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Abstract

In Africacrypt 2009, Galindo-Garcia [GG09] proposed a lightweight identity-based signa-
ture (IBS) scheme based on the Schnorr signature. The construction is simple and claimed
to be the most efficient IBS till date. The security is based on the discrete-log assumption
and the security argument consists of two reductions: B1 and B2, both of which use the
multiple-forking lemma [BPW12] to solve the discrete-log problem (DLP).

In this work, we revisit the security argument given in [GG09]. Our contributions are two
fold: i) we identify several problems in the original argument; and ii) we provide a detailed
new security argument which allows significantly tighter reductions. In particular, we show
that the reduction B1 in [GG09] fails in the standard security model for IBS [BNN04],
while the reduction B2 is incomplete. To remedy these problems, we adopt a two-pronged
approach. First, we sketch ways to fill the gaps by making minimal changes to the structure
of the original security argument; then, we provide a new security argument. The new
argument consists of three reductions: R1, R2 and R3 and in each of them, solving the
DLP is reduced to breaking the IBS. R1 uses the general forking lemma [BN06] together
with the programming of the random oracles and Coron’s technique [Cor00]. Reductions R2

and R3, on the other hand, use the multiple-forking lemma along with the programming of
the random oracles. We show that the reductions R1 and R2 are significantly tighter than
their original counterparts.

Keywords: Identity-based signatures, Galindo-Garcia identity-based signature, Schnorr
signatures, Forking lemma, Discrete-log assumption.

0This is the full version of a paper that appeared in ICISC’12 [CKK13].
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1 Introduction

The notion of identity-based signatures (IBS) is an extension of the idea of digital signatures to
the identity-based setting. As in traditional signature schemes, the signer uses her secret key
to sign a message. However, the signature can be verified by anyone using the signer’s identity
and public parameters of the private-key generator (PKG). IBS or more generally, identity-
based cryptosystems [Sha85] do not require any certificates to be exchanged and hence can be
advantageous over the traditional PKI based systems in certain scenarios.

Several RSA based IBS [FS87, GQ90] have been proposed in the literature after the notion of
IBS was introduced by Shamir in 1984 [Sha85]. In recent times, a few pairing based constructions
were also proposed [CHC02, Her05, Hes03, DSVPR11]. Galindo-Garcia [GG09], on the other
hand, used the technique of concatenated Schnorr’s signature to propose an identity-based
signature that works in the discrete-log setting but does not require pairing. The authors came
up with a security proof of the proposed IBS scheme in the so-called EU-ID-CMA model (see
Appendix A.2) using the random oracle methodology [BR93] and a variant of the forking
lemma [BN06, BPW12, PS00]. The security is based on the discrete-log problem in any prime
order group. The authors suggest to implement their scheme in a suitable elliptic curve group
and after a comparative study concluded that the proposed construction has an overall better
performance than the existing RSA-based and pairing-based schemes. The Galindo-Garcia
IBS, due to its efficiency and simplicity, has been used as a building block for a couple of other
cryptosystems [RS11, XW12].

Our Contribution. Critical examination of the security argument of a cryptographic con-
struction to see whether the claimed security is indeed achieved or not is an important topic
in cryptographic research. Two such well-known examples are Shoup’s work on OAEP [Sho01]
and Galindo’s work on Boneh-Franklin IBE [Gal05]. Another important question in the area of
provable security is to obtain tighter security reduction for existing construction. One such clas-
sical example is Coron’s analysis of FDH [Cor00]. In this work we revisit the security argument
of Galindo-Garcia IBS [GG09] with the above two questions in mind.

The security argument of Galindo-Garcia IBS consists of two reductions, B1 and B2, the
choice of which is determined by an event E. The authors construct B1 to solve the DLP when
the event E occurs. Similarly, B2 is used to solve the DLP in case the complement of E occurs.
Both the reductions use the multiple-forking lemma [BPW12] to show that the DLP is reduced
to breaking the IBS scheme.

In this work, we make several observations about the security argument in [GG09]. In par-
ticular, we show that the reduction B1 fails to provide a proper simulation of the unforgeability
game in the standard security model for IBS [BNN04], while B2 is incomplete. We adopt a two-
pronged approach to address these problems. First, we sketch ways to fill the gaps by making
minimal changes to the structure of original security argument; then, we provide a new security
argument. The new argument consists of three reductions: R1, R2 and R3. At a high level,
our first reduction, R1, addresses the problems identified in the original B1 in [GG09], while
R2 and R3 together address the incompleteness of the original B2. The reduction R1 uses the
general forking lemma [BN06] and the technique first introduced by Coron [Cor00] to prove the
security of FDH. We show that this results in a significantly tighter security reduction. On the
other hand, both R2 and R3 are structurally similar to B2 but uses two different versions of the
multiple forking lemma [BPW12], together with an algebraic technique similar to one adopted
by Boneh-Boyen in [BB04]. The security reduction R2 is also significantly tighter than the
original B2 (see Table 1 for a comparison). All the three reductions use the programmability
of the random oracles in a crucial way.
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Notations. We adopt the notations commonly used in the literature. In addition, the symbol
< is used to order the random oracle calls; e.g., H(x) < G(y) indicates that the random oracle
call H(x) precedes the random oracle call G(y). More generally, H < G indicates that the target
H-oracle call precedes the target G-oracle call. Finally, Z+ denotes the set of positive integers.

2 Forking Lemma

Pointcheval-Stern introduced the forking lemma [PS00] to prove the security of a number of
signature schemes. In this section, we describe two variants of the original forking lemma: the
general forking lemma [BN06] and the multiple-forking lemma [BPW12]. The general forking
lemma was proposed by Bellare-Neven as an abstraction of the forking lemma. The forking
lemma is explained in terms of signatures and adversaries, whereas the general forking lemma
focusses on algorithms and their outputs. But, in the general forking algorithm, only one
random oracle is involved in the so called oracle replay attack. The multiple-forking algorithm
extends the oracle replay attack to involve two random oracles and multiple replay attacks.

2.1 General Forking Lemma

We first reproduce the general forking algorithm from [BN06] and then explain its working.
This is followed by the statement of general forking lemma.

General Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be a
randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a pair (I, σ)
consisting of an integer 0 ≤ I ≤ q and a string σ. The forking algorithm FW associated to W
is defined as Algorithm 1 below.

Algorithm 1 FW (x)

Pick coins ρ for W at random

{s01, . . . , s0q} ∈R S; (I0, σ0)←W (x, s01, . . . , s
0
q ; ρ) //round 0

if (I0 = 0) then return (0,⊥,⊥)

{s1I0 , . . . , s
1
q} ∈R S; (I1, σ1)←W (x, s01, . . . , s

0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if (I1 = I0 ∧ s1I0 6= s0I0) then return (1, σ0, σ1)
else return (0,⊥,⊥)

Lemma 1 (General Forking Lemma [BN06]). Let GI be a randomised algorithm that takes no
input and returns a string. Let

acc := Pr
[
x

$←− GI ; s01, . . . , s0γ ∈R S; (I0, σ0)
$←−W (x, s01, . . . , s

0
γ) | I0 ≥ 1

]
and

gfrk := Pr
[
x

$←− GI ; (b, σ0, σ1)
$←− FW (x) | b = 1

]
,

then

gfrk ≥ acc ·
(

acc

γ
− 1

|S|

)
. (1)

2.2 Multiple-Forking Lemma

We first reproduce the multiple-forking algorithm from [BPW12], followed by the statement of
multiple-forking lemma.
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The Multiple-Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be
a randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a triple
(I, J, σ) consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an odd integer.
The multiple-forking algorithmMW ,n associated toW and n is defined as Algorithm 2 below.

Algorithm 2 MW ,n(x)

Pick coins ρ for W at random

{s01, . . . , s0q} ∈R S;
(I0, J0, σ0)←W (x, s01, . . . , s

0
q ; ρ) //round 0

if ((I0 = 0) ∨ (J0 = 0)) then return (0,⊥) //Condition ¬B

{s1I0 , . . . , s
1
q} ∈R S;

(I1, J1, σ1)←W (x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if
(
(I1, J1) 6= (I0, J0) ∨ (s1I0 = s0I0)

)
then return (0,⊥) //Condition ¬C0

k := 2
while (k < n) do
{skJ0

, . . . , skq} ∈R S;

(Ik, Jk, σk)←W (x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

if
(

(Ik, Jk) 6= (I0, J0) ∨ (skJ0
= sk−1J0

)
)

then return (0,⊥) //Condition ¬Dk

{sk+1
Ik

, . . . , sk+1
q } ∈R S;

(Ik+1, Jk+1, σk+1)←W (x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if
(

(Ik+1, Jk+1) 6= (I0, J0) ∨ (sk+1
I0

= skI0)
)

then return (0,⊥) //Condition ¬Ck

k := k + 2
end while
return (1, {σ0, . . . , σn})

Lemma 2 (Multiple-Forking Lemma [BPW12]). Let GI be a randomised algorithm that takes
no input and returns a string. Let acc :=

Pr
[
x

$←− GI ; s01, . . . , s0γ ∈R S; (I0, J0, σ)
$←−W (x, s01, . . . , s

0
γ) | I0 ≥ 1 ∧ J0 ≥ 1

]
and mfrk := Pr

[
x

$←− GI ; (b, results)
$←−MW ,n(x) | b = 1

]
,

then

mfrk ≥ acc ·
(

accn

γ2n
− n

|S|

)
. (2)

3 Revisiting the Galindo-Garcia Security Argument

We first reproduce the construction of GG-IBS and then identify several problems with the
original security argument in [GG09].

3.1 The Construction

The scheme is based on the Schnorr signature scheme [Sch91] discussed in the previous chapter.
The user secret key can be considered as the Schnorr signature by the PKG on the identity
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of the user, using the master secret key as the signing key. Analogously, the signature on a
message by a user is the Schnorr signature, by that user, on the message using her user secret
key as the signing key. The construction is given below (for further details see [GG09, §3]).

Set-up, G(κ): Generate a group G = 〈g〉 of prime order p. Select z ∈R Zp and set Z = gz.
Return z as the master secret key msk and (G, p, g, Z,H,G) as the master public key mpk,
where H and G are hash functions

H : {0, 1}∗ 7→ Zp and G : {0, 1}∗ 7→ Zp.

Key Extraction, E (id, msk): Select r ∈R Zp and set R := gr. Return usk := (y,R) ∈ Zp×G
as the user secret key, where

y := r + zc and c := H(R, id).

Signing, S (id,m, usk): Let usk = (y,R) and c = H(R, id). Select a ∈R Zp and set A := ga.
Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(id, A,m).

Verification, V (σ, id,m, mpk): Let σ = (b, R,A), c := H(R, id) and d := G(id, A,m). The
signature is valid if

gb = A(R · Zc)d.

Figure 1: The (Original) Galindo-Garcia IBS.

Remark 1. Note that, although R is a part of the secret key of a user it is actually public
information. In fact, R also forms a part of the signatures given by that user. Hence, by
construction, all signatures generated using the user secret key usk = (y,R) will contain the
same R. This also means that, in the security argument, the simulator has to maintain the
same R for a particular user; otherwise, the simulation will diverge from the actual protocol
execution.

3.2 The Security Argument and Problems with it

The original security argument involves the construction of two algorithms B1 and B2 for com-
plementary events E and NE respectively. E is the event that the attempted forgery σ̂ = (Â, b̂, R̂)
is valid, non-trivial and R̂ is contained in the response to some query to the signature oracle.
The event E (and its complement NE) is defined in this particular way in order to guarantee that
the forgeries are in a format that helps the respective reductions to solve the DLP challenge.

In reduction B2, the problem instance is embedded as a part of the master public key and
hence the master secret key is not known to B2. The extract queries are answered by using an
algebraic technique similar to the one in [BB04]. The signature queries, on the other hand, are
answered by invoking the signing algorithm S after the user secret key has been generated as
in the extract query. Finally, B2 uses the MF Algorithm MW ,3 to obtain four related forgeries
and uses these forgeries to solve the DLP challenge.

On the other hand, the strategy adopted in B1 is quite different from B2. The central idea is
to embed the problem instance in the randomiser R while choosing its own master keys. In the
simulation, B1 randomly chooses one of the identities involved in G-oracle query as the target
identity. For signature queries involving this target identity, B1 embeds the problem instance in
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R and then uses the aforementioned algebraic technique to give the signature. The circularity
involved is resolved by programming the random oracles. If A makes an extract query on the
target identity, B1 fails; for all other identities, B1 uses the knowledge of the master secret key
to respond to the queries. Finally it hopes that A returns a forgery containing R (in which
the problem instance is embedded). In order to solve the DLP, B1 needs to obtain two such
forgeries. This is accomplished with the help of the MF Algorithm MW ,1.

The original argument. We now reproduce the original reductions from [GG09, §4] using
our notation (for ease of reference, the bullets are replaced by numeric values). Each reduction
is followed, immediately, by the observations that cause its failure. In the following, Bi.j refers
to the jth step in the construction of Bi, i ∈ {1, 2}. (Some of the “typos” in the original security
argument, that were corrected, are mentioned in the footnotes.)

Let A be an adversary against GG-IBS in the EU-ID-CMA model. Eventually, A outputs an
attempted forgery of the form σ = (A,B,R). Let E be the event that σ is a valid signature
and R was contained in an answer of the signature oracle Os. Let NE be the event that σ is
a valid signature and R was never part of an answer of Os. Galindo and Garcia construct an
algorithm B1 [resp. B2] that breaks the DLP in case of event E [resp. NE].

3.2.1 Reduction B1
B1 takes as argument the description of a group (G, p, g) and a challenge gα with α ∈R Zp
and tries to extract the discrete logarithm α. The protocol environment is simulated as shown
below.

B1.1 B1 picks î ∈R {1, . . . , qG}, where qG is the maximum number of queries that the adversary
A performs to the G-oracle. Let îd (the target identity) be the identity in the îth query
to the G-oracle. Next, B1 chooses z ∈R Zp and sets (mpk, msk) := ((G, g, p,G,H, gz), z),
where G, H are descriptions of hash functions modelled as random oracles. As usual, B1
simulates these oracles with the help of two tables LG and LH containing the queried values
along with the answers given to A.

B1.2 Every time A queries the key extraction oracle Oε, for user id, B1 chooses c, y ∈R Zp, sets
R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B1.3 When A makes a query to the signature oracle Os for (id,m) with id 6= îd, B1 simply
computes id’s secret key as described in the previous bullet. Then it invokes the signing
algorithm S and returns the produced signature to A.

B1.4 When A makes a query to the signature oracle Os for (id,m) with id = îd, B1 chooses
t ∈R Zp, B ∈R G, sets R := g−zc(gα)t, c := H(id, R),1 and A := B(gαgzc)−d.2 Then it
returns the signature (A,B,R) to A.

B1.5 B1 invokes the algorithm MW ,1(mpk) as described in Lemma 1 ([GG09, §4]). Here algo-
rithm W is simply a wrapper that takes as explicit input, the answers from the random
oracles. Then it calls A and returns its output together with two integers I, J . These
integers are the indices of A’s queries to the random oracles G, H with the target identity
îd.

1In the original reduction, c was set to H(îd, gα) instead of H(îd, R). This is most likely a typo as it leads to
the signatures on îd fundamentally failing the verification.

2Here, d is not assigned a value, though from the protocol we may infer that d := G(id, A,m). But this leads
to a circularity as the value of A depends on d. To avoid this circularity, B1 has to program G-oracle as follows:
choose d ∈R Zp, compute A = B(gαgzc)−d and then set G(id, A,m) := d.

7



Algorithm 3 MW ,1(mpk)

Pick random coins ρ for W
s01, . . . , s

0
qG
∈R Zp

(I0, J0, σ0)←W (mpk, s01, . . . , s
0
qG

; ρ)

If (I0 = 0 ∨ J0 = 0) then return ⊥
s1I0 , . . . , s

1
qG
∈R Zp

(I1, J1, σ1)←W (mpk, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1qG , ρ)

If ((I1, J1) 6= (I0, J0) ∨ s1I0 = s0I0) then return ⊥
Otherwise return (σ0, σ1)

In this way we get two forgeries of the form σ0 = (id,m, (A,B0, R)) and σ1 = (id,m, (A,B1, R)).
Let d0 be the answer from the G-oracle given to A in the first simulation, s0I0 in MW ,1

and let d1 be the second answer s1I0 . If the identity id is not equal to the target identity

îd then B1 aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
(B0 −B1)

td0 − td1
.

Observations on B1. We now note the following points about the reduction B1 given above.
We also mention ways to fix the problems.

Observation 1 (Correctness of signatures on îd). In B1.4, when A makes a signature query
on îd, B1 returns (A,B,R) ∈ G3 as the signature. However, in the protocol definition, the
signatures are elements of G×Zp×G. Therefore, the signatures on îd will fail the verification
in the general group setup–i.e., G is any cyclic group of prime order p, and in particular, in the
elliptic curve setting–as the operation gB is not defined in G.

What the authors could have intended in B1.4 is

• WhenA queries the signature oracleOs with (id,m) where id = îd, B1 chooses t, b ∈R Zp,
sets B := gb, R := g−zc(gα)t, c := H(id, R) and A := B(gαgzc)−d. Then it returns the
signature (A, b,R) to A.

Even after the above correction is applied, the signatures on îd fail the verification algorithm.
For the signatures to verify, the following equality should hold.

gb = A(R · (gα)c)d

= gb(gαgzc)−d(g−zc(gα)tgzc)d

1 = g(α+zc)(−d)gαtd

However, it holds only if
(αt− zc− α) d ≡ 0 mod p. (3)

It is easy to check that the LHS in (3) is a random element of Zp. Hence, the signatures on îd

given by B1 will fail to verify with an overwhelming probability of 1− 1/p. The equality holds
if we set t := 1 + zc/α, instead of selecting t uniformly at random from Zp.3 However, setting
t := 1 + zc/α results in R being set to the problem instance gα, removing t from the picture
altogether. Thus, B1.4 would finally look like:

3This modification was pointed out by an anonymous reviewer.
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• WhenA queries the signature oracleOs with (id,m) where id = îd, B1 chooses b, d ∈R Zp,
sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the random oracle in
such a way that d := G(id, A,m). Then it returns the signature (A, b,R) to A.

Although it may appear that the reduction B1 can be rescued with the modification mentioned
above, the line of argument in B1 has another inherent–much more serious–problem, which we
describe next.

Observation 2 (Ambiguity due to the choice of îd). B1 sets the identity involved in the îth

G-oracle query as the target identity îd (see B1.1). Hence, the target identity can be fixed only
after the îth query to the G-oracle has been made. However, whenever a signature query is made
on any identity, B1 has to decide whether the identity is the target identity or not. Therefore,
when A makes a signature query before the îth G-oracle query, B1 has no way to decide whether
to proceed to B1.3 or B1.4 (as it depends on whether id = îd or not).

B1 can provide a proper simulation of the protocol environment only if no signature query is
made on the target identity îd before the îth G-oracle query. However, B1 cannot really restrict
the adversarial strategy this way. In fact, B1 will fail to give a proper simulation of the protocol
environment if A makes one signature query on îd before the îth G-oracle query and one more
signature query on îd after the îth G-oracle query.

One way to fix the problem noted above is to guess the “index” of the target identity instead
of guessing the target G-index. Suppose n distinct identities are involved in the queries to the
G-oracle, where 1 ≤ n ≤ qG.4 The strategy would be to guess the index î of the target identity
îd among all the identities, i.e. if {id1, . . . , idn} were the distinct identities involved in the
queries to the G-oracle (in that order), we set idî with 1 ≤ î ≤ n as the target identity.
Now, by assumption no identity queried to the G-oracle prior to idî can be the target identity.
Hence, the ambiguity noted before can be avoided. Although this strategy works well with the
“mended” reduction that we ended up in Observation 1, it will still incur a tightness loss of
the order O

(
q3G
)
.

In our alternative security argument given in §4, we show how to get around the problem
in B1 by using Coron’s technique, together with some algebraic manipulation and non-trivial
random oracle programming. In addition to correcting the errors in B1, we end up with a much
tighter reduction as a result.

3.2.2 Reduction B2
It takes as argument, the description of a group (G, p, g) and a challenge gα with α ∈R Zp and
outputs the discrete logarithm α. To do so, it will run A simulating the environment as shown
below.

B2.1 At the beginning of the experiment, B2 sets the master public key mpk:=(G, p, g,G, H)
and msk := (gα), where G, H are description of hash functions modelled as random oracles.
As usual, B2 simulates these oracles with the help of two tables LG and LH containing the
queried values together with the answers given to A.

B2.2 Every time A queries the key extraction oracle Oε, for user id, B2 chooses c, y ∈R Zp, sets
R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A queries the signature oracle Os with (id,m), B2 simply computes id’s secret
key as described in the previous step. Then it computes a signature by calling S , adding
the respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the resulting
signature to the adversary.

4B1 will maintain a counter and increment it by 1 each time a new identity is queried to the G-oracle.
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B2.4 B2 invokes the algorithm MW ,3(mpk). In this way either B2 aborts prematurely or we

get, for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, R))5,
k := 0, . . . , 3 with A0 = A1 and A2 = A3. As all these signatures are valid, the following
equations hold.

{b0 = logA0 + (logR+ c0α)d0, b1 = logA1 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c1α)d2, b3 = logA3 + (logR+ c1α)d3}
(4)

with c0 6= c1, d0 6= d1 and d2 6= d3. Since we know c0, c1, d0, . . . , d3, a simple computation
yields

α =
b2 + b1 − b0 − b3

c1(d2 − d3)− c0(d0 − d1)
. (5)

Observations on B2. We now note the following points about the reduction B2 given above.
As in B1, we discuss possible fixes.

Observation 3 (Incorrect solution of the DLP instance.). In Step B2.4, the reduction obtains
the solution of the DLP instance by solving the four equations given in (4). However, on
substituting the values of bks from (4) in (5) we get

b2 + b1 − b0 − b3
c1(d2 − d3)− c0(d0 − d1)

= α+ logg R ·
d2 + d1 − d0 − d3

c1(d2 − d3)− c0(d0 − d1)
, (6)

which is not the correct solution to the DLP instance.

Note that the simulator does not know the value of logg R and hence cannot extract α from
the above expression. However, it is not difficult to get the correct solution (as we show in (14)
of §4.3). The more fundamental problem is that B2 fails to capture all possible adversarial
strategies as we show next.

Observation 4 (Incompleteness of B2.). In Step B2.4, B2 invokes MW ,3 to get four forged
signatures with bks as given in (4). The bk component of the forged signatures, though, need not
always have this particular structure.

The structure depends on the precise order in whichA makes the target oracle queries G(id, A,m)
and H(R, id) during the simulation. (Here, (id,m) corresponds to the target identity and the
message pair in the forgery while (A,R) are components of the forged signature.) Thus, (4)
covers only one of the two possible adversarial behaviours: A querying the random oracles in
the logical order H < G6 (shown in Figure 5 where the first branching corresponds to the
forking of the H-oracle). But one cannot rule out the complementary case of G < H: A query-
ing the G-oracle before the H-oracle (see Figure 2) where the first branching corresponds to
the forking of the G-oracle.7 Let’s look into the structure of the forged signatures in the case
G < H. As a result of the ordering of the oracle queries, W returns J0 as the index of the
G-oracle query on (id, A,m) and I0 as the index of the H-oracle query on (R0, id), at the end
of round 0. As G-oracle is forked before the H-oracle, we get d1 = d0, d3 = d2 and R1 = R0,
R3 = R2 in the subsequent forkings, while all the ci, 0 ≤ i ≤ 3 will be different. On the other

5We use bk instead of Bk, throughout the reduction, to maintain consistency with the protocol description (in
§3.1).

6Here, the symbol < denotes ‘followed by’.
7This is captured by an adversary A with the following behaviour:

(a) Fix a target identity-message pair (îd, m̂) and corresponding R̂, Â ∈ G.

(b) Make the two oracle queries: G(îd, Â, m̂) and H(R̂, îd), in that order.

(c) Produce a forgery σ = (Â, B̂, R̂) on (îd, m̂).
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Q0I0+1 Q0q σ0 = (A, b0, R0) //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 = (A, b1, R0) //round 1

Q01 Q02 Q0J0

QI1+1
2 Q2q σ2 = (A, b2, R2) //round 2

Q2J0+1 Q2I1

Q3I1+1 Q3q σ3 = (A, b3, R2) //round 3

d0

d2

c0

c1

c2

c3

Figure 2: Structure of the forgeries in the case G < H. Q0J0
denotes the target G-query

G(id, A,m); Q0I0 [resp. Q2I0 ] denotes the target H-query H(R0, id) [resp. H(R2, id)].

hand, the value A returned as part of the forged signature remains the same in all the four
rounds. Hence, the signatures returned by MW ,3 will contain bks of the form:

{b0 = logA+ (logR0 + c0α)d0, b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2, b3 = logA+ (logR2 + c3α)d2}
(7)

When the signatures have the structure as in (7), we cannot use (5) (more precisely, the corrected
version as given in (14) of §4.3) to get a solution of the DLP. This is because d1 = d0 and d3 = d2
makes the denominator part in the corresponding expression zero. As we cannot rule out this
particular adversary, the reduction does not address all the cases, rendering it incomplete.

To summarize, the same strategy to solve the DLP will not work for the two aforementioned
complementary cases. Still it is possible to distinguish between the two cases (H < G and
G < H) simply by looking at the structure of the forged signatures. In the case H < G, all
the Rs will be equal, i.e. R3 = R2 = R1 = R0; as for G < H, all the As will be equal, i.e.
A3 = A2 = A1 = A0. We could then use appropriate relations8 to solve for the DLP instance.
However, this results in an unnecessary forking (the branch consisting of round 2 and round 3
in Figure 2) being carried out in the case G < H. We address this in §4 by splitting B2 into
two reductions R2 and R3, with R2 involving only a single forking. The single forking, in turn,
leads to a tighter reduction (see Table 1).

4 New Security Argument

On the basis of the observations made in the previous section, we now proceed to provide a de-
tailed security argument for GG-IBS. In a nutshell, we have effectively modularised the security
argument into three mutually exclusive parts so that each of the three situations mentioned in
the previous section can be studied in more detail. We also show that it is possible to obtain
tighter reductions in two of the three cases.

In order to address the problem in B1 we redefine the event E and to address the incomplete-
ness of B2 we introduce another event F. The security argument involves constructing three
algorithms: R1, R2 and R3 and in each of them solving the DLP is reduced to breaking the IBS.
R1, unlike its counterpart B1, uses the GF Algorithm, whereas R2 and R3, the counterparts
of B2, still use the MF algorithm. The new reductions R1 and R2 are also tighter than their
counterparts in the original argument. We also use wrappers in all the three reductions.

8See (16) and (18) derived in Appendix B.2. For the sake of completeness, we have provided the modified
security argument incorporating all the above mentioned fixes in the Appendix B.

11



Theorem 1. Let A be an (ε, t, qε, qs, qH, qG)-adversary against the IBS in the EU-ID-CMA model.
If the hash functions H and G are modelled as random oracles, we can construct either

(i) Algorithm R1 that (ε1, t1)-breaks the DLP, where

ε1 ≥
ε2

exp(1)qGqε
and t1 ≤ t+ 2(qε + 3qs)τ, or

(ii) Algorithm R2 that (ε2, t2)-breaks the DLP, where

ε2 ≥ ε
(

ε

(qH + qG)2
− 1

p

)
and t2 ≤ t+ 2(2qε + 3qs)τ, or

(iii) Algorithm R3 that (ε3, t3)-breaks the DLP, where

ε3 ≥ ε
(

ε3

(qH + qG)6
− 3

p

)
and t3 ≤ t+ 4(2qε + 3qs)τ.

Here qε [resp. qs] denotes the upper bound on the number of extract [resp. signature] queries
that A can make; qH [resp. qG] denotes the upper bound on the number of queries to the H-oracle
[resp. G-oracle]. τ is the time taken for an exponentiation in the group G and exp is the base
of natural logarithm.

Argument. A is successful if it produces a valid forgery σ̂ = (Â, b̂, R̂) on (îd, m̂). Consider the
following event9 in the case that A is successful.

E: A makes at least one signature query on îd and R̂ was returned by the simulator as
part of the output to a signature query on îd.

The complement of this event is

¬E: Either A does not any make signature query on îd or R̂ was never returned by the
simulator as part of the output to a signature query on îd.

In order to come up with the forgery σ̂ with a non-negligible probability, the adversary, at
some juncture during its simulation, has to make the two random oracle queries: H(R̂, îd) and
G(îd, Â, m̂). Depending on the order in which A makes these calls, we further subdivide the
event ¬E into an event F and its complementary event ¬F, where

F: The event that A makes the oracle query G(îd, Â, m̂) before the oracle query H(R̂, îd)
(G < H).

¬F: The event thatA makes the oracle query H(R̂, îd) before the oracle query G(îd, Â, m̂)
(H < G).

In the case of the events E, ¬E ∧ F and ¬E ∧ ¬F, we give the reductions R1, R2 and R3

respectively. They are described in the subsequent sections.

9Note that the definition of the new event E (and ¬E) is slightly different from the one given in the security
argument of [GG09], i.e. event E (and NE) discussed in §3.2.
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Simulating the random oracles. A random oracle query is defined to be fresh if it is the first
query involving that particular input. If a query is not fresh for an input, in order to maintain
consistency, the random oracle has to respond with the same output as in the previous query on
that input. We say that a fresh query does not require programming if the simulator can simply
return a random value as the response. The crux of most security arguments involving random
oracles, including ours, is the way the simulator answers the queries that require programming.
In our case, random oracle programming is used to resolve the circularity involved while dealing
with the implicit random oracle queries. A random oracle query is said to be implicit if it is not
an explicit query by the adversary or the simulator. As usual, to simplify the book-keeping, all
implicit random oracle queries involved in answering the extract and signature queries are put
into the account of A.

4.1 Reduction R1

Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the GF
Algorithm on a wrapper Y as shown in Algorithm 4. As a result, it obtains a set of two
congruences in two unknowns and solves for α. It can be verified, as we do later, that R1

indeed returns the correct solution to the DLP instance. The novelty in the design of Y lies in
the way the problem instance is embedded in the randomiser R instead of the master public
key–R1 generates its own master keys.

Algorithm 4 Reduction R1(∆)

Select z ∈R Z∗p as the msk and set mpk := (G, g, p, gz).
(b, σ0, σ1)

$←− FY ((mpk, msk), gα)

if (b = 0) then return ⊥ //abort1,2
Parse σi as (b̂i, ci, ri, βi, di).
if (β0 = 1) ∧ (β1 = 0) then return (z(c0d0 − c1d1) + r0d0 − (b̂0 − b̂1))

/
r1d1

else if (β0 = 0) ∧ (β1 = 1) then return (z(c1d1 − c0d0) + r1d1 − (b̂1 − b̂0))
/
r0d0

else if (β0 = 0) ∧ (β1 = 0) then return ((b̂0 − b̂1)− z(c0d0 − c1d1))
/

(r0d0 − r1d1)
else return ⊥ //abort1,3
end if

The Wrapper

The main ingredient is the so-called “partitioning strategy”, first used by Coron in the security
argument of FDH [Cor00]. The basic idea is to divide the identity-space I into two disjoint
sets, Iε and Is, depending upon the outcome of a biased coin. Y is equipped to respond to
both extract and signature queries on identities from Iε. But it fails if the adversary does an
extract query on any identity from Is; it can answer only to signature queries on identities from
Is. The problem instance is embedded in the randomiser R, depending on the outcome of the
biased coin. As Y maintains a unique R for each identity, the structure of R decides whether
that identity belongs to Iε or to Is. The optimal size of the sets is determined on analysis. The
details follow.

Suppose that q := qG and S := Zp. Y takes as input the master keys (mpk,msk), the problem
instance gα and {s1, . . . , sq}. It returns a pair (I, σ) where I is the target G-index and σ is the
side-output. In order to track the index of the current G-oracle query, Y maintains a counter `,
initially set to 1. It also maintains a table LH [resp. LG] to manage the random oracle H [resp.
G]. Y initiates the EU-ID-CMA game by passing mpk as the challenge master public key to the
adversary A. The queries by A are handled as per the following specifications.
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(a) Random oracle query, H(R, id): LH contains tuples of the form

〈R, id, c, r, β〉 ∈ G × {0, 1}∗ × Zp × Zp ∪ {⊥} × {0, 1, φ}.

Here, (R, id) is the query to the H-oracle and c is the corresponding output. Therefore,
a query H(R, id) is fresh if there exists no tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (Ri =
R) ∧ (idi = id). If such a tuple exists, then the oracle has to return the corresponding ci
as the output.

The r-field is used to store additional information related to the R-field. The tuples cor-
responding to the explicit H-oracle queries, made by A, are tracked by storing ‘⊥’ in the
r-field. This indicates that Y does not have any additional information regarding R. In
these tuples, the β-field is irrelevant and this is indicated by storing ‘φ’. In tuples with
r 6= ⊥, the β-field indicates whether the DLP instance is embedded in R or not. If β = 0
then R = (gα)r for some known r ∈ Zp, which is stored in the r-field. On the other hand,
β = 1 implies R = gr for some known r ∈ Zp, which is, again, stored in the r-field. We now
explain how the fresh H-oracle queries are handled. The query may be

(i) H1, Explicit query made by A: In this case Y returns c ∈R Zp as the output.
〈R, id, c,⊥, φ〉 is added to LH.

(ii) H2, Explicit query made by Y : As in the previous case, Y returns c ∈R Zp as the
output. As Y knows r = logg R, 〈R, id, c, r, 1〉 is added to LH.

(iii) H3, Implicit query by Y in order to answer a signature query made by A: See step
(iii) of Signature query on how to program the random oracle in this situation.

(b) Random oracle query, G(id, A,m): LG contains tuples of the form

〈id, A,m, d, `〉 ∈ {0, 1}∗ ×G × Zp × Zp × Z+.

Here, (id, A,m) is the query to the G-oracle and d is the corresponding output. The index
of the query is stored in the `-field. Therefore, a random oracle query G(id, A,m) is fresh if
there exists no tuple 〈idi, Ai,mi, di, `i〉, in LG such that (idi = id)∧ (Ai = A)∧ (mi = m).
If such a tuple exists, then the oracle has to return the corresponding di as the output. We
now explain how the fresh G-oracle queries are handled. The query may be

(i) G1, Explicit query made by either A or Y : In this case Y returns d := s` as the
output. 〈id, A,m, d, `〉 is added to LG and ` is incremented by one.

(ii) G2, Implicit query by Y in order to answer a signature query made by A: See steps (i)
and (iii) of Signature query on how to program the random oracle in this situation.

(c) Extract query, Oε(id): Y first checks if id has an associated R. This is done by searching
for tuples 〈Ri, idi, ci, ri, βi〉 in LH with (idi = id)∧(ri 6= ⊥). If such a tuple exists, Y checks
for the value of βi in the tuple. βi = 0 implies the identity belongs to Is and consequently
the extract query fails, leading to Y aborting the simulation: abort1,1. On the other hand,
βi = 1 implies that there was a prior extract query on id and also that the identity belongs
to Iε. Y generates the user secret key (same as in prior extract query) using the information
available in the tuple. On the other hand, if such a tuple does not exist, Y selects a fresh r
and assigns id to Iε. Y has this freedom since the adversary cannot forge on this identity.
A more formal description follows.

If there exists a tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y aborts the simulation (abort1,1) and returns (0,⊥,⊥).

(ii) Otherwise, βi = 1 and Y returns usk := (ri + zci, Ri) as the user secret key.
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Otherwise

(iii) Y chooses r ∈R Zp, sets R := gr and queries the H-oracle for c := H(id, R). It
returns usk := (r + zc,R) as the secret key.

(d) Signature query, Os(id,m): As in Extract query, Y checks the identity for an associ-
ated R by searching tuples 〈Ri, idi, ci, ri, βi〉 in LH with (idi = id) ∧ (ri 6= ⊥). If such a
tuple exists, the identity has been assigned to either of Iε or Is, determined by the value of
βi. If such a tuple does not exist, then the identity is unassigned and Y assigns the identity
to either Iε or Is by tossing a (biased) coin β. If the outcome is 0, id is assigned to Is; else
it is assigned to Iε. Identities assigned to Is have the problem instance gα embedded in the
randomiser R. Although the private key cannot be calculated, an algebraic technique, sim-
ilar to one adopted by Boneh-Boyen in [BB04], coupled with random oracle programming
enables us to give the signature. On the other hand, signature queries involving identities
from Iε are answered by first generating usk as in Extract query and then invoking S . A
more formal description follows.

If there exists a tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y selects s ∈R Zp and sets d := s`, A := gs(gα)−rid. It then adds
〈id, A,m, d, `〉 to LG (deferred case G2)

10 and increments ` by one. The signature
returned is σ := (A, s+ zcd,Ri).

(ii) Otherwise, βi = 1 and the user secret key is usk := (y,Ri), where y = ri + zci
and Ri = gri . Y then selects a ∈R Zp, sets A := ga and queries the G-oracle with
d := G(id, A,mi). The signature returned is σ := (Ai, a+ yd,Ri).

Otherwise, Y tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be
quantified on analysis.

(iii) If β = 0, Y selects c, s, r ∈R Zp and sets d := s`, R := (gα)r, A := gs(gα)−rd.
Next, it adds 〈id, (gα)r, c, r, 0〉 to LH (deferred case H3), 〈id, A,m, d, `〉 to LG

(deferred case G2) and increments ` by one.11 The signature returned is σ :=
(A, s+ zcid,R).

(iv) Otherwise, β = 1 and Y selects a, r ∈R Zp and sets A := ga, R := gr. It then
queries the respective oracles with c := H(R, id) and d := G(id, A,m). The
signature returned is σ := (A, a+ (r + zc)d,R).

Correctness of the signatures. For β = 1, the signatures are generated as in the protocol
and hence they fundamentally verify. For β = 0, the signature given by Y is of the form
(A, b,R), where A = gs(gα)−rd, b = s + zcd and R = (gα)r. Y also sets c := H(R, id) and
d := G(id, A,m). As a result, the signature verifies as shown below.

gb = gs+zcd

= gs−αrd+αrd+zcd

= gs(gα)−rd((gα)r(gz)c)d

= A(R(gz)c)d.

At the end of the simulation, a successful adversary forges σ̂ := (Â, b̂, R̂) on (îd, m̂). Let
〈Rj , idj , cj , rj , βj〉 be the tuple in LH that corresponds to the target H-query. Similarly, let
〈idi, Ai,mi, di, `i〉 be the tuple in LG that corresponds to the target G-query. Y returns
(`i, (b̂, cj , rj , βj , di)) as its own output. Note that the side-output σ consists of (b̂, cj , rj , βj , di).

That concludes the description of the wrapper.

10 In the unlikely event of there already existing a tuple 〈idi, Ai,mi, di, `i〉 in LG with (idi = id) ∧ (Ai =
A) ∧ (mi = m) but (di 6= d) then G(id, A,m) cannot be set to d. In that case Y can simply increment ` and
repeat step (i).

11Y chooses different randomisers if there is a collision as explained in Footnote 10.
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4.1.1 Correctness of the Discrete-Log.

In the event of successful forking, R1 obtains two (related) sets of side-outputs σ0 and σ1, where
σi (for i = 1, 2) is of the form (b̂i, ci, ri, βi, di). It aborts in the event that β1 = β0 = 1 (abort1,3).

Q0I0+1 Q0q σ0 //round 0

Q01 Q02 Q0I0

Q1I0+1 Q1q σ1 //round 1

s01

s0I0

s1I0

s0q

s1q

Figure 3: Successful forking by R1. Q
0
I0

denotes the target query G(îd, Â, m̂).

In the rest of the cases, we claim that R1 ends up with a system of two congruences in two
unknowns {â, α}. In the following discussion, let â denote logg Â1 = logg Â0.

(i) (β0 = 1) ∧ (β1 = 0): In this case, R̂0 = gr0 while R̂1 is of the form gr1α. As a result, we
have {b̂0 = â + (r0 + zc0)d0, b̂1 = â + (r1α + zc1)d1}–a system of two congruences in the
two unknowns {â, α}. α can be solved for as shown below.

α =
z(c0d0 − c1d1) + r0d0 − (b̂0 − b̂1)

r1d1
(8)

(ii) (β0 = 0) ∧ (β1 = 1): In this case, R̂0 is of the form gr0α while R̂1 = gr1 . As a result, we
have {b̂0 = â+ (r0α+ zc0)d0, b̂1 = â+ (r1 + zc1)d1}. α can be solved for as shown below.

α =
z(c1d1 − c0d0) + r1d1 − (b̂1 − b̂0)

r0d0
(9)

(iii) (β0 = β1 = 0): In this case, R̂0 is of the form gr0α and R̂1 is also of the form gr1α. As a
result, we have {b̂0 = â + (r0α + zc0)d0, b̂1 = â + (r1α + zc1)d1}. α can be solved for as
shown below.

α =
(b̂0 − b̂1)− z(c0d0 − c1d1)

(r0d0 − r1d1)
(10)

Notice that (8), (9) and (10) is precisely what R1 outputs in Algorithm 4.

Remark 2. The equations (8), (9) and (10) hold even if R̂1 = R̂0 (and consequently rj = ri and
cj = ci). Note that this can happen if the adversary makes the random oracle query H(R̂0, îd)
before the query G(îd, Â, m̂) (H < G) in round 0. Hence, the order in which A makes the
aforementioned random oracle queries is not relevant.

4.1.2 Analysis

The probability analysis is governed by the three events abort1,1, abort1,2 and abort1,3. First,
let’s focus on the probability with which the wrapper Y successfully produces an output–the
accepting probability accY .
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The accepting probability. Y aborts the simulation only when A does an extract query on
an identity from Is, i.e. an identity with β = 0. Therefore, Y does not abort if all the extract
queries correspond to identities from Iε, and consequently Pr

[
¬abort1,1

]
= (1− δ)qε . Y accepts

if the adversary produces a valid (non-trivial) forgery at the end of a successful simulation.
Therefore accY ≥ (1− δ)qεε.

The reduction is successful in the event that neither abort1,2 and abort1,3 occurs. The first
of the aborts (abort1,2) pertains to the GF Algorithm: R1 aborts in the event that the forking
ended up being a failure. On applying the GF Lemma (Lemma 1) with acc = accY , |S| = p
and q = qG, we get the following lower bound:

Pr
[
¬abort1,2

]
≥ (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
.

The probability of event abort1,3, on the other hand, is the same as that with which (βi =
1) ∧ (βj = 1), i.e. Pr

[
abort1,3 | ¬abort1,2

]
= (1− δ)2. On putting it all together, we get

ε1 = Pr
[
¬abort1,3 ∧ ¬abort1,2

]
≥ (1− (1− δ)2) · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
= (2δ − δ2) · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
(11)

Assuming p� 1, (11) attains maximum value at the point δ =
(

1−
√
qε/(qε + 1)

)
, at which

ε1 ≥
ε2

exp(1)qGqε
.

Here, exp is the base of natural logarithm.

Remark 3. The above reduction is tighter than the original reduction B1 given in [GG09].
This can be attributed to two reasons: i) R1 uses the GF Algorithm FW instead of the MF
Algorithm MW ,1; and ii) B1 in [GG09] randomly chooses one of the identities involved in the

G-oracle query as the target identity (refer to §3.2.1) which contributes a factor of q2G to the
degradation in B1. By contrast, we apply Coron’s technique in R1 to partition the identity
space in an optimal way.

Time complexity. If τ is the time taken for an exponentiation in G, then the time taken by
R1 is t1 ≤ t+ 2(qε + 3qs)τ . It takes at most one exponentiation for answering the extract query
and three exponentiations for answering the signature query. This contributes the (qε + 3qs)τ
factor in the running time. The factor of two comes from the forking algorithm, since it involves
running the adversary twice.

4.2 Reduction R2

Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the MF
Algorithm on the wrapper W as shown in Algorithm 5. As a result, it obtains a set of two
congruences in two unknowns and solves for α. It can be verified that R2 indeed returns the
correct solution to the DLP instance. The design of the wrapper W follows.

17



Algorithm 5 Reduction R2(∆)

Set mpk := ∆

(b, {σ0, σ1})
$←−MW ,1(mpk)

if (b = 0) then return 0
Parse σi as (b̂i, ci, di); let d denote d1 = d0
return (b̂0 − b̂1)

/
(d0(c0 − c1))

The Wrapper

Suppose that q := qH + qG and S := Zp. W takes as input the master public key mpk and
{s1, . . . , sq}. It returns a triple (I, J, σ) where J [resp. I] is the target H-index [resp. G-index]
and σ is the side-output. In order to track the index of the current random oracle query, W
maintains a counter `, initially set to 1. It also maintains a table LH [resp. LG] to manage the
random oracle H [resp. G]. W initiates the EU-ID-CMA game by passing mpk as the challenge
master public key to the adversary A. The queries by A are handled as per the following
specifications.

(a) Random oracle query, H(R, id): LH contains tuples of the form

〈R, id, c, `, y〉 ∈ G × {0, 1}∗ × Zp × Z+ × Zp ∪ {⊥}.

Here, (R, id) is the query to the H-oracle with c being the corresponding output. The index
of the query is stored in the `-field. Finally, the y-field stores either (a component of) the
secret key for id, or a ‘⊥’ in case the field is invalid. H(R, id) is fresh if there exists no
tuple 〈Ri, idi, ci, `i, yi〉 in LH such that (Ri = R) ∧ (idi = id). If such a tuple exists, then
the oracle has to return ci as the output. A fresh, explicit, H-oracle query is handled as
follows: i) return c := s` as the output, and ii) add 〈R, id, c, `,⊥〉 to LH and increment `
by one.

(b) Random oracle query, G(id, A,m): LG contains tuples of the form

〈id, A,m, d, `〉 ∈ {0, 1}∗ ×G × {0, 1}∗ × Zp × Z+.

Here, (id, A,m) is the query to the G-oracle with d being the corresponding output. The
index of the query is stored in the `-field. Therefore, a random oracle query G(id, A,m) is
fresh if there exists no tuple 〈idi, Ai,mi, di〉, in LG such that (idi = id)∧ (Ai = A)∧ (mi =
m). If such a tuple exists, then the oracle has to return di as the output. A fresh, explicit, G-
oracle query is handled as follows: i) return d := s` as the output, and ii) add 〈id, A,m, d, `〉
to LG and increment ` by one.

(c) Extract query, Oε(id): Since the master secret key α is unknown toW , it has to carefully
program the H-oracle in order to generate the user secret key usk.

(i) If there exists a tuple 〈Ri, idi, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), W
returns usk := (yi, Ri) as the secret key.

(ii) Otherwise, W chooses y ∈R Zp, sets c := s` and R := (gα)−cgy. It then adds
〈R, id, c, `, y〉12 to LH and increments ` by one (an implicit H-oracle query). Finally,
it returns usk := (y,R) as the secret key.

(d) Signature query, Os(id,m): The signature queries are answered by first generating usk

(by querying with Oε on id), followed by invoking S .

12In the unlikely event of there already existing a tuple 〈Ri, idi, ci, `i,⊥〉 in LH with (Ri = R) ∧ (idi =
id) ∧ (ci = c), W will simply increment ` and repeat step (ii).
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(i) If there exists a tuple 〈Ri, idi, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), then
usk = (yi, Ri). W now uses the knowledge of usk to run S and returns the signature.

(ii) Otherwise, W generates usk as in step (ii) of Extract query and runs S to return
the signature.

At the end of the simulation, a successful adversary outputs a valid forgery σ̂ := (Â, b̂, R̂)
on a (îd, m̂). Let 〈idj , Rj , cj , `j , yj〉 be the tuple in LH that corresponds to the target H-query.
Similarly, let 〈mi, Ai, ci, di, `i〉 be the tuple in LG that corresponds to the target G-query. W
returns (`i, `j , (b̂, cj , di)) as its own output. Note that the side-output σ consists of (b̂, cj , di).

Structure of the forgery. Recall that the signature queries are answered by doing an extract
query on the identity followed by calling S . Therefore, the resultant secret keys are of the form
usk = (y,R), where R = (gα)−cgy and we have r = −αc + y. If a forgery is produced using
the same R as given by R2 as part of the signature query on id, then b will be of the form
b = a + (−αc + y + αc)d = a + yd. Therefore, it will not contain the solution to the DLP
challenge α, and such forgeries are of no use to R2. But the event ¬E guarantees that A does
not forge using an R which was given as part of the signature query on id and hence, for the
forgery to be valid b will necessarily be of the form b = a+ (r + αc)d.

4.2.1 Correctness of the Discrete-Log.

In the event of successful forking, R2 obtains two (related) sets of side-outputs {σ0, σ1}, where
σi (for i = 0, 1) is of the form (b̂i, ci, di). Let â denote logg Â1 = logg Â0; let r̂ denote logg R̂1 =

Q0I0+1 Q0q σ0 //round 0

Q01 Q02 Q0J0
Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

s01 s0J0

s0I0

s1I0

s0q

s1q

Figure 4: Successful forking by R2. Q0J0
denotes the target G-query G(îd, Â, m̂) while Q0I0

denotes the target H-query H(R̂, îd).

logg R̂0; and let d denote d1 = d0. Since the multiple-forking was successful, we have: {b̂0 =

â+(r̂+αc0)d, b̂1 = â+(r̂+αc1)d}–a system of two congruences in the two (effective) unknowns
{â+ r̂d, α}. α can be solved for by using the expression given below.

α := (b̂0 − b̂1)
/

(d(c0 − c1)) (12)

Notice that (12) is precisely what R2 outputs in Algorithm 5.

4.2.2 Analysis

Since there is no abort involved in the simulation of the protocol, we may conclude that the
accepting probability of W is the same as the advantage of the adversary, i.e. accW = ε. The
probability of success of the reduction R2 is computed by using MF Lemma (Lemma 2) with
q := qH + qG, |S| := p and n = 1.13 Hence, we get ε2 = O

(
ε2/(qH + qG)2

)
.

13 In the analysis of B2 in [GG09], q was assumed to be qH · qG. However, q actually denotes the size of the set
of responses to the random oracle queries involved in the replay attack. As both H and G-oracle is involved in
the replay attack in B2, the size of the set is qH + qG rather than qH · qG.
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Time complexity. Drawing analogy from the analysis of time complexity of R1, the time
taken by R2 is easily seen to be bounded by t2 ≤ t+ 2(2qε + 3qs)τ .

Remark 4. R2 is similar in some aspects to the (incomplete) reduction B2 in [GG09]. However,
a major difference is that R2 uses the MF AlgorithmMW ,1 instead ofMW ,3 to solve the DLP
challenge. Therefore, only one forking is involved leading to a much tighter reduction than B2.

4.3 Reduction R3

Let ∆ := (G, p, g, gα) be the given DLP instance. As in R2, the reduction involves invoking the
MF Algorithm on the wrapper W . The only difference is that MF Algorithm is run for n = 3.
As a result, it obtains a set of four congruences in four unknowns and solves for α. It can be
verified that R3 indeed returns the correct solution to the DLP instance.

Algorithm 6 Reduction R3(∆)

Set mpk := ∆

(b, {σ0, σ1, σ2, σ3})
$←−MW ,3(mpk)

if (b = 0) then return 0
Parse σi as (b̂i, ci, di).
return

(
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

)/
(c0 − c1)(d0 − d1)(d2 − d3)

4.3.1 Correctness of the discrete-log.

In the event of successful forking, R3 obtains four (related) sets of side-outputs {σ0, σ1, σ2, σ3},
where σi (for i = 0, . . . , 3) is of the form (b̂i, ci, di). Let â0 [resp. â2] denote logg Â1 = logg Â0

Q0I0+1 Q0q σ0 //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

Q01 Q02 Q0J0

Q2I0+1 Q2q σ2 //round 2

Q2J0+1 Q2I0

Q3I0+1 Q3q σ3 //round 3

s01

s0J0

s2J0

s0I0

s1I0

s0q

s1q

s2I0

s3I0

s2q

s3q

Figure 5: Successful multiple forkings by R3. Q0J0
denotes the target H-query H(R̂, îd); Q0I0

[resp. Q2I0 ] denotes the target G-query G(îd, Â0, m̂) [resp. G(îd, Â2, m̂)].

[resp. logg Â2 = logg Â3]; let r̂ denote logg R̂3 = logg R̂2 = logg R̂1 = logg R̂0. Since the multiple
forkings were successful, we have:

{b̂0 = â0 + (r̂+αc0)d0, b̂1 = â0 + (r̂+αc0)d1, b̂2 = â2 + (r̂+αc2)d2, b̂3 = â2 + (r̂+αc2)d3} (13)

We claim that (13) forms a system of four congruences in the four unknowns {r̂, â0, â2, α}. α
can be solved for by using the expression given below.

α =
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
(14)

20



Notice that (14) is precisely what R3 outputs in Algorithm 6.

4.3.2 Analysis

Since there is no abort involved in the simulation of the protocol, we may conclude that the
accepting probability of W is the same as the advantage of the adversary, i.e. accW = ε. The
probability of success of the reduction R3 is computed by using MF Lemma (Lemma 2) with
q := qH + qG, |S| := p and n = 3. Hence, we have ε3 = O

(
ε4/(qH + qG)6

)
.

4.4 A Comparison with the Original Reduction.

Recall that we replaced the reduction B1 in the original security argument with the new reduc-
tion R1. Likewise, B2 was replaced with the two reductions R2 and R3. The resulting effect on
tightness is tabulated below. The security degradation involved in original B1 is of the order
O
(
q3G
)
. In comparison, R1 incurs a degradation of order O (qGqε) which is much lower than

that of B1. Note that qG � qε, i.e. the bound on the number of random oracle queries is much
greater than the bound on the number of extract queries. For example, for 80-bit security one
usually assumes qG ≈ 260 while qε ≈ 230. The degradation involved in the original B2 would be
of the order of O

(
(qG + qH)6

)
(as pointed out in Footnote 13). In comparison, the security

degradation involved in R2 and R3 is of order O
(
(qH + qG)2

)
and O

(
(qH + qG)6

)
respectively.

Thus, the effective degradation14 is still of the order O
(
(qH + qG)6

)
.

Original reductions [GG09] B1 B2

Degradation O
(
q3G
)

O
(
(qGqH)6

)
Our new reductions R1 R2 R3

Degradation O (qGqε) O
(
(qH + qG)2

)
O
(
(qH + qG)6

)
Table 1: A comparison of degradation in the original [GG09] and the new security argument.
Note that the ε factor in the denominator remains the same.

5 Conclusion

In this work we have identified certain shortcomings in the original security argument of the
Galindo-Garcia IBS. Based on our observations we provide a new elaborate security argument
for the same scheme. Two of the reductions are significantly tighter than their counterparts in
the original security argument in [GG09]. However, all the reductions are still non-tight. We
would like to pose the question of constructing an identity-based signature scheme in discrete-
log setting (without pairing) with a tighter security reduction as an interesting open research
problem.

Acknowledgements. We thank the anonymous reviewers for their helpful suggestions.

14The effective degradation of a security argument involving multiple reductions from the same hard problem
(as in the case of GG-IBS) is equal to the degradation of the reduction that incurs the worst security degradation.
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A Definitions

In this section, we give the formal definition of an IBS and describe the standard security model
for an IBS. We also describe the discrete-log assumption, on which the Galindo-Garcia IBS is
based on.

A.1 Identity-Based Signatures

Definition 1 (Identity-Based Signature). An IBS scheme consists of four polynomial-time,
probabilistic algorithms {G , E ,S ,V} described below.

Set-up, G(κ): It takes as input the security parameter κ. It outputs the master secret key
msk and the master public key mpk.

Key Extraction, E (id, msk): It takes as input the user’s identity id, the master secret key
msk to generate a secret key usk for the user.

Signing, S (id,m, usk): It takes as input the user’s identity id, a message m and the user’s
secret key usk to generate a signature σ.

Verification, V (σ, id,m, mpk): It takes as input a signature σ, a message m, an identity id

and the master public key mpk. If outputs a bit b which is 1 if σ is a valid signature on
(id,m) or 0 if the signature is invalid.

The standard correctness condition: 1 ← V (S (id,m, usk), id,m, mpk), should be satisfied for

all id, m, (msk, mpk)
$←− G(κ) and usk

$←− E (id, msk).

A.2 Security Model

Goldwasser et al. [GMR88] defined the security notion for public-key signature (PKS) schemes
as existential unforgeability under chosen-message attack (EU-CMA). The EU-ID-CMA model ex-
tends this notion to the identity-based setting. We use the detailed EU-ID-CMA model given by
Bellare et al. in [BNN04].

Definition 2 (EU-ID-CMA Game15). The security of an IBS scheme in the EU-ID-CMA model is
argued in terms of the following game between a challenger C and an adversary A.

Set-up: C runs G to obtain the master public key mpk and the master secret key msk. It
passes mpk as the challenge master public key to A.

Queries: A can adaptively make extract queries to an oracle Oε and signature queries
to an oracle Os. These queries are handled as follows.

– Extract query, Oε(id): A asks for the secret key of a user with identity id. If
there has already been an extract query on id, C returns the user secret key that
was generated during the earlier query. Otherwise, C uses the knowledge of msk to
run E and generate the user secret key usk, which is then passed on to A.

– Signature query, Os(id,m): A asks for the signature of a user with identity id

on a message m. C first obtains, as specified the extract query, a user secret key usk

corresponding to id. Next, it uses the knowledge of usk to run S and generate a
signature σ, which is passed to A.

15The security game in [BNN04], i.e. Expuf-cma
IBS,F̄ , is explained in terms of the three oracles: INIT, CORR and

SIGN. Here we use an equivalent formulation in terms of Extract and Signature queries.
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Forgery: A outputs a signature σ̂ on an identity îd and a message m̂, and wins the
game if the forgery is i) valid: σ̂ passes the verification on (îd, m̂); and ii) non-trivial: A
has not queried the extract oracle with îd, nor has it queried the signature oracle with
(îd, m̂).

The advantage that A has in the above game, denoted by AdvEU−ID−CMAA (κ), is defined as
the probability with which it wins the above game, i.e.

Pr
[
1← V (σ̂, îd, m̂, mpk) | (msk, mpk)

$←− G(κ); (σ̂, îd, m̂)
$←− AOε(·),Os(·,·)(mpk)

]
provided σ̂ is a non-trivial forgery on (îd, m̂). An adversary A is said to be an (ε, t, qε, qs)-forger
of an IBS scheme if it has advantage of at least ε in the above game, runs in time at most t and
makes at most qε [resp. qs] extract [resp. signature] queries.

Definition 3 (ID-Security of IBS). We say that an IBS is EU-ID-CMA-secure (ID-secure, in
short) if for any polynomial-time adversary A the function AdvEU−ID−CMAA (κ) is negligible in κ

A.3 Discrete-Logarithm Assumption

Definition 4. Consider a group G of prime order p, generated by g. The discrete-log problem
(DLP) in G is to find α given gα, where α ∈R Zp. An adversary A has advantage ε in solving
the DLP if

Pr
[
α′ = α | α ∈R Zp;α′ ← A(G, p, g, gα)

]
≥ ε.

The (ε, t)-discrete-log assumption holds in G if no adversary has advantage at least ε in
solving the DLP in time at most t.

B The Fixed Security Argument

Let A be an adversary against GG-IBS in EU-ID-CMA model. Eventually, A outputs an at-
tempted forgery of the form σ = (A, b,R). Let E be the event that σ is a valid signature and
R was contained in an answer of the signature oracle Os. Let NE be the event that σ is a valid
signature and R was never part of an answer of Os. Galindo and Garcia construct algorithms
B1 [resp. B2] that break the DLP in case of event E [resp. NE]. We describe the modified
reductions below.

B.1 Reduction B1
B1 takes as argument the description of a group (G, p, g) and a challenge gα with α ∈R Zp and
tries to extract the discrete logarithm α. The environment is simulated as shown below.

B1.1 B1 picks î ∈R {1, . . . , qG},16 where qG is the maximum number of queries that the adversary
A makes to the G-oracle. Let îd (the target identity) be the îth distinct identity queried
to the G-oracle. Next, B1 chooses z ∈R Zp and sets (mpk, msk) := ((G, g, p,G,H, gz), z),
where G, H are descriptions of hash functions modelled as random oracles. As usual, B1
simulates these oracles with the help of two tables LG and LH containing the queried values
along with the answers given to A.

B1.2 Every time A queries the key extraction oracle Oε, for user id, B1 chooses c, y ∈R Zp, sets
R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

16The number of different identities involved in the G-oracle query, i.e. n, can be at most qG. Hence, B1 has
to choose one index from this set.
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B1.3 When A queries the signature oracle Os with (id,m) where id 6= îd, B1 simply computes
id’s secret key as described in the previous bullet. Then it invokes the signing algorithm
S and returns the produced signature to A.

B1.4 WhenA queries the signature oracleOs with (id,m) where id = îd, B1 chooses b, d ∈R Zp,
sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the random oracle in
such a way that d := G(id, A,m). Then it returns the signature (A, b,R) to A.

B1.5 B1 invokes the algorithm MW ,1(mpk) as described in Lemma 1 (§4 in [GG09]). Here
algorithmW is simply a wrapper that takes as explicit input, the answers from the random
oracles. Then it calls A and returns its output together with two integers I, J . These
integers are the indices of A’s queries to the random oracles G, H with the target identity
îd.

B1.6 In this way we get two forgeries of the form σ0 = (id,m, (A, b0, R)) and σ1 = (id,m, (A, b1, R)).
Let d0 be the answer from the G-oracle given to A in the first simulation, s0I0 in MW ,1

and let d1 be the second answer s1I0 . If the identity id is not equal to the target identity

îd then B1 aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
b0 − b1
d0 − d1

− zc.

B.2 Reduction B2
It takes as argument, the description of a group (G, p, g) and a challenge gα with α ∈R Zp and
outputs the discrete logarithm α. To do so, it will invoke A simulating the environment as
shown below.

B2.1 At the beginning of the experiment, B2 sets the master public key mpk:=(G, p, g,G, H)
and msk := (gα), where G, H are description of hash functions modelled as random oracles.
As usual, B2 simulates these oracles with the help of two tables LG and LH containing the
queried values together with the answers given to A.

B2.2 Every time A queries the key extraction oracle Oε, for user id, B2 chooses c, y ∈R Zp, sets
R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A queries the signature oracle Os with (id,m), B2 simply computes id’s secret
key as described in the previous step. Then it computes a signature by calling S , adding
the respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the resulting
signature to the adversary.

B2.4 B2 invokes the algorithmMW ,3(mpk). In this way either B2 aborts prematurely or we get,
for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, Rk)),
k := 0, . . . , 3. Now, two situations may arise

(a) If R3 = R2 = R1 = R0 (H < G) then, the signatures will be of the form

{b0 = logA0 + (logR+ c0α)d0, b1 = logA0 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c2α)d2, b3 = logA2 + (logR+ c2α)d3}
(15)

B2 solves for α using the equation

α =
(b0 − b1)(d2 − d3)− (b2 − b3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
. (16)
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(b) Else, if A3 = A2 = A1 = A0 (G < H) then, the signatures will be of the form

{b0 = logA+ (logR0 + c0α)d0, b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2, b3 = logA+ (logR2 + c3α)d2}.
(17)

B2 solves for α using the equation

α =
b0 − b1

d0(c0 − c1)
. (18)

27


	Introduction
	Forking Lemma
	General Forking Lemma
	Multiple-Forking Lemma

	Revisiting the Galindo-Garcia Security Argument
	The Construction
	The Security Argument and Problems with it
	Reduction [1]
	Reduction [2]


	New Security Argument
	Reduction [1]
	Correctness of the Discrete-Log.
	Analysis

	Reduction [2]
	Correctness of the Discrete-Log.
	Analysis

	Reduction [3]
	Correctness of the discrete-log.
	Analysis

	A Comparison with the Original Reduction.

	Conclusion
	Definitions
	Identity-Based Signatures
	Security Model
	Discrete-Logarithm Assumption

	The Fixed Security Argument
	Reduction [1]
	Reduction [2]


