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Abstract. We prove a higher dimensional generalization of Gross and Zagier’s theorem on the factoriza-

tion of differences of singular moduli. Their result is proved by giving a counting formula for the number

of isomorphisms between elliptic curves with complex multiplication by two different imaginary quadratic
fields K and K′, when the curves are reduced modulo a supersingular prime and its powers. Equivalently,

the Gross-Zagier formula counts optimal embeddings of the ring of integers of an imaginary quadratic

field into particular maximal orders in Bp,∞, the definite quaternion algebra over Q ramified only at p
and infinity. Our work gives an analogous counting formula for the number of simultaneous embeddings

of the rings of integers of primitive CM fields into superspecial orders in definite quaternion algebras

over totally real fields of strict class number 1. Our results can also be viewed as a counting formula
for the number of isomorphisms modulo p|p between abelian varieties with CM by different fields. Our

counting formula can also be used to determine which superspecial primes appear in the factorizations

of differences of values of Siegel modular functions at CM points associated to two different CM fields,
and to give a bound on those supersingular primes which can appear. In the special case of Jacobians of

genus 2 curves, this provides information about the factorizations of numerators of Igusa invariants, and
so is also relevant to the problem of constructing genus 2 curves for use in cryptography.

1. Introduction

The celebrated theorem of Gross and Zagier [GZ] gives a factorization of norms of differences of singular
moduli: values of the modular j-function evaluated at CM points associated to imaginary quadratic fields.
Let K and K ′ be two imaginary quadratic fields with relatively prime fundamental discriminants d and
d′. For τ and τ ′ running through equivalence classes of imaginary quadratic integers in the upper half
plane modulo SL2(Z) with disc(τ) = d, disc(τ ′) = d′, and w and w′ equal to the number of roots of unity
in K and K ′ respectively, define

J(d, d′) = (
∏

[τ ],[τ ′]

(j(τ)− j(τ ′))) 4
ww′ .

Then the theorem of Gross and Zagier states that if λ is a prime of OK of characteristic p, then

ordλJ(d, d′) =
1

2

∑
x∈Z

∑
n≥1

δ(x)R

(
dd′ − x2

4pn

)
,

where R(m) is the number of ideals of OK of norm m, and δ(x) = 1 unless x is divisible by d, in which case
it is 2. Their results can also be viewed as a counting formula for the number of isomorphisms between the
reductions modulo primes and their powers of elliptic curves with complex multiplication by two different
imaginary quadratic fields K and K ′. This in turn is equivalent to counting optimal embeddings of the ring
of integers of an imaginary quadratic field into particular maximal orders in Bp,∞, the definite quaternion
algebra over Q ramified only at p and infinity. Gross and Zagier gave an algebraic proof of this result
under the additional assumption that d is prime, and the algebraic proof of the theorem was extended to
arbitrary fundamental, relatively prime discriminants in a series of papers by Dorman [Dor1],[Dor2],[Dor3].

In this paper we prove a generalization to higher dimensions of Gross and Zagier’s theorem, which can
also be viewed in three ways as 1) a statement about primes in the factorization of differences of values
of Siegel modular functions at CM points associated to two different CM fields; 2) a counting formula for
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isomorphisms modulo p between abelian varieties with CM by different fields; and 3) a counting formula
for simultaneous embeddings of the rings of integers of two primitive CM fields into superspecial orders in
certain definite quaternion algebras over a totally real field.

First we explain our interest in these three contexts. Assume throughout that K and K ′ are primitive
CM fields with a common totally real subfield K+ = K ′

+
= L and [L : Q] = g where L has strict class

number 1. In the special case of g = 2 we are inspired by some concrete calculations of values of certain
Siegel modular functions at CM points associated to primitive quartic CM fields. Let C and C ′ be two
genus 2 curves whose Jacobians J and J ′ have complex multiplication (CM) by K and K ′. In analogy with
the modular j-invariant for elliptic curves, for genus 2 curves Igusa defined 10 modular invariants. Equality
of these 10 invariants determines whether two curves are isomorphic geometrically, so primes appearing
in the factorization of all 10 differences correspond to primes where the curves become isomorphic when
reduced modulo that prime. Concrete calculations and the tables of van Wamelen suggest that such primes
are “small”. An explicit characterization of such primes gives information about the numerators of Igusa
invariants and thus has some value computationally as well.

Thus we are led to be interested in counting the number of isomorphisms modulo various primes and
their powers between abelian varieties with CM by two different CM fields K and K ′. The existence
of an isomorphism modulo p between abelian varieties with CM by two different CM fields K and K ′

with K+ = K ′
+

implies supersingular reduction modulo p. Fixing an abelian variety A with CM by
K, each isomorphism modulo p with an abelian variety A′ with CM by K ′ gives an embedding of OK′
into EndOL(A). In the case of superspecial reduction, we can give very explicit descriptions of the orders
EndOL(A), which allows us to derive a formula which counts such embeddings.

Goren and Nicole have introduced the notion of superspecial orders in definite quaternion algebras
over totally real fields as a generalization of maximal orders in definite quaternion algebras over Q (see
the thesis of Nicole [Nic1] and the related paper [Nic2]). These orders were further studied in [CGL1,
CGL2, GL3] where related Ramanujan graphs were constructed and certain cryptographic applications
suggested. Throughout this paper assume that p is a prime number which is unramified in the totally real
field L of degree g and strict class number h+(L) = 1. Under those assumptions a superspecial order in
Bp,L := Bp,∞ ⊗Q L is an Eichler order of level p. The connection with geometry is given in the thesis of
Nicole, where it is shown that EndOL(A) is a superspecial order for A a principally polarized superspecial
abelian variety with RM over Fp. Conversely, every superspecial order arises in this way from such an
abelian variety A.

Next we give an overview of the results of the paper. The core of the paper is the generalization of
Dorman’s work constructing and classifying superspecial orders in Bp,L with an optimal embedding of a
CM number field K with K+ = L. First, Section 3 is devoted to giving a description of the quaternion
algebra Bp,L with a fixed embedding of the CM field K for superspecial primes, i.e. unramified primes
p such that an abelian variety with CM by K has superspecial reduction modulo a prime P|p in a field
of definition of the abelian variety. Sections 4 and 5 establish a classification of superspecial orders with
an optimal embedding of K, giving both an explicit construction of all such superspecial orders and a
bijection (up to conjugation by elements of K×) with the class group of K (Theorem 5.8). These three
sections together establish the generalization to g > 1 of Dorman’s work on orders ([Dor1]), and fix several
gaps in his proofs.

Section 6 gives a method for counting embeddings by counting elements of the superspecial orders with
a prescribed trace and norm in a way that generalizes the Gross-Zagier formula. Our method is very
similar to Gross-Zagier’s and Dorman’s; their results are the special case g = 1. To make the link between
the algebraic and the geometric sides of the story, we include the determination of endomorphism rings
of superspecial abelian varieties in Section 7. Section 8 connects the counting formula for isomorphisms
between CM abelian varieties with the counting formula for embeddings into superspecial orders.

The main result of the paper is an explicitly computable counting formula for the number of iso-
morphisms modulo P|p between abelian varieties with CM by two different CM fields K and K ′ with

K+ = K ′
+

(Theorems 6.5 and 8.2). This formula can be viewed as an intersection number under the
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assumption that a reasonable lemma in intersection theory holds (see Section 9). Less precisely, we refer
to this value as a “coincidence number”. It also has an algebraic interpretation as the number of optimal
triples of embeddings of OK and OK′ into superspecial orders (see Section 8.4).

For primes of supersingular reduction for CM abelian varieties, a separate computation of the endomor-
phism rings is given in Section 10. In Section 11, a volume argument such as was used in [GL1] is given to
establish a bound on primes p of either supersingular or superspecial reduction where isomorphisms exist
modulo p between CM points associated to K and K ′. In Section 12, an example of two Galois CM fields
is given and all primes dividing the differences of the Igusa invariants are examined and compared with
our counting formula.

2. Preliminaries

2.1. Quadratic Reciprocity for number fields. Let L be a number field, and γ and δ prime elements
of L which are non-associates, such that (γδ, 2) = 1. Define(γ

δ

)
=

{
1 if γ = � mod δ
−1 else.

Let B =
(
γ, δ
L

)
be the quaternion algebra over L defined by the elements γ and δ. For any place η of L,

including the infinite places, define

(γ, δ)η =

{
1 if B ⊗L Lη is split
−1 else.

Then we have the following analogue of Quadratic Reciprocity for the number field L.

Proposition 2.1. (1) If η is a finite prime such that η - 2, then (γ, δ)η = 1 if and only if x2−γy2−δz2 = 0
has a non-trivial solution modulo η.

(2) If η is complex, then (γ, δ)η = 1.
(3) If η is real (η : L → R), then (γ, δ)η = 1 if and only if η(γ) > 0 or η(δ) > 0. I.e. (γ, δ)η = −1 if

and only if both η(γ) and η(δ) are negative.
(4) (γ

δ

)( δ
γ

)
= (−1)r(γ,δ) ·

∏
η|2

(γ, δ)η,

where r(γ, δ) equals the number of real places η such that both η(γ) and η(δ) are negative. In particular,
if either γ or δ are totally positive, then(γ

δ

)( δ
γ

)
= (γ, δ)2 :=

∏
η|2

(γ, δ)η.

(5) We have (
−1

γ

)
(−1, γ)2 = (−1)r(γ),

where r(γ) is the number of real places η such that η(γ) is negative.

Proof. (1) By [Vig, Chap. II, Cor 1.2], (γ, δ)η = 1 if and only if x2 − γy2 − δz2 = 0 has a non-trivial
solution in Lη, where by “non-trivial” we mean a solution where at least one of the variables with non-zero
coefficients is non-zero. Suppose that x2 − γy2 − δz2 = 0 has a non-trivial solution in Lη. By multiplying
by a common denominator we can assume x, y, z ∈ OLη and one of them is a unit. Then reducing modulo

η we get a non-trivial solution to x2 − γy2 − δz2 ≡ 0 mod η. Conversely, suppose x2 − γy2 − δz2 ≡ 0
mod η has a non-trivial solution. By Hensel’s lemma, we can lift the solution to OLη .

Part (2) is clear and Part (3) follows from loc. cit. because x2 − η(γ)y2 − η(δ)z2 = 0 has a non-trivial
solution in R3 if and only if either η(γ) > 0 or η(δ) > 0.
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To prove (4), first note that (γ, δ)γ = 1 ⇐⇒ x2 − γy2 − δz2 = 0 has a non-trivial solution modulo γ

⇐⇒ δ = (xz )2 for some non-zero x, z ∈ OL/(γ) ⇐⇒ ( δγ ) = 1. By the product formula:

1 =
∏
η

(γ, δ)η = (−1)r(γ,δ)(γ, δ)2

(
δ

γ

)(γ
δ

) ∏
η finite, η-2γδ

(γ, δ)η.

But for η - 2γδ, x2 − γy2 − δz2 = 0 has a non-trivial solution modulo η, so (γ, δ)η = 1.
Similarly for (5), for any real place η, η(γ) > 0 ⇐⇒ (−1, γ)η = 1, so it follows from the product

formula that

1 =
∏
η

(−1, γ)η = (−1)r(γ)

(
−1

γ

)
(−1, γ)2.

�

2.2. The ring of integers in CM fields. Let K be a CM field with totally real subfield K+ = L.
Assume that L has strict class number one. Let DK/L be the different of the extension and let η denote
a prime ideal of OL.

Lemma 2.2. (1) OK = OL[t], where t2 + at + b = 0 for some a, b ∈ OL, and D−1
K/L = ( 1√

d
), with

d = a2 − 4b a totally negative element of OL.
(2) Assume for η | 2 that if η | a then b is not a square modulo η. Then (d, 2) = 1 and d is square-free.

Proof. Part (1) is proved in [GL2, Lemma 3.1].
Part (2). Since OK = OL[t]/(t2 + at + b), the prime decomposition of every prime η is determined by

the prime factorization of t2 + at + b mod η. If η is ramified, that implies that t2 + at + b = (t − c)2

mod η for some c ∈ OL/(η). But since η | 2, we have

(t− c)2 = t2 − c2 = t2 + c2 mod η,

so

t2 + at+ b = (t− c)2 mod η ⇐⇒ η | a and b = � mod η.

Thus our condition implies that OK is unramified over all primes η | 2. It follows that (d, 2) = 1.
Next we prove that d is square-free. Let η be a prime of OL not dividing 2. For η | d, we have

OK ⊗OL OLη = OLη [
√
d] because OK = OL[−a+

√
d

2 ]. Write OLη [
√
d] = OLη [

√
u · αrη], where u is a unit

at η and αrη | d. If r > 1, then

OLη [
√
u · αrη] = OLη +OLη ·

√
u · αrη

has no element of valuation 1, which is not possible. Indeed, if π is a uniformizer of OKη , with valuation
normalized so that valη(OLη ) = Z≥0, then valπ(x) = 2valη(x) ∈ 2Z≥0 for x ∈ OLη , and

valπ(
√
u · αrη) =

1

2
valπ(u · αrη) = valη(u · αrη) = r.

In other words, we have shown that discriminants of quadratic extensions of p-adic fields are square-free
when p 6= 2. �

Lemma 2.3. We have OK = OL[a
′+
√
d

2 ] exactly for the a′ ∈ OL such that a′ ≡ a mod 2OL. Such

a′ satisfy (a′)2 ≡ d mod 4OL. Conversely, given a′ ∈ OL such that (a′)2 ≡ d mod 4OL, we have

OK = OL[a
′+
√
d

2 ].

Proof. We have OK = OL[t] = OL[a+
√
d

2 ] = OL[a
′+
√
d

2 ] if a′ ≡ a mod 2OL. We have d = a2 − 4b ≡ a2

mod 4OL. Then also (a′)2 = (a+ 2y)2 = a2 + 4ay + 4y2 ≡ d mod 4OL.

If OL[a+
√
d

2 ] = OL[a
′+
√
d

2 ] then

a+
√
d

2
= u+ v(

a′ +
√
d

2
),



A GROSS-ZAGIER FORMULA FOR QUATERNION ALGEBRAS OVER TOTALLY REAL FIELDS 5

which implies that

a+
√
d = 2u+ va′ + v

√
d,

and so

v = 1 and a = 2u+ a′ ⇒ a ≡ a′ mod 2OL.
Finally, suppose a′ ∈ OL satisfies (a′)2 ≡ d mod 4OL. Then a′+

√
d

2 is integral. Therefore

a′ +
√
d

2
= u+ v · (a+

√
d

2
)⇒ a′ +

√
d = 2u+ va+ v

√
d⇒ v = 1⇒ a ≡ a′ mod 2OL.

�

2.3. CM points on Hilbert modular varieties. Assume that L is a totally real field, [L : Q] = g and L
has strict class number 1; we write h+

L = 1. This implies that (OL×)+ = (OL×)2. In this case, the Hilbert
modular variety HL associated to L is geometrically irreducible and affords the following description. It is
the moduli space for triples (A, ι : OL → End(A), η), where A is a complex abelian variety of dimension g,
ι is a ring embedding and η is a principal OL-polarization, or, equivalently, η is a principal polarization and
the associated Rosati involution fixes OL element-wise. We have HL ∼= SL2(OL)\Hg (see [Gor, Chapter
2, §2]). Our interest is in the parameterization of CM points on HL.

2.3.1. Abelian varieties with CM. Let K be a CM field such that K+ = L. We consider triples

(2.1) (A, ι : OK → End(A), η),

such that A is a g-dimensional complex abelian variety, ι is a ring homomorphism and η is a principal OK-
polarization, where by that we mean a principal polarization whose associated Rosati involution induces
complex conjugation on K.

Such datum produces a point on HL, namely, the point parameterizing (A, ι|OL , η). This will be
examined later. First we want to classify triples (A, ι, η) as in (2.1) up to isomorphism.

To a triple (A, ι, η) we may associate a CM type Φ that records the induced action of K on TA,0, the
tangent space to A at the origin. The theory of complex multiplication then asserts the existence of a
fractional ideal a of K such that

(A, ι) ∼= (Cg/Φ(a), ιcan),

where Φ(a) is the lattice {ϕ1(a), . . . , ϕg(a) : a ∈ a} and where Φ = {ϕ1, . . . , ϕg}; ιcan is the canonical
action of OK on that abelian variety, obtained by extending the natural action on Φ(a). Furthermore, the
principal polarization η is induced from a paring on K of the form

(x, y) 7→ TrK/Q(axȳ),

for some a ∈ K. The conditions on a ensuring the associated polarization, say ηa, is principal are:

(1) (a) = (DKaā)−1.
(2) ā = −a.
(3) Im(ϕi(a)) > 0, for i = 1, . . . , g.

It follows easily that for every λ ∈ K× the principally polarized abelian variety associated to (Φ, a, a), in
the manner above, is isomorphic to that associated to (Φ, λa, (λλ̄)−1a). Furthermore, any isomorphism of
principally polarized abelian varieties (A, ι, η) ∼= (A′, ι′, η′) as in (2.1) arises that way.

Now, given a fractional ideal a of K, the ideal aā is of the form bOK for some fractional ideal b of L
and, since hL = 1, we can write (aā)−1 = λOK for a suitable λ ∈ L. The fractional ideal D−1

K is of the

form d−1/2OK , where d is a totally negative element of L. Thus,

(DKaā)−1 = (λd−1/2),

and λd−1/2 = −λd−1/2. We are free to change λ by any unit ε ∈ OL×. Since (OL×)+ = (OL×)2, it
follows easily that for any choice of signs s1, . . . , sg in {±1} there is a unit ε ∈ OL× such that the sign

of ϕi(ε) is si. Since Im(ϕi(ελ
√
d
−1

)) = ϕi(ε)Im(ϕi(λ
√
d
−1

)), by choosing ε properly we may arrange that
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Im(ϕi(ελ
√
d
−1

)) > 0 for all i = 1, . . . , g. We have thus shown that for every fractional ideal a of K, there
is a suitable a such that (Φ, a, a) gives a principally polarized abelian variety with CM by K.

Let a1, . . . , ahK be representatives for the class group of K, Cl(K). Our discussion so far shows that
the isomorphism classes of principally polarized abelian varieties with CM by OK are in bijection with
equivalence classes of the following set

{(Φ, ai, a) : Φ is a CM type, 1 ≤ i ≤ hk, a satisfies conditions (i) - (iii) above relative to Φ, a}.

The equivalence relation is that

(Φ, ai, a) ∼ (Φ, ai, εε̄a), ε ∈ OK×.

Given (Φ, ai, a) and (Φ, ai, b) there is a unit ε1 ∈ OK× such that b = ε1a, because both a and b generate
the ideal (DKaiāi)

−1. Since ā = −a and b̄ = −b, it follows that ε1 ∈ OL×, and since Im(ϕ(a)) > 0 and
Im(ϕ(b)) > 0 it follows that ε1 ∈ OL×,+. Using that OL×,+ = OL×,2, we conclude that there is an ε ∈ OL
such that ε1 = ε2 = εε̄. That is, (Φ, ai, a) ∼ (Φ, ai, b). We therefore conclude that, in the strict class
number 1 case, isomorphism classes of principally polarized abelian varieties with CM by K and a fixed
CM type are parameterized by the ideal classes of K.

2.3.2. CM points on HL. Let (A, ι : OK → End(A)) be a complex abelian variety with CM by K (so
[K : Q] = 2 dim(A)). Since h+

L = 1, it carries a unique principal polarization up to isomorphism. Consider
EndOL(A). We use [Cha, Lemma 6, p. 464]. In the notation of that Lemma, since A has CM only cases
III(a) and IV can arise. But, since we are working over the complex numbers, in fact only case IV can
arise, and according to which A ∼ Bn, where B is of dimension g/n and has CM by a CM field K0 whose
totally real subfield L0 is contained in L and satisfies [L : L0] = n. One has End0

L(A) = L⊗L0
K0, which

is a CM field according to that Lemma. It follows, because K is primitive, that End0
L(A) = K. As a

consequence, once a RM structure is specified on A, there are precisely two CM structures extending it;
if ι : OK → End(A) is one of them, the other is ῑ := ι ◦ τ , where τ is complex conjugation on K. If ι has
CM type Φ then ῑ has CM type Φ̄. Let F be the set of CM types for K.

Proposition 2.4. Define an equivalence relation ∼ on F × Cl(K) by (Φ, [a]) ∼ (Φ̄, [ā])(= (Φ̄, [a−1])).
Then the set F × Cl(K)/ ∼ has 2g−1 × #Cl(K) elements and is in a natural bijection with the K-CM
points on HL, that is, with the points (A, ι : OL → End(A), η) for which we can extend ι to an embedding
OK → End(A) whose image is fixed (as a set) by the Rosati involution associated to η.

3. Quaternion algebras over totally real fields

Let L be a totally real number field of degree g and strict class number 1. Let p be a prime number
unramified in L and let

Bp,L := Bp,∞ ⊗Q L,

where Bp,∞ is the rational quaternion algebra ramified at p and ∞ alone. Let

S = {p /OL | p|p}

be the set of prime ideals of L above p, and let

S0 = {p ∈ S | f(p/p) ≡ 1 mod 2}

be those with odd residue degree. The algebra Bp,L is ramified precisely at all infinite places and at the
primes p ∈ S0.

The rest of this section and Sections 4 and 5 are devoted to giving a description of the quaternion algebra
Bp,L, and a classification of some particular orders, under the assumption that all primes p ∈ S \ S0 split
in K and all primes p ∈ S0 are inert in K. First we prove that this assumption is satisfied when p is an
unramified prime of superspecial reduction for an abelian variety with CM by K.
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3.1. Splitting behavior in the case of superspecial reduction.

Proposition 3.1. Let p be a rational prime, unramified in K. Let A be an abelian variety with CM by
OK , defined over a number field M , with good reduction at a prime ideal pM of M dividing the rational
prime p. Assume that A has supersingular reduction modulo pM . Then, every prime in S0 is inert in K.
Assume further that A has superspecial reduction, then every prime in S \ S0 is split in K.

Proof. Since A has supersingular reduction, say A, End0
L(A) ∼= Bp,L = Bp,∞ ⊗Q L ([Cha, Lemma 6]), and

so

K ↪→ Bp,L.

Therefore, at every prime P of K above a prime p of L, the field KP splits the quaternion algebra
Bp,L ⊗L Lp. The quaternion algebra Bp,L is ramified precisely at the primes in S0 and at infinity. Thus,
if p ∈ S0, we find that each KP is a quadratic field extension of Lp, that is, since p is unramified in K, all
the primes in S0 are inert in K.

Assume now that there is a prime p ∈ S \ S0 that is inert in K and let P be the prime of K above
p. Let us denote the embedding of OL into W (Fp) associated to p by {ϕ1, . . . , ϕf}, f = f(p/p), where
we may order the embeddings so that σ ◦ ϕi = ϕi+1 and σ denotes the Frobenius automorphism. Each
embedding ϕi is the restriction of two embeddings of OK into W (Fp) that we denote ψ1

i , ψ
2
i , where one is

the composition of the other with complex conjugation. Since P is inert over p, σ still acts transitively on
the set {ψji : i = 1, . . . , f, j = 1, 2}.

The Dieudonné module of A decomposes as D = ⊕p|pD(p) relative to the OL structure. Let H = D(p).
Then H decomposes further as

H = ⊕fi=1H(ϕi) = ⊕fi=1

(
H(ψ1

i )⊕H(ψ2
i )
)
,

where H(ϕi) is a free W (Fp)-module of rank 2 on which OL acts via ϕi and it is decomposes into a direct

sum of two free W (Fp)-module of rank 1, H(ψ1
i ), H(ψ2

i ), on which OK acts by ψ1
i , ψ

2
i , respectively. Now,

the transitivity of the action of σ on the ψji means that we can order them so that

σ ◦ ψ1
i = ψ1

i+1, i = 1, 2, . . . , f − 1,

σ ◦ ψ1
f = ψ2

1 ,

σ ◦ ψ2
i = ψ2

i+1, i = 1, 2, . . . , f − 1,

σ ◦ ψ2
f = ψ1

1 .

Let us choose a basis {eji : i = 1, 2, . . . , f, j = 1, 2} for H such that eji spans H(ψji ). Note that the

kernel of Frobenius on H := H (mod p) is an OK-module and is one dimensional in every H(ϕi), because
A satisfies the Rapoport condition, or, alternately, for each i, precisely one of {ψ1

i , ψ
2
i } belongs to the CM

type. Suppose, without loss of generality, that e1
1 spans the kernel of Frobenius in H(ϕ1), then we must

have that Fr(e2
1), which is equal up to a unit to e2

2, spans the kernel of Frobenius in H(ϕ2) (this is where
“superspecial” is being used), and by the same rationale we find that the kernel of Frobenius in H(ϕi) is
spanned by e1

i , for i odd, and by e2
i , for i even. In particular, the kernel of Frobenius in H(ϕf ) is spanned

by e2
f , because f is even. Now, by the same rationale, Fr(e1

f ) spans the kernel of Frobenius in H(ϕ1), and

it lies in H(ψ2
1) because σ ◦ ψ1

f = ψ2
1 . This is a contradiction. �

3.2. A description of Bp,L. Next we give a description of the quaternion algebra Bp,L in terms of a CM
field K, for a certain set of primes p, which according to Proposition 3.1 includes the superspecial primes
of K. This description generalizes the approach of Gross and Zagier.

Notation: If q is a prime of L, let αq denote a totally positive generator of q. It is unique up to an

element of OL×+ = OL×,2. Write p =
∏

p∈S αp.
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Proposition 3.2. Let K be a CM field, K+ = L. Assume p is odd, unramified in L, and that all primes
p ∈ S \ S0 split in K and all primes p ∈ S0 are inert in K. These conditions imply that K embeds in
Bp,L. Assume that the discriminant dK/L = (d) satisfies (d, 2p) = 1. Then there is a totally negative
prime element α0 ∈ OL such that (α0, 2pd) = 1 and

Bp,L ∼=
(
d, α0p

L

)
.

The ideal (α0) is split in K.

Proof. We first need a lemma.

Lemma 3.3. (Primes in arithmetic progressions) Let L be a number field and let ν1, . . . , νt be some of
L’s embeddings into R. Let r�OL be an integral ideal and r ∈ OL an element such that (r, r) = 1. Then
there is a prime element α ∈ OL such that α ≡ r mod r and νi(α) > 0, ∀i = 1, . . . , t.

Proof. We may assume νi(r) > 0, ∀i = 1, . . . , t. Indeed, one may replace r by r+n for any element n ∈ r.
Since r ⊗ Q = L, for any c ∈ R, r contains elements n such that ν(n) > c for every real place ν of L.
Taking C = max{|νi(r)| : νi(r) < 0} and a suitable element n ∈ r we get νi(r + n) > 0, ∀i = 1, . . . , t.

Consider the modulus rν1ν2 · · · νt = m, and the ray class group modulo m, I(m)/P (m). Here I(m) is
the multiplicative group of fractional ideals prime to m, P (m) is the subgroup of principal ideals having
a generator β such that β ≡ 1 mod m and νi(β) > 0, ∀i = 1, . . . , t. Let L(m) be the corresponding class
field, Gal(L(m)/L) ∼= I(m)/P (m). The ideal (r) is an element of I(m)/P (m). Let

σ = ((r), L(m)/L) ∈ Gal(L(m)/L)

be the Artin symbol. By Chebotarev, there is a prime ideal p such that (p,m) = 1 and

σ = σp = (p, L(m)/L).

Also, p is equivalent to (r) modulo P (m), hence also principal. Indeed,

σp|HL = σ|HL = ((r), L(m)/L)|HL = 1.

Since Gal(HL/L) ∼= I/P , we must have that p is principal. Let (α1) = p. By construction, (α1) = (r) in
I(m)/P (m). That means that the ideal (α1r

−1) has a generator uα1r
−1, u ∈ OL×, such that

uα1r
−1 ≡ 1 mod m.

Let α = uα1. Then α ≡ r mod m, meaning α ≡ r mod r and for every i = 1, . . . , t, νi(α) has the same
sign as νi(r), i.e. is positive. �

According to Lemma 3.3, we can choose α0 ∈ OL such that

(1) α0 is a totally negative prime element of OL.
(2) α0 ≡ p mod ηN , for each η | 2, some N � 0 (for choice of N , see below).
(3) α0 ≡ p mod q, for each q | d.
(4) α0 ≡ 1 mod p.

Since x2 − dy2 − α0pz
2 ≡ 0 mod ηN has a non-trivial solution if N is large enough, then by Hensel’s

lemma, there is a p-adic solution . We have

(??) (d, α0p)η = 1 for all η | 2,
(
α0

q

)
=

(
p

q

)
for all q | d

and (α0, 2pd) = 1.

To show Bp,L ∼=
(
d, α0p
L

)
, we need to check:

(1) For all η | 2, (d, α0p)η = 1: see (??).
(2) For all η finite such that η - dα0p, (d, α0p)η = 1:

x2 − dy2 − α0pz
2 ≡ 0 mod η has a non-trivial solution.
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(3) For all η finite such that η | d, (d, α0p)η = 1:
x2 − α0pz

2 ≡ 0 mod η has a non-trivial solution ⇐⇒ (α0p
η ) = 1, which is true by (2).

(4) For all η ∈ S \ S0, (d, α0p)η = 1:
x2 − dy2 ≡ 0 mod η has a non-trivial solution ⇐⇒ d = � mod η ⇐⇒ η splits in K.

(5) η = α0 ⇒ (d, α0p)η = 1:

x2 − dy2 ≡ 0 mod α0 has a non-trivial solution ⇐⇒ ( d
α0

) = 1. We will examine this below.

(6) η ∈ S0 ⇒ (d, α0p)η = −1:
x2 − dy2 ≡ 0 mod η has only the trivial solution ⇐⇒ d 6= � mod η ⇐⇒ η is inert in K.

(7) η real ⇒ (d, α0p)η = −1:
x2 − dy2 − α0pz

2 = 0 in R has only the trivial solution since −d and −α0p are both positive.

So it remains to prove only that ( d
α0

) = 1.

Write d = (−1) ·
∏

q|d αq, and p =
∏

p|p αp.(
d

α0

)
=

(
−1

α0

)∏
q|d

(
αq

α0

)

=

(
−1

α0

)∏
q|d

((
α0

αq

)
(α0, αq)2

)
(by quadratic reciprocity)

=

(
−1

α0

)∏
q|d

∏
p|p

(
αp

αq

) (α0, αq)2 (since

(
α0

q

)
=

(
p

q

)
)

=

(
−1

α0

)
(α0,−d)2

∏
q|d,p|p

(
αp

αq

)

=

(
−1

α0

)
(α0,−d)2

∏
q|d,p|p

(
αq

αp

)
(αp, αq)2 (by quadratic reciprocity)

=

(
−1

α0

)
(α0,−d)2

∏
p|p

(
−d
αp

)
(−d, αp)2

=

(
−1

α0

)
(α0,−1)2(α0, d)2

∏
p|p

(
−1

αp

)
(αp,−1)2(αp, d)2

(
d

αp

)

= (−1)g(α0, d)2

∏
p|p

(αp, d)2

(
d

αp

)
(by Part (5) of Proposition 2.1)

= (−1)g(α0p, d)2(−1)#S0 (by our assumptions on K)

= (−1)g+#S0 (since (α0p, d)η = 1,∀η | 2)

= 1 (since (g + #S0) = # {ramified primes of Bp,L} is even).

�

3.3. Another description of the quaternion algebra Bp,L.

Definition 3.4. For α, β ∈ OK define

[α, β] :=

(
α β

α0pβ α

)
∈M2(K).

Lemma 3.5. Assumptions as in Proposition 3.2. Bp,L ∼= {[α, β] | α, β ∈ K}.

Proof. Proposition 3.2 implies that Bp,L = L
⊕
Li
⊕
Lj
⊕
Lij, with i2 = d, j2 = α0p, and ij = −ji.

We can write this as K
⊕
Kj, with the multiplicative structure satisfying: for x, y ∈ K, x(yj) = (xy)j,
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j2 = α0p, and

xj = (x1 + x2i)j = x1j + x2ij = jx1 − jix2 = j(x1 − ix2) = jx.

So for the isomorphism x+ yj → [x, y] to respect the multiplicative structure it is enough to check:

(1) [α, 0][0, β] = [0, αβ]:

(
α 0
0 α

)(
0 β

α0pβ 0

)
=

(
0 αβ

α0pαβ 0

)
.

(2) [0, 1]2 = [α0p, 0]:

(
0 1
α0p 0

)(
0 1
α0p 0

)
=

(
α0p 0
0 α0p

)
.

(3) [α, 0][0, 1] = [0, 1][α, 0]:

(
α 0
0 α

)(
0 1
α0p 0

)
=

(
0 α

α0pα 0

)
=

(
0 1
α0p 0

)(
α 0
0 α

)
.

�

4. Orders in the quaternion algebra Bp,L

By Proposition 3.2, the ideal α0OL splits in K. Write

α0OK = A · A,

and let D = DK/L = (
√
d) be the different ideal of K/L.

Definition 4.1. Let a be an integral ideal of OK . For each q | d, fix a solution λq to

(4.1) x2 ≡ α0p mod q.

Let ε(a, q) ∈ {±1} be a choice of sign for each q | d. Let λ ∈ L, (λ, d) = 1, be such that

(1) λ ≡ ε(a, q)λq mod q, ∀q | d
(2) λA−1a−1a is an integral ideal of OK .

This is possible by the Chinese Remainder Theorem and using that (A−1a−1a, d) = 1.
For example, one particular choice of signs which we will often make is ε(a, q) = (−1)valq̃(a), where

q̃�OK is an ideal such that qOK = q̃2, and we denote the corresponding λ by λa. This will be explained
further in Definitions 5.2 and 6.2.

Let ` ∈ OL be any non-zero element such that (`, α0da
−1a) = 1 and ` is split in K/L. In particular, `

could be a power of p. Now define

R = R(a, λ, `) = {[α, β] | α ∈ D−1, β ∈ D−1A−1`a−1a, α ≡ λβ mod OK}.

Proposition 4.2. Assumptions as in Proposition 3.2. In particular, K is a CM field such that K+ = L
has strict class number 1, the discriminant of K/L is prime to 2 and thus square-free, and p is odd,
unramified in K. All primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert in K. Then:

(1) R is an order of Bp,L, containing OK .
(2) R has discriminant p · `.
(3) R does not depend on the choice of λ, as long as λ satisfies the same local sign conditions.

Proof. Part (1). It is clear that R is a finitely generated OL-module, containing OK = {[α, 0] : α ∈ OK}.
We need to show that R is closed under multiplication. The multiplication formula is

[x, y][z, w] = [xz + α0pyw, xw + yz],

and we need to show that, for [x, y], [z, w] ∈ R, also [x, y][z, w] ∈ R.

Step 1. Show that xz + α0pyw ∈ D−1.

A priori, xz ∈ D−2, and

α0pyw ∈ α0pD−1A−1`a−1aD−1A−1`a−1a = α0pD−2(AA)−1`2 = pD−2`2 ⊆ D−2.
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So it is enough to show: ∀q̃ | D, valq̃(xz + α0pyw) ≥ −1. Let q = q̃ ∩ OL. Then qOK = q̃2. We will work
q-adically. Let π ∈ OKq̃

be a uniformizer such that π = −π (the extension of complex conjugation from
K to Kq̃).

Lemma 4.3. Such a π exists.

Proof. Choose a uniformizer π0 ofOLq
, and letK1 = Lq(

√
π0). Then forK1 there exists such a uniformizer.

So it is enough to show that, if q | q and q 6= 2, then any q-adic field L1 has a unique quadratic
ramified extension. By Local Class Field Theory, ramified quadratic extensions are in bijection with
subgroups of index 2 of O×L1

. There is a unique subgroup of index 2 of O×L1
since it contains O×2

L1
and

O×L1
/O×2

L1

∼= Z/2Z. �

Note that D−1A−1`a−1aOKq̃
= 1

πOKq̃
, since (A, q̃) = 1, (`, q̃) = 1 and (a−1a, q̃) = 1 because a−1a has

no ramified or inert primes. Write then x = x0

π , y = y0
π , z = z0

π , w = w0

π , with x0, y0, z0, w0 ∈ OKq̃
. So

x ≡ λy mod OK ⇒ x0 − λy0 ∈ (π)

and

z ≡ λw mod OK ⇒ z0 − λw0 ∈ (π).

Now

xz + α0pyw =
1

π2
(x0z0 − α0py0w0),

so it is enough to show: valq̃(x0z0 − α0py0w0) ≥ 1. But

x0z0 − α0py0w0 ≡ λy0λw0 − α0py0w0 mod (π)

≡ λ2y0w0 − α0py0w0 mod (π), (because conjugation is trivial mod (π))

≡ (λ2 − α0p)y0w0

≡ (λ2
q − α0p)y0w0

≡ 0 mod (π).

Step 2. Show that xw + yz ∈ D−1A−1`a−1a.

A priori, xw and yz ∈ D−2A−1`a−1a, so we just need to show valq̃(xw + yz) ≥ −1 at all primes q̃ | D.
Using the same notation as in step 1, we need to show valq̃(x0w0 − y0z0) ≥ 1. We have, modulo (π):
x0w0 − y0z0 = x0w0 − y0z0 = λy0w0 − λy0w0 = 0.

Step 3. Show that xz + α0pyw − λ(xw + yz) ∈ OK .

A priori, by Steps 1 and 2, xz + α0pyw ∈ D−1 and

λ(xw + yz) ∈ D−1`λA−1a−1a ⊂ D−1` ⊂ D−1,

since λA−1a−1a ⊆ OK . Therefore, we just need to show that for all q̃ | D,

valq̃(xz + α0pyw − λ(xw + yz)) ≥ 0.

Using the same notation as above, this is equivalent to:

valq̃(x0z0 − α0py0w0 − λ(x0w0 − y0z0)) ≥ 2.

Write x0 = λy0 + πx1 and z0 = λw0 + πz1. Then

(λy0 + πx1)(λw0 + πz1)− α0py0w0 − λ(λy0 + πx1)w0 + λy0(λw0 − πz1)

= (λ2 − α0p)y0w0 + λπy0(z1 − z1) ≡ 0 mod π2,
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since (z1 − z1) ∈ (π) and (λ2 − α0p) ∈ qOLq
⊂ (π2).

Part (2). We need to compute the discriminant of

R = R(a, λ, `) = {[α, β] | α ∈ D−1, β ∈ D−1A−1`a−1a, α ≡ λβ mod OK}.
Let

R′ = {[α, β] | α ∈ OK , β ∈ `a−1a}.
R′ is an OL-module of rank 4.

Lemma 4.4. disc(R′) = (`α0pd)2

Proof. The quadratic form on R′ is det[α, β] = αα − α0pββ =: q([α, β]). Note that this quadratic form
coincides with the norm form on the the quaternion algebra Bp,L: writing

[α, β] = [α, 0] + [0, β][0, 1] = (α1 + α2i) + (β1 + β2i)j,

where i2 = d and j2 = α0p, we have

Norm((α1 + α2i+ β1j + β2ij) = α2
1 − α2

2d− β2
1α0p+ β2

2dα0p

= (α1 + α2i)(α1 − α2i)− α0p(β1 + β2i)(β1 − β2i)

= αα− α0pββ.

The associated bilinear form is

〈[α, β], [γ, δ]〉 = αγ + αγ − α0p(βδ + βδ),

where 1
2 〈x, x〉 = q(x). Note that 〈[α, 0], [0, δ]〉 = 0 and

〈[α1, 0], [α2, 0]〉 = α1α2 + α1α2 = TrK/Lα1α2,

〈[0, β1], [0, β2]〉 = −α0p(β1β2 + β1β2) = −α0pTrK/Lβ1β2.

To compute the discriminant of R′ with respect to the bilinear form, we need to compute the determinant
of the matrix (〈xi, xj〉), for {xi} a basis for R′. Choose a basis {w1, w2} for OK as an OL-module (e.g.
{1, t}). Choose a basis {w3, w4} for `a−1a as an OL-module. By the above calculations, we see that

det (〈wi, wj〉) = det(M1) det(M2),

where

M1 =

(
2w1w1 w1w2 + w2w1

w1w2 + w2w1 2w2w2

)
= (Tr(wiwj)),

i, j = 1, 2 and

M2 = −α0p

(
2w3w3 w3w4 + w4w3

w3w4 + w4w3 2w4w2

)
= −α0p(Tr(wiwj)),

i, j = 3, 4. We have

det(M1) = −discK/L(OK)

and

det(M2) = −(α0p)discK/L(`a−1a).

For any OK-ideal b, discK/L(b) = discK/L(OK)NormK/L(b)2 [Lan, Prop. 13, p. 66]. So

disc(R′) = discK/L(OK)2NormK/L(`a−1a)2(α0p)
2 = (`α0pd)2.

Remark: This uses that ` is split in K/L. In a typical application, ` will be a prime lying above p. If p
is inert in L, then it will automatically be split in K/L according to the hypotheses of Proposition 3.2. If
` is not split in K/L, we get a higher power of ` in the final answer.

�

In order to show that R has discriminant p · ` the following lemma is needed:
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Lemma 4.5. The following sequence is exact:

0→ R′ ↪→ R→ψ D−1A−1/OK → 0,

where

[α, β] 7→ β ∈ D
−1A−1`a−1a

`a−1a
∼= D−1A−1/OK .

Proof. First R′ ⊆ R because α ∈ OK , λβ ∈ λ`a−1a = (λa−1a)` ⊆ OK` ⊆ OK . Since λβ ∈ OK , clearly
α ≡ λβ (mod OK). Now:

• Exactness at R: R′ ⊆ Ker(ψ) is clear. Now suppose [α, β] ∈ Ker(ψ). Then β ∈ `a−1a and so
α ∈ OK because λβ ∈ OK , by the definition of λ, and α ≡ λβ (mod OK). So [α, β] ∈ R′.

• ψ surjective: Let β ∈ D−1A−1`a−1a. Then [λβ, β] ∈ R because λβ ∈ D−1`(λA−1a−1a) ⊆
D−1`OK ⊆ D−1.

�

Thus discK/L(R) = discK/L(R′)/NormK/L(DA)2 = (`α0pd)2/(α0d)2 = `2p2, so the discriminant of R
as an order of Bp,L is `p. �

Part(3). Finally, R is independent of the choice of λ assuming λ satisfies the same local sign conditions:

Proof. Suppose both λ and λ′ satisfy the conditions of Definition 4.1. Let [α, β] ∈ R(a, λ, `), so α ∈ D−1,
β ∈ D−1A−1`a−1a, and α ≡ λβ mod OK . Then,

α− λβ ∈ OK =⇒ (
√
dα)− λ(

√
dβ) ∈ (

√
d),

and

(
√
dα)− λ′(

√
dβ)− (λ− λ′)(

√
dβ) ∈ (

√
d).

Now, because d is square free and for all q|d we have λ′ = e(a, q)λq = λ (mod q), it follows that λ−λ′ ∈ (d).
But,

λ− λ′ ∈ (d) =⇒ (λ− λ′)
√
dβ ∈ d`A−1a−1a,

and

λ
√
dβ − λ′

√
dβ ∈ OK

by the definition of λ and λ′, so

(λ− λ′)
√
dβ ∈ OK ∩ d`A−1a−1a ⊆ (d).

It follows that (
√
dα)− λ′(

√
dβ) ∈ (

√
d), so α ≡ λ′β mod OK . �

5. Classification of superspecial orders of Bp,L in which OK embeds, having chosen an
embedding K ↪→ Bp,L

By a superspecial order in Bp,L we mean an order of discriminant pOL. An example of such an order
is R⊗Z OL for a maximal order R of Bp,∞. Let K be a primitive CM field such that K+ = L. As before,
we denote by d a totally negative generator of the relative different ideal DK/L. In this section we classify
the superspecial orders in which OK embeds, relying on the results in the previous section and making
the particular choice of local signs ε(a, q) = (−1)valq̃(a), where q̃ � OK is an ideal such that qOK = q̃2,
and we denote the corresponding λ by λa. Our classification of these orders will be achieved through the
following series of lemmas.

Lemma 5.1. Let R1, R2 be two superspecial orders in Bp,L. Then R1
∼= R2 over K ⇐⇒ ∃µ ∈ K such

that R1 = µR2µ
−1.

Proof. By Skolem-Noether, R1
∼= R2 ⇐⇒ ∃µ ∈ B×p,L such that R1 = µR2µ

−1. This is a K-automorphism

if and only if µ ∈ CentBp,L(K) = K. �

We make the following choice of local signs for λ and introduce the notation λa.
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Definition 5.2. For a�OK , let λa := λε(a), where ε(a, q) = (−1)valq̃(a), and q̃�OK is an ideal such that

qOK = q̃2.

Lemma 5.3. Given a, λ = λa as in Definition 5.2, there exists c | d such that R(a, λ) = R(ac, λac).

Proof. R(ac, λac, `) = R(a, λa · λ(−1)
valq̃(c) , `) because

λac ≡ (−1)valq̃(ac)λq mod q,∀q | d,
so

λac ≡ λa(−1)valq̃(c) mod q,∀q | d.
So as c ranges over the ideals dividing d, we get all sign vectors ε(a) that appear in the left hand side, and
each one once. �

Lemma 5.4. Fix {b1, . . . , bh} representatives for the class group of K and the choice of local signs as
above. Then every R(a, λa) is isomorphic to R(b, λb) for some b ∈ {b1, . . . , bh}.

Proof. Let µ ∈ K× be such that b = µa for some (unique) b ∈ {b1, . . . , bh}.

µ−1R(a, λa)µ =

{(
µ−1 0

0 µ−1

)(
α β

α0pβ α

)(
µ 0
0 µ

)
: α ∈ D−1, β ∈ D−1A−1a−1a, α ≡ λaβ mod OK

}
.

=

{(
α µ

µβ

α0p(
µ
µβ) α

)
: α ∈ D−1, β ∈ D−1A−1a−1a, α ≡ λaβ mod OK

}
by setting b = µ

µβ, this is equal to

=

{(
α b

α0pb α

)
: α ∈ D−1, b ∈ D−1A−1b−1b, α ≡ λa

µ

µ
b mod OK

}
because b = µa,

µ

µ
β ∈ D−1A−1a−1a

µ

µ
= D−1A−1b−1b,

and α ≡ λa µµ
µ
µβ = λa

µ
µb mod OK .

Now it remains to show that α ≡ λa µµb mod OK ⇐⇒ α ≡ λbb mod OK . Equivalently,

(
√
dα) ≡ λa

µ

µ
(
√
db) mod q̃, ∀q̃ |

√
dOK ⇐⇒ (

√
dα) ≡ λb(

√
db) mod q̃, ∀q̃ |

√
dOK .

This can be checked in OKq̃
for every q̃. The point is that (−1)valq̃(b) = (−1)valq̃(a) · (−1)valq̃(µ), and so

it is enough to show that µ
µ ≡ (−1)valq̃(µ) mod q̃. This follows from the fact that OKq̃

= OLq
[π], with

π = −π, so writing µ = πr · u, u ∈ O×Kq̃
, we have u = u mod q̃, and

µ

µ
= (−1)r

u

u
≡ (−1)r mod q̃.

Thus, we have proved that µ−1R(a, λa)µ = R(µa, λµa). �

Lemma 5.5. R(a, λa) = R(b, λb) ⇐⇒ a−1a = b−1b and ∀q̃ | d, valq̃(a) ≡ valq̃(b) mod 2.

Proof. ⇐ obvious.
(⇒) Let β ∈ D−1A−1a−1a and let α = λaβ. Since λaA−1a−1a ⊆ OK , it follows that α ∈ D−1.

Therefore [α, β] ∈ R(a, λa) = R(b, λb) and so β ∈ D−1A−1b−1b. Therefore D−1A−1a−1a ⊆ D−1A−1b−1b.
By symmetry we have equality.

Furthermore, since [λaβ, β] ∈ R(b, λb), we have

λaβ ≡ λbβ mod OK , ∀β ∈ D−1A−1a−1a.

Otherwise said,
β(λa − λb) ≡ 0 mod OK , ∀β ∈ D−1A−1a−1a,
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and this implies
λa ≡ λb mod D−1A−1a−1a.

We conclude that
∀q̃ | d, λa ≡ λb mod q̃, because (D,Aaa−1) = 1).

It follows that
∀q̃ | d, (−1)valq̃(a) = (−1)valq̃(b).

�

Lemma 5.6. For b, b′ ∈ {b1, . . . , bh}, R(b, λb) ∼ R(b′, λb′) ⇐⇒ b = b′.

Proof. ⇐ obvious.
Suppose R(b, λb) = µ−1R(b′, λb′)µ = R(µb′, λµb′), (this second equality was proved in Lemma 5.4

above). By Lemma 5.5, this implies that

b−1b = b′−1b′
µ

µ
or

b′b−1µ = b′b−1µ.

An ideal f�OK satisfies f = f if and only if f = j ·
∏

q̃|d q̃
s(q̃), j ∈ L. Indeed, write f as a product of inert,

split, and ramified prime ideals. Inert prime ideals are generated by elements of L. Split prime ideals must
appear in the factorization to the same power as their complex conjugate, because of the condition f = f.
Thus it is actually some power of their norm which appears, and that is also generated by an element of
L. What remains is a product of some ramified primes.

Applying this to the ideal f = b′b−1µ, we find that

µb′ = j ·
∏
q̃|d

q̃s(q̃) · b.

Note that R(µb′, λµb′) = R(µj b
′, λµ

j b
′), so we can replace µ by µ/j to obtain R(b, λb) = R(µb′, λµb′) with

µb′ of the form

µb′ =
∏
q̃|d

q̃s(q̃) · b.

Now λb = λµb′ implies that each s(q̃) is even, so µb′ = kb for some k ∈ K. Thus b′ = b because they are
already representatives for the class group. �

Lemma 5.7. Any superspecial order R ⊇ OK is isomorphic to some R(a, λ).

Proof. Let c be a prime ideal of L. For any ideal a of Kc, define orders Rc(a, λa) of (Bp,L)c exactly
the same way as for R(a, λa). The orders have the same properties that were proved for the R(a, λa) in
Proposition 4.2: independent of the choice of λ, conductor pOLc

.
Then, for an ideal a of K we have R(a, λa)c = Rc(ac, λac

). Let R be an order of Bp,L that contains OK ,
of discriminant pOL. For every c, the order Rc is an Eichler order of discriminant pOLc

, as is the order
R(O, λO)c, where O represents the trivial ideal class. For every c there is a µc ∈ (Bp,L)×c such that

Rc = µ−1
c R(O, λO)cµc,

because Eichler orders of the same discriminant are locally conjugate. Furthermore, for almost all c,

Rc = M2(OLc
) ⊆ (Bp,L)c = M2(Lc),

and the same holds for R(a, λa). Now it is enough to show that we can choose µc ∈ K×c for all c, because
in that case

Rc = µ−1
c R(O, λO)cµc = Rc((µc), λ(µc)),

for a collection of elements{
µc : c�OL prime , µc = 1 for almost all c, µc ∈ K×c

}
.
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Therefore, there is an ideal a of K such that, for all c, ac = (µc). The two orders R and R(a, λa) are equal
because they are equal locally everywhere, and we are done.

To show that we may choose µc ∈ K×c for all c, we use [Vig, Theorems 3.1, 3.2, pp. 43-44], to produce
an element νc such that

(i) ν−1
c (µ−1

c R(O, λO)cµc)νc = µ−1
c R(O, λO)cµc = Rc, and

(ii) the embedding of OKc
into Rc is the embedding of OKc

into R(O, λO)c conjugated by νcµc.
Since conjugation by νcµc fixes Kc pointwise, this implies νcµc commutes with Kc, and so νcµc ∈ K×c . �

Our conclusion is that isomorphism classes of superspecial orders of Bp,L in which OK embeds are the
isomorphism classes of R(a, λa). Thus we have proved the following theorem:

Theorem 5.8. Fix an embedding of K ↪→ Bp,L. The isomorphism classes of the superspecial orders in
which OK embeds are in bijection with the ideal class group of K via the map

[a] 7→ R(a, λa).

Remark 5.9. In the case L = Q, Theorem 5.8 provides a different proof for the main theorems of Dorman’s
paper on global orders in definite quaternion algebras [Dor1] and corrects several errors and gaps in the
proofs there. For example, we correct the missing condition on the integrality for λD−1A−1a−1a and the
resulting mistake in proof of Proposition 2, and we give a different proof of the 1-1 correspondence.

6. Main theorems on counting formulas

6.1. Assumptions and notation. Let L be a totally real field of degree g of strict class number one,
p a rational prime which is unramified in L, and K a primitive CM field with K+ = L. Using the same
notation as in Lemma 2.2, write the ring of integers of K, OK = OL[t], where t2 + at + b = 0 for some

a, b ∈ OL, and the different D = DK/L = (
√
d), with d = a2 − 4b a totally negative element of OL.

Assume as in Proposition 3.2 that all primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert in K
and that the discriminant dK/L = (d) satisfies (d, 2) = 1 and (d, p) = 1. Let α0 ∈ OL be a totally negative
prime element such that

Bp,L ∼=
(
d, α0p

L

)
,

where (α0, 2pd) = 1, α0 ≡ p mod q for each q | d, α0 ≡ 1 mod p, and α0OK = A · A.
Let a be an integral ideal of OK . For each q | d, fix a solution λq to

(6.1) x2 ≡ α0p mod q.

Let ε(a, q) ∈ {±1} be a choice of sign ∀q | d. Let λ ∈ OL be such that

(1) λ ≡ ε(a, q)λq mod q, ∀q | d
(2) λA−1a−1a is an integral ideal of OK .

For ` ∈ OL such that (`, α0da
−1a) = 1, let

R = R(a, λ, `) = {[α, β] | α ∈ D−1, β ∈ D−1A−1`a−1a, α ≡ λβ mod OK}.

6.2. Counting simultaneous embeddings. Let K ′ be another CM field, with OK′ = OL[w] and

discK′/L = (Tr(w)2 − 4Norm(w)) = (d′)

generated by a totally negative element d′ of L. Then, following Gross-Zagier [GZ], we are interested in
counting

S(a, λ, `) =

{
[α, β] =

(
α β

α0pβ α

)
∈ R(a, λ, `) : Tr[α, β] = Tr(w),Norm[α, β] = Norm(w)

}
.

We follow Gross-Zagier very closely. Let [α, β] be an element of this set. Since

OK = OL +OL ·
a+
√
d

2
=

{
2l1 + l2(a+

√
d)

2
: l1, l2 ∈ OL

}
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=

{
l3 + l4

√
d

2
: l3, l4 ∈ OL, l3 − al4 ≡ 0 mod 2OL

}
,

we can write α ∈ D−1 in the form α = l3+l4
√
d

2
√
d

, l3, l4 ∈ OL, with l3 − al4 ≡ 0 mod 2OL, and in this

notation, Tr(α) = Tr([α, β]) = l4. So

α =
x+ Tr(w)

√
d

2
√
d

, x ∈ OL, x− aTr(w) ≡ 0 mod 2OL,

where a = −Tr(t), and

β =
`√
d
γ, γ ∈ A−1a−1a.

Since

Norm[α, β] = det[α, β] = αα− α0pββ

=
x+ Tr(w)

√
d

2
√
d

· x− Tr(w)
√
d

−2
√
d

− α0p
`2

−d
γγ

=
1

−4d
[x2 − Tr(w)2d− 4α0p`

2γγ],

it follows that
−d[4Norm(w)− Tr(w)2] = x2 − 4α0p`

2γγ.

So an element [α, β] of the set S(a, λ, `) gives rise to a solution (x, γ) to the equation

dd′ = x2 − 4α0p`
2γγ,

with γ ∈ A−1a−1a, and x ∈ OL, x ≡ aTr(w) mod 2OL, where x2 − dd′ is a totally negative element of
OL because α0 is. Call this set of conditions on x conditions C.

Our analysis allows us to define a function φ : S(a, λ, `)→ S1(a, x, `) that sends [α, β] 7→ γ (it is used in
the proof of Theorem 6.5 below), where the set S1(a, x, `) is defined for an integral ideal a and x satisfying
conditions C by

S1(a, x, `) = {γ ∈ A−1a−1a : Norm(γ) = γγ =
x2 − dd′

4α0p`2
}.

For γ ∈ A−1a−1a, the ideal generated by γ can be written as (γ) = A−1a−1a · b, for b an ideal of OK ,
and Norm(b) = α0Norm(γ). We let S2(a, x, `) be the set

S2(a, x, `) = {b�OK : Norm(b) =
x2 − dd′

4p`2
, b ∼ a2A}.

Proposition 6.1. The map from S1(a, x, `)→ S2(a, x, `) which sends γ 7→ bγ = (γ)Aaa−1 is a surjective
[wK : 1]-map, where wK equals the number of roots of unity in K.

Proof. To show that the map is [wK : 1], we first show that bγ = bδ ⇐⇒ γ = µδ, where µ is a root of
unity in K. Since bγ depends only on (γ), the direction ⇐ is clear. Now if bγ = bδ, then (γ) = (δ), so

γ = µδ for some µ ∈ OK×, but also Norm(γ) = Norm(δ) = Norm(µ)·Norm(γ)⇒ Norm(µ) = 1⇒ µ ∈ µK .
Next we show that the map is surjective. Given b ∈ S2(a, x, `), let γ be a generator of A−1a−1ab. Then

γ ∈ A−1a−1a and

(Norm(γ)) = (γγ) = (
x2 − dd′

4α0p`2
).

Therefore, there exists a totally positive unit ε′ ∈ OL×+ = OL×2, ε′ = ε2, such that

ε′γγ =
x2 − dd′

4α0p`2
.

Changing γ to εγ,

γγ =
x2 − dd′

4α0p`2
.
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So γ ∈ S1(a, x, `), and since it is still true that (γ) = A−1a−1ab, it follows that bγ = b. �

Now given an element γ of S1(a, x, `), we can construct elements of S(a, λ, `) as follows: Let

α =
x+ Tr(w)

√
d

2
√
d

, β =
`√
d
γ.

First, we note that α ∈ D−1 ⇐⇒ x+Tr(w)
√
d

2 ∈ OK ⇐⇒ x ∈ OL, x ≡ aTr(w) mod 2OL, which
holds because x satisfies conditions C.

Next, note that β = √̀
d
γ ∈ D−1A−1`a−1a ⇐⇒ γ ∈ A−1a−1a, which holds by the definition of the set

S1(a, x).
It remains to check that the congruence α ≡ λβ mod OK is satisfied. Since γ ∈ S1(a, x, `),

x2 − 4α0p`
2γγ = dd′ ≡ 0 mod d.

Next, the congruence λ2 ≡ α0p mod d implies that

x2 − 4α0p`
2γγ + 4`2γγ(α0p− λ2) ≡ 0 mod d,

and so
x2 − 4λ2`2γγ ≡ 0 mod d.

Therefore,

(x+ Tr(w)
√
d)(x− Tr(w)

√
d)− 4λ2`2γγ ≡ 0 mod d.

Using x+ Tr(w)
√
d = 2

√
dα and `γ =

√
dβ, we get

−4d(αα− λ2ββ) ≡ 0 mod d.

Since (d, 2) = 1 it follows that αα ≡ λ2ββ mod OK . Now, α and λβ belong to D−1 = 1√
d
OK and hence

α1 :=
√
dα, β1 :=

√
dλβ

are in OK and we have α1α1 ≡ β1β1 mod d. Equivalently, this relation holds modulo all ideals q of OL
dividing d:

(∗) α1α1 ≡ β1β1 mod q, ∀q | d, q�OL.
Let q̃ � OK be a prime such that qOK = q̃2. Then OK/q̃ ∼= OL/q, and complex conjugation hence acts
trivially mod q̃. So (*) is equivalent to

α2
1 ≡ β2

1 mod q̃, ∀q̃ | dOK , q̃�OK ,
which is equivalent to

α1 ≡ ±β1 mod q̃, ∀q̃ | dOK , q̃�OK .
So this shows that there exists a choice of signs ε(a, q), and a λ depending on this choice, for which the
congruence condition is satisfied, and [α, β] ∈ S(a, λ, `). However, for any ideal q for which x ≡ 0 mod q,
both signs will work. This motivates the following definitions and theorem.

Definition 6.2. (1) For x ∈ OL, let δ(x) = 2#{q|d:x≡0 mod q}.
(2) Call ε(a) a vector of signs {ε(a, q)} and let λε(a) ∈ OL be an element such that

(a) λε(a) ≡ ε(a, q)λq mod q, ∀q | d
(b) λε(a)A−1a−1a is an integral ideal of OK .

For any such λε(a) we have associated orders R(a, λε(a), `).
(3) Let τ = #{q | d}.

For clarity, we also repeat previous definitions.

Definition 6.3. We say that x ∈ OL satisfies C if x ≡ aTr(w) mod 2OL, x2−dd′
4p`2 ∈ OL, and x2 − dd′ is

totally negative.

Definition 6.4. For a�OK , let λa = λε(a), where ε(a, q) = (−1)valq̃(a).
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Theorem 6.5.

(1)
∑
ε(a)

#S(a, λε(a), `) =
∑

x satisfiesC

δ(x) ·#S1(a, x, `) = wK
∑

x satisfiesC

δ(x) ·#S2(a, x, `).

Furthermore,

(2)
∑
ε(a)

#S(a, λε(a), `) =
∑
c|d

c�OK

#S(ac, λac, `).

Proof. To avoid confusion, we remark that in (1), the first summation is a sum over 2τ elements, one
of them being #S(a, λa, `). The second equality of (1) follows from Proposition 6.1. To prove the first
equality in (1), we refer to the construction given above of the map φ S(a, λ, `) → S1(a, x, `). It can be
extended to a map from

φ :
∐
ε(a)

S(a, λε(a), `)→
∐

x satisfiesC

S1(a, x, `).

We claim that φ is a surjective map which is [δ(x) : 1]. Given an element γ of S1(a, x, `), we constructed
above, for some possible choice of signs ε(a) determining λ, an element of S(a, λ, `),

α =
x+ Tr(w)

√
d

2
√
d

, β =
`√
d
γ.

For any ideal q̃ | d, let µ(x, γ) ∈ {±1} be such that α1 ≡ µ(x, γ)β1 mod q̃, where α1 =
√
dα, β1 =

√
dλβ.

Given ε(a), we have

α ≡ λε(a)β mod OK ⇐⇒
∀q̃ | d, either α1 ≡ β1 ≡ 0 mod q̃ or β1 6≡ 0 mod q̃ and ε(a, q) ≡ µ(x, γ) mod q̃.

It follows that for a given (x, γ), the number of sign vectors ε(a) such that α ≡ λε(a)β mod OK is equal
to

2#{q̃|d:
√
dα≡0 mod q̃}.

Now since valq̃(
√
dα) = valq̃(x+ Tr(w)

√
d) ≥ min{valq̃(x), valq̃(Tr(w)

√
d)}, it follows that

valq̃(
√
dα) > 0 ⇐⇒ valq̃(x) > 0 ⇐⇒ valq̃(x) > 0.

So the number of sign vectors ε(a) such that α ≡ λε(a)β mod OK is equal to 2#{q|d:x≡0 mod q}.
The second assertion in the theorem follows from the same argument given in the proof of Lemma 5.3. �

7. Endomorphism rings of abelian surfaces with complex multiplication

Let K be a primitive CM field of degree 4 over the rational numbers. Let W = W (Fp) be the Witt ring
and let

(A, ι : OK → EndW (A))

be an abelian scheme over W of relative dimension 2, such that A (mod p) is superspecial. Assume further
that p is unramified in K. Then, R := EndOL(A (mod p)) is a superspecial order of the quaternion algebra
Bp,L [Nic2, Prop 4.1].

Theorem 7.1. One has

EndOL,W/(pn)(A (mod pn)) = OK + pn−1R.

This theorem is a generalization of a theorem of B. Gross that deals with the case of elliptic curves
[Gro], but our method of proof is different; it is based on crystalline deformation theory.

Consider A (mod pn). We have an identification:

H1
dR(A (mod pn)) ∼= H1

Crys(A (mod p)/W )⊗W/(pn).
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Using that W/(pn+1)→W/(pn) has canonical divided power structure, we conclude that the deforma-
tions of A (mod pn) to an abelian scheme B over W/(pn+1) are in functorial correspondence with direct
summands of H1

Crys(A (mod p)/W )⊗W/(pn+1) such that the following diagram commutes.

M

mod pn

��

⊆ H1
Crys(A (mod p)/W )⊗W/(pn+1)

mod pn

��
ωA (mod pn) ⊆ H1

Crys(A (mod p)/W )⊗W/(pn)

,

where ωA (mod pn) are the relative differentials at the origin of A (mod pn).
We shall show that there exists a unique such B to which the OK-action extends, namely, a unique M

fixed under the OK action on H1
Crys(A (mod p)/W ). We may conclude then that for that M there is an

isomorphism

(7.1) EndOL(A (mod pn+1))⊗Z Zp
∼= EndOL

(
M ⊂ H1

Crys(A (mod p)/W )⊗W/(pn+1)
)
∩ EndOL

(
A (mod pn+1)

)
⊗Z Zp.

We then calculate the right hand side and find that it is equal to (OK + pnR) ⊗Z Zp. Since we know a
priori that EndOL(A (mod pn+1)) has index equal to a power of p in R (see [GL4, Proposition 6.1]), our
theorem will follow.

First, the uniqueness of M is easy to establish. We have an isomorphism of OK ⊗Z W modules,

H1
crys(A (mod p)/W ) ∼= ⊕ϕ∈Emb(OK ,W )W (ϕ),

where W (ϕ) is just W with the OK action given by ϕ. Since p is unramified, for all n ≥ 1, W (ϕ) 6∼= W (ϕ′)
(mod pn) as OK-modules, for any distinct ϕ,ϕ′ ∈ Emb(OK ,W ). If Φ is the CM-type of A it follows that
if M is a direct summand of rank g, which is an OK-submodule, then M must be ⊕ϕ∈ΦW (ϕ) (mod pn+1).

Let Rn = EndOL,W/(pn)(A (mod pn)). We prove by induction on n that

Rn = OK + pn−1R.

As remarked, it is enough to prove that after p-adic completion, and, in fact, we actually calculate the
right hand side of (7.1). The case n = 1 is tautological.

Since we assumed that A (mod p) is superspecial and p is unramified in K, there are according to [GL4]
Table 3.3.1 (ii), Table 3.4.1 (iii), (iv), Table 3.5.1 (iii), (vi), and the results of C.-F. Yu [Yu], precisely
two possibilities for H1

crys(A (mod p)/W ), equivalently for the Dieudonné module of A (mod p), as an
OK ⊗Z Zp-module. Our calculations are done separately, according to these cases.

Case 1 In this case, the completions at p of the rings are

OL,p ∼= Zp ⊕ Zp, OK,p ∼= Zp2 ⊕ Zp2 ,
where we are writing Zp2 for W (Fp2). The Dieudonné module D is a direct sum of Dieudonné modules,

D = D1 ⊕ D2,

where for i = 1, 2, Di has a basis relative to which Frobenius is given by the matrix(
0 p
1 0

)
,

and the i-th copy of Zp2 in OK,p acts on Di by

a 7→
(
a

aσ

)
and on Di+1 (mod 2) by zero. (Here σ is the Frobenius automorphism of Zp2 .) Clearly,

EndOL(D) = End(D1)× End(D2),
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and, as one can easily check,

End(Di) =
{(

α pβ
βσ ασ

)
: α, β ∈W (Fp2)

}
.

(The restriction on the entries
(
a b
c d

)
comes from the identity(

a b
c d

) (
0 p
1 0

)
=
(

0 p
1 0

) (
aσ bσ

cσ dσ
)

that an endomorphism of the Dieudonné module must satisfy.)
Now, for every n, ωA (mod pn) = SpanW/(pn){( 0

1 )}⊕SpanW/(pn){( 0
1 )} in the decomposition D = D1⊕D2.

By induction, the endomorphisms in EndOL(D) preserving ωA (mod pn) are

(OK + pn−1R)⊗Z Zp =
{((

α pnβ

pn−1βσ ασ

)
,
(

γ pnδ

pn−1δσ γσ

))
: α, β, γ, δ ∈W (Fp2)

}
.

The conditions for an endomorphism like that to preserve ωA (mod pn+1) are that the vectors(
α pnβ

pn−1βσ ασ

)
( 0

1 ) ,
(

γ pnδ

pn−1δσ γσ

)
( 0

1 )

are a multiple of ( 0
1 ) modulo pn+1. This is the case precisely when β (respectively, δ) are in pW . Thus,

End(A (mod pn+1))⊗Z Zp = (OK + pnR)⊗Z Zp and the proof is complete in Case 1.

Case 2 In this case, the completions at p of the rings are

OL,p ∼= Zp2 , OK,p ∼= Zp2 ⊕ Zp2 ,

where Zp2 is embedded diagonally in Zp2 ⊕Zp2 . The Dieudonné module has a basis {e1, e2, e3, e4} relative
to which

Fr =


0 0 p 0
0 0 0 1
1 0 0 0
0 p 0 0

 .

The element (a, b) ∈ OK,p acts by the diagonal matrix diag(a, b, aσ, bσ), and so a ∈ OL,p acts by
diag(a, a, aσ, aσ). Change the order of the basis elements to get a new basis {e1, e4, e3, e2}. Then Frobenius

is given by

(
0 pI2
I2 0

)
, and (a, b) ∈ OK,p acts by the diagonal matrix diag(a, bσ, aσ, b), and so a ∈ OL,p

acts by diag(a, aσ, aσ, a).

The conditions for a matrix (A B
C D ) ∈ M4(W ) to be in End(D) are (A B

C D )
(

0 pI2
I2 0

)
=
(

0 pI2
I2 0

) (
Aσ Bσ

Cσ Dσ
)

and so we find,

End(D) =

{(
A pCσ

C Aσ

)
: A,C ∈M2(W (Fp2))

}
.

The condition for such a matrix to be in EndOL(D) is that it commutes with all matrices of the form
diag(a, aσ, aσ, a) where a runs over W (Fp2). An easy computation gives

EndOL(D) =

{(
A pCσ

C Aσ

)
: A,C diagonal matrices ∈M2(W (Fp2))

}
.

We have ωA (mod pn) = Span{e3, e2}, where e3, e2 are the last 2 vectors in the current basis. One argues by

induction, as before, to prove that the endomorphisms in EndOL(D) preserving ωA (mod pn) are precisely
those of the form{(

A pnCσ

pn−1C Aσ

)
: A,C diagonal matrices ∈M2(W (Fp2))

}
∼= (OK + pn−1R)⊗Z Zp.

That completes the proof of Case 2 and, hence, of the theorem.
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8. Geometric interpretation

Let W = W (Fp) and Q = W ⊗Z Q; Q is the completion of the maximal unramified extension of Qp.
Assume that p is unramified in K and consider the functor on W -schemes associating to a W -scheme S
the isomorphism classes of triples

(8.1) A = (A, ι, η),

where A→ S is an abelian scheme of relative dimension g, ι : OK → EndS(A) is a ring homomorphism
and η is a principal polarization of A inducing complex conjugation on K. Arguments as in [GL1] show
that this functor is represented by an étale scheme over W , whose complex points are in natural bijection
with F × Cl(K), as described in Proposition 2.4. In particular, isomorphism classes of A over Fp as in
(8.1) are also in bijection with (F × Cl(K))/ ∼ once we have fixed an identification of Hom(K,C) with
Hom(K,Qp).

Consider pairs (A, ι) over Fp such that A is a g-dimensional abelian variety and ι : OK → End(A) is
a ring homomorphism such that (A, ι|OL) satisfies the Rapoport condition. One knows that there exists
a principal OL-polarization η on A, unique up to isomorphism. We claim that η automatically induces
complex conjugation on K. This can be verified by case-by-case analysis using Lemma 6 of [Cha].

8.1. Isomorphisms of CM abelian varieties. Now, fix another CM field K ′ whose totally real subfield
is L. Consider (A, ιA : OK → End(A)) and (A′, ιA′ : OK′ → End(A′)) over Fp, and assume that we are
given an isomorphism

α : (A, ιA|OL)
∼−→ (A′, ιA′ |OL).

We then get an embedding

jα : OK′ → End(A), jα(r) = α−1 ◦ ιA′(r) ◦ α.

If β : (A, ιA|OL)
∼−→ (A′, ιA′ |OL) is another isomorphism, then β = γ ◦ α, where γ ∈ Aut(A′, ιA′ |OL) and

jβ(r) = α−1◦γ−1◦ιA′(r)◦γ◦α, which gives us another embedding ofOK′ into End(A). The embeddings are
equal iff γ−1 ◦ ιA′(r)◦γ = ιA′(r) for all r ∈ OK′ , iff γ ∈ CentEnd0(A′)(K

′)∩Aut((A′, ιA′ |OL)) = O×K′ . (Here

CentEnd0(A′)(K
′) denotes the centralizer of K ′ in End0(A′).) Thus, each isomorphism class of (A′, ιA′)

such that (A, ιA|OL) ∼= (A′, ιA′ |OL) gives us

](Aut((A′, ιA′ |OL))/O×K′) = ](Aut((A, ιA|OL))/O×K′)

distinct embeddings of OK′ into End(A).

8.2. Counting isomorphisms in the superspecial case. Now assume we are in the superspecial
reduction situation and fix an isomorphism,

EndOL(A) ∼= R(a, λa),

for some unique a � OK (Lemma 5.7, Theorem 5.8). Then, writing OK′ = OL[ω] as before, to give an
embedding OK′ −→ EndOL(A) is to choose an element [α, β] ∈ R(a, λa) with trace equal to Tr(ω) and with
norm equal to Norm(ω). That is, an element of the set S(a, λa, 1). Such an embedding makes (A, ιA|OL)
into an abelian variety with CM by OK′ , and so the embedding OK′ −→ EndOL(A) arises via a particular
isomorphism

(A, ιA : OK → End(A))
∼→ (A′, ι′ : OK′ −→ End(A′))

(where, in fact, we may take A = A′ and ι′ restricts to ιA on OL). We conclude that

]S(a, λa, 1)

](R(a, λa)×/O×K′)
= ]{(A′, ιA′ : OK′ → EndOL(A′))/Fp : (A′, ιA′ |OL)

∼→ (A, ιA|OL)}.

(where on the left hand side, we consider (A′, ιA′ : OK′ → EndOL(A′)) up to isomorphism with CM by
OK′ , of course). Exactly the same analysis is valid over W/(pn), and using that EndW/(pn)(A, ι|OL) ∼=
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R(a, λa, p
n−1), as follows from Theorem 7.1, we get that

(8.2)
]S(a, λa, p

n−1)

](R(a, λa, pn−1)×/O×K′)
= ]{(A′, ιA′ : OK′ → EndOL(A′))/Fp : (A′, ιA′ |OL)

∼→ (A, ιA|OL)}.

8.3. Counting formulas for the number of isomorphisms for superspecial CM types. Now fix
a superspecial CM type Φ of K. We consider representatives A = (A, ιA : OK → End(A)) for the
isomorphism classes with CM type Φ. For each such A, we may choose an isomorphism

fA : End0
L(A)

∼−→ Bp,L,

and hence get an embedding

fA ◦ ιA : K → Bp,L.

By Skolem-Noether, we may conjugate the identifications fA so that the embeddings fA ◦ ιA are the same,
and in fact, this will be the case if fA1

and fA2
are related by a CM isogeny to begin with. Then, for

every A, fA(EndOL(A)) is a superspecial order containing OK . This order is uniquely determined by A,
up to conjugation by K×.

By our results, the representatives for these orders modulo conjugation by K× are precisely the orders
R(a, λa) as a ranges over representatives for Cl(OK). We therefore conclude:

Theorem 8.1.

(8.3)
∑
a

#S(a, λa, p
n−1) =

∑
A/(W/(pn))
with CM type Φ

#

(
EndOL,W/(pn)(A)×

O×K′

)
·#
{
A′ with CM by OK′ such that
(A′, ιA′ |OL) ∼= (A, ιA|OL)

}
.

(Of course, the A′ are taken up to isomorphism.)

If we wish not to fix a CM type on K, we get the following:

Theorem 8.2.

(8.4) (#superspecial CM types)×
∑
a

#S(a, λa, p
n−1) =

∑
A/(W/(pn))
with CM by OK

#

(
EndOL,W/(pn)(A)×

O×K′

)
·#
{
A′ with CM by OK′ such that
(A′, ιA′ |OL) ∼= (A, ιA|OL)

}
.

8.4. Counting formulas for pairs of embeddings into superspecial orders. The left hand side of
(8.3), for n = 1, has another interpretation. Consider a pair of embeddings ι : OK → R and ι′ : OK′ → R
into a superspecial order R such that both restrict to a fixed, given embedding of OL into R. We call it
an optimal triple (ι, ι′, R). We say that (ι, ι′, R) are conjugate to (j, j′, R̃) if there exists t ∈ B×p,L such

that t−1Rt = R̃ and t−1ι(x)t = j(x), for all x ∈ OK× and t−1ι′(x)t = j′(x), for all x ∈ O×K′ .
To count the number of conjugacy classes of triples, let us fix an embedding I : K → Bp,L. Then any

optimal triple is conjugate to (I|OK′ , ι′, R), where R is a superspecial order containing I(OK). We may
still conjugate by K× and so assume that R = R(a, λa) for some a. We may still conjugate by OK× and
if K 6= K ′ that induces a faithful action of OK×/OL× on the embeddings ι′ : OK′ → R(a, λa) if they exist
at all. We conclude that

#(OK×/OL×)−1
∑
a

#S(a, λa, 1) = #{optimal triples up to conjugation}.

Finally, we note the following corollary:



24 EYAL Z. GOREN & KRISTIN E. LAUTER

Corollary 8.3.

(8.5) #{optimal triples up to conjugation} =

#(OK×/OL×)−1
∑
a

#S(a, λa, 1) =

∑
A/(W/(pn))
with CM type Φ

#(OK×/OL×)−1#(O×K′/OL
×)−1#

(
EndOL,W/(pn)(A)×

O×L

)
×

#

{
A′ with CM by OK′ such that
(A′, ιA′ |OL) ∼= (A, ιA|OL)

}
.

If we multiply the whole set of equalities (8.5) above by the number of superspecial types for K, we
may be justified in calling the new right hand side of (8.5) the “coincidence number of K and K ′ at p”, as
it counts the number of coincidences between abelian varieties with CM by K and abelian varieties with
CM by K ′ in characteristic p, once one considers them as abelian varieties with RM only.

9. The connection to moduli spaces

In their paper [GZ], Gross and Zagier give a beautiful formula. Let E1 and E2 be two elliptic curves
over W = W (Fp). Let ji be the j-invariant of Ei. Their formula is:

valp(j1 − j2) =
1

2

∑
n≥1

]Isomn(E1, E2),

where Isomn denotes the isomorphisms between the reduction of Ei modulo (pn).
The proof Gross and Zagier provided is through direct manipulations of Weierstrass equations. A more

conceptual proof was given by Brian Conrad in [Con]. The proof makes essential use of moduli spaces,
but uses many features unique to modular curves and, hence, is not readily amenable to generalization.
This result is the basis of interpreting their theorem on J(d, d′) and ordλ(J(d, d′)) (cf. Introduction), as
an arithmetic intersection number. It thus remains a question of how to give an interpretation for our
theorems, Theorem 8.2 for example, as an intersection number of CM points on Shimura varieties.

One possibility is to use Shimura curves associated with quaternion algebras over totally real fields, split
at exactly one infinite prime. This approach entails using the p-adic, not-quite-canonical, models for these
Shimura curves, following Morita, Carayol and Boutot-Carayol. The other possibility is to view these CM
0-cycles as lying on a Hilbert modular variety. This approach is complicated by the fact that there is no
“robust” definition of the arithmetic intersection of 0-cycles (1-cycles on the arithmetic models) once their
co-dimension is bigger than 1. This calls for an ad-hoc approach and it has its own challenging problems.

For now we will replace the notion of an intersection number with something less precise, and define
instead a coincidence number, which does not reflect the power to which various primes may appear in
the differences of invariants, but at least reflects whether a prime appears or not in the factorizations of
the differences of invariants. In Section 12 we will give an example to illustrate the coincidence number in
computations.

Let L be a totally real field with strict class number 1, and Ki, i = 1, 2, two CM fields containing L as
their maximal totally real subfield. Let p be a prime, unramified in both K1,K2. For each CM field we
can associate a zero cycle, CM(Ki), on the generic fiber of the Hilbert modular variety HL parameterizing
principally polarized abelian varieties with RM by OL (see Section 2.3). Each point xη in CM(Ki) can

be extended to a W (Fp)-point x on HL (see [GL4, Lemma 2.3]). This implicitly depends on a choice of
a prime p in a common field of definition for all the CM abelian varieties under consideration. We write
CM(K1) =

∑
i xi, CM(K2) =

∑
j yj . We then define the arithmetic coincidence number (for lack of better

terminology) of CM(K1) and CM(K2) as

CM(K1)∧CM(K2) =
∑
ij

xi∧yj
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where xi∧yj is defined as 1 if xi and yj have isomorphic reduction modulo p, and as zero otherwise. In
this notation, Theorem 8.2 implies the following:

Corollary 9.1. The contribution from a prime p of superspecial reduction to CM(K1)∧CM(K2) is equal
to (#superspecial CM types)×

∑
a #S(a, λa, 1).1 This number, and in particular whether it is zero or not,

can be effectively calculated.

10. Supersingular orders

Theorem 10.1. Let p be a rational prime and k an algebraically closed field of characteristic p. Let K be a
quartic CM field and let L = K+ be its real subfield. Let A/k be an abelian surface which is supersingular,
but not superspecial, with complex multiplication by OK . Let O = EndOL(A), where the endomorphisms
are over k. Let Bp,∞ be the quaternion algebra over Q ramified at only p and∞ and let Bp,L = Bp,∞⊗QL.
Then O is an Eichler order of Bp,L of discriminant p2.

Proof. Let H be a quaternion algebra over a number field F and let R be an order of H, containing OF .
Recall that R is called an Eichler order if it is the intersection of two maximal orders. This is a local
property [Vig, p. 84]. If F denotes now a non-archimedean local field with uniformizer π, then an order
of H, containing OF , is Eichler (namely, is the intersection of two maximal orders of H) if and only if it
is conjugate to the order

M =

(
OF OF
πnOF OF

)
,

for some positive integer n [Vig, p. 39].
We wish to find the completion of O at every rational prime ideal l of OL.
First, since there exists an isogeny of degree a power of p between any two supersingular abelian

surfaces A,A′, with real multiplication, respecting the real multiplication structure [BG], for l - p, we have
Ol := O ⊗OL OL,l ∼= O′l, where O′ = EndOL(A′). We may choose for A′ the surface E ⊗Z OL, where E is
a supersingular elliptic curve with R = End(E) a maximal order in Bp,∞. Then O′ = End(A′) = R⊗ZOL
and so O′ and O are maximal orders at l.

We remark that according to the classification of the reduction of abelian surfaces with CM, the situation
we consider occurs if and only if p is inert in K. That is, in the following cases:

(a) K/Q is cyclic Galois and p is inert in K (case (iii) in Table 3 of [GL4]);
(b) K/Q is non-Galois and p is inert in K (case (vii) in Table 5 of [GL4]).

Following the conventions of [GL4], the Dieudonné module of the p-divisible group of the reduction of A
modulo pL is

D ∼= W(1)⊕W(y2)⊕W(y)⊕W(y3),

where W(α) denotes the Witt vectors of Fp where OK acts through the embedding α : K → Qp. Let σ
denote the Frobenius automorphism of W. Then:

(a) OL acts on D by ` 7→ diag(`, `, σ(`), σ(`)), and
(b) OK acts on D by k 7→ diag(k, σ2(k), σ(k), σ3(k)).

The p-adic CM type is {1, y3}, according to our conventions, but since the situation is symmetric, we may
assume that the p-adic CM type is {1, y}, and so Frobenius is given in the standard basis by the matrix

Fr =


0 0 0 1
0 0 p 0
p 0 0 0
0 1 0 0

 .

By a theorem of Tate, End(A)⊗Z Zp ∼= End(D), where on the right the endomorphisms are as Dieudonné
modules (cf. [WM, Theorem 5]): namely, in this case, W-linear maps D→ D that commute with Frobenius.

1Likewise, the notion of superspecial CM types depends on the implicit choice of p.
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In the same way,

Op = EndOL(A)⊗OL OLp = EndOL(A)⊗Z Zp ∼= EndOL(D).

Since Op commutes with OL, one finds that Op is given by block diagonal matrix with blocks of size 2.
Writing the general such matrix as

M =


m11 m12

m21 m22

n11 n12

n21 n22

 ,

the condition M · Fr = Fr · σ(M) gives, after a short computation,

Op =




m11 m12

p2mσ2

12 mσ2

11

mσ
11 pmσ

12

pmσ3

12 mσ3

11

 : mij ∈W(Fp4)

 .

Since p is inert in L, the quaternion algebra Bp,L is ramified only at the two places at infinity. In particular,
Bp,L ⊗L Lp ∼= M2(Qp2), where Qp2 = W(Fp2)⊗Z Q. To determine the nature of Op, we want to recognize
it as a suborder of M2(W(Fp2)).

The case p 6= 2. Put

i =

(
1

p2

)
, j =

(
α

ασ
2

)
,

where α is chosen such that W(Fp4) = W(Fp2)[α] and ασ
2

= −α. We have then

i2 = p2, j2 = α2, k := ij = −ji =

(
−α

p2α

)
.

Writing m1 = x1 + y1α,m2 = x2 + y2α with xi, yi ∈W(Fp2) we can write,(
m11 m12

p2mσ2

12 mσ2

11

)
= x1

(
1

1

)
+ y1

(
α

ασ
2

)
+ x2

(
1

p2

)
− y2

(
−α

p2α

)
= x1 · 1 + y1 · j + x2 · i− y2 · k.

Conversely, for any xi, yi ∈W(Fp2) we get an element of Op. Thus,

Op = W(Fp2) · 1⊕W(Fp2) · i⊕W(Fp2) · j ⊕W(Fp2) · k.

Let I = p−1i, J = j,K = IJ = −JI. Then I2 = 1, J2 = α2,K2 = −α2. The module

R = W(Fp2)[1, I, J,K]

is in fact an order of M2(Qp2) and it has discriminant 1. It must then be isomorphic to M2(Wp2), and,
indeed, if we send

1 7→
(

1
1

)
, I 7→

(
1
−1

)
, J 7→

(
α2

1

)
, K 7→

(
α2

−1

)
we get the isomorphism R ∼= M2(W(Fp2)). Under this isomorphism Op is mapped isomorphically to the

order spanned over W(Fp2) by the matrices

(
1

1

)
,

(
p
−p

)
,

(
α2

1

)
,

(
pα2

−p

)
, which can be

described as {(
a b
c d

)
: a, b, c, d ∈W(Fp2), p|(a− d), p|(b− α2c)

}
.
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Now conjugate Op by the matrix A =

(
1 α
α−1 −1

)
. Using

2A−1

(
a b
c d

)
A =

(
a+ α−1b+ αc+ d α(a− d) + (α2c− b)

α−1(a− d) + α−2(b− α2c) a− α−1b− αc+ d

)
,

we find that Op is conjugate to a suborder of

R′ =

(
W(Fp2) pW(Fp2)
pW(Fp2) W(Fp2)

)
.

However, comparing the discriminant of Op, which is p2, and of R′ which is p2 as well, we conclude that

Op is isomorphic to R′. Further conjugation by the matrix

(
1/p

1

)
shows that Op is isomorphic to the

order

R′′ =

{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p2|c

}
,

which is an Eichler order of discriminant p2.

The case p = 2. We may find α ∈ W(Fp2) such that ασ
2

= −α and W(Fp4) = W(Fp2)[ 1+α
2 ]. Indeed,

for a suitable ε ∈ W(Fp2)× we have W(Fp4) = W(Fp2)[β], where β2 + β + ε = 0. Note that β is a unit.
Take α = −(2β + 1).

To make the analogy with the previous case more visible, we keep using p instead of 2 in most places.
As before, we let

i =

(
1

p2

)
, j =

(
α
−α

)
, k = ij = −ji =

(
−α

αp2

)
.

Writing m1 = x1 + y1(1 + α)/2,m2 = x2 + y2(1 + α)/2 with xi, yi ∈W(Fp2) we can write,(
m11 m12

p2mσ2

12 mσ2

11

)
= x1 · 1 + y1 ·

1 + j

2
+ x2 · i+ y2 ·

i− k
2

,

and one concludes that

Op = W(Fp2) · 1⊕W(Fp2) · i⊕W(Fp2) · 1 + j

2
⊕W(Fp2) · i− k

2
.

One can verify directly that the right hand side is indeed an order and its discriminant is p2.
The order Op contains the order W(Fp2)[1, i, j, k] = W(Fp2)[1, I, J,K], where I = i, J = j/α,K = k/α.

Note that I2 = p2, J2 = 1,K2 = −p2, IJ = −JI = K. Consider the linear map

W(Fp2)[1, I, J,K]→M2(W(Fp2))

determined by

1 7→
(

1
1

)
, I 7→

(
2

2

)
, J 7→

(
1
−1

)
, K 7→

(
−2

2

)
.

One checks that this map is a ring homomorphism and verifies that

Op ∼= W(Fp2)

[(
1

1

)
,

(
(1 + α)/2

(1− α)/2

)
, 2

(
1

1

)
, 2

(
(1 + α)/2

(1− α)/2

)]
.

Let u = (1 + α)/(1− α) = β2/ε. Then u is a unit and 1− u = 2 + u/β is a unit as well. It follows that,

Op ∼= W(Fp2)

[(
1 0
0 0

)
,

(
0 0
0 1

)
, 2

(
0 1
0 0

)
, 2

(
0 0
1 0

)]
=

{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p|b, p|c

}
.

An additional conjugation as in the case p 6= 2 shows that this is an Eichler order of discriminant p2. �
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11. A crude version of Gross-Zagier’s result on singular moduli

Let A be a g-dimensional abelian variety over a field k. Let L be a totally real field of degree g over Q of
strict class number one, and let Ki, i = 1, 2, be two CM fields contained in some algebraic closure of L
such that K+

1 = K+
2 = L. We allow K1 = K2. Assume we are given two embeddings,

ϕi : Ki → End0
k(A) := Endk(A)⊗Z Q,

such that

ϕ1|L = ϕ2|L, ϕ1(K) 6= ϕ2(K).

Lemma 11.1. The field k has positive characteristic p. The abelian variety is supersingular and End0(A) ∼=
Bp,L, where Bp,L = Bp,∞ ⊗Q L and Bp,∞ is “the” quaternion algebra over Q ramified at p and ∞.

Proof. This follows easily from the classification of the endomorphism algebras of abelian varieties with
real multiplication as in [Cha, Lemma 6]; one observes that under our assumptions the centralizer of L in
End0

k(A) is an L-vector space of dimension greater than 2. �

Let Oi ⊆ Ki be orders containing OL. The order Oi is determined by its conductor ci, which is an integral
ideal of OL for which we choose a generator ci (see [GL3, Lemma 4.1]). In fact, one can write

OKi = OL[κi],

where κi satisfies a quadratic equation x2 + Bix + Ci, Bi, Ci ∈ OL, and −mi = B2
i − 4Ci is a totally

negative element of OL. The relative different ideal DKi/L is equal to OKi [1/
√
−mi] ([GL2, Lemma 3.1]).

We have OKi = OL[κi] ⊇ OL[
√
−mi] ⊇ OL[2κi], and so

Oi = OL[ciκi] ⊇ OL[ci
√
−mi] ⊇ OL[2ciκi].

The discriminant of Oi relative to OL, discKi/L(Oi), is equal to the OL-ideal generated by c2imi and the

discriminant of Oi relative to Z, disc(Oi) = discK/Q(Oi), is equal to NormL/Q(c2imi) · disc(OL)2. (In
general, we use “disc” to denote absolute discriminant, that is, relative to Z.)

Let B be any totally definite quaternion algebra over L, that is B ⊗L,σ R is a division algebra for any
embedding σ : L→ R, and let d be its discriminant. Let

ϕi : Ki → B,

be two embeddings such that ϕ1|L = ϕ2|L and ϕ1(K1) 6= ϕ2(K2). Let

ki = ϕi(ci
√
−mi).

Let O be an order of B, which we assume to contain ϕi(Oi), i = 1, 2, and hence also OL (we view ϕi
as the identity maps on L). Let d+ be the discriminant of O. As in [GL1], subject to the assumption
ϕ1(K1) 6= ϕ2(K2), one proves the following lemma.

Lemma 11.2. The OL module Λ = OL +OLk1 +OLk2 +OLk1k2 has finite index in O and is in fact a
direct sum, Λ = OL ⊕OLk1 ⊕OLk2 ⊕OLk1k2 .

Theorem 11.3. Let α = Trd(k1k2). Then we have a divisibility of integral ideals in L:

d+|
(
4Nrd(k1)Nrd(k2)− α2

)
(in OL).

Furthermore,

NL/Q(d+) ≤ 4g
disc(O1) · disc(O2)

disc(OL)4
.
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Proof. The discriminant of the order Λ relative to L, discB/L(Λ), is divisible by the discriminant of O,

namely it is an integral ideal of L divisible by d+. Using the basis 1, k1, k2, k1k2 for Λ, and putting
α = Trd(k1k2), we find that the discriminant of Λ is the OL-ideal generated by

det


2 0 0 α
0 2Nrd(k1) −α 0
0 −α 2Nrd(k2) 0
α 0 0 2Nrd(k1)Nrd(k2)

 =
(
4Nrd(k1)Nrd(k2)− α2

)2
,

and so
d+|

(
4Nrd(k1)Nrd(k2)− α2

)
(in OL).

Thus,
NL/Q(d+)|NL/Q

(
4Nrd(k1)Nrd(k2)− α2

)
(in Z).

Now, 4Nrd(k1)Nrd(k2)− α2 is a totally positive element of OL. Indeed, this is just the Cauchy-Schwartz
inequality applied to the bilinear form Trd(xȳ) under every embedding L→ R. We can therefore conclude
that

NL/Q(d+) ≤ NL/Q (4Nrd(k1)Nrd(k2)) .

We conclude that

NL/Q(d+) ≤ disc(OL)−44−g
2∏
i=1

4gdisc(OL)2NL/QNrd(ki)

≤ disc(OL)−44−g
2∏
i=1

disc(OL[2ciκi])

= disc(OL)−44g
2∏
i=1

disc(OL[ciκi])

= 4g
disc(O1) · disc(O2)

disc(OL)4
.

�

Corollary 11.4. (1) Let Ai be an abelian variety with CM by OKi . Choose a common field of defini-
tion M for A1, A2 such that M contains the normal closure of both K1 and K2 and both Ai have
good reduction over M . Let p be a prime ideal of M , (p) = p ∩ Z, and suppose that

A1 (mod p) ∼= A2 (mod p).

Let r be the number of prime ideals q in OL for which e(q/p)f(q/p) is odd. If r > 0 then

p ≤
(

4g
discK1 · discK2

disc(OL)4

)1/r

.

(2) Suppose that [L : Q] = 2, i.e., and that Ai are principally polarized abelian surfaces. Then we have
the bound

p ≤
(

16
discK1 · discK2

disc(OL)4

)1/r′

,

according to the following cases (and no other case is possible), where the last columns refer to
tables in [GL4]. The first column refers to the decomposition of p in L. We use “s.sing.” and
“ssp” to refer to “supersingular” and “superspecial”, respectively.

Proof. Since the Ai are principally polarized abelian surfaces, they satisfy the Deligne-Pappas condition
and, when p is unramified, even the Rapoport condition. We can therefore use the results of [BG, Nic1].

If p is split in L then every supersingular point is superspecial. In that case, EndOL(A) is an order of
discriminant pOL in Bp,L and we apply part (1) with r = 2.
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p Reduc-
tion

Rapoport? r′ Table 3
(K cyclic)

Table 4
(K biquadratic)

Table 5
(K non-Galois)

Unramified
(inert/split)

ssp Yes 2 ii, iv, v iii, iv, vii, viii iii, vi, viii, ix, x,
xi, xiii, xv, xxii,
xxiii

Inert s.sing &
not ssp

Yes 4 iii – vii

Ramified ssp Yes 2 – vi –
Ramified ssp No 1 vi ix, x, xi xvi, xvii, xviii,

xix, xx, xxi, xxiv,
xxv, xxvi

Table 11.1. The case [L : Q] = 2.

If p is inert, then the reduction is necessarily supersingular, by Lemma 11.1, and may or may not be
superspecial. If it is superspecial, then, again, EndOL(A) is an order of discriminant pOL in Bp,L and the
bound holds with r′ = 2.

If the reduction is supersingular and not superspecial, then in fact EndOL(A) has discriminant p2OL,
and so we may take r′ = 4.

Next we consider the case when p is ramified. There are three case to consider. The first is when we
have superspecial reduction and the Rapoport condition holds. In that case, EndOL(A) has discriminant
pOL, and we may take r′ = 2. The second case is when we have superspecial reduction and the Rapoport
condition does not hold (but the Deligne-Pappas condition holds). In this case, EndOL(A) has discriminant
p, where p is the prime of OL above p and we can take r′ = 1. The last possibility is, ostensibly, that we
have supersingular reduction, which is not superspecial. This in fact never happens in the presence of CM
by the full ring of integers. It is interesting to note, though, that for supersingular and not superspecial
reduction, the abelian variety A has a unique copy of the group scheme αp contained in it, which is
therefore preserved under all endomorphisms. Thus, End(A) ↪→ End(A/αp) and A/αp is superspecial, but
doesn’t satisfy the Rapoport condition (see [AG]). And so, were this case to occur, we could have taken
r′ = 1. �

Remark 11.5. Suppose that r = 0 then g is even and a maximal order R ⊂ Bp,L has discriminant 1.
For every prime p (and for any decomposition behaviour of p), there certainly exist supersingular abelian
varieties A with RM such that EndOL(A) = R. This is easily achieved by choosing an R-stable lattice
of the Dieudonné module of A. Experience shows, however, that such abelian varieties tend to be badly
behaved, for example, the Deligne-Pappas condition tends to fail when p is unramified, (it fails in the
cases we have checked and we did not find an example where it holds) or, in other cases, such as when
p is totally ramified, the Deligne-Pappas condition holds but the endomorphism ring is not the maximal
order. Thus, one would expect that under the Deligne-Pappas condition the discriminant of EndOL(A) is
never 1, and, if so, one obtains a version of part (1) of Corollary 11.4, in all cases.

In fact, one can be more optimistic and guess that the largest order O arising for a supersingular
characteristic p abelian variety with RM A, satisfying the Deligne-Rapoport condition, also arises for
some superspecial such abelian variety. Superspecial abelian varieties with RM were studied by Nicole
[Nic1, Nic2]. When p is unramified in L and A is superspecial, EndOL(A) has discriminant pOL. When
p is ramified in L, larger orders arise (see [Nic1, Theorem 2.8.5]), but at least when p is totally ramified,
pOL = p[L:Q], still the largest order arising (for a superspecial abelian variety) has discriminant p.

12. Computations: g = 2

Consider the two primitive Galois quartic CM fields K = Q(ζ5) and K ′ = Q(
√
−85 + 34

√
5). The

common real quadratic subfield L = K+ = K ′
+

= Q(
√

5) has strict class number one, as it has class
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number one and a unit (1 +
√

5)/2 of negative norm. The field K has class number 1 and the triple of
absolute Igusa invariants of the principally polarized abelian surface with CM by K is i1 = i2 = i3 = 0.
The field K ′ has class number 2 and the triple of absolute Igusa invariants for one of the CM points
associated to K ′ is:

i1 =
233 · 310 · 55 · 195 · 5215

7112
, i2 =

223 · 310 · 55 · 195 · 5213

718
, i3 =

216 · 37 · 54 · 193 · 5212 · 755777339

718
.

Genus 2 curves over Q with these invariants are given by the affine models:

y2 = x5 − 1

for Q(ζ5), and

y2 = −584x6 − 4020x5 + 28860x4 + 130240x3 − 514920x2 − 190244x− 289455,

for K ′. In this case, the triple of absolute invariants is insufficient to determine whether the two curves
are isomorphic modulo a prime p, since the first invariant is zero. To understand for which primes the
curves are isomorphic, it is necessary to compute all ten Igusa invariants for the CM point associated to K ′

to determine which primes divide all ten invariants (see [GL4, Section 2.2] for an explanation, especially
consequence 3 at the end of the subsection). In particular, primes which divide the differences of all ten
Igusa invariants associated to two CM points of K and K ′ are primes for which the coincidence number
of K and K ′ defined in Section 9 is non-zero.

The prime 19 appears in all three invariants and checking all ten invariants, we find that they too are all
zero modulo 19. There is also a positive contribution at the prime p = 19 in our formula in Theorem 8.3,
which implies a non-zero coincidence number. Since K has class number 1, there is only one superspecial
order R(O, λ). We find an element x ∈ OL satisfying condition C and count the elements in S2(O, x).

Let d and d′ be as in Section 6. We find that for x = 3
√

5− 3, the ideal in OL generated by (x2 − dd′)/4
factors as:

p2
2p19,1p19,2.

We see that there is a positive contribution for p = 19 in our formula because this factorization has both
split factors for 19, and 2 is totally inert in K/L but appears to the power 2, so (x2 − dd′)/(4 · 19) is a
norm of an ideal from K/L and the set S2(O, x) is non-empty.

Consider the other primes which are common to all three numerators in this example: 5 is a ramified
prime in L, so our results do not cover it; neither do our formulas pertain to the prime 2 which also appears
in all three numerators; the prime 3 divides all ten invariants but is supersingular, not superspecial, and
it certainly satisfies the crude bound Theorem 11.3 from Section 11; the prime 521 does not divide all ten
invariants.
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