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Abstract

A double-block-length (DBL) hash mode of block ciphers, MJH has
been proved to be collision-resistant in the ideal cipher model upto
22n/3−log n queries. In this paper we provide first cryptanalytic results
for MJH. We show that a collision attack on MJH has the time com-
plexity below the birthday bound. When block ciphers with 128-bit
blocks are used, it has time complexity around 2124, which is to be
compared to the birthday attack having complexity 2128. We also give
a preimage attack on MJH. It has the time complexity of 23n/2+1 with
n-bit block ciphers, which is to be compared to the brute force attack
having complexity 22n.
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1 Introduction

Block ciphers and hash functions are widely used popular cryptographic
primitives. Many hash functions are often designed based on block-cipher-
like components. Some of them can be regarded as hash modes of block
ciphers. PGV modes [10] are representative single-block-length (SBL) hash
modes, where the length of the chaining and hash values is the same as
the block length of the underlying block cipher. There are several double-
block-length (DBL) hash modes such as MDC-2 , MDC-4 [3, 9], Hirose’s
scheme [2], Abreast-DM, and Tandem-DM schemes [6], where the length
of the chaining and hash value is twice as long as the block length of the
underlying block cipher.

MJH is a double-block-length (DBL) hash mode of block ciphers, pro-
posed by Lee and Stam [7] at CT-RSA 2011. The compression function of
MJH consists of two block cipher encryptions and one key schedule oper-
ation. The designers proved that the security bound of MJH for collision
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resistance in the ideal cipher model is about O(22n/3−log n), and claimed that
MJH could be a good alternative to MDC-2 [9, 3] because it has efficiency
advantage of one key schedule operation per block compared to MDC-2,
and better security bound in the sense of collision resistance. Any proof of
preimage resistance and any attacks for MJH have not been reported yet.

We first provide collision and preimage attacks on MJH. Our collision
attack uses a multi-collision in the first block, which is the similar approach
to [5]. Assuming the cost of one block cipher encryption is equal to one
key schedule operation, with n = 128, our collision attack on MJH has time
complexity less than 2124. We show that a pseudo-preimage can be found
for MJH compression function with time complexity of about 2n. This
pseudo-preimage attack can be converted to a preimage attack with time
complexity of 23n/2+1 by the meet-in-the-middle technique in [8, Fact 9.99]
and expandable messages with fixed-points [1, 4]. In fact, a block cipher
with n-bit block and k-bit key for n < k can be also used as the underlying
primitive for MJH. However, our attacks work for such case, as well. In
fact, the designers of MJH considered the combination of a secure double-
block-length permutation based on two block cipher encryptions and JH-
style domain extender. Our attacks imply that the resulting hash function
is much weaker than what the designers expected, since they show that
MJH can not reach the security levels which are traditionally expected for
cryptographic hash functions, while it is provably secure in the ideal cipher
model with about less than 22n/3 queries. We think this weakness caused
by a cancelation of feedforwards in its compression function.

The remaining parts of this paper are as follows. In Section 2, we give
a brief description MJH. In Section 3, we explain collision attacks on MJH
compression and hash functions. In Section 4, we explain preimage attacks
on MJH compression and hash functions. Finally, we conclude this paper.

2 Description of MJH Hash Modes

MJH has two auxiliary components σ and ·θ. σ is an involution on {0, 1}n

with no fixed point, and ·θ is a multiplication by a constant θ 6= 0, 1 in
F2n . The MJH compression function CFMJH has 2n-bit chaining variable
and n-bit message block, based on the block cipher E with n-bit block and
n-bit key. For the input chaining variable H and the message block M ,
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V = CFMJH(H,M) is computed as follows:

X = HL ⊕M ;
VL = EHR

(X)⊕X;
Y = EHR

(σ(X))⊕ σ(X);
VR = (Y · θ)⊕HL.

MJH takes the Merkle-Damg̊ard domain extender to hash arbitrary-
length messages with the above compression functions. We assume they
use a popular prefix-free padding, which embeds the message length infor-
mation to the last message block.

E E
M HL HR

VL VR

σ
×θ 

Figure 1: Original figure of CFMJH

E E
M HL HR

VL VR

σ
×θ 

Figure 2: CFMJH(H, M) = V

Indeed, the designers of MJH considered the combination of a secure
double-block-length permutation based on two block cipher encryptions and
JH-style domain extender (Fig. 1). However, due to the cancelation between
two feedforwards, the original figure is simplified to the equivalent one (Fig.
2). We think that this trivial fact leads to the attacks which the designers
unexpected.

In the estimation of time complexities of our attacks, we consider that the
compression function of MJH requires two block cipher encryptions and one
key schedule operation. Let TE , TK , TEK , and TCF be the time costs wasted
in one block cipher encryption, one key schedule operation, one block cipher
encryption with a key schedule operation, and one compression function
operation, respectively. For the evaluation of the time complexity of the
attack, we consider the case that TE is almost equal to TK (so, TEK

∼= 2TE

and TCF
∼= 3 · TE), and the case that TE is much larger than TK (so,
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TEK
∼= TE and TCF

∼= 2 · TE). Our complexity evaluations would be valid
for most cases because the key schedule is not much more complicated than
the block cipher encryption in usual.

3 Collision Attack on MJH

3.1 Collision Attack on MJH Compression Function

We find that we do not need to consider the right half of the hash value in
the collision attack for the MJH compression function, because after finding
a collision for the left half of the hash value, we can easily compute the
left halves of the input chaining variable and the message blocks such that
they give a same hash value. The following collision attack on the MJH
compression function reflects on our observation.

1. Randomly choose HR and VR, and fix them.

2. Randomly choose r distinct X = HL⊕M : X(1), X(2), ..., X(r), compute
V

(i)
L = EHR

(X(i))⊕X(i) for i = 1, ..., r, and then check whether there
are at least one pair of (i, j) such that

Xi 6= Xj and V
(i)
L = V

(i)
L . (1)

3. If a pair (i1, i2) satisfying 1 is found, then compute H
(i1)
L , H

(i2)
L , M (i1),

and M (i2) as follows:

H
(ij)
L = (EHR

(σ(X(ij)))⊕ σ(X(ij))) · θ ⊕ VR for j = 0, 1;

M (ij) = H
(ij)
L ⊕M (ij) for j = 0, 1.

4. Output (H(i1)
L ,HR,M (i1)) and (H(i2)

L ,HR,M (i2)) as a collision of the
MJH compression function.

The time complexity of the above attack is dominated by r encryptions
of the block cipher E. With r = 2n/2, we expect at least one collision for
MJH compression function, because the right half of the hash value is fixed.

3.2 Collision Attack on MJH Hash Function

We provide a 2-block collision attack on MJH hash function. Let H and
V be the 2n-bit output chaining variables of the first and second blocks,
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respectively. The first step to find a collision for MJH hash function is
similar to Knudsen et al.’s attack for MDC-2 [5]. We make a multi-collision
for the right half HR of the output chaining value in the first block. The
multi-collision from the first block fix the key inputs to the block ciphers in
the second step. In the second step, we take a different approach of choosing
X = M1 ⊕ HL at random, instead of M1. Due to the fixed key input, the
computations in the second block are almost independent of the first block.
With this observation, we make a collision attack on MJH hash function as
follows.

1. Choose sufficiently many message blocks in the first block, and obtain
an r-collision for HR. Denote the corresponding left halves of the
output chaining variable and the message blocks by H

(1)
L ,H

(2)
L , ..., H

(r)
L ,

and M
(1)
0 ,M

(2)
0 , ..., M

(r)
0 , respectively.

2. Choose randomly q distinct X = HL⊕M : X(1), X(2), ..., X(q), compute
V

(i)
L = EHR

(X(i))⊕X(i) for i = 1, 2, ..., q, and collect the pairs of (i, j)
such that i 6= j and V

(i)
L = V

(j)
L for 1 ≤ i, j ≤ q.

3. For the pairs of (i, j) colliding on VL, compute Y (k) for k = i or j as
follows:

Y (k) = (EHR
(σ(X(k)))⊕ σ(X(k))) · θ,

and check whether there is at least one pair of (u, v) for 1 ≤ u, v ≤ r

such that u 6= v and H
(u)
L ⊕ Y (i) = H

(v)
L ⊕ Y (j). For such a tuple

(i, j, u, v), the same VR is produced from H
(u)
L ⊕ Y (i) and H

(v)
L ⊕ Y (j)

or from H
(v)
L ⊕ Y (i) and H

(u)
L ⊕ Y (j). If such a tuple is found, output

M
(u)
0 ‖(H(u)

L ⊕ X(i)) and M
(v)
0 ‖(H(v)

L ⊕ X(j)), or M
(v)
0 ‖(H(v)

L ⊕ X(i))
and M

(u)
0 ‖(H(u)

L ⊕X(j)) as a collision.

In the first step, we need ((r!) · 2(r−1)n)1/r block cipher encryptions with
key schedule operations to get an r-collision for HR. The second step requires
q block cipher encryptions. The time complexity of the last step is negligible
compared to other steps. Since there are

(
r
2

)(
q
2

)
possibilities for pairing

(X(i), X(j))’s and (H(u)
L ,H

(v)
L )’s, we expect a collision for V with

(
r
2

)(
q
2

)
=

22n, where
(
r
2

)(
q
2

) ∼= (rq)2

4 and q ∼= 2n+1/r. Overall, the time complexity of
the above attack is estimated as

((r!) · 2(r−1)n)1/rTEK + 2n+1/rTE . (2)
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Table 1: Time complexity of the collision attack on MJH with an n-bit block
cipher, compared to birthday complexity, where TE

∼= TK .

n r Collision Attack Birthday Attack
64 8 260.58 264

128 14 2123.81 2128

256 23 2251.03 2256

Table 2: Time complexity of the collision attack on MJH with an n-bit block
cipher, compared to birthday complexity, where TE À TK .

n r Collision Attack Birthday Attack
64 9 261.01 264

128 15 2124.27 2128

256 25 2251.50 2256

(2) is approximated to

((r!) · 2(r−1)n)1/r · 2
3

+ 2n+1/r · 1
3

(3)

for the case of TE
∼= TK , and

(((r!) · 2(r−1)n)1/r + 2n+1/r) · 1
2

(4)

for the case of TE À TK ., respectively. For n = 128, we get the most efficient
complexities of 2123.81 with r = 14 for (3) and 2124.27 with r = 15 for (4).

4 Preimage Attack on MJH

4.1 Preimage Attack on MJH Compression Function

It is easy to find a preimage of MJH compression function with time com-
plexity of about 2n ·TE . The preimage attack on MJH compression function
is as follows.

1. Given a target hash value V ∈ {0, 1}2n, choose randomly HR ∈ {0, 1}n

and fix it.
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2. Find X ∈ {0, 1}n such that EHR
(X)⊕X = VL with brute force attack.

3. If such X is found, compute Y = (EHR
(σ(X))⊕σ(X))·θ, HL = Y ⊕VR,

and M = HL ⊕X.

4. Output (HL,HR, M) as a preimage for V .

4.2 Preimage Attack on MJH Hash Function

We have to consider the padding rule for constructing a preimage attack
on a hash function from a preimage attack on a compression function. We
assume that the last message block contains a length information of the
message. In the attack described in Section , the attacker does not have a
control on the message block unlike the preimage attack on MDC-4 com-
pression function described in Section . So, the attacker can not intend to
embed a predetermined length information to the preimage, and we can not
use Knudsen et al.’s time-memory trade off technique to make a preimage at-
tack for MJH hash function from the preimage attack for MJH compression
function. Alternatively, we make it using the meet-in-the-middle technique
[8, Fact 9.99] and expandable messages with fixed-points [1, 4].

A fixed-point for a compression function CF(H,M) = V is defined as
(H,M) such that CF(H, M) = H. We can find fixed-points for MJH com-
pression function as follows.

1. Choose randomly M ∈ {0, 1}n and HR ∈ {0, 1}n, fix them.

2. Compute X = E−1
HR

(M), HL = M ⊕X, Y = (EHR
(σ(X))⊕ σ(X)) · θ,

and HL ⊕ Y = VR.

3. If VR = HR, then output (HL, HR,M) as a fixed-point; else, repeat
the computations in step 2 with new random choices of M and HR.

On average, we expect to find a fixed-point with time complexity of 2n.
An expandable message is constructed as follows.

1. Collect 2n/2 fixed-points (H(1),M
(1)
2 ), ..., (H(2n/2), M

(2n/2)
2 ) by repeat-

ing the above search.

2. Repeat to compute CFMJH(CFMJH(IV, M0),M1) for a randomly cho-
sen two-block message (M0,M1) until the result is matched with any
H(i) for i = 1, ..., 2n/2.

3. If a match is found, then output the corresponding (M0,M1,M
(i)
2 ) as

a (2,∞)-expandable message.
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On average, the number of repetition in the step 2 should be 23n/2 to expect a
match. So, the time complexity for the above construction of an expandable
message is about 23n/2+1.

Assume that we are given a (2,∞)-expandable message (M0,M1,M2)
made from a fixed-point (H, M2). Let len(M) be the length information
of the hashed message M contained in the last message block. With this
expandable message, we can construct a preimage attack on MJH hash func-
tion as follows.

1. Given a target hash value V , collect 2n/2 preimages (U (1),M
(1)
L ), (U (2),

M
(2)
L ), ..., (U (2n/2),M

(2n/2)
L ) for the last compression function.

2. Repeat to compute CFMJH(H, ML−1) for a randomly chosen one-block
message ML−1 until the result is matched with any U (i) for i =
1, ..., 2n/2.

3. If a match is found, then output the corresponding (M0,M1,M2, ..., M2,
ML−1,ML) as a preimage for V , where the repetition number of M2

depends on len(M) contained in ML.

On average, the number of repetition in the step 2 should be 23n/2 to expect a
match. So, the time complexity for the above construction of an expandable
message is about 23n/2+1.

Finally, a preimage attack on MJH hash function is made from the preim-
age attack on MJH compression function and the expandable message by
the meet-in-the-middle technique in [8, Fact 9.99]. Overall time complexity
is about 23n/2+2.

5 Conclusion

In this paper, we presented collision and preimage attacks on MJH. These
are the first cryptanalytic results for it. Since we used generic setting, our
attacks work for MJH with any secure block ciphers. Our results show that
MJH can not reach the security levels which are traditionally expected for
cryptographic hash functions, while it is provably secure in the ideal cipher
model with about less than 22n/3−log n queries.
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