
SPONGENT: The Design Space of
Lightweight Cryptographic Hashing

Andrey Bogdanov1, Miroslav Knežević1,2, Gregor Leander3, Deniz Toz1, Kerem Varıcı1, and
Ingrid Verbauwhede1

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
{andrey.bogdanov, deniz.toz, kerem.varici, ingrid.verbauwhede}@esat.kuleuven.be

2 NXP Semiconductors, Leuven, Belgium
miroslav.knezevic@nxp.com

3 DTU Mathematics, Technical University of Denmark
g.leander@mat.dtu.dk

Abstract. The design of secure yet efficiently implementable cryptographic algorithms is a funda-
mental problem of cryptography. Lately, lightweight cryptography – optimizing the algorithms to fit
the most constrained environments – has received a great deal of attention, the recent research being
mainly focused on building block ciphers. As opposed to that, the design of lightweight hash functions
is still far from being well-investigated with only few proposals in the public domain.
In this article, we aim to address this gap by exploring the design space of lightweight hash functions
based on the sponge construction instantiated with present-type permutations. The resulting family
of hash functions is called spongent. We propose 13 spongent variants – for different levels of collision
and (second) preimage resistance as well as for various implementation constraints. For each of them
we provide several ASIC hardware implementations - ranging from the lowest area to the highest
throughput. We make efforts to address the fairness of comparison with other designs in the field by
providing an exhaustive hardware evaluation on various technologies, including an open core library.
We also prove essential differential properties of spongent permutations, give a security analysis in
terms of collision and preimage resistance, as well as study in detail dedicated linear distinguishers.
Key words: hash function, lightweight cryptography, low-cost cryptography, low-power design, sponge
construction, present, spongent, RFID.

1 Introduction

1.1 Motivation

As crucial applications go pervasive, the need for security in RFID and sensor networks is dra-
matically increasing, which requires secure yet efficiently implementable cryptographic primitives
including secret-key ciphers and hash functions. In such constrained environments, the area and
power consumption of a primitive usually comes to the fore and standard algorithms are often
prohibitively expensive to implement.

Once this research problem was identified, the cryptographic community designed a number
of tailored lightweight cryptographic algorithms to specifically address this challenge: stream ci-
phers like Trivium [18,16], Grain [23,24], and Mickey [3] as well as block ciphers like SEA [46],
DESL, DESXL [35], HIGHT [27], mCrypton [36], KATAN/KTANTAN [17], and present [10] —
to mention only a small selection of the lightweight designs.

Rather recently, some significant work on lightweight hash functions has been also performed:
[11] describes ways of using the present block cipher in hashing modes of operation and [1]
and [21] take the approach of designing a dedicated lightweight hash function based on a sponge
construction [15,7] resulting in two hash functions Quark and photon.

Among the most prominent security applications targeted by a lightweight hash function are
(including the ones requiring preimage security only and collision security only):

– Lightweight signature schemes: ECC over F2163 is implementable with just 11.904 GE
without key storage after synthesis and around 15.000 GE on a chip [22]. For comparison,
the smallest published SHA-256 implementation [32] requires 8.588 GE and the reportedly
most compact SHA-3 finalists BLAKE and Grøstl need 13.560 GE [25] and 14.620 GE [47],
respectively, to our best knowledge. Hence, adding a hashing engine based on one of these
functions to a lightweight ECC implementation nearly doubles the footprint.

– RFID security protocols often rely on hash functions [2,41,49]. Some of the applications
require collision resistance and some of them do not, just needing preimage security. An in-
teresting case is constituted by keyed message authentication codes (MAC) often used in this
context. Here, a lightweight hash function can require less area than a lightweight block cipher
in a MAC mode at a fixed level of offline and online security. MACs can be also designed using
sponge primitives [8].

– Random number generation in hardware is used for ephemeral key generation in public-
key schemes, producing random input for cryptographic protocols, and for masking schemes in
implementations with protection against side-channel attacks. This frequently needs a preimage-
resistant hash function. Using a hash function for pseudorandom number generator (PRNG),
given a seed, provides backward security which a block cipher based PRNG (e.g. in OFB mode)
does not: Once the key is leaked e.g. through a side-channel attack, the adversary can compute
the previous outputs of the block cipher based PRNG. Moreover, the postprocessing of a physical
random number generator sometimes includes a preimage-resistant hash function.

– Post-quantum signature schemes can be built upon a hash function using Merkle trees [39],
[12]. There have been several attempts to efficiently implement it [45,44]. Having a lightweight
hash function allows to derive a more compact implementation of the Merkle signature scheme.

However, while for multiple block ciphers, designs have already closely approached the mini-
mum ASIC hardware footprint theoretically attainable, it does not seem the case for some recent
lightweight hash functions so far. This article proposes the family of sponge-based lightweight hash
functions spongent with a smaller footprint than most existing dedicated lightweight hash func-
tions: present in hashing modes and Quark. Its area is comparable to that of photon, though
most of the time being slightly more compact. However, a fair comparison in terms of area require-
ments is a challenging task, since the area occupation is highly dependent on the implementation,
technology and tools used. To address this challenge, we provide implementation figures for spon-
gent on four different technologies. In order to make the future comparisons with our designs
easier, we also provide the hardware figures based on an open core library.

For some spongent variants, similarly to Quark and photon, a part of this advantage comes
from a reduced level of second preimage security, while maintaining the standard level collision re-
sistance. The other spongent variants attain the standard preimage, second preimage and collision
security, while having area requirements much lower than those of SHA-1, SHA-2, and SHA-3 final-
ists. This design subspace has not been specifically addressed by any previous concrete lightweight
hash function proposal. Whereas we note that the design ideas of present in hashing modes,
Quark and photon might be extended to any set of security parameters.

2

1.2 Design considerations for lightweight hashing

The footprint of a hash function is mainly determined by

1. the number of state bits (incl. the key schedule for block cipher based designs) as well as

2. the size of functional and control logic used in a round function.

For highly serialized implementations (usually used to attain low area and power), the logic size
is normally rather small and the state size dominates the total area requirements of the design.
Among the recent hash functions, Quark, while using novel ideas of reducing the state size to
minimize (1), does not appear to provide the smallest possible logic size, which is mainly due to the
Boolean functions with many inputs used in its round transform. In contrast to that, spongent
keeps the round function very simple which reduces the logic size close to the smallest theoretically
possible, thus, minimizing (2) and resulting in a significantly more compact design.

As shown in [11], using a lightweight block cipher in a hashing mode (single block length such as
Davies-Meyer or double block length such as Hirose) is not necessarily an optimal choice for reducing
the footprint, the major restriction being the doubling of the datapath storage requirement due to
the feed-forward operation.

At the same time, no feed-forward is necessary for the sponge construction, which is the design
approach of choice in this work. In a permutation-based sponge construction, let r be the rate (the
number of bits input or output per one permutation call), c be the capacity (internal state bits not
used for input or output), and n be the hash length in bits.

To explore the design space of lightweight hashing, we propose to instantiate the sponge con-
struction with a present-type permutation. The resulting construction is called spongent and we
refer to its various parameterizations as spongent-n/c/r for different hash sizes n, capacities c, and
rates r. spongent is a hermetic sponge, i.e., we do not allow the underlying permutation to have any
structural distinguishers. More precisely, for five different hash sizes of n ∈ {88, 128, 160, 224, 256},
covering most security applications in the field, we consider (up to) three types of preimage and
second-preimage security levels:

– Full preimage and second-preimage security. The standard security requirements for
a hash function with an n-bit output size are collision resistance of 2n/2 as well as preim-
age and second-preimage resistance of 2n. For this, in spongent, we set r = n and c = 2n
to obtain spongent-88/176/88, spongent-128/256/128, spongent-160/320/160, spongent-
224/448/224, and spongent-256/512/256.

– Reduced second-preimage security. The design of [1] as well as the works [7,8,15] convinc-
ingly demonstrate that a permutation-based sponge construction can allow to almost halve the
state size for n ≥ c and reasonably small r. In this case, the preimage and second-preimage
resistances are reduced to 2n−r and 2c/2, correspondingly, while the collision resistance remains
at the level of 2c/2. In most embedded scenarios, where a lightweight hash function is likely to be
used, the full second-preimage security is not a necessary requirement. For relatively small rate
r, the loss of preimage security is limited. So we take this parametrization in the design of the
smallest spongent variants with n ≈ c for small r and obtain spongent-88/80/8, spongent-
128/128/8, spongent-160/160/16, spongent-224/224/16, and spongent-256/256/16. These
five spongent-variants were published in a shortened conference version [9] of this article.

– Reduced preimage and second-preimage security. In some applications, the collision
security is of concern only and one can abandon the requirement of preimage security to be close
to 2n. In a permutation-based sponge, going for c = n and r = n/2, results in the reduction

3

of both the preimage security and second-preimage security to 2n/2, while maintaining the full
collision security of 2n/2. On the implementation side, this parametrization can yield a favorable
ratio between the rate and the permutation size which reduces the time-area product. We use
this approach in the design of spongent-160/160/80, spongent-224/224/112, and spongent-
256/256/128.

The group of all spongent variants with the same output size of n bits is referred to as spongent-
n. The spongent-88 functions are designed for extremely restricted scenarios and low preimage
security requirements. They can be used e.g. in some RFID protocols and for PRNGs. spongent-
128 and spongent-160 might be used in highly constrained applications with low and middle
requirements for collision security. The latter also provides compatibility to the SHA-1 interfaces.
The parameters of spongent-224 and spongent-256 correspond to those of a subset of SHA-2
and SHA-3 to make spongent compatible to the standard interfaces in usual lightweight embedded
scenarios.

1.3 Organization of the article

The remainder of the article is organized as follows. Section 2 describes the design of spongent
and gives a design rationale. Section 3 presents some results of security analysis, including proven
lower bounds on the number of differentially active S-boxes, best differential characteristics found,
rebound attacks, and linear attacks. In Section 4, the implementation results are given for a range
of trade-offs. We conclude in Section 5.

2 The design of spongent

spongent is a sponge construction based on a wide present-type permutation. Given a finite
number of input bits, it produces an n-bit hash value. A design goal for spongent is to follow the
hermetic sponge strategy (no structural distinguishers for the underlying permutation are allowed).

2.1 Permutation-based sponge construction

squeezing

b

h 3

π b

h 2

π b

h 1

π b

m4

π b

m3

π b

m1 m2

c

r

0

0

absorbing

π

Fig. 1. Sponge construction based on a b-bit permutation πb with capacity c bits and rate r bits.
mi are r-bit message blocks. hi are parts of the hash value.

spongent relies on a sponge construction – a simple iterated design that takes a variable-length
input and can produce an output of an arbitrary length based on a permutation πb operating on a

4

state of a fixed number b of bits. The size of the internal state b = r + c ≥ n is called width, where
r is the rate and c the capacity.

The sponge construction proceeds in three phases (see also Figure 1):

– Initialization phase: the message is padded by a single bit 1 followed by a necessary number
of 0 bits up to a multiple of r bits (e.g., if r = 8, then the 1-bit message ‘0’ is transformed to
‘01000000’). Then it is cut into blocks of r bits.

– Absorbing phase: the r-bit input message blocks are xored into the first r bits of the state,
interleaved with applications of the permutation πb.

– Squeezing phase: the first r bits of the state are returned as output, interleaved with appli-
cations of the permutation πb, until n bits are returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing phase. In all spongent
variants, except spongent-88/80/8, the hash size n equals either capacity c or 2c. The message
chunks are xored into the r rightmost bit positions of the state. The same r bit positions form parts
of the hash output.

Let a permutation-based sponge construction have n ≥ c and c/2 > r which is fulfilled for the
parameter choices of most of the spongent variants. Then the works [7,8,15] imply the preimage
security of 2n−r as well as the second preimage and collision securities of 2c/2 if this construction
is hermetic (that is, if the underlying permutation does not have any structural distinguishers).
The best preimage attack we are aware of in this case has a computational complexity of 2n−r +
2c/2. Later, this work is extended in [21] and preimage security is defined more generalized form:
min(2min(n, c+r),max(2min(n−r, c), 2c/2)).

For permutation-based sponge constructions with n < c and c/2 ≤ r such as the remaining
spongent variants, it follows from the same works that the second preimage security is 2n and
collision security is 2c/2. The previous preimage attack also works for this case hence we claim that
the preimage security is min(2n,max(2n−r, 2c/2)) since n− r < c.

2.2 Parameters

We propose 13 variants of spongent with five different hash output lengths at multiple security
levels, see Table 1.

2.3 present-type permutation

The permutation πb : Fb2 → Fb2 is an R-round transform of the input state of b bits that can be
outlined at a top-level as:

for i = 1 to R do
state← lCounter b(i)⊕ state⊕ lCounterb(i)
state← sBoxLayerb(state)
state← pLayerb(state)

end for

where sBoxLayerb and pLayerb describe how the state evolves. For ease of design, only widths
b with 4|b are allowed. The number R of rounds depends on block size b and can be found in
Subsection 2.2 (see also Table 1). lCounterb(i) is the state of an LFSR dependent on b at time i
which yields the round constant in round i and is added to the rightmost bits of state. lCounter b(i)
is the value of lCounterb(i) with its bits in reversed order and is added to the leftmost bits of state.

5

Table 1. 13 spongent variants.

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds pre. 2nd pre. col.

spongent-88/80/8 88 88 80 8 45 80 40 40
spongent-88/176/88 88 264 176 88 135 88 88 44

spongent-128/128/8 128 136 128 8 70 120 64 64
spongent-128/256/128 128 384 256 128 195 128 128 64

spongent-160/160/16 160 176 160 16 90 144 80 80
spongent-160/160/80 160 240 160 80 120 80 80 80
spongent-160/320/160 160 480 320 160 240 160 160 80

spongent-224/224/16 224 240 224 16 120 208 112 112
spongent-224/224/112 224 336 224 112 170 112 112 112
spongent-224/448/224 224 672 448 224 340 224 224 112

spongent-256/256/16 256 272 256 16 140 240 128 128
spongent-256/256/128 256 384 256 128 195 128 128 128
spongent-256/512/256 256 768 512 256 385 256 256 128

The following building blocks are generalizations of the present structure to larger b-bit widths:

1. sBoxLayerb: This denotes the use of a 4-bit to 4-bit S-box S : F4
2 → F4

2 which is applied b/4
times in parallel. The action of the S-box in hexadecimal notation is given by the following
table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

2. pLayerb: This is an extension of the (inverse) present bit-permutation and moves bit j of
state to bit position Pb(j), where

Pb(j) =

{
j · b/4 mod b− 1, if j ∈ {0, . . . , b− 2}
b− 1, if j = b− 1.

and can be seen in Figure 2.

Fig. 2. The bit permutation layer of spongent-88 at the example of pLayer88.

3. lCounterb: This is one of the four dlog2Re-bit LFSRs. The LFSR is clocked once every time its
state has been used and its final value is all ones. If ζ is the root of unity in the corresponding
binary finite field, the n-bit LFRSs defined by the polynomials given below are used for the
spongent variants.

6

LFSR size (bit) Primitive Polynomial

6 ζ6 + ζ5 + 1
7 ζ7 + ζ + 1
8 ζ8 + ζ4 + ζ3 + ζ2 + 1
9 ζ9 + ζ4 + 1

Table 2 provides sizes and initial values of all the LFSRs.

Table 2. Initial values of lCounterb for all spongent variants.

LFSR size (bit) Initial Value (hex)

spongent-88/80/8 6 05
spongent-88/176/88 8 D2

spongent-128/128/8 7 7A
spongent-128/256/128 8 FB

spongent-160/160/16 7 45
spongent-160/160/80 7 01
spongent-160/320/160 8 A7

spongent-224/224/16 7 01
spongent-224/224/112 8 52
spongent-224/448/224 9 105

spongent-256/256/16 8 9E
spongent-256/256/128 8 FB
spongent-256/512/256 9 015

2.4 Design rationale

The overall design approach for spongent is to target low area while favoring simplicity.
The 4-bit S-box is the major block of functional logic in a serial low-area implementation of

spongent. It fulfills the present design criteria in terms of differential and linear properties [10].
Moreover, any linear approximation over the S-box involving only single bits both in the input and
output masks is unbiased. This aims to restrict the linear hull effect discovered in round-reduced
present.

The function of the bit permutation pLayer is to provide good diffusion, by acting together with
the S-box, while having a limited impact on the area requirements. This is its main design goal,
while a bit permutation may occupy additional space in silicon. The counters lCounter and lCounter
are mainly aimed to prevent sliding properties and make prospective cryptanalysis approaches using
properties like invariant subspaces [34] more involving.

The structures of the bit permutation and the S-box in spongent make it possible to prove
the following differential property (see Subsection 3.1 for the proof):

Theorem 1. Any 5-round differential characteristic of the underlying permutation of spongent
with b ≥ 64 has a minimum of 10 active S-boxes. Moreover, any 6-round differential characteristic
of the underlying permutation of spongent with b ≥ 256 has a minimum of 14 active S-boxes.

7

The concept of counting active S-boxes is central to the differential cryptanalysis. The minimum
number of active S-boxes relates to the maximum differential characteristic probability of the
construction. Since in the hash setting there are no random and independent key values added
between the rounds, this relation is not exact (in fact that it is even not exact for most practical
keyed block ciphers). However, differentially active S-boxes are still the major technique used to
evaluate the security of SPN-based hash functions.

An important property of the spongent S-box is that its maximum differential probability
is 2−2. This fact and the assumption of the independency of difference propagation in different
rounds yield an upper bound on the differential characteristic probability of 2−20 over 5 rounds and
of 2−28 over 6 rounds for b ≥ 256 which follows from the claims of Theorem 1.

Theorem 1 is used to determine the number R of rounds in permutation πb: R is chosen in a
way that πb provides at least b active S-boxes. Other types of analysis are performed in the next
section.

3 Security Analysis

In this section, we discuss the security of spongent against known cryptanalytic attacks by apply-
ing the most important state-of-the-art methods of cryptanalysis and investigating their complexity.

Table 3. Differential characteristics with lowest numbers of differentially active S-boxes (ASN).
The probabilities are calculated assuming the independency of round computations.

of spongent-88/80/8 spongent-128/128/8 spongent-160/160/16 spongent-224/224/16 spongent-160/160/80
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

5 10 2−21 10 2−22 10 2−21 10 2−21 14 2−21

10 20 2−47 24 2−60 20 2−50 20 2−43 32 2−43

15 30 2−74 40 2−101 30 2−79 30 2−66 52 2−66

of spongent-88/176/88 spongent-128/256/128 spongent-160/320/160 spongent-224/224/112 spongent-224/448/224
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

6 14 2−28 14 2−28 14 2−28 14 2−28 14 2−28

12 41 2−96 37 2−72 39 2−93 36 2−88

18 64 2−158 52 2−119 65 2−157 66 2−174

of spongent-256/256/16 spongent-256/256/128 spongent-256/512/256
rounds ASN Prob ASN Prob ASN Prob

6 14 2−28 14 2−28 14 2−28

12 32 2−73 50 2−123 34 2−84

18 52 2−128 68 2−169 54 2−128

3.1 Resistance against differential cryptanalysis

Here we analyze the resistance of spongent against differential attacks where Theorem 1 plays a
key role providing a lower bound on the number of active S-boxes in a differential characteristic. The
similarities of the spongent permutations and the basic present cipher allow to reuse some of
the results obtained for present in [10]. More precisely, the results on the number of differentially
active S-boxes over 5 and 6 rounds will hold for all respective spongent variants which is reflected
in Theorem 1. The proof of the Theorem 1 is as follows:

Proof. [Theorem 1] The statements for spongent variants with 64 ≤ b ≤ 255 can directly be proven
by applying the same technique used in [10, Appendix III]. The proof of the 6-round bounds for

8

spongent variants with b ≥ 256 in Theorem 1 is based on some extended observations. Here, we
will only give the proof for when the width, b, is a multiple of 64 bits, i.e., b = 64n. The proof for
other b values can also be obtained by making use of the observations given below. Since the proof
is specific to each b and hence more tedious, we do not present them here.

We obtain n groups and 4n subgroups by calling each four consecutive S-boxes as a subgroup
and each sixteen consecutive S-boxes as a group. To be more specific: subgroup i is comprised of
the S-boxes [4(i − 1) . . . 4i − 1] and similarly group j has the subgroups [4(j − 1) . . . 4j − 1]. (see
Figure 3). By examining the substitution and linear layers, one can make the following observations:

1. The S-box of spongent is such that a difference in single input bit causes a difference in at
least two output bits or vice versa.

2. The input bits to an S-box come from four distinct S-boxes of the same subgroup.

3. The input bits to a subgroup of four S-boxes come from 16 distinct S-boxes of the same group.

4. The input bits to a group of 16 S-boxes come from 64 different S-boxes.

5. The four output bits from a particular S-box enter four distinct S-boxes, each of which belongs
to a distinct group of S-boxes in the subsequent round.

6. The output bits of S-boxes in distinct groups go to distinct S-boxes in distinct subgroups.

7. The output bits of S-boxes in distinct subgroups go to distinct S-boxes.

For the latter statement (spongent-256), one has to deal with more cases. Consider six con-
secutive rounds of spongent ranging from i to i + 5 for i ∈ [1 . . . 155]. Let Dj be the number of
active S-boxes in round j. If Dj ≥ 3, for i ≤ j ≤ i + 5, then the theorem trivially holds. So let us
suppose that one of Dj is equal to one first and to two then. We have the following cases:

Case Di+2 = 1. By using observation 1, we can deduce that Di+1 + Di+3 ≥ 3 and all active
S-boxes of round i + 1 belong to the same subgroup from observation 2. Each of these active S-
boxes have only a single bit difference in their output. So, according to observation 3 we have that
Di ≥ 2Di+1. Conversely, according to observation 5, all active S-boxes in round i + 3 belong to
distinct groups and have only a single bit difference in their input. So, according to observation 6,
we have that Di+4 ≥ 2Di+3. Moreover, all active S-boxes in round i+4 belong to distinct subgroups
and have only a single bit difference in their input. Thus, by using observation 7, we obtain that
Di+5 ≥ 2Di+4 and can conclude that

∑i+5
j=iDj ≥ 1 + 3 + 2× 3 + 4Di+3 ≥ 14.

Case Di+3 = 1 If Di+2 = 1 we can refer to the first case. So, suppose that Di+2 ≥ 2. According
to the observation 2, all active S-boxes of round i + 2 belong to the same subgroup and each of
these active S-boxes has only a single bit difference in their output. Thus, according to observation
3, Di+1 ≥ 2Di+2 ≥ 4. Since all active S-boxes in round i+ 1 belong to distinct S-boxes of the same
group and have only a single bit difference in their input, according to observation 4, we have that
Di ≥ 2Di+1. On the opposite, Di+4 and Di+5 can get one and two as a minimum value, respectively.
Together this gives

∑i+5
j=iDj ≥ 8 + 4 + 2 + 1 + 1 + 2 ≥ 18.

Case Di+1 = 1 If Di+2 = 1, then we can refer to the first case. Thus, suppose that Di+2 ≥ 2.
According to observation 5, all active S-boxes in round i+2 belong to distinct groups and have only
a single bit difference in their input. Thus, according to observation 6, we have that Di+3 ≥ 2Di+2.
Since all active S-boxes in round i + 3 belong to distinct subgroups and have only a single bit
difference in their input. Therefore, according to observation 7, we have that Di+4 ≥ 2Di+3. To
sum up,

∑i+5
j=iDj ≥ 1+1+2+4+8+Di+5 ≥ 16+Di+5 ≥ 17, since Di+4 > 0 implies that Di+5 ≥ 1.

9

Subgroup 1

..15 2 1 0 3

 4203652

...31 16

 0 1 2 360616263

 7233955 3193551

...
15314763 12284460

...
8244056

60616263 60616263 0 1 2 3 0 1 2 3 0 1 2 3

11274359 03248 16 03248 16 03248 16 03248 16

60616263 4 5 6 7 8 9101112131415

63 324748

Group 4 Group 3 Group 2 Group 1

.

Fig. 3. The grouping and subgrouping of S-boxes for b = 256. The input numbers indicate the S-box
origin from the previous round and the output numbers indicate the destination S-box in the following
round.

Case Di+4 = 1 If Di+3 = 1, then we can refer to the second case. So, suppose that Di+3 ≥ 2.
According to the observation 2, all active S-boxes of round i+ 3 belong to the same subgroup and
each of those active S-boxes has only a single bit difference in their output. Therefore, according
to observation 3, we have that Di+2 ≥ Di+3. Since, all active S-boxes in round i + 2 belong to
distinct S-boxes of the same group and have only a single bit difference in their input, according
to observation 4, we have that Di+1 ≥ 2Di+2. Since Di+1 > 0, Di ≥ 1. Thus, we can conclude that∑i+5

j=iDj ≥ Di + 8 + 4 + 2 + 1 + 1 ≥ Di + 16 ≥ 17.
Cases Di = 1 and Di+5 = 1 are similar to the those for the third and fourth cases.

So far we have considered all paths including one active S-box in one of the rounds and obtained 14
as the minimum number of active S-boxes. But if there exists a path that has two active S-boxes in
each round, then the lower bound would be 12. For this purpose, without loss of generality, assume:

Di+1 = Di+2 = Di+3 = 2 The two active S-boxes in i+ 2 are either in the same subgroup
or in different subgroups. For the former, from observations 3 and 7, we know that they have
single bit of differences coming from two different subgroups of the same group in round i + 1.
From observation 1, these two S-boxes have at least two bits of input difference, hence we obtain
Di = 4 by observation 2 and 3. Furthermore the two S-boxes in round i + 2 have two bits of
output difference by observation 1. Hence, in round i+ 3, the active S-boxes have two bits of input
and they are in distinct groups by observation 5. Therefore, it is possible to have Di+4 = 2 in
distinct subgroups. Hence by using observation 7, we obtain Di+5 = 4. Thus, we can conclude that∑i+5

j=iDj ≥ 4 + 2 + 2 + 2 + 2 + 4 ≥ 16.

For the latter, the two active S-boxes in round i+1 must have two bits of input and by observation
2 their input bits should be coming from distinct S-boxes in the same subgroup. So, the problem
is reduced to the former case with one round of shift, and we can immediately say that Di = 2
and Di+4 = 4. Hence by using observation 7, we obtain Di+5 = 4. Thus, we can conclude that∑i+5

j=iDj ≥ 2 + 2 + 2 + 2 + 4 + 4 ≥ 16.

Based on these results, we conclude that the longest run with two active S-boxes in each round is
four rounds, and the number of active S-boxes cannot be less than 14.

For all spongent variants, we found that those 5- and 6-round bounds are actually tight. We
present the characteristics attaining them in Table 3. Additionally, we perform a branch-and-bound
search for longest characteristics with probabilities in the range of 2−b. The results are given in
Table 4, most of them based in iterative characteristics.

10

Table 4. Longest differential characteristics hold-
ing with probability in the range of 2−b (under
independency assumption)

rounds ASN Prob

spongent-88/80/8 17 34 2−88

spongent-88/176/88 27 103 2−268

spongent-128/128/8 20 56 2−137

spongent-128/256/128 42 146 2−385

spongent-160/160/16 20 66 2−179

spongent-160/160/80 44 88 2−242

spongent-160/320/160 48 192 2−480

spongent-224/224/16 44 88 2−242

spongent-224/224/112 26 133 2−343

spongent-224/448/224 - - -

spongent-256/256/16 30 108 2−276

spongent-256/256/128 31 150 2−392

spongent-256/512/256 85 256 2−768

3.2 Collision attacks

A natural approach to obtain a collision for a sponge construction is to inject a difference in
a message block and then cancel the propagated difference by a difference in the next message
block, i.e., (0 . . . 0||∆mi)

π→ (0 . . . 0||∆mi+1). For this purpose, we follow a narrow trail strategy
using truncated differential characteristics. We start from a given input difference (some difference
restricted to S-boxes that the message block is xored into) and look for all paths that go to a fixed
output difference (also located in the bitrate part of the state). Based on our experiments, even by
using truncated differential characteristics, the probability of such a path is quite low and it is not
possible to attack the full number of rounds.

Rebound attack The rebound attack [38], a recent technique for cryptanalysis of hash functions,
is applicable to both block cipher based and permutation based hash constructions. It consists of
two main steps: the inbound phase where the freedom is used to connect the middle rounds by
using the match-in-the-middle technique and the outbound phase where the connected truncated
differentials are calculated in both forward and backward directions. It has been mostly used to
improve the results on AES-based algorithms (ECHO [6], Grøstl [20], LANE [28], Whirlpool [5]),
but it has also been successfully applied to similar permutations (Luffa [30], Keccak [19]).

Compared to the other algorithms the rebound attack has been successfully applied to, the
design of spongent imposes some limitations. First of all, since the permutation is bit-oriented, and
not byte-oriented, it might be non-trivial to find the path followed by a given input difference and
to determine the number of active S-boxes after several rounds. This is mainly due to the difference
propagation that strongly depends on the values of the passive part of the state. Moreover, the
probability that two inbound phases match requires more detailed analysis. Below we attempt to
develop rebound attacks on several spongent variants. Rebound analysis applies similarly to the
remaining variants.

11

P
S

S
S

S
S

P
P

P
P

1
2

3
4

5

Fig. 4. Differential path for the rebound attack on spongent-128/256/128 (S: sBoxLayer384, P:
pLayer384).

For spongent-88/80/8, we looked for characteristics that match in the middle with the available
degrees of freedom coming from the message bits. For 5 and more rounds, when the whole state
is active in the matching phase, we would not be able to generate enough pairs by using only a
difference in the message bits. Since the expected probability of matching the inbound phases is
2−b/4 (where b/4 is the number of S-boxes) and the available degree of freedom is only 22r, this
argument is also valid for spongent-128/128/8, spongent-160/160/16, spongent-224/224/16,
and spongent-256/256/16. For other spongent variants there exist enough degrees of freedom
and we decided to explore it with one of the spongent variants.

It is trivial to find one round inbound phase in spongent and then by applying the outbound
phase for several rounds, which technically yields a differential characteristic. Since, one third of
the state is xored with the message value for the variants whose rate is different from 8 or 16,
we have enough flexibility to diffuse the difference through forward and backward direction. But
then, merging these differential characteristics seems difficult due to the limited number of pairs
generated in the inbound phase.

In our example which is given in Figure 4, we focused on spongent-128/256/128 and found a
five-round trail by following the strategy outlined above. In our attack, we fix the input and output
differences of sBoxLayer in the fourth round. For a half of the differences, we fix the difference to
1x → 3x and for the other half it is possible to fix the difference to either 4x → 3x or 8x → 3x, but
not both together. Then, we let the differences diffuse for three rounds in the backward direction
and for one round in the forward direction. All possible positions of the active bits are shown in
black in Figure 4. Note that in round 5, we impose a restriction on the outputs of the SBoxLayer
such that the differences occur only in the bitrate part.

It is possible to generate 411 · 211 = 233 pairs in the inbound phase and a pair can satisfy the
desired differential trail with a probability of Pr[Bx → {1x, 2x}]6 ·Pr[Dx → {1x, 2x, 3x}]6 ·Pr[6x →
{1x, 2x}]4 = 2−26.15. Therefore, in total, we expect to have 26.85 valid pairs that satisfy the given
path.

12

Bound considerations for the rebound attack The adversary might try to find a way to
attack by using multiple inbounds with a sparse differential. Therefore, to explore the security
against multiple inbound phases, we put the adversary into a best-case scenario as follows.

We know that there exists no differential characteristic over five rounds with the number of
active S-boxes less than 10 for all spongent variants. We can also deduce lower bounds on the
number of active S-boxes for 1, 2, 3, and 4 rounds as 1, 2, 4 and 6, respectively. Then a bound on
the minimum number of active S-boxes, hence the probability of a differential characteristic, for
any number of rounds can be approximated by combining these bounds.4

The desired bit security level for a sponge construction with respect to collision attacks is c/2.
From now on we assume that the complexity of each inbound phase is equal to c/2 and at least one
active S-box matches between two inbound phases (with probability 2−8). Let nin be the number
of inbound phases then we have to generate nelm = 28·(nin−1)/nin elements for each inbound phase.
Let p denote the probability of each inbound phase, then p can be at least 2−(c/2−dlog2(nelm)e) and
we can compute the number of rounds in each inbound phase by using the given bounds above.

Under these assumptions, the maximum number of rounds per inbound phase and the percentage
of the total number of rounds attacked is given in Table 5.

Table 5. Bounds for rebound attack.

2 Inbounds 3 Inbounds
rounds attacked rounds attacked

/inbound rounds(%) /inbound rounds(%)

spongent-88/80/8 9 40.00 9 60.00
spongent-88/176/88 10 14.81 9 20.00

spongent-128/128/8 15 42.86 14 60.00
spongent-128/256/128 14 14.36 13 20.00

spongent-160/160/16 19 42.22 19 63.33
spongent-160/160/80 19 31.67 19 47.50
spongent-160/320/160 17 14.17 16 20.00

spongent-224/224/16 28 46.67 27 67.50
spongent-224/224/112 23 27.06 23 40.59
spongent-224/448/224 23 13.53 23 20.29

spongent-256/256/16 28 40.00 27 57.86
spongent-256/256/128 28 28.72 27 41.54
spongent-256/512/256 28 14.55 27 21.04

3.3 Preimage resistance

Here we apply a meet-in-the-middle approach to obtain preimages on spongent. The attack has
two main steps: pre-computation and matching phase. Complexity of the attack is dominated by
pre-computation phase.

Since the hash size is n bits, and the data is extracted in r bit chunks, there exists n/r rounds
in the squeezing phase. To be able to compute the data backwards in the absorbing phase, we need
to know not only hi’s but also di values to obtain the input value of the permutation π, where
hi denotes the part of the hash value and di is the concatenated part to hi. The algorithm is as
follows:
4 Note that, Table 3 shows that these bounds might be optimistic.

13

1. Pre-computation: We know that π−1(hi+1, di+1) = (hi, di) for each i in the squeezing phase.
Since hi (r-bits) is already fixed, the probability of finding such di is 2−r. Therefore, we start
with 2((n/r)−1)·r = 2n−r different dn/r values to have a solution for d1.

2. Match-in-the-middle: Choose k such that k · r ≥ c/2. Then

– Generate 2c/2 elements in the backward direction by using (h1, d1) and possible values for
mk+2, . . . ,m2k+1 and store them in a table.

– Generate 2c/2 elements in the forward direction by using possible values for m1, . . . ,mk and
compare with list in the previous step to find a match of c bits (corresponding to capacity)
in the middle.

– Obtain mk+1 by xor-ing the r bits (corresponding to bitrate) for the matching elements.

In the pre-computation part, we obtain the required value d1 to compute the data backwards in
the absorbing phase by 2n−r computations. We need 2c/2 memory to store the elements generated
in the second step and 2c/2 computations are needed to find a full match. These complexities are
exactly given in [50] which extends the bounds given in [15] for c > n. We have derived those once
again here for completeness. The preimage attack complexities together with the parameter k are
given in Table 6.

Table 6. Meet-in-the-middle attack results for spongent.

Time Complexity Memory Complexity

k max(2n−r, 2c/2) (2c/2)

spongent-88/80/8 5 280 240

spongent-88/176/88 1 288 288

spongent-128/128/8 8 2120 264

spongent-128/256/128 1 2128 2128

spongent-160/160/16 5 2144 280

spongent-160/160/80 1 280 280

spongent-160/320/160 1 2160 2160

spongent-224/224/16 7 2208 2112

spongent-224/224/112 1 2112 2112

spongent-224/448/224 1 2224 2224

spongent-256/256/16 8 2240 2128

spongent-256/256/128 1 2128 2128

spongent-256/512/256 1 2256 2256

Note that, if c ≤ n − r, it is sufficient to try all possible 2c values to construct the whole
state in order to obtain a preimage, hence it provides an upper bound for the preimage resis-
tance. If we combine the results we obtain max(2min(n−r,c), 2c/2) and it can be generalized into the
form: min(2min(n, c+r),max(2min(n−r, c), 2c/2)). Here, 2min(n, c+r) computations will be necessary
depending on the permutation size when the generic attack, defined above, fails.

3.4 Linear attacks

The most successful attacks, the attacks that can break the highest number of rounds, for the block
cipher present are those based on linear approximations. In particular the multi-dimensional linear
attack [13] and the statistical saturation attack [14] claim to break up to 26 rounds. It was shown in

14

dd dd

hn/r

. . .

m1 m2 mk

π

mk+2mk+1

πππππ π πππ

0

0

Match−in−the−Middle

.

Pre−computation

.

1 2 3 n/r

mk+3 m2k+1 h1 h2 h3

Fig. 5. Meet-in-the-middle attack against sponge construction.

[33] that both attacks are closely related. Moreover, the main reason why these attacks are the most
successful attacks on present so far, is the existence of many linear trails with only one active S-box
in each round. It is not immediately clear how linear distinguishers on the spongent permutation
πb could be transferred into collision or (second) pre-image attacks on the hash function. However,
as we claim that spongent is a hermetic sponge construction, the existence of such distinguishers
has to be excluded. So the spongent S-box was chosen in a way that allows for at most one trail
with this property given a linear approximation.

Unlike for the block cipher present, where the key determines the actual linear correlation
between an input and an output mask, for the permutation πb we can compute the actual linear
trail contribution for all trails with only one active S-box in every round. Each such trail over w
rounds has a correlation of ±2−2w and for each trail determining the sign is easy. More concretely,
one can easily compute a b× b matrix Mt over the rationals such that the entry at position i, j is
the correlation coefficient for round t for the linear trail with input mask ei and output mask ej .
Here ei (resp. ej) is the unit vector with a single 1 at position i (resp. j). Note that the matrices Mt

are sparse and all very similar, the only difference is caused by the round constant, which induces
sign changes at a few positions only.

Given those matrices, it is now possible to compute the maximal linear correlation contribution
for those one bit intermediate masks for all one bit input and output masks. For w rounds we

simply compute M (w) =
∏w
i=1Mi and the maximal correlation is given by cw := maxi,j |M (w)

ij |. We
compute this value for all spongent variants. Table 7 summarizes those results. Most importantly,
this table shows the maximal number of rounds w where the trail contributions is still larger than
or equal to 2−b/2. Beyond this number of rounds, it seems unlikely that distinguishers based on
linear approximations exist. For most spongent variants, the best linear hull based on single-bit
masks has exactly one linear trail.

4 Hardware Implementations

In this section we provide a wide range of hardware figures by evaluating all of the 13 spongent
variants in detail. Not only a comprehensive hardware evaluation is of our primary interest, we also
further elaborate on the importance of having the unified benchmarking platform for comparing
different lightweight designs. To further stress on the latter issue, we provide the results using four
different CMOS technologies. For a thorough evaluation of area, throughput, maximum frequency,
and power consumption, we use the UMC 130 nm CMOS generic process (UMC130) provided

15

Table 7. Results of linear trail correlation based on one bit masks.

b max w with R log2 cR
cw ≥ 2−b/2

spongent-88/80/8 88 22 45 −90
spongent-88/176/88 264 66 135 −270

spongent-128/128/8 136 34 70 −140
spongent-128/256/128 384 96 195 −388.4

spongent-160/160/16 176 44 90 −180
spongent-160/160/80 240 60 120 −240
spongent-160/320/160 480 122 240 −473.7

spongent-224/224/16 240 60 120 −240
spongent-224/224/112 336 84 170 −340
spongent-224/448/224 673 169 340 −675.3

spongent-256/256/16 272 68 140 −280
spongent-256/256/128 384 96 195 −388.4
spongent-256/512/256 768 192 385 −770

by the Faraday corporation5. Moreover, we provide the estimates of the circuit area using three
other libraries: UMC 180 nm CMOS generic process (UMC180), an open source NANGATE 45 nm
CMOS technology (NANGATE45) [40] as well as the advanced 90 nm CMOS standard cell library
provided by NXP Semiconductors (NXP90).

In order to provide very compact implementations, we first focus on serialized designs. We ex-
plore different datapath sizes (d) for each of the spongent variants and we focus on d ∈ {4, 8, b2 , b}.
An architecture representing our serialized datapath is depicted in Fig. 6(a). The control logic con-
sists of a single counter for the cycle count and some extra combinational logic to drive the select
signals of the multiplexers. In order to further reduce the area we use so-called scan flip-flops, which
act as a combination of two input multiplexer and an ordinary D flip-flop6. Instead of providing
a reset signal to each flip-flop separately, we use two zero inputs at the multiplexers M1 and M2

to correctly initialize all the flip-flops. This additionally reduces hardware resources, as the scan
flip-flops with a reset input approximately require an additional GE per bit of storage. With gi we
denote the value of lCounterb(i) in round i. lCounterb(i) is implemented as an LFSR as explained
in Subsection 2.3. The input of the message block m, denoted with dashed line, is omitted in some
cases, i.e. d ≥ r. The pLayer module requires no additional logic except some extra wiring.

Using the most serialized implementation, the smallest variant of the spongent family, spongent-
88/80/8, can be implemented using only 738 GE. Even the largest member of the family, spongent-
256/512/256, consumes only 5.1 kGE, while providing 256 bits of preimage and second preimage
security, and 128 bits of collision resistance. Though some of this advantage is at the expense of
a performance reduction, also less serialized (and, thus, faster) implementations result in area re-
quirements significantly lower than 10 kGE. To demonstrate this, we implement all the spongent
variants as depicted in Fig. 6(b). Every round now requires a single clock cycle, therefore resulting
in faster, yet rather compact designs.

5 The choice of the UMC130 library for our hardware implementation is driven by the size of a single scan flip-flop.
One scan flip-flop in our UMC180 is 6.67 GE large, while in UMC130 it consists of 6.25 GE. In [21], for example,
a scan flip-flop of only 6 GE has been reported.

6 Scan flip-flops are typically used to provide scan-chain based testability of the circuit. Due to the security issues
of scan-chain based testing [51], other methods such as Built-In-Self-Test (BIST) are recommended for testing the
cryptographic hardware.

16

r

pLayer

state

m

r

r

gi

8

r

4 4 4

b

. . .

r

r

4

4

4

4

4

4

sBox sBox sBox r/4 × sBox

rM

(b)

4 4

gi [0..3] gi [4..7]

sBox

Layer

m

gi
0

0

. . .

d
d

d d
d d d

d d

dd

d

d

d-bit

FF
d-bit

FF
d-bit

FF

pLayer

d d d d d d

scan-FF
scan-FF

scan-FFM1

M2

(a)

Fig. 6. Hardware architecture representing (a) serial datapath (b) parallel datapath of the spon-
gent variants.

Another courtesy of our proposal is the result of 5 times unrolled design of spongent variants
which, all running at the maximum frequency of about 600 MHz, provide a throughput between
360 Mbps and 2 Gbps (depending on the variant) and consume between 5 kGE and 48 kGE.

Next, we present the obtained hardware figures for all of the spongent variants. For the
purpose of extensive hardware evaluation we use Synopsys Design Compiler version D-2010.03-SP4
and target the High-Speed UMC 130 nm CMOS generic process provided by Faraday Technology
Corporation (fsc0h d tc).

The power is estimated by observing the internal switching activity of the complete design.
Using Mentor Graphics ModelSim version 10.0 SE, we simulate the circuits’ behavior for very long
messages and generate the VCD (Value Change Dump) files. The VCD files are then converted
to the backward SAIF (Switching Activity Interchange Format) files and used within Synopsys
Design Compiler for the accurate estimation of the mean power consumption. A typical frequency
of 100 kHz is used for all measurements.

Table 8 reports hardware figures obtained using the aforementioned methodology. For the sake
of comparison, we include figures for several state-of-the-art lightweight hash functions. We also
include two out of five SHA-3 finalists for which the data of compact hardware implementations
is publicly available. We do not compare our design with software-like solutions that benefit from
using an external memory for storing the intermediate data. Figure 7 illustrates the wide spectrum
of our explored design space, where a typical trade-off between speed and area is scrutinized.

4.1 A Fair Comparison – Mission (Im)possible

A fair comparison of hardware performance between different designs has already been discussed
in the literature [17,4]. It is rather obvious that such comparison is only possible once the highly
optimized designs are implemented on the same hardware platform, using the same standard cell
library and the same synthesis tools (including the design flow scripts). And this all, finally repeated
over many different instances (libraries, tools, scripts, etc). However, mainly due to the licensing
issues and the designer’s preference to use a certain software package, this becomes a very difficult
task in practice.

17

Table 8. Hardware performance of the spongent family and comparison with state-of-the-art
lightweight hash designs. The nominal frequency of 100 kHz is assumed in all cases and the power
consumption is therefore adjusted accordingly.

Hash function
Security (bit) Hash Cycles Datapath Process Area Throughput Power*

Pre. Coll. 2nd Pre. (bit) (bit) (µm) (GE) (kbps) (µW)

spongent-88/80/8 80 40 40 88
990 4 0.13 738 0.81 1.57
45 88 0.13 1127 17.78 2.31

spongent-88/176/88 88 44 88 88
8910 4 0.13 1912 0.99 3.4
135 264 0.13 3450 65.19 7.5

spongent-128/128/8 120 64 64 128
2380 4 0.13 1060 0.34 2.20
70 136 0.13 1687 11.43 3.58

spongent-128/256/128 128 64 128 128
18720 4 0.13 2641 0.68 6.1
195 384 0.13 5011 65.64 10.9

spongent-160/160/16 144 80 80 160
3960 4 0.13 1329 0.40 2.85
90 176 0.13 2190 17.78 4.47

spongent-160/160/80 80 80 80 160
7200 4 0.13 1730 1.11 3.4
120 240 0.13 3139 66.67 6.8

spongent-160/320/160 160 80 160 160
28800 4 0.13 3264 0.56 8.2
240 480 0.13 6237 66.67 13.6

spongent-224/224/16 208 112 112 224
7200 4 0.13 1728 0.22 3.73
120 240 0.13 2903 13.33 5.97

spongent-224/224/112 112 112 112 224
14280 4 0.13 2371 0.78 5.0
170 336 0.13 4406 65.88 9.6

spongent-224/448/224 224 112 224 224
57120 4 0.13 4519 0.39 11.5
340 672 0.13 8726 65.88 19.2

spongent-256/256/16 240 128 128 256
9520 4 0.13 1950 0.17 4.21
140 272 0.13 3281 11.43 6.62

spongent-256/256/128 128 128 128 256
18720 4 0.13 2641 0.68 6.1
195 384 0.13 5011 65.64 10.9

spongent-256/512/256 256 128 256 256
73920 4 0.13 5110 0.35 12.8
385 768 0.13 9944 66.49 21.9

photon-80/20/16 [21] 64 40 40 80
708 4 0.18 865 2.82 1.59
132 20 0.18 1168 12.15 2.70

photon-128/16/16 [21] 112 64 64 128
996 4 0.18 1122 1.61 2.29
156 24 0.18 1708 10.26 3.45

photon-160/36/36 [21] 124 80 80 160
1332 4 0.18 1396 2.70 2.74
180 28 0.18 2117 20.00 4.35

photon-224/32/32 [21] 192 112 112 224
1716 4 0.18 1735 1.86 4.01
204 32 0.18 2786 15.69 6.50

photon-256/32/32 [21] 224 128 128 256
996 8 0.18 2177 3.21 4.55
156 48 0.18 4362 20.51 8.38

u-Quark [1] 120 64 64 128
544 1 0.18 1379 1.47 2.44
68 8 0.18 2392 11.76 4.07

d-Quark [1] 144 80 80 160
704 1 0.18 1702 2.27 3.10
88 8 0.18 2819 18.18 4.76

s-Quark [1] 192 112 112 224
1024 1 0.18 2296 3.13 4.35
64 16 0.18 4640 50.00 8.39

dm-present-80 [11] 64 32 64 64
547 4 0.18 1600 14.63 1.83
33 64 0.18 2213 242.42 6.28

dm-present-128 [11] 64 32 64 64
559 4 0.18 1886 22.90 2.94
33 128 0.18 2530 387.88 7.49

h-present-128 [11] 128 64 64 128
559 8 0.18 2330 11.45 6.44
32 128 0.18 4256 200.00 8.09

c-present-192 [11] 192 96 192 192
3338 12 0.18 4600 1.90 -
108 192 0.18 8048 59.26 9.31

Keccak-f[400] [29] 160 80 160 160
1000 16 0.13 5090 14.40 11.50
20 16 0.13 10560 720.00 78.10

Keccak-f[200] [29] 128 64 128 128
900 8 0.13 2520 8.00 5.60
18 8 0.13 4900 400.00 27.60

SHA-1 [31] 160 80 160 160 450 32 0.25 6812 113.78 11.00
SHA-256 [32] 256 128 256 256 490 32 0.25 8588 104.48 11.20

BLAKE [26] 256 128 256 256 816 32 0.18 13575 62.79 11.16
Grøstl [48] 256 128 256 256 196 64 0.18 14622 261.14 221.00

* The power figures rather serve an illustration purpose. A comparison between different technologies is difficult.

18

0

2000

4000

6000

8000

10000

12000

0.1 1 10 100

A
re

a
[G

E]
 @

 1
0

0
 k

H
z

Throughput [kbps] @ 100 kHz

SPONGENT-88/80/8 SPONGENT-256/256/128

SPONGENT-128/128/8 SPONGENT-88/176/88

SPONGENT-160/160/16 SPONGENT-128/256/128

SPONGENT-224/224/16 SPONGENT-160/320/160

SPONGENT-256/256/16 SPONGENT-224/448/224

SPONGENT-160/160/80 SPONGENT-256/512/256

SPONGENT-224/224/112

Fig. 7. Area versus throughput trade-off of the spongent hash family.

To partially address this issue and in order to avoid any ambiguity we provide Table 9 with
area requirements of the basic building cells from our UMC130 library. The library contains many
other cells and we only outline ones that are of particular interest to us. Several special cells acting
as a combination of two or more basic gates (e.g. AO is a combination of AND and OR) are also
used very often and are appropriate for reducing the physical size of the design. The size of these
cells varies, mainly depending on the driving strength of the cell and its input capacitance. The
final design provided by the synthesis tool will therefore be driven by many internal factors, e.g.
speed constraints, physical area constraints, fan-in, fan-out, length of the wires, and many others.

Moreover, we provide Table 10 where the same spongent RTL designs were synthesized using
four different libraries. Compared to our UMC130 library, the overhead of UMC180 and NAN-
GATE45 libraries ranges up to 13 % and 20 %, respectively, while the NXP90 library results in
smaller area up to 32 %, which represents a significant margin (the size is compared using gate
equivalences).

The main cause of the above described variance is a different cells’ size, which is directly related
to the library type. A single scan flip-flop consumes at least 6.25 GE and 6.67 GE in UMC130
and UMC180, respectively. The NXP90 library has significantly smaller flip-flops which are the
main area consumers in the case of spongent family. On the other hand, NANGATE45 (with a
scan flip-flop of 7.67 GE) is an open core library and seems to be a good candidate for accurate
comparison between different lightweight designs.

5 Conclusion

In this work, we have explored the design space of lightweight cryptographic hashing by proposing
the family of new hash functions spongent tailored for resource-constrained applications. We
consider 5 hash sizes for spongent – ranging from the ones offering mainly preimage resistance
only to those complying to (a subset of) SHA-2 and SHA-3 parameters. For each parameter set,

19

Table 9. Area requirements of selected standard cells in our UMC 130 nm library.

Standard cell
Number Area Area
of inputs [µm2] [GE]

D flip-flop 1 20 – 40 5 – 10
Scan flip-flop 1 25 – 47 6.25 – 11.75

NOT 1 3 – 28 0.75 – 7

2 4 – 23 1 – 5.75
NAND 3 6 – 14 1.5 – 3.5

4 12 – 18 3 – 4.5

2 4 – 40 1 – 10
NOR 3 6 – 13 1.5 – 3.25

4 11 – 19 2.75 – 4.75

2 5 – 19 1.25 – 4.75
AND 3 7 – 16 1.75 – 4

4 10 – 33 2.5 – 8.25

OR
2 5 – 25 1.25 – 6.25
3 7 – 26 1.75 – 6.5

2 11 – 16 2.75 – 4
XOR 3 22 – 26 5.5 – 6.5

4 30 – 31 7.5 – 7.75

AO, AN

6 6 – 17 1.5 – 4.25
4 6 – 21 1.5 – 5.25
6 10 – 25 2.5 – 6.25
8 15 – 18 3.75 – 4.5

OA, NA

6 5 – 21 1.25 – 5.25
4 6 – 21 1.5 – 5.25
6 9 – 18 2.25 – 4.5
8 15 – 18 3.75 – 4.5

2 9 – 28 2.25 – 7
MUX 3 16 – 27 4 – 6.75

4 25 – 35 6.25 – 8.75

AO = AND and OR, AN = AND and NOR,
OA = OR and AND, NA = NOR and AND.

we instantiate spongent using up to three competing security paradigms (all of them offering
full collision security): reduced second-preimage security, reduced preimage and second-preimage
security, as well as full preimage and second-preimage security. Each parametrization accounts
for its unique implementation properties in terms of ASIC hardware footprint, performance and
time-area product, which are analyzed in the article. We also perform security analysis in terms of
differential properties, linear distinguishers, and rebound attacks.

Acknowledgements. Andrey Bogdanov is a postdoctoral fellow of the Fund for Scientific Research
- Flanders (FWO). This work is supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State, by FWO project G.0300.07, by the European Commission under contract number
ICT-2007-216676 ECRYPT NoE phase II, by K.U.Leuven-BOF (OT/08/027 and OT/06/40), and
by the Research Council K.U.Leuven: GOA TENSE. We would like to thank the reviewers of
CHES’11 and LC’11 for their comments.

20

Table 10. Area of the spongent family compared using four different standard cell libraries.

Datapath Area (GE)
(bit) UMC UMC NANGATE NXP

130 nm 180 nm 45 nm 90 nm

spongent-88/80/8
4 738 759 869 521
88 1127 1232 1237 883

spongent-88/176/88
4 1912 1965 2264 1308

264 3450 3847 3633 2553

spongent-128/128/8
4 1060 1103 1257 737

136 1687 1855 1831 1279

spongent-128/256/128
4 2641 2724 3183 1813

384 5011 5581 5715 4167

spongent-160/160/16
4 1329 1367 1572 918

176 2190 2241 2406 1752

spongent-160/160/80
4 1730 1769 2066 1192

240 3139 3434 3612 2650

spongent-160/320/160
4 3264 3340 3931 2232

480 6237 6949 7163 5262

spongent-224/224/16
4 1728 1768 2070 1192

240 2903 3203 3220 2334

spongent-224/224/112
4 2371 2422 2827 1621

336 4406 4900 4611 3197

spongent-224/448/224
4 4519 4625 5430 3069

672 8726 9696 9751 6932

spongent-256/256/16
4 1950 2012 2323 1340

272 3281 3721 3639 2612

spongent-256/256/128
4 2641 2724 3183 1813

384 5011 5581 5713 4213

spongent-256/512/256
4 5110 5232 6163 3471

768 9944 11054 10778 7426

21

References

1. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight Hash. In: Mangard and
Standaert [37], pp. 1–15

2. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Protocol. In: PerCom Workshops.
pp. 110–114. IEEE Computer Society (2005)

3. Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw and Billet [42], pp. 191–209
4. Badel, S., Dagtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Susil, P., Vaudenay, S.: ARMADILLO:

A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In: Mangard and Standaert [37], pp. 398–412
5. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function. In: Proceedings of the 1st NESSIE Workshop.

p. 15. Leuven,B (2000)
6. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Pro-

posal: ECHO. Submission to NIST (updated) (2009), http://crypto.rd.francetelecom.com/echo/doc/echo_
description_1-5.pdf

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of the Sponge Construction. In:
Smart, N.P. (ed.) EUROCRYPT’08. LNCS, vol. 4965, pp. 181–197. Springer (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-Based Pseudo-Random Number Generators. In:
Mangard and Standaert [37], pp. 33–47

9. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: SPONGENT: A Lightweight
Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES’11. LNCS, vol. 6917, pp. 312–325. Springer (2011)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES’07. LNCS, vol.
4727, pp. 450–466. Springer (2007)

11. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID
Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES’08. LNCS, vol. 5154, pp. 283–299. Springer (2008)

12. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS - An Improved Merkle Signature
Scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT’06. LNCS, vol. 4329, pp. 349–363. Springer (2006)

13. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA’10. LNCS, vol.
5985, pp. 302–317. Springer (2010)

14. Collard, B., Standaert, F.X.: A Statistical Saturation Attack against the Block Cipher PRESENT. In: Fischlin,
M. (ed.) CT-RSA’09. LNCS, vol. 5473, pp. 195–210. Springer (2009)

15. Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. Ecrypt Hash Workshop 2007 (2007), http://www.
csrc.nist.gov/pki/HashWorkshop/PublicComments/2007May.html

16. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. In: Kat-
sikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC’06. LNCS, vol. 4176, pp. 171–186. Springer
(2006)

17. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES’09. LNCS, vol. 5747, pp. 272–288.
Springer (2009)

18. De Cannière, C., Preneel, B.: Trivium. In: Robshaw and Billet [42], pp. 244–266
19. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Application to Keccak. Cryptology ePrint

Archive, Report 2011/420 (2011), http://eprint.iacr.org/2011/420
20. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.:

Grøstl – a SHA-3 candidate. Submission to NIST (Round 3) (2011), http://www.groestl.info/Groestl.pdf
21. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway [43], pp.

222–239
22. Hein, D.M., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID - A Proof in Silicon. In: Avanzi, R.M., Keliher,

L., Sica, F. (eds.) SAC’08. LNCS, vol. 5381, pp. 401–413. Springer (2008)
23. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream Ciphers. In: Robshaw and Billet

[42], pp. 179–190
24. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments. IJWMC 2(1), 86–93

(2007)
25. Henzen, L., Aumasson, J.P., Meier, W., Phan, R.C.W.: VLSI Characterization of the Cryptographic Hash Func-

tion BLAKE. http://131002.net/data/papers/HAMP10.pdf (2010)
26. Henzen, L., Aumasson, J.P., Meier, W., Phan., R.C.W.: VLSI Characterization of the Cryptographic Hash

Function BLAKE (2010), available at http://131002.net/data/papers/HAMP10.pdf

22

http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf
http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html
http://eprint.iacr.org/2011/420
http://www.groestl.info/Groestl.pdf
http://131002.net/data/papers/HAMP10.pdf
http://131002.net/data/papers/HAMP10.pdf

27. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim,
J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.)
CHES’06. LNCS, vol. 4249, pp. 46–59. Springer (2006)

28. Indesteege, S.: The LANE hash function. Submission to NIST (2008), http://www.cosic.esat.kuleuven.be/
publications/article-1181.pdf

29. Kavun, E., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification
Applications. In: Ors Yalcin, S. (ed.) Radio Frequency Identification: Security and Privacy Issues, LNCS, vol.
6370, pp. 258–269. Springer Berlin / Heidelberg (2010)

30. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of Luffa v2 Components. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas in Cryptography. LNCS, vol. 6544, pp. 388–409.
Springer (2010)

31. Kim, M., Ryou, J.: Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing.
In: Proceedings of the 9th international conference on Information and communications security. pp. 375–385.
ICICS’07, Springer (2007)

32. Kim, M., Ryou, J., Jun, S.: Efficient Hardware Architecture of SHA-256 Algorithm for Trusted Mobile Computing.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt. LNCS, vol. 5487, pp. 240–252. Springer (2008)

33. Leander, G.: On linear hulls, statistical saturation attacks, present and a cryptanalysis of puffin. In: Paterson,
K.G. (ed.) EUROCRYPT’11. LNCS, vol. 6632, pp. 303–322. Springer (2011)

34. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of PRINTcipher: The Invariant
Subspace Attack. In: Rogaway [43], pp. 206–221

35. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov, A. (ed.)
FSE’07. LNCS, vol. 4593, pp. 196–210. Springer (2007)

36. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and
Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA’05. LNCS, vol. 3786, pp. 243–258. Springer (2005)

37. Mangard, S., Standaert, F.X. (eds.): Cryptographic Hardware and Embedded Systems, CHES 2010, 12th In-
ternational Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, LNCS, vol. 6225. Springer
(2010)

38. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE’09. LNCS, vol. 5665, pp. 260–276. Springer (2009)

39. Merkle, R.: Secrecy, authentication and public key systems / A certified digital signature. Ph.D. thesis, Dept. of
Electrical Engineering, Stanford University (1979)

40. NANGATE: The NanGate 45nm Open Cell Library, available at http://www.nangate.com

41. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An Efficient and Secure RFID Security Method with Own-
ership Transfer. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS. LNCS, vol. 4456, pp. 778–787. Springer (2006)

42. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986.
Springer (2008)

43. Rogaway, P. (ed.): Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings, LNCS, vol. 6841. Springer (2011)

44. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast Hash-Based Signatures on Constrained
Devices. In: Grimaud, G., Standaert, F.X. (eds.) CARDIS’08. LNCS, vol. 5189, pp. 104–117. Springer (2008)

45. Shoufan, A.: An FPGA Accelerator for Hash Tree Generation in the Merkle Signature Scheme. In: Sirisuk, P.,
Morgan, F., El-Ghazawi, T.A., Amano, H. (eds.) ARC’10. LNCS, vol. 5992, pp. 145–156. Springer (2010)

46. Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A Scalable Encryption Algorithm for Small
Embedded Applications. Presented at the Workshop on RFID and Light-Weight Crypto in Graz, Austria (2005)

47. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Muehlberghuber, M., Neubauer, G., Reiter, A.,
Koefler, A., Mayrhofer, M.: Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE,
Grøstl, and Skein. Cryptology ePrint Archive, Report 2009/349 (2009)

48. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M., Neubauer, G., Reiter, A., Köfler,
A., Mayrhofer, M.: Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl,
and Skein. Cryptology ePrint Archive, Report 2009/349 (2009), available at http://eprint.iacr.org/2009/349

49. Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In: PerCom Workshops. pp. 640–643.
IEEE Computer Society (2006)

50. Van Assche, G.: Errata for Keccak presentation. E-mail sent to the NIST SHA-3 mailing list on Feb 7 2011, on
behalf of the Keccak team (2011)

51. Yang, B., Wu, K., Karri, R.: Scan Based Side Channel Attack on Dedicated Hardware Implementations of Data
Encryption Standard. International Test Conference pp. 339–344 (2004)

23

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.nangate.com
http://eprint.iacr.org/2009/349

	SPONGENT: The Design Space of Lightweight Cryptographic Hashing
	Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and Ingrid Verbauwhede

