM,A′ (k) + qh

p
,

which concludes the proof. ut

Regarding anonymity and robustness of HCPS-EG, we have the following result (as for CPS-EG,
HCPS-EG∗ denotes the scheme with the additional check on decryption that R 6= 1G).

Theorem 12. Assume that the CDH problem is hard for GpGen. Then the HCPS-EG encryption
scheme is ANON-CCA2-secure (no assumption is needed for the DEM).
Assume that Hc is instantiated with a collision-resistant hash function family. Then the HCPS-EG∗
encryption scheme is SROB-CCA-secure.

Proof. The proof for robustness is exactly the same as for Theorem 9. We only sketch the proof for
anonymity since it is very similar to the one of Theorems 8 and 11. First, we show ANON-CPA-
security of HCPS-EG using a sequence of games. Let A = (A1,A2) be an ANON-CPA adversary. We
let Γ0 be the original ANON-CPA security game. Denote X0 and X1 the public keys given as input
to A. Let S0 be the event that b′ = b in game Γ0. By definition:

Advanon−cpa
HCPS-EG,A(k) =

∣∣∣∣Pr[S0]− 1
2

∣∣∣∣ .
Let Γ1 be the game similar to Γ0, except that for generating the challenge ciphertext, the challenger
simply draws a random K from DEM.KeySp(k), a random r ←$ Z∗p, random integers c, s ←$ Zp,
encrypts χ = DEM.Enc(K,M), and returns the challenge ciphertext Ψ∗ = (χ,R, c, s) where R = Gr.
Let S1 denote the event that b′ = b in game Γ1. Clearly, Ψ∗ is independent of b so that Pr[S1] = 1/2.
Moreover, let Bad1 be the event that A queries HK at (R,R′) with R′ = Xr

b or Hc at (χ,R,R′, A,A′)
with R′ = Xr

b , A = GsR−c and A′ = Xs−cr
b . Then games Γ0 and Γ1 are identical until Bad1 happens,

so that:
|Pr[S1]− Pr[S0]| ≤ Pr[Bad1] .

One can then conduct the same analysis as in proof of Theorem 11 and show that Pr[Bad1] is negligible
when CDH is hard (since intuitively any query provoking Bad1 will reveal R′ = CDH(X,R)). We
omit the details.
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ANON-CCA2-security follows from a composition theorem similar to the one used for Theorem 8.
Namely, one can define the notion of ROM-ANON-PA’ security which is similar to the ROM-ANON-
PA notion, except that the plaintext extractor is freely allowed to make additional calls to the random
oracle. Again, the proof that the scheme satisfies this security notion is very similar to the proof of
Theorem 10. ut

C Description of Other Related Schemes

We describe here the TDH1/2 encryption schemes, as well as the Twin ElGamal KEM. We stress
that TDH1/2 were originally described in [SG02] as hybrid schemes. Here we describe the non-
hybrid version. Whereas the hybrid variant of TDH1 is proved IND-CCA2-secure under the CDH
assumption, this does not seem to be the case of the non-hybrid variant. Nevertheless, we provide
a security proof under the DDH assumption for both schemes. Additionally, we show that TDH1 is
not (weakly) robust and that TDH2 is not ANON-CPA-secure.

C.1 The TDH1 encryption scheme

The TDH1 requires an additional random oracle HG : G3 → G. It is defined in Figure 5.

(non-hybrid) TDH1 PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p ;X := Gx

sk := x; pk := X
Return (sk, pk)

PKE.Enc(pk = X,M)
r, a←$ Z∗p
R := Gr; R′ := Xr

Y := MR′

A := Ga

Ḡ := HG(Y,R,A)
R̄ := Ḡr; Ā := Ḡa

c := Hc(Ḡ, R̄, Ā)
s := a+ cr mod p

Return ψ := (Y,R, R̄, c, s)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y,R, R̄, c, s)
A := GsR−c

Ḡ := HG(Y,R,A)
Ā := ḠsR̄−c

if Hc(Ḡ, R̄, Ā) 6= c
Return ⊥

R′ := Rx

Return M := Y/R′

Fig. 5. The TDH1 encryption scheme.

Proposition 1. The TDH1 encryption scheme is IND-CCA2 in the ROM under the DDH assump-
tion.

Proof. Assume that there exists an IND-CCA2-adversary A = (A1,A2) that can distinguish with
non-negligible advantage between the encryption of two messages of its choice. We show that we can
build a reduction R that solves the DDH problem.

Let (X,R∗, R′∗) be the DDH instance given to R. The reduction fixes the public key of the
encryption scheme to be X = Gx, the secret key being the unknown value x.

Upon reception of a query for Hc or HG, the reduction just checks if a value for the input has
already been assigned. If so, it answers with the previously assigned value. Otherwise, it responds
with a random value and keeps record of this assignment. For queries to HG, the values are chosen
as random powers of X, so that the reduction knows the discrete logarithm of the values in basis X.
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The decryption queries (before or after that the adversary received the challenge ciphertext)
are treated as follows. Assume the reduction receives a decryption query for a ciphertext Ψ =
(Y,R, R̄, c, s). R first computes A = GsR−c as usual. If HG is undefined for input (Y,R,A), then
R returns ⊥. Otherwise it retrieves the value Ḡ = Xt = HG(Y,R,A) (which was effectively set as
a random power of X). It also computes Ā = ḠsR̄−c, and can check whether Hc(Ḡ, R̄, Ā) = c. It
returns ⊥ if this does not hold. Otherwise, it computes R′ = R̄1/t and returns M = Y/R′ as the
corresponding plaintext. One can verify that Lemma 1 implies that with overwhelming probabil-
ity, DLogG(R) = DLogḠ(R̄), so that R̄1/t = Xr with r = DLogG(R) and the ciphertext is correctly
decrypted.

At some point, the adversary sends two messages M0 and M1 and waits for the encryption ofMb,
b = 0 or 1. The reduction then sets Y ∗ = MbR

′∗, with b ←$ {0, 1}. It also chooses random values
s∗, c∗ ←$ Z∗p, and defines A∗ = Gs

∗(R∗)−c∗ . With overwhelming probability, the query to HG for
the input (Y ∗, R∗, A∗) has not been made yet by the adversary. R sets HG(Y ∗, R∗, A∗) = Xt∗ for
some random t∗. Then it derives R̄∗ = (R′∗)t∗ , Ā∗ = (Ḡ∗)s∗(R̄′∗)−c∗ and sets Hc(Ḡ∗, R̄∗, Ā∗) = c∗

(again, with overwhelming probability the adversary did not make the query to Hc for the in-
put (Ḡ∗, R̄∗, Ā∗)). It returns Ψ∗ = (Y ∗, R∗, R̄∗, s∗, c∗) as the challenge ciphertext. Note that when
(X,R∗, R′∗) is a DDH tuple, the encryption of Mb is correctly computed, whereas when (X,R∗, R′∗)
is a random tuple, Ψ∗ is valid with only negligible probability.

Finally, the adversary will output its guess for b. If the guess is right, the reduction outputs 1.
Otherwise it output 0.

Clearly, when (X,R∗, R′∗) is a DDH tuple, the IND-CPA security experiment is perfectly simu-
lated by R (up to decryption errors which happen only with negligible probability), so that b′ = b
with probability greater than 1/2 + Advind−cpa

PKE,A (k). When (X,R∗, R′∗) is a random tuple, we would
like to argue that the view of A is independent of b. However, this holds only if A2 never asks decryp-
tion queries Ψ = (Y,R, R̄, c, s) such that (Y,R,A = GsR−c) = (Y ∗, R∗, A∗). We argue now that this
can only happen with negligible probability. Assume the contrary, and consider first the case that
(c, s) 6= (s∗, c∗). Then A = A∗ = Gs(R∗)−c = Gs

∗(R∗)−c∗ , which enables the reduction to compute
DLogG(R∗) and correctly answer the DDH problem. Hence, we may assume that (c, s) = (s∗, c∗),
so that necessarily R̄ 6= R̄∗. This implies however that Hc(Ḡ, R̄, Ā) = Hc(Ḡ, R̄∗, Ā∗) = c, in other
words this yields a collision for Hc, which can happen only with negligible probability. Hence when
(X,R∗, R′∗) is a random tuple, R outputs 1 with probability negligibly close to 1/2, which concludes
the proof. ut

We conjecture that the TDH1 encryption scheme is ANON-CCA2-secure under the DDH as-
sumption. However, as it is rather a simple observation (captured by the following proposition) that
it is not robust, we do not pursue it further.

Proposition 2. The TDH1 encryption scheme is not (even weakly) robust.

Proof. The key point is that the validity check is independent of the secret and the public key, so
that when a ciphertext ψ = (Y,R, R̄, c, s) is (honestly) created with respect to some public key, then
the validity check passes for any other secret key and the ciphertext decrypts to some valid plaintext
under any secret key. Hence the scheme cannot be even weakly robust. ut

C.2 The TDH2 encryption scheme

The TDH2 scheme is similar to TDH1, except that the element Ḡ is fixed and included in the public
key. It is defined in Figure 6.
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(non-hybrid) TDH2 PKE scheme

PKE.Kg(1k)
(G, p,G)← GpGen(1k)
x←$ Z∗p; X := Gx

Ḡ←$ G∗

sk := x; pk := (X, Ḡ)
Return (sk, pk)

PKE.Enc(pk = (X, Ḡ),M)
r, a←$ Z∗p
R := Gr; R′ := Xr

Y := MR′

R̄ := Ḡr

A := Ga; Ā := Ḡa

c := Hc(Y,R, R̄, A, Ā)
s := a+ cr mod p

Return ψ := (Y,R, R̄, c, s)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y,R, R̄, c, s)
A := GsR−c; Ā := ḠsR̄−c

if Hc(Y,R, R̄, A, Ā) 6= c
Return ⊥

R′ := Rx

Return M := Y/R′

Fig. 6. The TDH2 encryption scheme.

Proposition 3. The TDH2 encryption scheme is IND-CCA2 in the ROM under the DDH assump-
tion.

Proof. The proof is very similar to the one for TDH1. The only difference is that the reduction fixes
the public key of the encryption scheme to be X = Gx, and also sets Ḡ = Xt for some known random
value t ∈ Z∗p. The simulation of decryption queries can then be done as in the proof of Proposition 1.
The rest of the proof is unchanged. ut

Proposition 4. The TDH2 encryption scheme is not ANON-CPA-secure.

Proof. Let pk0 = (X0, Ḡ0) and pk1 = (X1, Ḡ1) be the two public keys given to the adversary in the
ANON-CPA-security game. The adversary simply sends a random message M to the challenger. It
then receives the challenge ciphertext Ψ∗ = (Y,R, R̄, c, s). The adversary can now check the validity
of the ciphertext against both public keys. Namely it computes A = GsRc, Āi = Ḡsi R̄

−c for i = 0, 1,
and checks whether Hc(Y,R, R̄, A, Āi) = c. With overwhelming probability, the validity check will
pass for only one public key, therefore revealing the intended recipient. ut

Note that if TDH2 is modified so that the same Ḡ is used for all public keys in the system, then
as TDH1, the resulting scheme is not (even weakly) robust.

C.3 The Twin ElGamal KEM

The Twin ElGamal KEM is defined in Figure 7.

Twin-EG KEM

KEM.Kg(1k)
(G, p,G)← GpGen(1k)
x1, x2 ←$ Z∗p
X1 := Gx1 ; X2 := Gx2

sk := (x1, x2)
pk := (X1, X2)
Return (sk, pk)

KEM.Enc(pk = (X1, X2))
r ←$ Z∗p
R := Gr

R′1 := Xr
1 ; R′2 := Xr

2
K := HK(R,R′1, R′2)
Return (K,R)

KEM.Dec(sk = (x1, x2), R)
R′1 := Rx1 ; R′2 := Rx2

K := HK(R,R′1, R′2)
Return K

Fig. 7. The Twin ElGamal KEM.
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