
1

Efficient Methods for Practical Fully-Homomorphic Symmetric-key

Encryption, Randomization, and Verification

Aviad Kipnis akipnis@nds.com;

Eli Hibshoosh ehibshoo@nds.com

Abstract

We present high performance non-deterministic fully-homomorphic methods for practical

randomization of data (over commutative ring), and symmetric-key encryption of random mod-

N data over ring ZN well suited for crypto applications. These methods secure, for example, the

multivariate input or the coefficients of a polynomial function running in an open untrusted

environment. We show that random plaintext is the sufficient condition for proof of security for

the homomorphic encryption. The efficient nature of the methods - one large-numbers

multiplication per encryption and six for the product of two encrypted values - motivates and

enables the use of low cost collaborative security platforms for crypto applications such as

keyed-hash or private key derivation algorithms. Such a platform is comprised of a low-cost and

low performance security element supported by an untrusted high performance server running

the homomorpic algorithms. The methods employed may also provide enhanced protection for

some existing crypto algorithms against certain attacks. Specifically, it is shown how to secure

OSS public-key signature against Pollard attack. Further, we demonstrate how the

homomorphic randomization of data can offer protection for an AES-key against side-channel

attacks. Finally, the methods provide both fault detection and verification of computed-data

integrity.

1. Introduction
We present non-deterministic, highly-efficient methods that provide a Fully-homomorphic Symmetric-

key Encryption and Randomization Function (FSERF). The methods are invariant under encryption or

randomization. For each of the two (isomorphic) methods we define two domains; one domain for

secure encryption and the other for randomization. For the symmetric-key encryption the plain text is

an element of ZN, and all computations are done modulo N; N being a product of two (large) primes. For

security reasons the plaintext and random values used in the (non-deterministic) encryption operation

are large random numbers (e.g., 1k bits or higher). For randomization where there is no security

constraint the input data and random values used are in some commutative ring (CR). Throughout the

paper, we focus on the methods’ internal operation with the underlying understanding that use of

different domains, CR or ZN , will randomize or encrypt the input data, respectively. Another useful

inherent property of the methods are coupled calculations where one calculation can attest to the

validity of another and thus verify the integrity of a computed function with encrypted inputs. Fault

mailto:akipnis@nds.com

2

detection is yet another use of the above.

We present several applications where the utility of FSERF is evident. In particular, FSERF drives down

the cost of a Low-cost Collaborative Security (LOCOS) system. In various real world applications we face

the following problem: there is a strong machine that processes the data but this machine is usually not

secure, on the other hand the security module in the system is computationally weak and can't process

large amount of data fast enough. Such platform is depicted below

Performance Host/Server
(Low Security High Performance)

Running homomorphic-encrypted tasks
E.g.: Public Cloud Server

Standard PC
STB, Smartphone

Security Element
(High Security Low Performance)
Homomorphic-Encryption secrets

E.g.: smart card, SIM, RFID
Secure Execution Environment

 + OTP

En
cr

yp
te

d
Re

su
lt

En
cr

yp
te

d
In

pu
t

To provide a quick and intuitive grasp we present the methods and their properties in their simplest

manifestation — a single plaintext element and a single random per method application; (a more

generalized description of the methods is given in the Appendix A). In subsequent sections we also

address related work, sample applications, and performance.

2. Related Work
The problem of homomorphic encryption (privacy) was introduced by Rivest, etal [5]. The problem of

fully homomorphic encryption (FHE) supporting both addition and multiplication with an unlimited

number of operations had essentially remained open (only partial solutions had been known) until

Gentry’s work in 2009. Gentry in 2009 [3] showed the first fully-homomorphic encryption scheme based

on ideal lattices. Gentry developed a two steps approach. In the first step he presented a "Somewhat

Homomorphic encryption scheme" — an encryption scheme that satisfies the homomorphism

requirement. However, algebraic operation on encrypted data accumulates errors; thus decryption of

the encrypted data remains valid only if limited number of algebraic operations on the encrypted data

were performed. In the second step Gentry developed a general "bootstrap" method that cleans the

accumulated errors. A combination of these two steps enables a construction of Fully Homomorphic

Encryption scheme (FHE). Few other Homomorphic Encryption Scheme were proposed following

Gentry's success – in 2011 Brakersky and Vikuntanathan published an FHE scheme based on the

Learning With Errors (LWE) problem, [2] . The computational complexity of the above schemes

Low-cost Collaborative Security

(LOCOS) System

3

motivated research aimed at Improving their efficiency, e.g., [4]. An approach to demonstrate efficient

homomorphic encryption with practical application to real-world problems is described in [1]. The

approach is based on ‘Somewhat’-homomorphic encryption supporting a limited number of

homomorphic operations. The practical results in [1] are based on the use of the somewhat-

homomorphic scheme proposed in [2]. This approach first set out to satisfy the requirement for

efficiency (practicality), and then found the solution in the ‘Somewhat’-homomorphic.

In this paper we present fully homomorphic encryption (FHE) methods which are practical albeit mainly

applicable to cryptographic and security algorithms. The schemes are based on non-deterministic linear

transformations. In general, linear schemes are inherently ill-suited, for encryption. However, the linear

transformations presented in this paper enable homomorphic computation which is efficient. To provide

the necessary security it is sufficient to constrain the plaintext such that it contains only random large-

numbers in ZN. This renders the scheme suitable for the domain of some security applications.

3. The Methods: Practical FSERFs Simplified (single input)

Each of the isomorphic methods presented is an efficient non-deterministic Fully-homomorphic

Symmetric Encryption and Randomization Function (FSERF). The input or message, IN, is comprised of k

elements in a commutative ring (CR) or in ring ZN. Randomization is defined over a general commutative

ring (CR), e.g., F256, R (real numbers), or sub ring of commutative matrices. Encryption is defined over the

ring ZN (all operations are mod N, where N is a product of two (large secret) primes). The non-

deterministic method operates on an input and a random parameter (in ZN or CR); the random

parameter changes per each execution of the method. For encryption both the plaintext input and the

random parameter associated with it are random large-numbers in ZN.

Two fundamental isomorphic methods are defined below; each randomizes or encrypts a single input

element Xi . The basic (isomorphic) methods are a matrix-based method, MORE (Matrix Operation for

Randomization or Encryption), and a polynomial-based method, PORE (Polynomial Operation for

Randomization or Encryption). Additionally, ‘compound’ methods can be constructed by successively

applying the basic methods, (see Appendix).

To simplify the description in this section we shall assume that the input is to be encrypted.

3.1 The matrix method, MORE.

Symmetric-Key Generation

Alice randomly selects a secret 2x2 invertible matrix, S, in ZN to be the symmetric key for encryption.

 Encryption

4

 For each plaintext input element Xi Alice selects a random large-number Yi, in ZN.

Xi and Yi are placed in order on the diagonal of a 2x2 diagonal matrix. We denote MORE’s output matrix

as Ai and define the encryption of Xi as:

 () S 








i

i

Y

X

0

0
S

= (

)

The cipher text of can be regarded as the four values given in matrix Ai. However an alternative

economical representation is possible. For a given S, MORE’s matrix space is defined by two large

numbers, and the cipher text of a Xi is defined by any pair of large numbers in except for , .

Decryption

One who know S can decrypt the cipher text matrix A and recover a plaintext X. He eliminates S and S-1
by simple matrix multiplication,)(1

11
ASSX

 .

Alternatively, let the vector (1, e) be an eigenvector of the matrix 1

0

0















 S

Y

X
SA

satisfying: (1 , e)A=(X , e∙X)

The decryption of A is defined as follows:

X = + e∙ (Mod N) where e = (-S12/S22) mod N, and Sij , a are the ij elements of matrices S and

A, respectively.

Computation of multivariate function of encrypted values

We define below the operations of addition, multiplication and division of encrypted values.

We let A1 and A2 be the encrypted values of X1 and X2, respectively.

The Ai’s comprise the input of a function in which they are added, multiplied, or divided. We thus have

for:

Addition

MORE () + MORE () = A1 +A2 ; and

Multiplication

MORE () MORE () = A1 A2 ; and

Division (for Det MORE(X2) ≠ 0)

5

1/ MORE () =
 and MORE () MORE ()= A1

 ;

It can be easily shown that under the above definitions MORE is fully homomorphic.

3.2 The polynomial method, PORE.

Again, the simplest yet useful case to consider is a single variable encryption with the minimum degree

of the public polynomial.

 Symmetric-Key Generation

Alice selects two (mod N) secret random large-numbers, v1 and v2, for the symmetric-key.

Alice computes the public polynomial PP(v) = (v-v1) ∙ (v-v2) modN = v2+b∙v + c

Encryption

Encryption of plain text Xi, Enc (Xi), is any linear function in variable v of the form ai∙v + di
satisfying ai∙v1 + di = Xi.

Let the pair (ai, di) define Enc (Xi).

Alice selects a large-number mod N random Ri, for ai and solves the linear equation Ri ∙v1 + di = Xi for di;
thus di = Xi - Ri∙v1 .

The cipher text of Xi, consists of the pair (ai , di).

Alternatively, Alice can pick a random large-number mod N, Ri , for the given Xi and solve the
simultaneous equations below for the unknowns ai and di:

a. ai ∙v1 + di = Xi , and

b. ai ∙v2 + di = Ri

resulting in: ai = (Xi - Ri) / (v1 – v2), and di = Xi - ai∙v1 = (Ri∙v1 – Xi∙v2)/(v1 – v2).

This alternative, (computationally heavier), is useful in certain applications of verification.

Decryption

Given that an encrypted variable, (or a computed function of encrypted variables) is represented by a

pair (a,d), anyone who knows the secret roots can decrypt by simply computing a ∙v1 + d .

Computation of multivariate function

For Bob to compute a function with the encrypted Xi, the public coefficients, b and c, (defined above
under key generation) are needed; note that b and c do not change for encryption of different variables;
they are given once only (per some predefined period) by Alice to Bob. We also note that only one
large-number multiplication is needed for encryption.

6

When computing multivariate functions with the encrypted variables we need to consider the addition,
multiplication and division of two variables. Addition and multiplication of encrypted values are defined
by the addition and multiplication, respectively, of the corresponding linear functions in ZN[v]/PP(v)

Given PORE(X1)= (a1 , d1) , PORE(X2)= (a2 , d2) and PP(v) = v2+bv + c , addition, multiplication and division
are performed as below.

Addition

PORE(X1) + PORE(X2) = (a1+a2 , d1+d2),

Multiplication:

PORE(X1)  PORE(X2) = ((a1 + d1)  (a2 + d2) – a1  a2  (1 + b) – d1  d2 , (d1  d2 – a1  a2  c))

This particular form aims at minimizing the number of multiplications of large numbers, i.e. five.

Note, for squaring a variable, (PORE(X1))
2 = (a1  (2d1 - b  a1) , (d1 + √  a1)  (d1 - √  a1))

Division:

Let D = d2  (a2  b - d2) – (c  a2)  a2

PORE(X1)/PORE(X2) = ((a2  d1 – a1  d2) /D , (d1  (a2  b – d2) – (c  a2)  a1)/D)

It can be shown easily that, under the above definitions, the PORE scheme is fully homomorphic.

3.3 MORE and PORE are isomorphic

Given the above definitions of MORE and PORE where operations under MORE are over the

commutative ring C1 = {SMS-1 |M a diagonal matrix comprised of X and Y}, and operations under PORE

are in the commutative ring C2 = ZN[v] mod PP(v), it can be shown that:

1. The mapping T: C1C2 defined by T(SMS-1) = av +d where av1+d=X and av2 + d =Y ,

is an isomorphism, and

2. For a given element in C1 finding its isomorphic image by someone who knows PP(v) is as difficult as

factoring N.

3.4 Verification

The methods provide a mechanism to verify that a returned result of a calculation performed by a third

party on encrypted multivariate input is valid. We designate the returned result as
 where MORE is

used. The result is a homomorphic calculation denoted f performed on A1,A2,… ,Ak wherein Ai is equal

to one of MORE(Xi); f(A1,A2,… ,,Ak) is equal to MORE (f(X1,X2,… ,Xk))= f(MORE (X1), MORE (X2),… ,MORE

(Xk)).

 The verifier receives the result of f(A1,A2,… ,Ak) in the form:

 (()) (
 ()

 ()
)

It decrypts the result to yield () and ()

7

 The verifier has precomputed (). This may be done well before computing the

encrypted input. The verifier compares the decrypted value () with the precomputed

one, and deems the result of the computation of f(X1,X2,… ,Xk) verified if a match occurs.

4. Applications
In this section applications are proposed that exploit the inherent properties of the methods.

4.1 Securing for LOCOS and untrusted open cloud

For remote computing in an untrusted platform we consider three cases that define the secrets in a
model of an input and function (algorithm):

a) Only the input is secret (not the algorithm).
The algorithm is characterized as a secret polynomial whose input is homomorphically-encrypted
data as in a keyed-hash where the only the key is secret. In general, the computed polynomial may
have a multivariate input.

b) Only the algorithm is secret (not the input).

The algorithm is characterized by a polynomial some of whose coefficients are secret large-numbers
(mod N) and the input is public. An example is a Secret Function for Key Generation (SFKG) whose
input is a public ECM (used in broadcast CA systems). Yet another similar example is a secret HMAC
function depicted below. The HMAC runs securely on an open machine; the last step in its process is
delivered to the secure client for verification.

IV

.

.

.

State

Algorithm
f(X1,..Xk, CH1,..,CHn , state)

Homomorphic Encrypted
Coefficients, CH1,..,CHn

In
p

u
t:

 X
1

,…
,X

k
O

u
tp

u
t

to

se
cu

re

cl
ie

n
t

c) Both the algorithm and input are secret.

Both the algorithm and its input are secret — not known to the processing entity. (note that both
the algorithm and its input must be encrypted with the same homomorphic-encryption key.)

8

Such an untrusted platform could be a public (open) cloud server, an STB host, a mobile phone
ACPU, etc.; the decryption of the result is done by the secure client, e.g., smart card, SIM, RFID, or
secure execution environment with secure OTP of a low performance device.

4.2 Securing OSS Public Signature against Pollard Attack, HoMOSS (HomoMorphic OSS).

The OSS public signature scheme described in [6] is very efficient both for signing and verifying; signing
and verifying requires few modular multiplications.

Below we summarize its highlights.

A signature of a message is a pair (X,Y) satisfying the quadratic bivariate modular (QBM) equation

)(mod22 NMYX   , where M is the hash of the message.

The public key is the pair),(N , and the private key is  , where)(mod2 N  .

The signer calculates M and uses the private key  to find a solution, (X,Y), for the above QBM equation
as follows: he selects a random value r modulo N and computes X and Y

)(
2

1
;)(

2

1

r

M
rY

r

M
rX 


 . It is easily seen that X and Y solve the above QBM equation.

The problem of finding a solution for a QBM equation was thought to be hard, and it was therefore
assumed that it is hard for an attacker who has no knowledge of  to forge a signature.

The OSS signature scheme was broken by Pollard and Schnorr [9]. They presented an algorithm for
finding a solution of the bivariate quadratic equation of the form where the
factorization of N or the square root of are not known.

We present a modification of the original OSS scheme to protect against the Pollard Schnorr attack.

HoMOSS — Homomorphic-Modified OSS

For U a 2x2 matrix over ZN we define a commutative ring of 2x2 matrices over ZN,

 { | | ()}, the subring of 2x2 matrices over ZN that commute with U.

It can be verified that is a module with dimension 2 over ZN, and can be represented with two
parameters : { | .

The homomorphic non-deterministic encryption is induced by a one-way mapping: .

The HoMOSS scheme presented in this section is based on equations of commutative matrices that are
obtained from the consideration of two coupled OSS (QBM) equations’ private keys.

We choose to illustrate HoMOSS by the use of the MORE method.

The Public key is a 2x2 matrix U over ZN . The characteristic polynomial of U should not be a square of a
linear polynomial and its root resides in ZN.

The Private key is a matrix S , and the values 21 , (square roots of 21 , ,respectively), satisfying

1

2

1

0

0










 SSU





Signing a message:

9

1. The message is hashed to produce two parameters: .

2. A matrix M in is calculated: .

3. The matrix M has a representation 1

2

1

0

0










 S

M

M
SM , the signer calculates from

M.

4. The signer knows 21 , the square roots of 21 , , respectively. He calculates a solution

of the equation)(mod1

2

11

2

1 NMYX   and a solution of the equation

)(mod2

2

22

2

2 NMYX   as in the original OSS scheme.

5. The signer computes the following two matrices in :

1

2

1

0

0










 S

X

X
SA , 1

2

1

0

0










 S

Y

Y
SB .

6. Each of the matrices A and B in can be represented with two modulo N parameters.
Thus the signature is comprised of four modulo N numbers (; from the first row
of A and B, respectively).

Verifying a signature:

The verifier receives the message and signature — 4 modulo N numbers, ().

1. The verifier recovers the missing elements of A and B (each is a known linear combination of
two elements of the signature).

2. The verifier calculates the hash of the message and produces the elements: .

3. The verifier calculates matrix M in : . And,

4. Verifies that the matrix equation: MBUA  22 holds to accept the signature as valid.

Homomorphic Modified OSS - simplified version

A simplified version of the scheme is presented

Signing a message:

1. The message is hashed to produce a number m in .

2. The signer knows 21 , the square roots of 21 , , he calculates a solution of the

equation)(mod
2

11

2

1 NmYX   and a solution of the equation

)(mod
2

22

2

2 NmYX   as in the original OSS scheme.

3. The signer computes the following two matrices in :

1

2

1

0

0










 S

X

X
SA , 1

2

1

0

0










 S

Y

Y
SB .

10

4. Each of the matrices A and B in can be represented using two modulo N parameters.
Thus the signature is comprised of four modulo N numbers (; from the first row
of A and B, respectively).

Verifying a signature:

The verifier receives the message and signature (4 modulo N numbers).

1. The verifier recovers the missing elements of A and B (each is a known linear combination of
two elements of the signature).

2. The verifier calculates the hash of the message and produces the number m. And

3. Verifies that the matrix equation: ImBUA  22 holds to accept the signature.

It can be readily shown that a valid signature will satisfy the above matrix equation.

HoMOSS Resistance against Pollard and Schnorr attack

The Pollard and Schnorr attack [9] is predicated on the fact that the OSS QBM equation over ZN can be
viewed as a particular multiplicative norm in ZN , ZL or Z (L being a prime). The particular multiplicative
norm enables Pollard to start by finding a solution over ZL and then define a recursive process to yield a
solution of the OSS QBM over Z that is transformable to ZN .
The proposed protection of the OSS scheme stems from the use of matrices in the commutative ring
instead of elements in . We presume that it is hard to find a norm over matrices that can be utilized in
Pollard’s attack.

4.3 Practical Fully Homomomorphic Randomization of Arbitrary Data

The randomization of arbitrary data is presumed to take place in a secure environment; otherwise one
could deduce the randomization key from given randomized arbitrary data. A potential application is to
protect against side-channel attacks on algorithm execution aimed at getting the algorithm’s sensitive
data. Side-channel attacks are mounted on secure execution environment (e.g., secure smart cards)
where leakage information (e.g., timing or power consumption), is gathered to glean secret information.
For example, in the AES key attack, the attacker runs the algorithm repeatedly with varying plaintexts
but with the same AES key while gathering the side-channel information in order to reveal the AES key.
However, in this non-deterministic approach, the randomized key and plaintext change per cipher run
thereby foiling such attack, (see Figure XX below). Note, AES inherently lends itself to an efficient
representation as a sequence of algebraic operations over the F256 that can be efficiently run.

11

Secure Element
Without Randomization

 F(S, Xi)=OUTPUT i

O
u

tp
u

t-
i

Xi

Repeat for different Xi and analyze the
data (e.g. DPA) or other behavior of
Output-i to deduce bits of secret(s) S

Secure Element
With Randomization

S

O
u

tp
u

t-
i

Xi

Randomization (of inputs S and Xi)
prevents such attack as every run of F
presents different OUTPUT*i
corresponding to randomized inputs.
The Homomorphic property allows F
to be computed from beginning to
end without correction for the
randomization effect per step.

PORE(S,Ri) = S*
i

PORE(Xi,R’i) = X*
i

F(S*
i, X*i)=OUTPUT*i

S

The randomization can provide protection against fault attacks. An induced fault is detectable since the
computations’ validity can be verified; see Appendix for discussion on verification.

5. Performance and Throughput
Referring to section 3.2 (PORE) we see that the cost of a single input encryption / decryption (or

randomization) is one multiplication of large numbers. The throughput is two large numbers in the

steady state (two additional PPV coefficients are passed only once as the PPV does not change per

encryption). For the result of a single homomorphic computation only two large numbers are returned.

Cost of calculating a product of two distinct variables is five multiplications of large numbers.

Cost of squaring a variable is four multiplication, and computing x2n results in 4n multiplications.

Division can be done in ten multiplications plus one division.

6. Security
The fully-homomorphic (symmetric) encryption schemes presented in this paper are essentially secret

linear transformations that are utilized to construct a non-deterministic encryption schemes. In general,

secret linear schemes are inherently ill-suited for cryptographic applications as the secret

transformation is easily recovered using linear algebra techniques once sufficient number of plain text

and cipher text pairs are known. Thus such transformations are not used for traditional data encryption

where it is usually assumed the adversary knows the plain text. However, the specific linear

transformations presented in this paper are deemed secure under specific conditions, and has benefits

for practical (efficient) homomorphic computation. The proposed linear transformations provide sound

12

security in various applications under two conditions: 1. the plaintext is not known and 2. The plain text

can be regarded as "random data".

In this section we claim that the homomorphic encryption scheme, MORE, as presented in section 3.1,

ensures high degree of security under the assumption that the plaintext is comprised of unknown

random large-numbers in ZN.

Theorem: One who knows the encrypted values of random plain text values X1…Xk in ZN, and is
capable of calculating any one of the plain text values (inputs) can factor N.
Proof: without loss of generality we show that if an adversary can calculate the first input, X1, he can

factor N. We first prove the theorem for k=1, we denote by 1A the encrypted value of X1:

)(11 XEncA 

 Lemma 1: An adversary who gets A1 does not get more information about X1 than an adversary who
only knows the characteristic polynomial of A1.

Proof: The process encrypting X1 requires an independent selection of a random secret value Y1 in ZN
and a secret random invertible matrix S over ZN. We show below (a) that the distribution of the
encrypted matrix A1 is indistinguishable from the uniform distribution over all matrices whose
characteristic polynomial is given by f(x)= (x - X1)(x - Y1). We then show (b) that one who knows () is
capable of uniformly selecting a matrix among all matrices with characteristic polynomial equals to ().
As a result we conclude that when one is given A1 the information one gets about X1 is the same
information provided by knowledge of the characteristic polynomial of A1.

a. The distribution of A1 is indistinguishable from uniform distribution over all matrices whose
characteristic polynomial is (), () ()(). A matrix B having () as a

characteristic polynomial has the following representation (

) for some

regular matrix (). We denote by () the set of all 2x2 matrices over having

 () as a characteristic polynomial. One can define a partitioning of the regular 2x2 matrices
over (()). For any matrix () we define the set of regular matrices to be:

 { | () (

) . We show that the size of is independent of

 as long as the inequalities are satisfied*. Let
 be matrices in iff

 (

)
 (

)
  (

)
 (

)
 iff

(

)

 (

) i.e.,
 commutes with (

) . We

conclude that any matrix in can be represented as for some invertible matrix

 that commutes with (

). A matrix (

) commutes with (

) iff

 and ; since both mod P and mod Q, we

get and , and has the form (

) . is an

invertible matrix, i.e., () and () . There are () () () such
matrices. QED

13

*We note that the events: () , () or () , are of negligible
probability.

b. One who knows the characteristic polynomial of , () is capable of selecting a uniformly
distributed matrix among all matrices with characteristic polynomial ().

 Let () , we define the matrix (

) with characteristic

polynomial (). For , there is an invertible 2x2 matrix over such

that (

) . We select a random invertible 2x2 matrix over , and define

 () . We claim that is uniformly distributed among all matrices with

characteristic polynomial (). Above it is shown that
for the number of matrices generating the same

matrix (

) is constant. Since (

) () and is a uniformly

distributed regular random matrix, we conclude that the matrix is distributed uniformly
among the matrices in (). QED

We conclude the proof of the theorem for k=1, by observing that if one is capable of finding the plain
text from its encrypted value, , then he is capable of finding a root of a random quadratic
polynomial modulo N, (); this problem is known to be as hard as factoring N.

The general case: One who gets the encrypted values of random plain text values X1…Xk in ZN, and is
capable of calculating the plain text value X1 can factor N.

Lemma 2: The information about provided by the encrypted values: ()
 () (), is the same as the information that provides about .

Proof: The proof of the lemma has two steps. In step a. we show that the matrices are

randomly selected matrices from the set of all matrices that commute with ; denoted as . In step

b. we show that one who gets can randomly select k-1 matrices of .

As a result of these steps we conclude that one who knows the sequence of matrices

doesn't get more information about than one who only sees . Given above proof the special case

k=1 we can state that finding is as hard as factoring N.

a. Define the set of all matrices that commute with : { | ()

We have (

) , for that commutes with we have

 (

) (

)  (

) (

) , i.e.,

(

) commutes with . We showed in above lemma 1 that such matrices are of

the form (

) for where, . Therefore,

 (

) , i.e., is a 2 dimensional sub-module of the ZN module of the 2x2

matrices over ZN. The matrices for have the form (

) for

random elements in . We therefore conclude that one can regard as an
independent random elements of .

14

b. We show that one who knows can select random elements from by using a different

representation of . Let { | ; it is easily verified that matrices
of the form commute with and also form a sub module of dimension 2 of the ZN
module of the 2x2 matrices over ZN . Therefore, . One randomly selects
parameters in to yield a random choice of matrix in : .

Q.E.D.

A similar proof exists for a non-trivial rational function of the inputs.

7. Conclusion
Fully homomorphic efficient methods were presented for domain-specific applications. For symmetric

key FHE the applications domain is security algorithms whose input is random large-numbers in ZN . For

randomization the input data is arbitrary elements of a commutative ring without any constraints of

size. Fault detection capability is inherent allowing for verification of computed data. The cost of

computation of encrypted data is reflected in the cost of product of two variables – five modular large-

number multiplications. Encryption or decryption requires only one modular large-number

multiplication. In addition, the methods employ operations in an algebraic domain of rings of

commutative matrices which are likely new to cryptographic applications. We hope that this can be used

to augment security in some algorithms as has been presented above for OSS, and to improve

protection against some side-channel attacks.

A challenging area for search is finding new algorithms that will allow us to relax the current constraints

of encryption for the proposed methods, e.g., large random values in ZN, such that arbitrary data can be

efficiently encrypted for FHE application or for Somewhat homomorphic applications. Further

investigation may shed light on our presumption that it is hard to find a norm over matrices that can be

utilized in Pollard’s attack.

8. Appendix: The Methods – Practical FSERFs - Generalized

Each of the isomorphic methods presented is an efficient non-deterministic Fully-homomorphic

Symmetric Encryption and Randomization Function (FSERF). The input, IN, of the functions is comprised

of k input elements in a commutative ring (CR) or in ring ZN. Randomization is defined over a

commutative ring (CR), and encryption is over ring ZN (all operations are mod N, where N is a product of

two (secret) primes). Use of large random numbers mod N for the input IN and for the random

parameters employed in the methods will provide a sufficient condition for security of the encryption,

(see section 6).

Two fundamental isomorphic methods are defined below; each randomizes or encrypts a set i of any m

distinct input elements of IN (where 0<m<k+1 and m<n) denoted as input Xim (= (X1, X2, …,Xm)). The basic

methods are a matrix-based method, MORE (Matrix Operation for Randomization or Encryption), and a

15

polynomial-based method, PORE (Polynomial Operation for Randomization or Encryption). Additionally,

a ‘compound’ method can be constructed by successively applying the basic methods.

Frequently, m equals 1; a method uses one input element (m=1, Xi1 =Xj (j=(1..k)) per method application

to allow for computation of (arbitrary) multivariate input in functions whose operations are addition,

multiplication and division. However, if, for example, there are two known multivariate functions with

two distinct sets of inputs, e.g., (X1, X2, …,XL) and (XL+1, XL+2, …,Xs), respectively, then no pair of variables

in each of the input sets should be jointly encrypted (or randomized), i.e., with a single application of the

method.

A compound method can be constructed by the successive application of the fundamental MORE and

PORE.

8.1 The matrix method, MORE.

A randomly chosen secret nxn invertible matrix, S, in CR (or ZN), is used as a symmetric key for

randomization (or encryption). For each set Xim of m distinct input elements selected from IN and

denoted as X1, X2, …,Xm that are to be jointly randomized (or encrypted) we select n-m random numbers

Y1, Y2, … Yn-m , where the input elements in Xim and Y1, Y2, … Yn-m are placed in order on the diagonal of a

nxn diagonal matrix. We denote MORE’s output matrix as Aim and define it as:

 ()

(

)

S

= (

)

Where, Aim is the randomized value or cipher text for plaintext X1, X2, …,Xm, depending on the use of CR, or ZN
(modulo N), respectively.

We note, again, that no pair of input variables represented by X1, X2, …, or Xm is used in a single multivariate-
input function, i.e., each of the encrypted (or randomized) elements (variables) must be used by a distinct
function.

 8.2 The Polynomial method, PORE.

PORE is a polynomial-based method where () () in CR or ZN.

We select n random numbers, v1, v2,… ,vn, in CR or ZN, to define a public polynomial PP(v)= ∏ (

16

) ∑
 (Cn=1). We let () be any function in variable v of the form ∑

 which

satisfies the equations: ∑

 ∑

 , …. ∑

 .

To define () for a particular we assign n-m chosen random values in CR or ZN , to

 , that would yield a solution for the unknown coefficients in the

above equations; (else, absent a solution, a new set of n-m random values is selected in another

attempt to solve the above equations for the unknown coefficients). Or, alternatively, we select n-m

random values R1, …, Rn-m in CR or ZN that would solve the following n simultaneous equations:

∑

 ∑

 , …. ∑

 , ∑

 = R1 , ∑

 = R2 , ∑

 = Rn-m for unknowns , thereby producing, as above, for

X1 , X2,… Xm a random text comprising the set () and public (C0, C1, …, Cn-1, Cn) of PP(v).

This produces the joint randomization (or encryption) output , Aim, for plaintext X1, X2,… ,Xm, in the form

of the set () and a public set of coefficients (C0, C1, …, Cn-1, Cn) of P(v). Note, that the

set of coefficients (C0, C1, …, Cn-1, Cn) is required for performing arithmetic operations with randomized

(or encrypted) elements.

8.3 Compound Methods

We note that other methods can result from the successive application of a mix of functions
PORE(Xi) and MORE(Xi), as in:

MORE(PORE(Xi)) =(() () ())

((

)

 , (

)

 (

)

); and conversely

PORE(MORE(Xi))=PORE ((

)) where () () , therefore

PORE(MORE(Xi))= (
() ()

() ()

).

8.4 Homomorphic operations for multivariate functions

It can be readily shown that the methods above are fully homomorphic (addition and multiplication)

and, moreover, are homomorphic for division.

We define below the operation of addition, multiplication and division of encrypted (or randomized)

values subject to the above constraints of CR and ZN, respectively.

We let A1 and A2 be the encrypted (or randomized) values of X1 and X2, respectively, under MORE or

PORE, s.t. MORE() = matrix, and PORE() = under C0, C1, …, Cn-1,

Cn () ∑
 (Cn=1).

17

The Ai’s comprise the input of a homomorphic function in which they are added, multiplied, or divided.

We thus have for:

Addition

 MORE () + MORE () = A1 +A2 ; and

PORE () + PORE () =

Multiplication

MORE () MORE () = A1 A2 ; and

 PORE () PORE () = , the coefficients of the resulting n-1 order

 polynomial r(v) , where r(v)= ((∑

) (∑

))mod ∑

 .

 Division

1/ MORE () =
 and MORE () MORE ()= A1

 ; and

Let PORE () = and PORE () = and

let 1/PRHT() = be derived by solving:

(∑

) (∑

))mod ∑

 =1 in terms of n unknown coefficients

 (), thereby determining

∑ ()

)

where, () is a linear combination of the n unknowns ; and

solving n derived equations () =1, and () = 0 for j=1,..,n-1 for all j=0,…,n-1, for

the n unknowns ; and thus

 PORE () PORE () = PRHT () (())

 ((∑

) (∑

))mod ∑

 .

8.5 Decryption or Derandomization

Once a homomorphic function, f, is computed over the encrypted (or randomized) multivariate

input, the returned result has to be decrypted (or derandomized). Let denote the encrypted or

randomized Xi input; we receive the result of such a function () in one of the

following forms:

 () (())

18

 S

(

 ()

 ()

 ())

S

= (

)
 ;

Or,

 () is in the form of

 =
 ;

In the case where the result is in the matrix form of
 , the decryption yields:

 ()
 ;

or, alternatively, using to determine = (

)

 () (
) ∑

 (

) ∑

And for PORE() we use
 and

 to determine:

 () ∑

 .

8.6 Verification of integrity of computations

The methods provide a mechanism to verify that a returned result of a calculation performed by a third

party on encrypted multivariate input is valid. We designate the returned result as
 , or

 depending

upon whether MORE (denoted below as M) or PORE (denoted below as P) is used. The result is of a

homomorphic calculation denoted f performed on A1,A2,… ,Ak wherein Ai is equal to one of M(Xi) and

P(Xi); f(A1,A2,… ,,Ak) is equal to either M (f(X1,X2,… ,Xk))= f(M(X1), M(X2),… ,M(Xk)), or to

P(f(X1,X2,… ,Xk)) = f(P(X1), P(X2),…,P(Xk)).

 The verifier receives the result of f(A1,A2,… ,Ak) in one of the following forms:

19

 (())

 S

(

 ()

 ()

 ())

S

=
 ; and

 f(A1, A2,… ,Ak) in the form of

 , =
 ;

Where the result is in the form of
 :

 The verifier has precomputed (), for some m , in (1,2,…,n-1) where

the mth random used in encrypting Xj. This may be done well before computing the encrypted input.

It then decrypts R*M to determine (), from the resulting matrix diagonal of the m+1

row. Finally it compares the decrypted () with the precomputed one, and deems

the result of the computation of f(Xi) verified if a match occurs.

 Where the result is in the form of
 :

The verifier has precomputed (), for some m , in 1,2,…,n-1 where is the mth

random used in encrypting Xj. This may be done well before computing the encrypted input.

It uses () and picks the same m in (1,..,n-1) as above to determine: ∑

 = f(Rm1,

Rm2,… ,Rmk), and it compares the determined f(Rm1, Rm2,… ,Rmk) with the pre-computed, and deems the

result the of the computation of f() verified if a match occurs.

9. References
1. Can Homomorphic Encryption be Practical? Kristin Lauter, Micahel Naehring, Vinod Vikuntanathan
2. Zvika Brakerski and Vinod Vaikuntanathan . Efficient fully homomorphic encryption from (standard)

LWE. FOCS, 2011.
3. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,

STOC , pages 169–178. ACM, 2009
4. Implementing Gentry's fully-homomorphic encryption scheme , Gentry, S Halevi - Advances in

Cryptology–EUROCRYPT 2011,
5. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms. In

Foundations of Secure Computation, 1978
6. Ong, Schnorr, Shamir An Efficient signature based on quadratic equations, proceedings of the 16'th

symposium on theory of computing pp.208-216 1984
7. Rivest, R.; A. Shamir; L. Adleman (1978). "A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems". Communications of the ACM 21 (2): 120–126 .
8. FIPS -186-3 The third and current revision to the official DSA specification.

http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf

20

9. J.Pollard & C.Schnorr "An efficient solution of the congruence x2 + ky2 = m modulo n "IEEE
transactions on Information Theory, vol. IT-33 no.5., September 1987 pp 208-216

