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Abstract 

We present high performance non-deterministic fully-homomorphic methods for practical 

randomization of data (over commutative ring), and symmetric-key encryption of random mod-

N data over ring ZN well suited for crypto applications. These methods secure, for example, the 

multivariate input or the coefficients of a polynomial function running in an open untrusted 

environment. We show that random plaintext is the sufficient condition for proof of security for 

the homomorphic encryption. The efficient nature of the methods - one large-numbers 

multiplication per encryption and six for the product of two encrypted values - motivates and 

enables the use of low cost collaborative security platforms for crypto applications such as 

keyed-hash or private key derivation algorithms. Such a platform is comprised of a low-cost and 

low performance security element supported by an untrusted high performance server running 

the homomorpic algorithms.  The methods employed may also provide enhanced protection for 

some existing crypto algorithms against certain attacks. Specifically, it is shown how to secure 

OSS public-key signature against Pollard attack. Further, we demonstrate how the 

homomorphic randomization of data can offer protection for an AES-key against side-channel 

attacks. Finally, the methods provide both fault detection and verification of computed-data 

integrity. 

1. Introduction 
We present non-deterministic, highly-efficient methods that provide a Fully-homomorphic Symmetric-

key Encryption and Randomization Function (FSERF). The methods are invariant under encryption or 

randomization. For each of the two (isomorphic) methods we define two domains; one domain for 

secure encryption and the other for randomization. For the symmetric-key encryption the plain text is 

an element of ZN, and all computations are done modulo N; N being a product of two (large) primes. For 

security reasons the plaintext and random values used in the (non-deterministic) encryption operation 

are large random numbers (e.g., 1k bits or higher). For randomization where there is no security 

constraint the input data and random values used are in some commutative ring (CR). Throughout the 

paper, we focus on the methods’ internal operation with the underlying understanding that use of 

different domains, CR or ZN , will randomize or encrypt the input data, respectively. Another useful 

inherent property of the methods are coupled calculations where one calculation can attest to the 

validity of another and thus verify the integrity of a computed function with encrypted inputs. Fault 
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detection is yet another use of the above.   

We present several applications where the utility of FSERF is evident. In particular, FSERF drives down 

the cost of a Low-cost Collaborative Security (LOCOS) system. In various real world applications we face 

the following problem: there is a strong machine that processes the data but this machine is usually not 

secure, on the other hand the security module in the system is computationally weak and can't process 

large amount of data fast enough. Such platform is depicted below 
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To provide a quick and intuitive grasp we present the methods and their properties in their simplest 

manifestation — a single plaintext element and a single random per method application; (a more 

generalized description of the methods is given in the Appendix A). In subsequent sections we also 

address related work, sample applications, and performance. 

2. Related Work  
The problem of homomorphic encryption (privacy) was introduced by Rivest, etal [5]. The problem of 

fully homomorphic encryption (FHE) supporting both addition and multiplication with an unlimited 

number of operations had essentially remained open (only partial solutions had been known) until 

Gentry’s work in 2009. Gentry in 2009 [3] showed the first fully-homomorphic encryption scheme based 

on ideal lattices.  Gentry developed a two steps approach. In the first step he presented a "Somewhat 

Homomorphic encryption scheme" — an encryption scheme that satisfies the homomorphism 

requirement. However, algebraic operation on encrypted data accumulates errors; thus decryption of 

the encrypted data remains valid only if limited number of algebraic operations on the encrypted data 

were performed. In the second step Gentry developed a general "bootstrap" method that cleans the 

accumulated errors. A combination of these two steps enables a construction of Fully Homomorphic 

Encryption scheme (FHE). Few other Homomorphic Encryption Scheme were proposed following 

Gentry's success – in 2011 Brakersky and Vikuntanathan published an FHE scheme based on the 

Learning With Errors (LWE) problem, [2] . The computational complexity of the above schemes 

Low-cost Collaborative Security 

(LOCOS) System 
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motivated research aimed at Improving their efficiency, e.g., [4]. An approach to demonstrate efficient 

homomorphic encryption with practical application to real-world problems is described in [1]. The 

approach is based on ‘Somewhat’-homomorphic encryption supporting a limited number of 

homomorphic operations. The practical results in [1] are based on the use of the somewhat-

homomorphic scheme proposed in [2]. This approach first set out to satisfy the requirement for 

efficiency (practicality), and then found the solution in the ‘Somewhat’-homomorphic. 

In this paper we present fully homomorphic encryption (FHE) methods which are practical albeit mainly 

applicable to cryptographic and security algorithms. The schemes are based on non-deterministic linear 

transformations. In general, linear schemes are inherently ill-suited, for encryption. However, the linear 

transformations presented in this paper enable homomorphic computation which is efficient. To provide 

the necessary security it is sufficient to constrain the plaintext such that it contains only random large-

numbers in ZN. This renders the scheme suitable for the domain of some security applications. 

3. The Methods: Practical FSERFs Simplified  (single input) 

Each of the isomorphic methods presented is an efficient non-deterministic Fully-homomorphic 

Symmetric Encryption and Randomization Function (FSERF). The input or message, IN, is comprised of k 

elements in a commutative ring (CR) or in ring ZN. Randomization is defined over a general commutative 

ring (CR), e.g., F256, R (real numbers), or sub ring of commutative matrices. Encryption is defined over the 

ring ZN (all operations are mod N, where N is a product of two (large secret) primes). The non-

deterministic method operates on an input and a random parameter (in ZN or CR); the random 

parameter changes per each execution of the method. For encryption both the plaintext input and the 

random parameter associated with it are random large-numbers in ZN.  

Two fundamental isomorphic methods are defined below; each randomizes or encrypts a single input 

element Xi . The basic (isomorphic) methods are a matrix-based method, MORE (Matrix Operation for 

Randomization or Encryption), and a polynomial-based method, PORE (Polynomial Operation for 

Randomization or Encryption). Additionally, ‘compound’ methods can be constructed by successively 

applying the basic methods, (see Appendix).   

To simplify the description in this section we shall assume that the input is to be encrypted. 

3.1 The matrix method, MORE. 

Symmetric-Key Generation  

Alice randomly selects a secret 2x2 invertible matrix, S, in ZN to be the symmetric key for encryption. 

 Encryption 
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 For each plaintext input element Xi Alice selects a random large-number Yi, in ZN. 

Xi and Yi are placed in order on the diagonal of a 2x2 diagonal matrix.  We denote MORE’s output matrix 

as Ai and define the encryption of Xi as:  

    (  )      S 








i

i

Y

X

0

0
S

  
= (

      

      
) 

The cipher text of    can be regarded as the four values given in matrix Ai. However an alternative 

economical representation is possible. For a given S, MORE’s matrix space is defined by two large 

numbers, and the cipher text of a Xi is defined by any pair of large numbers in    except for    ,    . 

Decryption 

One who know S can decrypt the cipher text matrix A and recover a plaintext X. He eliminates S and S-1  
by simple matrix multiplication, )( 1

11
ASSX

 .   

Alternatively, let the vector (1,  e) be an eigenvector of the matrix 1

0

0















 S

Y

X
SA   

satisfying: (1 , e)A=(X , e∙X)  

The decryption of A is defined as follows: 

X =    + e∙    (Mod N) where e = (-S12/S22) mod N,  and Sij  ,     a are the ij elements of matrices S  and 

A, respectively. 
 

Computation of multivariate function of encrypted values 

We define below the operations of addition, multiplication and division of encrypted values.  

We let A1 and A2 be the encrypted values of X1 and X2, respectively. 

The Ai’s comprise the input of a function in which they are added, multiplied, or divided.  We thus have 

for: 

Addition 

MORE (   ) + MORE (   ) = A1 +A2  ; and 

Multiplication 

MORE (   )   MORE (   ) = A1  A2   ; and 

Division (for Det MORE(X2) ≠ 0) 
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1/ MORE (   ) =   
   and MORE (   )   MORE (   )= A1    

  ; 

 

It can be easily shown that under the above definitions MORE is fully homomorphic. 

3.2 The polynomial method, PORE. 

Again, the simplest yet useful case to consider is a single variable encryption with the minimum degree 

of the public polynomial. 

 Symmetric-Key Generation  

Alice selects two (mod N) secret random large-numbers, v1 and v2, for the symmetric-key. 

Alice computes the public polynomial PP(v) = (v-v1) ∙ (v-v2) modN = v2+b∙v + c  

Encryption 

Encryption of plain text Xi, Enc (Xi), is any linear function in variable v of the form ai∙v + di  
satisfying ai∙v1 + di = Xi.  

Let the pair (ai, di) define Enc (Xi). 

Alice selects a large-number mod N random Ri, for ai and solves the linear equation Ri ∙v1 + di = Xi for di;   
thus   di  = Xi  - Ri∙v1 .   

The cipher text of Xi, consists of the pair (ai , di).  

Alternatively, Alice can pick a random large-number mod N, Ri , for the given Xi and solve the 
simultaneous equations below for the unknowns ai and di: 

a. ai ∙v1 +   di = Xi    ,  and 

b. ai ∙v2 +   di = Ri 

 

resulting in:   ai = (Xi  - Ri) / (v1 – v2), and di = Xi   - ai∙v1 = (Ri∙v1 – Xi∙v2)/(v1 – v2). 

This alternative, (computationally heavier), is useful in certain applications of verification. 

 
Decryption 

Given that an encrypted variable, (or a computed function of encrypted variables) is represented by a 

pair (a,d), anyone who knows the secret roots can decrypt by simply computing a ∙v1 +   d . 

Computation of multivariate function 

For Bob to compute a function with the encrypted Xi, the public coefficients, b and c, (defined above 
under key generation) are needed; note that b and c do not change for encryption of different variables;  
they are given once only (per some predefined period) by Alice to Bob.  We also note that only one 
large-number multiplication is needed for encryption. 
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When computing multivariate functions with the encrypted variables we need to consider the addition, 
multiplication and division of two variables. Addition and multiplication of encrypted values are defined 
by the addition and multiplication, respectively, of the corresponding linear functions in ZN[v]/PP(v)  

Given PORE(X1)= (a1 , d1) , PORE(X2)= (a2 , d2) and PP(v) = v2+bv + c , addition, multiplication and division 
are performed as below. 

Addition  

PORE(X1) + PORE(X2) = (a1+a2  ,  d1+d2),  

 

Multiplication:  

PORE(X1)  PORE(X2) = (  (a1 + d1)  (a2 + d2)  –  a1  a2  (1 + b) –  d1  d2  ,  (d1  d2  –  a1  a2  c)  ) 

This particular form aims at minimizing the number of multiplications of large numbers, i.e. five.  

Note, for squaring a variable, (PORE(X1))
2 =  ( a1  (2d1 - b  a1) ,  (d1 + √  a1)   (d1 - √  a1) ) 

 

Division:   

Let   D =  d2  (a2   b - d2) – (c  a2)   a2 

PORE(X1)/PORE(X2) = ( (a2  d1 – a1   d2) /D , ( d1  ( a2  b – d2) – (c  a2)  a1 )/D ) 

 

It can be shown easily that, under the above definitions, the PORE scheme is fully homomorphic. 

3.3 MORE and PORE are isomorphic 

Given the above definitions of MORE and PORE where operations under MORE are over the 

commutative ring C1 = {SMS-1 |M a diagonal matrix comprised of X and Y}, and operations under PORE 

are in the commutative ring C2 = ZN[v] mod PP(v),  it can be shown that: 

1.  The mapping T: C1C2  defined by T(SMS-1) = av +d  where av1+d=X and av2 + d =Y , 

is an isomorphism, and 

2. For a given element in C1 finding its isomorphic image by someone who knows PP(v) is as difficult as 

factoring N. 

3.4 Verification 

The methods provide a mechanism to verify that a returned result of a calculation performed by a third 

party on encrypted multivariate input is valid. We designate the returned result as   
  where MORE is 

used. The result is a homomorphic calculation denoted f  performed on  A1,A2,… ,Ak wherein Ai is equal 

to one of MORE(Xi);  f(A1,A2,… ,,Ak ) is equal to MORE (f(X1,X2,… ,Xk ))= f(MORE (X1), MORE (X2),… ,MORE 

(Xk)). 

 The verifier receives the result of f(A1,A2,… ,Ak) in the form: 

    ( (            ))    (
 (            )  

  (            )
)        

     

It decrypts the result to yield  (            ) and  (            ) 
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 The verifier has precomputed   (            ). This may be done well before computing the 

encrypted input. The verifier compares the decrypted value (            )  with the precomputed 

one, and deems the result of the computation of f(X1,X2,… ,Xk ) verified if a match occurs.  

4. Applications 
In this section applications are proposed that exploit the inherent properties of the methods.   

4.1 Securing for LOCOS and untrusted open cloud 

For remote computing in an untrusted platform we consider three cases that define the secrets in a 
model of an input and function (algorithm):  

a) Only the input is secret (not the algorithm).  
The algorithm is characterized as a secret polynomial whose input is homomorphically-encrypted 
data as in a keyed-hash where the only the key is secret.  In general, the computed polynomial may 
have a multivariate input.  

b) Only the algorithm is secret (not the input). 

The algorithm is characterized by a polynomial some of whose coefficients are secret large-numbers 
(mod N) and the input is public. An example is a Secret Function for Key Generation (SFKG) whose 
input is a public ECM ( used in broadcast CA systems).  Yet another similar example is a secret HMAC 
function depicted below. The HMAC runs securely on an open machine; the last step in its process is 
delivered to the secure client for verification. 
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c) Both the algorithm and input are secret.  

Both the algorithm and its input are secret — not known to the processing entity. (note that both 
the algorithm and its input must be encrypted with the same homomorphic-encryption key.)  
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Such an untrusted platform could be a public (open) cloud server, an STB host, a mobile phone 
ACPU, etc.; the decryption of the result is done by the secure client, e.g., smart card, SIM, RFID, or 
secure execution environment with secure OTP of a low performance device. 

 

4.2 Securing OSS Public Signature against Pollard Attack, HoMOSS (HomoMorphic OSS).  

The OSS public signature scheme described in [6] is very efficient both for signing and verifying; signing 
and verifying requires few modular multiplications. 

Below we summarize its highlights.  

A signature of a message is a pair (X,Y) satisfying the quadratic bivariate modular (QBM) equation 

)(mod22 NMYX    , where M is the hash of the message.  

The public key is the pair ),( N , and the private key is  ,  where )(mod2 N  . 

The signer calculates M and uses the private key   to find a solution, (X,Y), for the above QBM equation 
as follows: he selects a random value r  modulo N and computes X and Y 

)(
2

1
;)(

2

1

r

M
rY

r

M
rX 


 . It is easily seen that X and Y solve the above QBM equation. 

The problem of finding a solution for a QBM equation was thought to be hard, and it was therefore 
assumed that it is hard for an attacker who has no knowledge of   to forge a signature.  

The OSS signature scheme was broken by Pollard and Schnorr [9]. They presented an algorithm for 
finding a solution of the bivariate quadratic equation of the form                 where the 
factorization of N or the square root of        are not known. 

We present a modification of the original OSS scheme to protect against the Pollard Schnorr attack.  

HoMOSS — Homomorphic-Modified OSS 

For U a 2x2 matrix over ZN we define a commutative ring of 2x2 matrices over ZN, 

    {  |       |      (  )}, the subring of 2x2 matrices over ZN that commute with U. 

It can be verified that    is a module with dimension 2 over ZN, and can be represented with two 
parameters      :      {        |           .   

The homomorphic non-deterministic encryption is induced by a one-way mapping:         .  

The HoMOSS scheme presented in this section is based on equations of commutative matrices that are 
obtained from the consideration of two coupled OSS (QBM) equations’ private keys. 

We choose to illustrate HoMOSS by the use of the MORE method. 

The Public key is a 2x2 matrix U over ZN .  The characteristic polynomial of U should not be a square of a 
linear polynomial and its root resides in ZN.  

The Private key is a matrix S , and the values  21 ,  (square roots of 21 , ,respectively), satisfying 

1

2

1

0

0










 SSU




 

Signing a message: 
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1. The message is hashed to produce two    parameters:       . 

2. A matrix M in    is calculated:           . 

3. The matrix M has a representation 1

2

1

0

0










 S

M

M
SM , the signer calculates         from 

M. 

4. The signer knows 21 ,  the square roots of 21 , , respectively. He calculates a solution       

of the equation  )(mod1

2

11

2

1 NMYX    and a solution       of the equation

)(mod2

2

22

2

2 NMYX    as in the original OSS scheme. 

5. The signer computes the following two matrices in     :      

1

2

1

0

0










 S

X

X
SA , 1

2

1

0

0










 S

Y

Y
SB . 

6. Each of the matrices A and B in    can be represented with two modulo N parameters.  
Thus the signature is comprised of four modulo N numbers (                ; from the first row 
of A and B, respectively). 

Verifying a signature:   

The verifier receives the message and signature — 4 modulo N numbers, (               ). 

1. The verifier recovers the missing elements of A and B (each is a known linear combination of 
two elements of the signature).  

2. The verifier calculates the hash of the message and produces the    elements:       . 

3. The verifier calculates matrix M in    :           . And, 

4.  Verifies that the matrix equation: MBUA  22 holds to accept the signature as valid. 

 

Homomorphic Modified OSS - simplified version 

A simplified version of the scheme is presented 

Signing a message: 

1. The message is hashed to produce a number m in    . 

2. The signer knows 21 ,  the square roots of 21 , , he calculates a solution       of the 

equation  )(mod
2

11

2

1 NmYX    and a solution       of the equation

)(mod
2

22

2

2 NmYX    as in the original OSS scheme. 

3. The signer computes the following two matrices in     :      

1

2

1

0

0










 S

X

X
SA , 1

2

1

0

0










 S

Y

Y
SB . 
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4. Each of the matrices A and B in    can be represented using two modulo N parameters.  
Thus the signature is comprised of four modulo N numbers (                ; from the first row 
of A and B, respectively). 

Verifying a signature:  

The verifier receives the message and signature (4 modulo N numbers). 

1. The verifier recovers the missing elements of A and B (each is a known linear combination of 
two elements of the signature).  

2. The verifier calculates the hash of the message and produces the number m. And  

3. Verifies that the matrix equation: ImBUA  22 holds to accept the signature. 

It can be readily shown that a valid signature will satisfy the above matrix equation.   

HoMOSS Resistance against Pollard and Schnorr attack 

The Pollard and Schnorr attack [9] is predicated on the fact that the OSS QBM equation over ZN can be 
viewed as a particular multiplicative norm in ZN , ZL or Z (L being a prime). The particular multiplicative 
norm enables Pollard to start by finding a solution over ZL and then define a recursive process to yield a 
solution of the OSS QBM over Z that is transformable to ZN . 
The proposed protection of the OSS scheme stems from the use of matrices in the commutative ring     
instead of elements in   . We presume that it is hard to find a norm over matrices that can be utilized in 
Pollard’s attack. 

4.3 Practical Fully Homomomorphic Randomization of Arbitrary Data  

The randomization of arbitrary data is presumed to take place in a secure environment; otherwise one 
could deduce the randomization key from given randomized arbitrary data. A potential application is to 
protect against side-channel attacks on algorithm execution aimed at getting the algorithm’s sensitive 
data. Side-channel attacks are mounted on secure execution environment (e.g., secure smart cards) 
where leakage information (e.g., timing or power consumption), is gathered to glean secret information. 
For example, in the AES key attack, the attacker runs the algorithm repeatedly with varying plaintexts 
but with the same AES key while gathering the side-channel information in order to reveal the AES key.   
However, in this non-deterministic approach, the randomized key and plaintext change per cipher run 
thereby foiling such attack, (see Figure XX below). Note, AES inherently lends itself to an efficient 
representation as a sequence of algebraic operations over the F256 that can be efficiently run.  
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Output-i to deduce bits of secret(s) S

Secure Element
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Xi

Randomization (of inputs S and Xi) 
prevents such attack as every run of F 
presents different OUTPUT*i  
corresponding to randomized inputs. 
The Homomorphic property allows F 
to be computed from beginning to 
end without correction for the 
randomization effect per step.  

PORE(S,Ri) = S*
i 

PORE(Xi,R’i) = X*
i

F(S*
i, X*i)=OUTPUT*i

S

 

The randomization can provide protection against fault attacks. An induced fault is detectable since the 
computations’ validity can be verified; see Appendix for discussion on verification.  

 

5. Performance and Throughput 
Referring to section 3.2 (PORE) we see that the cost of a single input encryption / decryption (or 

randomization) is one multiplication of large numbers. The throughput is two large numbers in the 

steady state (two additional PPV coefficients are passed only once as the PPV does not change per 

encryption).  For the result of a single homomorphic computation only two large numbers are returned.  

Cost of calculating a product of two distinct variables is five multiplications of large numbers.   

Cost of squaring a variable is four multiplication, and computing x2n results in 4n multiplications. 

Division can be done in ten multiplications plus one division.   

6. Security 
The fully-homomorphic (symmetric) encryption schemes presented in this paper are essentially secret 

linear transformations that are utilized to construct a non-deterministic encryption schemes. In general, 

secret linear schemes are inherently ill-suited for cryptographic applications as the secret 

transformation is easily recovered using linear algebra techniques once sufficient number of plain text 

and cipher text pairs are known. Thus such transformations are not used for traditional data encryption 

where it is usually assumed the adversary knows the plain text. However, the specific linear 

transformations presented in this paper are deemed secure under specific conditions, and has benefits 

for practical (efficient) homomorphic computation. The proposed linear transformations provide sound 
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security in various applications under two conditions: 1. the plaintext is not known and 2. The plain text 

can be regarded as "random data". 

In this section we claim that the homomorphic encryption scheme, MORE, as presented in section 3.1, 

ensures high degree of security under the assumption that the plaintext is comprised of unknown 

random large-numbers in ZN.  

Theorem:   One who knows the encrypted values of random plain text values X1…Xk   in ZN, and is 
capable of calculating any one of the plain text values (inputs) can factor N.  
Proof:  without loss of generality we show that if an adversary can calculate the first input, X1, he can 

factor N. We first prove the theorem for k=1, we denote by 1A  the encrypted value of X1: 

)( 11 XEncA   

 Lemma 1:  An adversary who gets A1 does not get more information about X1 than an adversary who 
only knows the characteristic polynomial of A1.  

Proof: The process encrypting X1 requires an independent selection of a random secret value Y1 in ZN 
and a secret random invertible matrix S over ZN.  We show below (a) that the distribution of the 
encrypted matrix A1 is indistinguishable from the uniform distribution over all matrices whose 
characteristic polynomial is given by f(x)= (x - X1)(x - Y1).  We then show (b) that one who knows  ( ) is 
capable of uniformly selecting a matrix among all matrices with characteristic polynomial equals to ( ).  
As a result we conclude that when one is given A1 the information one gets about X1 is the same 
information provided by knowledge of the characteristic polynomial of A1. 

a. The distribution of A1 is indistinguishable from uniform distribution over all matrices whose 
characteristic polynomial is  ( ),  ( )  (    )(    ).   A matrix B having  ( ) as a 

characteristic polynomial has the following representation    (
   
   

)     for some 

regular matrix        (  ).  We denote by   ( ) the set of all 2x2 matrices over    having 

 ( ) as a characteristic polynomial. One can define a partitioning of the regular 2x2 matrices 
over    (      (  ) ). For any matrix      ( ) we define the set of regular matrices    to be: 

   { |       (  )     (
   
   

)       . We show that the size of    is independent of 

           as long as the inequalities                                  are satisfied*.  Let 
      be matrices in      iff  

  (
   
   

)  
            (

   
   

)   
            (

   
   

)  
       (

   
   

)   
   iff 

(
   
   

)   
          

       (
   
   

)  i.e.,      
      commutes with  (

   
   

) . We 

conclude that any matrix     in     can be represented as          for some invertible matrix 

  that commutes with (
   
   

).   A matrix (
  
  

) commutes with (
   
   

) iff  

                 and               ; since         both  mod P and mod Q, we 

get              and           , and   has the form (
  
  

)         .    is an 

invertible matrix,  i.e., (   )    and (   )   . There are  ( )  (   ) (   )  such 
matrices. QED 
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*We note that the events:  (    )   ,  (        )    or  (    )   , are of negligible 
probability.   

b. One who knows the characteristic polynomial of   ,  ( )  is capable of selecting a uniformly 
distributed matrix among all matrices with characteristic polynomial  ( ).  

 Let  ( )           , we define the matrix   (
  
    

)  with characteristic 

polynomial  ( ). For                     , there is an invertible 2x2 matrix   over    such 

that     (
   
   

)   . We select a random invertible 2x2 matrix   over   , and define 

             ( ) . We claim that   is uniformly distributed among all matrices with 

characteristic polynomial  ( ). Above it is shown that 
for                                  the number of matrices  generating the same 

matrix   (
   
   

)    is constant. Since     (
   
   

) (  )   and    is a uniformly 

distributed regular random matrix, we conclude that the matrix   is distributed uniformly 
among the matrices in   ( ). QED 

We conclude the proof of the theorem for k=1, by observing that if one is capable of finding the plain 
text    from its encrypted value,    , then he is capable of finding a root of a random quadratic 
polynomial modulo N,  ( );  this problem is known to be as hard as factoring N. 

The general case: One who gets the encrypted values of random plain text values X1…Xk   in ZN, and is 
capable of calculating the plain text value X1 can factor N.  
 

Lemma 2: The information about    provided by the encrypted values:       (  )    
   (  )         (  ), is the same as the information that    provides about   . 

 
Proof: The proof of the lemma has two steps. In step a. we show that the matrices           are 

randomly selected matrices from the set of all matrices that commute with   ; denoted as    . In step 

b. we show that one who gets    can randomly select k-1 matrices of    .  

As a result of these steps we conclude that one who knows the sequence of matrices           

doesn't get more information about    than one who only sees   . Given above proof the special case 

k=1 we can state that finding    is as hard as factoring N. 

a. Define the set of all matrices that commute with   :       { |             (  )   

We have     (
   
   

)    , for   that commutes with    we have   

   (
   
   

)      (
   
   

)                 (
   
   

)  (
   
   

)        , i.e.,  

(
   
   

) commutes with      . We showed in above lemma 1 that such matrices are of 

the form   (
  
  

) for          where,                   . Therefore, 

   (
  
  

)    , i.e.,     is a 2 dimensional sub-module of the ZN module of the 2x2 

matrices over ZN. The matrices    for       have the form  (
   
   

)     for       

random elements in   . We therefore conclude that one can regard          as an 
independent random elements of    . 
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b. We show that one who knows   can select random elements from     by using a different 

representation of    . Let      {        |         ; it is easily verified that matrices 
of the form        commute with    and also form a sub module of dimension 2 of the ZN 
module of the 2x2 matrices over ZN . Therefore,         . One randomly selects 
parameters       in     to yield a random choice of matrix    in    :               . 

Q.E.D. 

A similar proof exists for a non-trivial rational function of the inputs. 

7. Conclusion 
Fully homomorphic efficient methods were presented for domain-specific applications. For symmetric 

key FHE the applications domain is security algorithms whose input is random large-numbers in ZN .  For 

randomization the input data is arbitrary elements of a commutative ring without any constraints of 

size. Fault detection capability is inherent allowing for verification of computed data.  The cost of 

computation of encrypted data is reflected in the cost of product of two variables – five modular large-

number multiplications. Encryption or decryption requires only one modular large-number 

multiplication. In addition, the methods employ operations in an algebraic domain of rings of 

commutative matrices which are likely new to cryptographic applications. We hope that this can be used 

to augment security in some algorithms as has been presented above for OSS, and to improve 

protection against some side-channel attacks.   

A challenging area for search is finding new algorithms that will allow us to relax the current constraints 

of encryption for the proposed methods, e.g., large random values in ZN, such that arbitrary data can be 

efficiently encrypted for FHE application or for Somewhat homomorphic applications. Further 

investigation may shed light on our presumption that it is hard to find a norm over matrices that can be 

utilized in Pollard’s attack. 

8. Appendix: The Methods – Practical FSERFs  - Generalized 
 

Each of the isomorphic methods presented is an efficient non-deterministic Fully-homomorphic 

Symmetric Encryption and Randomization Function (FSERF). The input, IN, of the functions is comprised 

of k input elements in a commutative ring (CR) or in ring ZN. Randomization is defined over a 

commutative ring (CR), and encryption is over ring ZN (all operations are mod N, where N is a product of 

two (secret) primes). Use of large random numbers mod N for the input IN and for the random 

parameters employed in the methods will provide a sufficient condition for security of the encryption, 

(see section 6).  

Two fundamental isomorphic methods are defined below; each randomizes or encrypts a set i of any m 

distinct input elements of IN (where 0<m<k+1 and m<n) denoted as input Xim (= (X1, X2, …,Xm)). The basic 

methods are a matrix-based method, MORE (Matrix Operation for Randomization or Encryption), and a 
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polynomial-based method, PORE (Polynomial Operation for Randomization or Encryption). Additionally, 

a ‘compound’ method can be constructed by successively applying the basic methods.   

Frequently, m equals 1; a method uses one input element (m=1,  Xi1 =Xj (j=(1..k)) per method application 

to allow for computation of (arbitrary) multivariate input in functions whose operations are addition, 

multiplication and division.  However, if, for example, there are two known multivariate functions with 

two distinct sets of inputs, e.g., (X1, X2, …,XL) and (XL+1, XL+2, …,Xs), respectively, then no pair of variables 

in each of the input sets should be jointly encrypted (or randomized), i.e., with a single application of the 

method.  

A compound method can be constructed by the successive application of the fundamental MORE and 

PORE.   

8.1 The matrix method, MORE. 

A randomly chosen secret  nxn invertible matrix, S,  in CR (or ZN), is used as a symmetric key for 

randomization (or encryption).  For each set Xim of m distinct input elements selected from IN and 

denoted as X1, X2, …,Xm that are to be jointly randomized (or encrypted) we select n-m random numbers 

Y1, Y2, … Yn-m , where the input elements in Xim and Y1, Y2, … Yn-m  are placed in order on the diagonal of a 

nxn diagonal matrix.  We denote MORE’s output matrix as Aim and define it as:  

    (   )        

(

 
 
 
 
 

     
    

  
  

  
  

  
   

   
  

  
    

   
  
  

  
  

  
    

  
  
  

   
   

     
  

  
  

  
     )

 
 
 
 
 

S
  

= (

       

   
       

) 

 

Where, Aim is the randomized value or cipher text for plaintext X1, X2, …,Xm, depending on the use of CR, or ZN 
(modulo N), respectively.  

We note, again, that no pair of input variables represented by X1, X2, …, or Xm  is used in a single multivariate-
input function, i.e., each of the encrypted (or randomized) elements (variables) must be used by a distinct 
function.    

 

 8.2 The Polynomial method, PORE. 

PORE is a polynomial-based method where      (   )       (                ) in CR or ZN.  

We select n random numbers, v1, v2,… ,vn, in CR or ZN, to define a public polynomial PP(v)= ∏ (   
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   )   ∑       
     (Cn=1). We let  ( ) be any function in variable v of the form ∑          

    which 

satisfies the equations: ∑       
    

         ∑       
    

        , ….  ∑       
    

       . 

To define     ( ) for a particular     we assign n-m chosen random values in CR or ZN , to 

                   , that would yield a solution for the  unknown coefficients                   in the 

above equations; (else, absent a solution, a new set of n-m random values is selected in another 

attempt to solve the above equations for the unknown coefficients). Or, alternatively, we select n-m 

random values R1, …, Rn-m in CR  or ZN that would solve the following n simultaneous equations: 

∑       
    

         ∑       
    

        , ….  ∑       
    

        , ∑         
    

    = R1    ,  ∑        
   

    
   = R2 ,   ∑       

    
     = Rn-m for unknowns                  , thereby producing, as above, for 

X1 , X2,… Xm  a random text comprising the set (                ) and public (C0, C1, …, Cn-1, Cn) of PP(v). 

This produces the joint randomization (or encryption) output , Aim, for plaintext X1, X2,… ,Xm, in the form 

of the  set  (                ) and a public set of coefficients (C0, C1, …, Cn-1, Cn) of P(v). Note, that the 

set of coefficients (C0, C1, …, Cn-1, Cn) is required for performing arithmetic operations with randomized 

(or encrypted) elements. 

8.3 Compound Methods 

We note that other methods can result from the successive application of a mix of functions 
PORE(Xi) and MORE(Xi),  as in: 

MORE(PORE(Xi)) =(     (   )      (   )       (      ))   

( (

       

   
       

)

  

  , (

       

   
       

)

  

       (

       

   
       

)

     

 ); and conversely  

PORE(MORE(Xi))=PORE ( (

       

   
       

) ) where     (   )  (            )  , therefore 

PORE(MORE(Xi))= (
(            )   (                )  

   
(            )   (            )  

). 

 

8.4 Homomorphic operations for multivariate functions 

It can be readily shown that the methods above are fully homomorphic (addition and multiplication) 

and, moreover, are homomorphic for division. 

We define below the operation of addition, multiplication and division of encrypted (or randomized) 

values subject to the above constraints of CR and ZN, respectively.  

We let A1 and A2 be the encrypted (or randomized) values of X1 and X2, respectively, under MORE or 

PORE, s.t. MORE(  ) =    matrix, and PORE(  ) =                     under C0, C1, …, Cn-1, 

Cn     ( )  ∑       
     (Cn=1).  
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The Ai’s comprise the input of a homomorphic function in which they are added, multiplied, or divided.  

We thus have for: 

Addition 

 MORE (   ) + MORE (   ) = A1 +A2  ; and 

PORE (   ) + PORE (   ) =                                            

            

Multiplication 

MORE (   )   MORE (   ) = A1  A2   ; and 

 PORE (   )   PORE (   ) =             , the coefficients of the resulting n-1 order  

 polynomial r(v) , where r(v)= ((∑      
    

   )  (∑      
    

    ) )mod ∑     
  

   . 

 Division 

1/ MORE (   ) =   
   and MORE (   )   MORE (   )= A1    

  ; and 

Let PORE (  ) =                  and PORE (  ) =                 and 

let 1/PRHT(   ) =                  be derived by solving:  

(∑      
    

   )  (∑      
    

    ) )mod ∑     
  

    =1 in terms of n unknown coefficients 

     (         ), thereby determining 

∑    (                                                     )    

   

   

) 

where,    ( ) is a linear combination of the n unknowns    ; and  

solving n derived equations    ( ) =1, and    ( ) = 0 for j=1,..,n-1 for all       j=0,…,n-1, for 

the n unknowns                  ; and thus 

 PORE (   )   PORE (   ) = PRHT (   )   (        (   ) )   

  ((∑      
    

   )  (∑      
    

    ) )mod ∑     
  

   . 

8.5 Decryption or Derandomization  

Once a homomorphic function, f, is computed over the encrypted (or randomized) multivariate 

input, the returned result has to be decrypted (or derandomized). Let    denote the encrypted or 

randomized Xi  input; we receive the result of such a function     (           )  in one of the 

following forms: 

 

   (           )         ( (            ))   
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 S

(

 
 

   (             )       
   

      (               )    
   

          (                       ))

 
 

S
  

 

 

=  (
       

   
       

)     
 ;     

Or,  
 

    (           )  is in the form of   
    

 
     

    =   
 ;  

 

In the case where the result is in the matrix form of    
 , the decryption yields: 

   (              )        
   ;   

or, alternatively, using    to determine     = (
  

     
  

   
  

     
  

)  

   (              )       (    
  )  ∑       

  
 
      (    

  )   ∑       
  

 
    

And for PORE() we use   
  and   

  to determine: 

   (              )    ∑   
    

    
   . 

8.6 Verification of integrity of computations 

The methods provide a mechanism to verify that a returned result of a calculation performed by a third 

party on encrypted multivariate input is valid. We designate the returned result as   
  , or   

  depending 

upon whether MORE (denoted below as M) or PORE (denoted below as P) is used. The result is of a 

homomorphic calculation denoted f  performed on  A1,A2,… ,Ak wherein Ai is equal to one of M(Xi) and 

P(Xi);  f(A1,A2,… ,,Ak ) is equal to either M (f(X1,X2,… ,Xk ))= f(M(X1), M(X2),… ,M(Xk)), or to  

P(f(X1,X2,… ,Xk )) = f(P(X1), P(X2),…,P(Xk)). 

 The verifier receives the result of f(A1,A2,… ,Ak) in one of the following forms: 
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 ( (            ))  

 S

(

 
 

   (             )       
   

      (               )    
   

          (                       ))

 
 

S
  

=    
 ;    and 

 

 f(A1, A2,… ,Ak ) in the form of   
    

 
     

   , =   
 ;  

Where the result is in the form of    
 : 

 The verifier has precomputed     (               ), for  some m , in (1,2,…,n-1)   where      

the mth random used in encrypting Xj. This may be done well before computing the encrypted input. 

It then decrypts R*M  to determine   (               ), from the resulting matrix diagonal of the m+1 

row. Finally it compares the decrypted    (               )  with the precomputed one, and deems 

the result of the computation of f(Xi) verified if a match occurs. 

 Where the result is in the form of    
 : 

The verifier has precomputed     (               ), for  some m , in 1,2,…,n-1   where      is the mth 

random used in encrypting Xj. This may be done well before computing the encrypted input. 

It uses (           ) and picks the same m in (1,..,n-1) as above to determine: ∑   
      

    
    = f(Rm1, 

Rm2,… ,Rmk), and it compares the determined f(Rm1, Rm2,… ,Rmk) with the pre-computed, and deems the 

result the of the computation of f(           ) verified if a match occurs.  
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