
Cloud-Assisted Multiparty Computation

from Fully Homomorphic Encryption

Adriana López-Alt
New York University

Eran Tromer∗

Tel-Aviv University
Vinod Vaikuntanathan†

University of Toronto

December 7, 2011

Abstract

We construct protocols for secure multiparty computation with the help of a computationally
powerful party, namely the “cloud”. Our protocols are simultaneously efficient in a number of
metrics:

• Rounds: our protocols run in 4 rounds in the semi-honest setting, and 5 rounds in the malicious
setting.

• Communication: the number of bits exchanged in an execution of the protocol is independent
of the complexity of function f being computed, and depends only on the length of the inputs
and outputs.

• Computation: the computational complexity of all parties is independent of the complexity of
the function f , whereas that of the cloud is linear in the size of the circuit computing f .

In the semi-honest case, our protocol relies on the “ring learning with errors” (RLWE) assump-
tion, whereas in the malicious case, security is shown under the Ring LWE assumption as well as the
existence of simulation-extractable NIZK proof systems and succinct non-interactive arguments. In
the malicious setting, we also relax the communication and computation requirements above, and
only require that they be “small” – polylogarithmic in the computation size and linear in the size
of the joint size of the inputs.

Our constructions leverage the key homomorphic property of the recent fully homomorphic en-
cryption scheme of Brakerski and Vaikuntanathan (CRYPTO 2011, FOCS 2011). Namely, these
schemes allow combining encryptions of messages under different keys to produce an encryption (of
the sum of the messages) under the sum of the keys. We also design an efficient, non-interactive
threshold decryption protocol for these fully homomorphic encryption schemes.

∗This work was partially supported by the Check Point Institute for Information Security and by the Israeli Centers
of Research Excellence (I-CORE) program (center No. 4/11).

†This work was partially supported by an NSERC Discovery Grant, by DARPA under Agreement number FA8750-
11-2-0225. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the author and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Other Related Work . 3

2 Preliminaries 3

3 Cloud-Assisted MPC 4

4 Cloud-Assisted MPC From Key-Homomorphic Threshold FHE 6
4.1 Construction . 9
4.2 Security Under Semi-Honest Adversaries . 10

5 Tolerating Malicious Adversaries 13

6 Instantiating Key-Homomorphic Threshold FHE 16
6.1 The Polynomial-LWE Assumption . 16
6.2 A Somewhat-Homomorphic Scheme . 17
6.3 Getting a (Leveled) Fully-Homomorphic Scheme via Re-linearization and Modulus Re-

duction . 18
6.3.1 Re-linearization . 18
6.3.2 Modulus Reduction . 20

6.4 Key-Homomorphic Threshold FHE from PLWE . 21

7 Implementing FErand.bc and FEkeys 24
7.1 Ciphertext Re-Randomization . 24
7.2 Key Combination . 25

8 Performance 26

A Proofs 31
A.1 Security Under Malicious Adversaries . 31
A.2 Ciphertext Re-Randomization . 38
A.3 Key Combination . 41

2

1 Introduction

Cloud computing is usually portrayed as a user outsourcing its computation to a provider. However,
in reality each cloud provider has numerous users, who may wish to compute with each other. How
can multiple cloud users conduct an expensive joint computation, when they wish to keep private
all information except the final output? They could send all their inputs to the cloud and ask it to
compute the output, but this would violate their confidentiality. Alternatively, they could conduct a
secure multiparty computation protocol (MPC) [GMW87, BGW88, CCD88] among themselves, and
bear the full burden of computation. In particular, standard MPC protocols incur a large blow-up in
the computational complexity of all the players involved, as well as a commensurate increase in the
communication complexity of the protocol, neither of which are acceptable in the client-server setting.
Can the presence of the cloud make the multiparty computation more efficient, without compromising
its security?

More precisely, what we would like is an MPC protocol where n parties contribute inputs x1, . . . , xn

respectively, and they jointly compute f(x1, . . . , xn) securely satisfying the following two properties:

• Computational efficiency: the running time of each party is polynomial in the length of its
input and output. In particular, it should be independent of the complexity of the function f .

• Communication efficiency: the communication complexity of the protocol should be poly-
nomial in the length of the inputs and outputs, but otherwise independent of the complexity of
f .

Clearly, achieving computational efficiency alone requires the parties to seek the help of a (powerful)
cloud capable of computing f . The protocol should be secure against a collusion of an arbitrary subset
of parties together with the cloud.

The first possibility that comes to mind is to use a fully homomorphic encryption (FHE) scheme,
which provides a mechanism to design communication-efficient protocols in the two-party setting.
Starting from the groundbreaking work of Gentry [Gen09b], a number of progressively more efficient
and simpler FHE constructions have surfaced [vDGHV10, SV10], most recently the works of Brakerski
and Vaikuntanathan [BV11b, BV11a] and the work of Brakerski, Gentry and Vaikuntanathan [BGV11].
In the context of a single user outsourcing her computation to the cloud, the user can encrypt her input
using her key under the fully homomorphic encryption scheme, and send the ciphertext to the server.
The server homomorphically evaluates the desired function and returns the evaluated ciphertext back
to the user who decrypts and gets the result of the computation.1 Can we use fully homomorphic
encryption in the multiparty setting, where the computation is performed jointly on the inputs of many
players? A näıve way to approach this problem runs into the difficulty that we know of no way to
operate on ciphertexts encrypted under different keys.

Gentry suggested an approach to do communication- and computation-efficient cloud-assisted MPC
in the following way. The parties first run a multiparty coin-tossing protocol to generate a joint public
key for (an arbitrary) FHE scheme, together with a secret sharing of the corresponding secret key (the
ith party gets the ith share of the common secret key). Once this is done, the parties encrypt their
inputs using the common public key and have the cloud compute an encryption of the result. They
then run yet another MPC protocol to perform threshold decryption and recover the result. Clearly,
since both the coin-tossing and the threshold decryption functionality are independent of the function
f , this protocol is communication and computation-efficient (in the sense above). However, due to
the use of generic MPC techniques, the protocol has a fairly large round-complexity and concrete
computational complexity.

1For this discussion, we assume that the adversaries are semi-honest.

1

Can this state of affairs can be improved, by taking advantage of the algebraic structure that
underlies many of the recent FHE schemes? We show this is indeed the case, by demonstrating
concrete constructions.

1.1 Our Results

We show MPC protocols that are efficient in communication and computation as well as round com-
plexity, using a special property of recent FHE constructions, namely key homomorphism. Informally,
a key-homomorphic (public key) encryption scheme allows us to deterministically combine many public
keys pk1, . . . , pkN into a combined public key pk, and simultaneously combine secret keys sk1, . . . , skN

into a combined secret key sk. Informally, this property allows the parties to come up with a joint
public key under which they can all encrypt their respective inputs, without resorting to an expensive
coin-tossing protocol as in Gentry’s solution [Gen09b, Gen09a]. Of course, for security, we require that
semantic security under the joint public key pk holds even given t < N secret keys ski. In a sense, ski

form the secret shares of a common secret key sk whose corresponding public key is pk. The novelty
is that a key homomorphic encryption scheme allows us to come up with this structure in a rather
natural and efficient way.

Key-homomorphic encryption schemes abound. For example, consider Regev’s public key en-
cryption scheme [Reg09] where the public key pk = A>s + x, where A is a matrix that forms a
global system parameter, and the secret key vector sk = s. Adding together two such public keys
pk1 = A>s1 + x1 and pk2 = A>s2 + x2 gives us pk = pk1 + pk2 = A>(s1 + s2) + (x1 + x2), a joint
public key whose corresponding secret key sk is the sum of sk1 and sk2. This structure is by no means
unique to lattice based schemes, but it appears in numerous number-theoretic systems as well, e.g.,
the El Gamal encryption scheme. In lattice schemes, they are especially useful since they give us fully
homomorphic encryption schemes that are key-homomorphic as well.

As we argued before, key-homomorphic schemes provide us with a natural avenue to remove the
coin-tossing protocol from Gentry’s schema for multiparty computation from FHE. In the context
of FHE schemes, we also need a method of combining evaluation keys to produce a joint evaluation
key which turns out to be trickier. In particular, we do not know of a nice non-interactive way of
combining evaluation keys, but instead, we come up with a two-round protocol to do this.

Finally, the linear structure of these schemes give us a very efficient way to do non-interactive
threshold decryption, similar to the work of Bendlin and D̊amgard [BD10].

These ideas are fairly general and can be instantiated with a number of different combinations of the
existing schemes. We choose to present the instantiation that combines the ring LWE based somewhat
homomorphic encryption scheme from [BV11b] with the re-linearization technique of [BV11a] and the
noise management technique of [BGV11] (which, in turn, relies on the modulus reduction technique
of [BV11a]). We chose this instantiation since it is quite efficient and simplest to present. The reader
is referred to Section 6 for details on the instantiations. The resulting protocol is secure against
semi-honest adversaries that corrupt any t < N parties, and runs in 4 rounds.

We then compile this protocol to be secure against malicious adversaries, using simulation-extractable
NIZK proof systems [SP92, Sah99, CLOS02] as well as succinct non-interactive argument systems [Mic94,
GKR08, BCCT11, GLR11]. The resulting protocol runs in 5 rounds.

Our main theorem is the following:

Theorem 1.1. There are communication- and computation-efficient MPC protocols that are:

• secure against semi-honest corruptions of an arbitrary subset of players, under the Ring LWE
assumption and runs in 4 rounds. The communication and computation of the parties is inde-

2

pendent of the complexity of f , and the computation time of the server is linear in the size of
the circuit computing f .

• secure against malicious adversaries that corrupt an arbitrary number of players, under the Ring
LWE assumption, the existence of simulation-extractable NIZK proof systems and succinct non-
interactive argument systems. The protocol runs in 5 rounds. The communication of the parties
is polylogarithmic in the size of the circuit computing f , their computation time is nearly linear
in the total size of the inputs, and the computation time of the server is polynomial in the size
of the circuit computing f .

1.2 Other Related Work

The basic idea of using homomorphic encryption schemes in conjunction with threshold decryption to
boost the efficiency of MPC protocols was first noticed by Cramer, Damg̊ard and Nielsen [CDN01].
The idea of using a cloud to alleviate the computational efforts of parties was recently explored in the
work on ”server-aided MPC” by Kamara, Mohassel and Raykova [KMR11]. Their protocols, however,
require some of the parties to do a large amount of computation, essentially proportional to the size of
the function f being computed. Thus, their protocols are not computation-efficient in our sense. The
works of Myers, Sergi and shelat [MSas11], Bendlin et.al [BDOZ11], and Damg̊ard et. al. [DPSZ11]
construct MPC protocols (in the classical sense, without the help of a cloud) using FHE schemes (in
the case of [MSas11]) and somewhat homomorphic schemes (in [BDOZ11, DPSZ11]). Their protocols
are communication-efficient, but not computation-efficient in our sense, namely the computational
complexity of the parties is proportional to the size of f . Halevi, Lindell and Pinkas [HLP11] recently
considered the model of “secure computation on the web” wherein the goal is to minimize interaction
between the parties. Unfortunately, as they show, their notion can only be achieved for a small class
of functions. In contrast, we focus here on designing MPC protocols for arbitrary functions, of course
at the cost of interaction.

2 Preliminaries

Notation. For an integer n, we use the notation [n] to denote the set [n] = {1, . . . , n}. For a
randomized function f , we write f(x ; r) to denote the unique output of f on input x with random
coins r. We write f(x) to denote a random variable for the output of f(x; r) over the random coins
r. For a distribution or random variable X, we write x ← X to denote the operation of sampling a
random x according to X. For a set S, we overload notation and use s ← S to denote sampling s

from the uniform distribution over S. For two distributions, X and Y , we use X
c
≈ Y to mean that

X and Y are computationally indistinguishable, and X
s
≈ Y to mean that they are statistically close.

Finally, we use y := f(x) to denote the deterministic evaluation of f on input x with output y.

Fully Homomorphic Encryption. We review the definition of (leveled) fully homomorphic
encryption. We state the definition of [BGV11], which is a relaxation of the original definition in
[Gen09b]. The main difference is that the definition in [Gen09b] requires that schemes E(D) that
evaluate circuits of depth at most D, all share the same decryption circuit. However, as in [BGV11],
we relax this definition and let all algorithms (including decryption) depend on the depth D of the
circuit that is evaluated.

Definition 2.1 (C-Homomorphic Encryption [Gen09b]). For a class of circuits C, we say that an
encryption scheme E = (Setup,Keygen,Enc,Dec,Eval) is C-homomorphic if:

3

• params ← Setup(1κ), for security parameter κ, outputs public parameters params. All other
algorithms, Enc,Dec,Eval implicitly take params as input, even when not explicitly stated.

• (pk, sk, ek) ← Keygen(params), for a security parameter κ, outpus a public key pk, a secret key
sk, and a (public) evaluation key ek.

• m′ ← Decsk(c), given a secret key sk and a ciphertext c, outputs a message m′.
• γ := Eval(C, c1, . . . , c`), given a (description of) a circuit C along with an evaluation key pk and

` ciphertexts c1, . . . , c`, outputs a ciphertext γ.

We require that for all c ∈ C, all (pk, sk, ek) ← Keygen(1κ) and all plaintexts (m1, . . . ,m`) and
ciphertexts (c1, . . . , c`) such that ci is in the support of Encpk(mi), if γ := Evalek(C, c1, . . . , c`), then
Decsk(γ) = C(m1, . . . ,m`).

Definition 2.2 (Leveled Fully Homomorphic Encryption [Gen09b]). Let C(D) be the class of all cir-
cuits of depth at most D (that use some specified complete set of gates). We say that a family of
homomorphic encryption schemes {E(D) : D ∈ Z+} is leveled fully homomorphic if, for all D ∈ Z+, it
satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.

Compactness: The computational complexity of E(D)’s algorithms is polynomial (the same polyno-
mial for all D) in the security parameter, D, and (in the case of the evaluation algorithm) the
size of the circuit.

From now on, when we say fully homomorphic, we refer to leveled fully homomorphic encryption.

Functionalities. We review the following basic MPC functionalities, which we will use when
describing our cloud-assisted MPC protocol.

• Ff , the functionality computing a function f . See Figure 1.
• FDcrs, the CRS functionality that outputs a common reference string distributed according to a

predetermined distribution D. See Figure 2.
• Fbc, the Broadcast functionality that upon receiving a message from a party Pi, forwards the

message to all parties. See Figure 3.
• FR

zk.bc, the “Prove-and-Broadcast” functionality FR
zk.bc that upon receiving a statement and

witness pair (x,w) from a party Pi, verifies that R(x, w) = 1 (for some predetermined NP-
relation R) and if so, sends x to all parties. See Figure 4.

Functionality Ff

Ff interacts with parties P0, P1, . . . , PN and adversary S, and is parametrized by an N -input function f .

Upon receiving (sid, i, xi) from Pi for all i ∈ [N] (and no input from P0), compute y =
f(x1, . . . , xN), send (sid, y) to all clients, the server, and the adversary S, and halt.

Figure 1: Functionality Ff

3 Cloud-Assisted MPC

We consider the problem of N parties who wish to securely compute a joint function of their inputs,
but want to do so in a way such that the amount of data they interchange, as well as their computation

4

Functionality FD
crs

FD
crs interacts with parties P0, P1, . . . , PN and adversary S, and is parametrized by an algorithm D.

Upon receiving (sid, i) from Pi, compute crs ← D(1κ), and send (sid, i, crs) to Pi and the
adversary. Upon receiving subsequent messages (sid, j) from Pj , send (sid, j, crs) to Pj and the
adversary S, and halt.

Figure 2: CRS Functionality FDcrs

Functionality Fbc

Fbc interacts with parties P0, P1, . . . , PN and adversary S.

Upon receiving (sid, i,m) from Pi, send (sid, i,m) to all parties in P1, . . . , PN and the adversary
S, and halt.

Figure 3: Broadcast Functionality Fbc

Functionality FR
zk.bc

FR
zk.bc interacts with parties P0, P1, . . . , PN and adversary S, and is parametrized by an NP-relation R.

Upon receiving (sid, i, x, w) from Pi: If R(x, w) = 1, send (sid, i, x) to all parties and the
adversary S, and halt. Otherwise, halt.

Figure 4: “Prove-and-Broadcast” Functionality FR
zk.bc

time, is independent of the complexity of the function. In order to do this, we rely on the computation
power of a new party called the server or cloud, who will perform the computation of the function f .
The computation should remain secure even though the server is untrusted. We formalize this idea
below.

Definition. For an N -input function f , we define a cloud-assisted multiparty protocol Π for f to be
a protocol between N interactive Turing Machines P1, . . . , PN , called clients, and a server S, also an
interactive Turing Machine, such that for all ~x = (x1, . . . , xN), the output of Π in an execution where
Pi is given xi as input (and the server S does not receive an input), is y = f(~x). We sometimes use
P0 to denote the server S. What differentiates a cloud-assisted MPC protocol from a standard MPC
protocol is that we require the communication complexity of the protocol, as well as the computation
time of the clients P1, . . . , PN to be independent of the complexity of the function f . On the other
hand, the computation time of the server S must be linear in the circuit-size of f . 2

Security. We prove security of a cloud-assisted MPC protocol in the Ideal/Real paradigm (in
the standalone setting). In the ideal world, the computation of f is performed through a trusted
functionality Ff that receives input xi from each party Pi, computes y = f(x1, . . . , xN) and gives y
to all parties P1, . . . , PN , and the server S. It is clear that in the ideal world, the only information
that any party learns is its own input and the output y. In the real world, however, this trusted
functionality does not exist and so in order to compute y = f(x1, . . . , xN), parties P1, . . . , PN and

2When considering security against semi-honest adversaries, we achieve precisely this. However, to tolerate malicious
adversaries, we relax the definition and require only that the communication and computation time of the clients be
“small”, much less than linear in the size of the circuit they are computing. Furthermore, we let the computation time
of the server be polynomial in the size of the circuit.

5

server S run a protocol Π. Figure 5 gives a pictorial representation of the ideal world and the real
world.

Figure 5: Ideal World vs. Real World

In either world, an adversary corrupting t < N parties, and perhaps additionally the server S,
receives all messages directed to the corrupted parties and controls the messages sent by them. We
use IDEALF ,S(~x) to denote the joint output of the ideal-world adversary S and of parties P1, . . . , PN

and server P0 in an ideal execution with functionality F and inputs ~x = (x1, . . . , xN). Similarly, we
use REALΠ,A(~x) to denote the joint output of the real-world adversary A and the outputs of parties
P1, . . . , PN and server P0 in an execution of protocol Π with inputs ~x = (x1, . . . , xN). We say that a
protocol Π securely realizes F if for every real-world adversary A, there exists an ideal-world adversary
S such that

IDEALF ,S(~x)
c
≈ REALΠ,A(~x),

4 Cloud-Assisted MPC From Key-Homomorphic Threshold FHE

In this section, we define a new primitive called key-homomorphic threshold FHE and show that it can
be used to construct a cloud-assisted MPC protocol for any function f . Informally, a key-homomorphic
threshold FHE scheme allows combining public keys pk1, . . . , pkN into a combined public key pk,
evaluation keys ek1, . . . , ekN into a combined evaluation key ek, and secret keys sk1, . . . , skN into a
combined secret key sk. The correctness property we require for this key combination is that if for
all i, (pki, ski, eki) is in the support of Keygen, then (pk, sk, ek) is also in the support of Keygen. In
other words, if for all i, pki and eki are valid public and evaluation keys for secret key ski, then pk
and ek are valid public and evaluation keys for sk. For security, we require semantic security under
the joint public key pk even given t < N secret keys ski. We additionally require that the combined
evaluation key ek does not reveal any information about the individual evaluation and secret keys
eki, ski. We formalize this by requiring that there exist an algorithm SimCombKeys that given any
number of public/evaluations key pairs {(pki, eki)}i∈T , can simulate the remaining public/evaluations
key pairs

{
(pkj , ekj)

}
j∈[N]\T and the joint evaluation key ek.

A key-homomorphic threshold FHE scheme also has threshold decryption properties that allow for
decryption of a ciphertext under the combined public key pk by independently using the secret keys ski.
More formally, given a ciphertext c encrypting a plaintext m under pk, each party Pi can independently

6

compute a decryption share µi using ski. Combining the ciphertext c with the shares µ1, . . . , µN will
yield the plaintext m. For security, we require that the share µi does not reveal anything about the
secret key ski. We formalize this by requiring that there exist an algorithm SimShareDec that given
a ciphertext c, a plaintext m, and any number of shares {µi}i∈T , can simulate the remaining shares
{µj}j∈[N]\T , such that when all shares are combined, they decrypt c to m.

Finally, we require ciphertexts of a key-homomorphic threshold FHE scheme to be re-randomizable.
In other words, we require that there exists an algorithm ReRand that given the public key pk and
ciphertext c := Evalek(C, c1, . . . , c`), where c1, . . . , c` are ciphertexts encrypting plaintexts m1, . . . ,m`

under pk, outputs a randomization ĉ of c that is indistinguishable from a fresh encryption of y =
C(m1, . . . ,m`), for all circuits C. We require this property because we can only guarantee security of
threshold decryption (i.e., that the shares do not reveal information about the individual secret keys)
if the ciphertext c to be decrypted is a fresh encryption of y. Unfortunately, since our instantiation of
key-homomorphic threshold FHE is lattice-based, the only way we know how randomize ciphertexts
is by adding to c noise that is super-polynomially larger than the noise in the original ciphertexts ci.
Because of this, we need to define the encryption algorithm in key-homomorphic threshold FHE to
take an extra bit mode ∈ {0, 1} that decides the magnitude of the noise to be used in the encryption.
There is no inherent reason why we need to work over two types of ciphertexts, this is just a technical
artifact of our instantiation.

Our instantiation will also require the use of a common reference string, crs, that will be partitioned
into N parts, (crs1, . . . , crsN), so that crsi corresponds to party Pi. The public and evaluation keys
for Pi will depend on crsi. We model this by having the Setup algorithm take an additional input N
and output crs as part of the public parameters, and having Keygen take an additional input, i ∈ [N].
Again, there is no inherent reason why we need these additional inputs to Setup and Keygen, this is
just a technical artifact of our instantiation.

Definition 4.1. A public-key key-homomorphic threshold FHE scheme E with secret, public, and eval-
uation key-spaces SK,PK, EK and message-spaceM is a tuple of algorithms (Setup,Keygen,Enc,Dec,
Eval,CombinePK,CombineKeys,ShareDec,ShareCombine,ReRand) with the following syntax:
• Setup,Keygen,Dec and Eval are as in a standard FHE. We only require that Setup takes an

additional input N and Keygen takes an additional input i.

From here on, all algorithms implicitly take as input params, where params ← Setup(1κ, N), even if
not explicitly stated. Keygen,Dec and Eval also implicitly take params as input.

• c← Encpk(m,mode). Takes as input a public key pk, a message m ∈M, and a bit mode ∈ {0, 1},
and outputs a ciphertext c. We will work with two types of ciphertexts; the bit mode will decide
what type of ciphertext to output. Most of the time we will work with ciphertexts generated
by Enc(·, 0), and will only use Enc(·, 1) in re-randomization (see below). When unspecified, we
assume mode = 0.
• pk := CombinePK({pk}i∈[N]). Takes as input N public keys {pki}i∈[N], and outputs a combined

public key pk.
• (sk, ek) ← CombineKeys({(ski, eki)}i∈[N]). Takes as input N key pairs {(ski, eki)}i∈[N], and out-

puts combined secret key sk and evaluation key ek.
• µi ← ShareDecski

(c). Takes as input secret key ski and a ciphertext c and outputs a decryption
share µi.

• m ← ShareCombine(c, µ1, . . . , µN). Takes as input a ciphertext c and N decryption shares
(µ1, . . . , µN) and outputs a plaintext m.

• ĉ← ReRandpk(c). Takes as input a public key pk and ciphertext c and outputs a rerandomization
ĉ of c.

7

Correctness and security are given the following properties. Define the relation

R(keys) =
{

(params, pki , eki , i) , (ski , ri
(gen)) | (pki, ski, eki) := Keygen(params, i ; ri

(gen))
}

and say that the public/evaluation key pair (pki, eki) is valid for secret key ski with respect to params,
if there exists ri

(gen) such that R(keys)((params, pki, eki, i) , (sk, ri
(gen))) = 1. We say that (pki, ski, eki)

is a valid key tuple with respect to params if (pki, eki) is a valid public/evaluation key pair for ski with
respect to params. When params is clear from context, we simply say that (pki, ski, eki) is a valid key
tuple.

Correct Key Combination: If {(pki, ski, eki)}i∈[N] are all valid key tuples, pk := CombinePK({pki}i∈[N])
and (sk, ek)← CombineKeys({ski}i∈[N] , {eki}i∈[N]) then (pk, sk, ek) is a valid key tuple.

Key-Simulation Indistinguishability: There exists a ppt simulator SimCombKeys such that for
any set T ([N] with t = |T | and T = [N]\T , (ek,

{
(pkj , ekj)

}
j∈T

)← SimCombKeys({pki, eki}i∈T)
takes as input t public/evaluation key pairs {pki, eki}i∈T and outputs N− t public/evaluation key
pairs

{
(pkj , ekj)

}
j∈T

and an evaluation key ek, satisfying the following.

For all valid key tuples {(pki, ski, eki)}i∈[N] and all subsets T ([N], the following two
distributions are computationally indistinguishable:(

params,SimCombKeys({(pki, eki)}i∈T)
) c
≈
(
params, ek,

{
(pkj , ekj)

}
j∈T

)
where params← Setup(1κ), {(·, ·, ekj)← Keygen(1κ)}j∈T , and
(·, ek)← CombineKeys({(ski, eki)}i∈[N]).

Semantic Security: For all T (N , every mode ∈ {0, 1}, and all ppt adversaries A, the advantage
of A in the following game is negligible (in κ).

Key Generation: The challenger runs params ← Setup(1κ). The adversary A then sends
{(pki, ski, eki)}i∈T to the challeger. The challenger runs (pkj , skj , ekj) ← Keygen(1κ, j) for
j ∈ T = [N]\T , computes (sk, ek)← CombineKeys({(ski, eki)}i∈[N]) and

pk := CombinePK({pki}i∈[N]), and sends
(
params, ek,

{
(pkj , ekj)

}
j∈T

)
to A.

Challenge: A sends plaintexts m0,m1 to the challenger, who chooses b ← {0, 1}, and sends
c∗ = Encpk(mb,mode) to A.

Output: A outputs b′.

We define the advantage of A to be
∣∣1
2 − Pr[b′ = b]

∣∣.
Correct Share Decryption of Combined Key: For all valid key tuples {(pki, ski, eki)}i∈[N], and

all c ∈ Cpk, where pk = CombinePK({pki}i∈[N]) and Cpk is the ciphertext-space defined by pk,

Decsk(c) = ShareCombine(c,ShareDecsk1(c), . . . ,ShareDecskN
(c))

Share-Simulation Indistinguishability: There exists a ppt simulator SimShareDec, where
{µj}j∈T ← SimShareDec(c,m, {µi}i∈T) takes as input a ciphertext c, a plaintext m, and t de-
cryption shares {µi}i∈T (where T ([N] is any subset of cardinality t < N) and outputs N − t
decryption shares {µj}j∈T , satisfying the following.

8

For all valid key tuples {(pki, ski, eki)}i∈[N], all subsets T ([N], all m ∈ M, and
all random strings

{
ri

(dec)
}

i∈T
, the following two distributions are computationally

indistinguishable:(
params, c, SimShareDec(c,m, {µi}i∈T)

) c
≈
(
params, c, {µj}j∈T

)
,

where params← Setup(1κ), c← Encpk(m) and for i ∈ T , µi := ShareDecski
(c ; ri

(dec)).

Ciphertext Re-Randomization: For all circuits C, all plaintexts (m1, . . . ,m`), all random strings
(r1, . . . , r`), the following distributions are statistically close:

(params, c1, . . . , ct,ReRandpk(c))
s
≈ (params, c1, . . . , ct,Encpk(y, 1)) ,

where params ← Setup(1κ), ci := Encpk(mi, 0; ri) for all i ∈ [`], c := Evalek(c1, . . . , c`) and y =
C(m1, . . . ,m`).

4.1 Construction

Before presenting our construction of cloud-assisted MPC from key-homomorphic threshold FHE, we
describe two functionalities, FEkeys (Figure 6) and FErand.bc (Figure 7) computing the CombineKeys and
ReRand algorithms, respectively. For clarity, we will present our construction in the (FEkeys,FErand.bc)-
hybrid model, as this allows us to separate the messages that are sent for the purpose of computing f
from the messages sent for the purpose of combining keys and from those sent for re-randomization.
In Section 7, we show protocols implementing FEkeys and FErand.bc for our specific instantiation of
key-homomorphic threshold FHE.

Functionality FE
keys

FE
keys interacts with parties P0, P1, . . . , PN and adversary S, and is parametrized by a key-homomorphic

threshold FHE scheme E with key-combination algorithm CombineKeys. Parties P1, . . . , PN get as input a
valid key tuple (ski, eki), and for all j 6= i, Pi also receives ekj . Server P0 does not receive an input. For
session ID sid:

Upon receiving (sid, i, ski, eki) from Pi for all i ∈ [N] (and no input from P0), compute (sk, ek) =
CombineKeys({ski, eki)}i∈[N]), and send (sid, ek, {(eki)}i∈[N]) to all parties P0, P1, . . . , PN and
the adversary S.

Figure 6: “Key-Combination” Functionality FEkeys

Functionality FE
rand.bc

FE
rand.bc interacts with parties P0, P1, . . . , PN and adversary S. It is parametrized by a PK-FHE scheme E

with ciphertext re-randomization algorithm ReRand. Server P0 gets as input a ciphertext c. For session ID
sid:

Upon receiving (sid, 0, c) from P0, compute ĉ = ReRand(c), and send (sid, c, ĉ) to all parties
P0, P1, . . . , PN and the adversary S.

Figure 7: “Ciphertext Re-Randomization” Functionality FErand.bc

We describe our cloud-assisted MPC protocol Πsh in detail in Figure 8. The basic idea behind
our construction is essentially the same as in [Gen09b]: the parties run an MPC protocol to agree on

9

a joint public key pk and a joint evaluation key ek. The parties then encrypt their inputs xi under
pk, and the server homomorphically evaluates the function f on the encrypted inputs (x1, . . . , xN)
using the joint evaluation key ek. Finally, the parties run an MPC protocol to threshold decrypt the
output. What key-homomorphic threshold FHE gives us in comparison to the generic approach of
[Gen09b] is round efficiency. Essentially, the joint public key can be computed deterministically from
all public keys, the joint evaluation key ek, obtained from CombineKeys, can be computed in 2 rounds,
and threshold decryption can be computed in 1 round: the parties simply compute decryption shares
µi. It is not yet aparent from the description of the protocol why we can achieve only 4 rounds of
interaction since we only given a description of our protocol in the (FEkeys,FErand.bc)-hybrid model. We
explain this fully in Section 8, but the intuition behind it is that we can send many of the messages
for computing f , the joint evaluation key and the re-randomization of c in parallel.

Protocol Πsh

Let C be a circuit computing f . Let E = (Setup,Keygen,Enc,Eval,CombinePK,CombineKeys,ShareDec,
ShareCombine,ReRand) be a key-homomorphic threshold FHE scheme.

For session ID sid:

Phase 1: Each Pi calls FD
crs with (sid, i) and receives params. It chooses an encryption key tuple,

(pki, ski, eki)← Keygen(1κ, i). Pi then sends (sid, i, (ski, eki)) to FE
keys, and (sid, i, pki) to Fbc.

Phase 2: Upon receiving (sid, ek, {eki}i∈[N]) from FE
keys, and (sid, i, pki) from Fbc for all i ∈ [N], each Pi

computes pk = CombinePK({pki}i∈[N]), and ci ← Encpk(xi) and sends (sid, i, ci) to Fbc.

Phase 3: Upon receiving (sid, i, ci) from Fbc for all i ∈ [N] and (sid, ek, {eki}i∈[N]) from FE
keys, server

computes c := Evalek(C, c1, . . . , cN) and sends (sid, 0, c) to FE
rand.bc.

Phase 4: Upon receiving (sid, c, ĉ) from FE
rand.bc, each Pi computes µi := ShareDecski

(ĉ) and sends
(sid, i, µi) to Fbc.

Local Computation: Upon receiving (sid, i, µi) from Fbc for all i ∈ [N], each Pi computes and outputs
y := ShareCombine(ĉ, µ1, . . . , µN).

Figure 8: Protocol Πsh. Implements F in the (Fbc,FDcrs,FEkeys,FErand.bc)-hybrid model, where D is
the output distribution of Setup(1κ, N). Secure against semi-honest adversaries.

Lemma 4.1. Let f be an N -input function, and let F be the ideal functionality computing f . Let E
be a key-homomorphic threshold FHE scheme. Then Πsh described in Figure 8 securely implements F
against (static) semi-honest adversaries, in the (Fbc,FDcrs,FEkeys,FErand.bc)-hybrid model.

Looking ahead, we will instantiate key-homomorphic threshold FHE based on the PLWE assump-
tion, a special case of the “Ring LWE” assumption of [LPR10] (see Section 6). Combining Lemma 4.1
with protocols implementing FEkeys and FErand.bc for this instantiation (shown in Section 7), we arrive
at the following theorem.

Theorem 4.2. Assuming the hardness of PLWEf,q,χ for parameters f, q, χ as described in Section 6.1,
there exists a protocol that securely implements F against (static) semi-honest adversaries, in the
(Fbc,FDcrs)-hybrid model.

4.2 Security Under Semi-Honest Adversaries

Proof of Lemma 4.1: Correctness follows from correctness of key combination, correctness of homo-
morphic evaluation, and correctness of share decryption of E .

10

We now turn to security. Let A be a real-world semi-honest adversary corrupting t < N clients,
and possibly the server. Let T ([N] be the set of corrupted clients. We describe the simulator Ssh

in Figure 9.

Simulator Ssh

1. Send {xi}i∈T to F and receive y.
2. Run params ← Setup(1κ). Run A on inputs {xi}i∈T and params, and play the role of the honest

parties:

Phase 1: Upon receiving (sid, i, (ski, eki)) as a message to FE
keys and (sid, i, pki) as a mes-

sage to Fbc for all i ∈ T , run (ek,
{
(pkj , ekj)

}
j∈T

) ← SimCombKeys({(pki, eki)}i∈T) and
pk := CombineKeys({pki}i∈[N]), and send (sid, ek, {eki}i∈[N]) to A on behalf of FE

keys.

Phase 2: For j ∈ T , compute cj ← Encpk(0) and send (sid, j, cj) to A on behalf of Fbc.
Phase 3: If server is not corrupted, compute c := Eval(C, c1, . . . , cN). Otherwise, receive (sid, 0, c)

from A as a message to FE
rand.bc. In either case, compute ĉ← Encpk(y, 1) and send (sid, c, ĉ) to

A on behalf of FE
rand.bc.

Phase 4: Upon receiving (sid, i, µi) from A as a message to Fbc for all i ∈ T , compute {µj}j∈T ←
SimShareDec(ĉ, y, {µi}i∈T). For j ∈ T , send (sid, j, µj) on behalf of Fbc.

3. Output A’s output.

Figure 9: Simulator Ssh for (static) semi-honest adversary A corrupting clients T ([N] and possibly
server S.

We prove that REALΠsh,A(~x)
c
≈ IDEALF ,Ssh(~x) via a series of hybrids. The view of the A consists

of

View =
(
params, {xi, (pki, ski, eki), ci, µi}i∈T , pk, ek,

{
(pkj , ekj)

}
j∈T

, {cj}j∈T , c, ĉ, {µj}j∈T

)
We simply prove that for all {xi, (pki, ski, eki), ci, µi}i∈T output by A, the joint distribution of these

variables in the simulation is computationally indistinguishable from the joint distribution of the same
variables in a real-world execution of protocol Πsh. We let Viewi be the joint distribution of these
variables in hybrid i. In all hybrids, params ← Setup(1κ, N), c := Evalek(C, c1, . . . , cN) (this is true
even when the server is corrupted since the adversary is semi-honest), and pk := CombinePK({pki}i∈N ,
but we gradually change how each of the other variables is computed.

Hybrid 0: This is the real-world execution of Πsh. We have:{
(pkj , ·, ekj)← Keygen(1κ, j)

}
j∈T

, (·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
{cj = Encpk(xj)}j∈T , ĉ← ReRand(c) ,

{
µj ← ShareDecskj

(ĉ)
}

j∈T

Hybrid 1: We change how ĉ is created. Instead of using the ReRand algorithm, we simply sample a
fresh encryption of y = C(x1, . . . , xN) with mode = 1:{

(pkj , ·, ekj)← Keygen(1κ, j)
}

j∈T
, (·, ek) := CombineKeys

(
{(ski, eki)}i∈[N]

)
{cj = Encpk(xj)}j∈T , ĉ← Encpk(y, 1) ,

{
µj ← ShareDecskj

(ĉ)
}

j∈T

11

We claim that View0
s
≈ View1 by ciphertext re-randomization of E . The reduction gets

{(pki, ski, eki)}i∈T from A and computes
{
(pkj , skj , ekj)← Keygen(1κ, j)

}
j∈T

honestly. It com-
putes (·, ek) and pk using CombineKeys and CombinePK, respectively, and also computes
{cj ← Encpk(xj)}j∈T and c := Evalek(C, c1, . . . , cN) if the server is honest (otherwise, it re-
ceives c from A). Given ĉ which is either ĉ = ReRand(c) or ĉ = Encpk(y, 1), it computes{
µj ← ShareDecskj

(ĉ)
}

j∈T
. Since A is a semi-honest adversary, we know that (pki, ski, eki) is a

valid key tuple for all i ∈ T . Likewise, we know that for all i ∈ T , there exist ri
(x) such that

ci = Encpk(xi, 0 ; ri
(x)). Therefore, View0

s
≈ View1 by ciphertext re-randomization of E .

Hybrid 2: We change the way the decryption shares {µj}j∈T are generated. Instead of using the
ShareDec algorithm with secret key skj , we now use the SimShareDec algorithm with y =
C(x1, . . . , xN) and {µi}i∈T :{

(pkj , ·, ekj)← Keygen(1κ, j)
}

j∈T
, (·, ek) := CombineKeys

(
{(ski, eki)}i∈[N]

)
{cj = Encpk(xj)}j∈T , ĉ← Encpk(y, 1) , {µj}j∈T ← SimShareDec(ĉ, y, {µi}i∈T)

We claim that View1
c
≈ View2 by share-simulation indistinguishability of E . The reduction

takes {(pki, ski, eki)}i∈T from A and computes
{
(pkj , skj , ekj)← Keygen(1κ, j)

}
j∈T

honestly.
It computes pk and ek using CombinePK and CombineKeys, respectively, and also computes
{cj ← Encpk(xj)}j∈T and ĉ = Encpk(y, 1). With {ci}i∈T that A sends, it computes
c := Evalek(C, c1, . . . , cN). Since A is a semi-honest adversary, we know that (pki, ski, eki) is a
valid key tuple for all i ∈ T . Likewise, we know that for all i ∈ T , there exists ri

(dec) such that
µi := ShareDec(ĉ ; ri

(dec)). Thus, View1
c
≈ View2 by share-simulation indistinguishability of E .

Hybrid 3: This is actually a series of N − t hybrids. We change how the ciphertexts {cj}j∈T are
created, one at a time. Instead of having cj∗ be an encryption of input xj∗ , we have it be an
encryption of 0.{

(pkj , ·, ekj)← Keygen(1κ, j)
}

j∈T
, (·, ek) := CombineKeys

(
{(ski, eki)}i∈[N]

)
{cj = Encpk(0)}j∈T ,j≤j∗ , {cj = Encpk(xj)}j∈T ,j>j∗ , ĉ← Encpk(y, 1)

{µj}j∈T ← SimShareDec(ĉ, y, {µi}i∈T)

We claim two consecutive hybrids are computationally indistinguishable by semantic secu-
rity of E . The reduction forwards {(pki, ski, eki)}i∈T from A to the challenger and receives
ek,
{
(pkj , ekj)

}
j∈T

from the challenger, which it forwards to A. It uses the challenge ciphertext
as cj∗ and computes the other ciphertexts cj accordingly. With {ci}i∈T that A sends, it com-
putes c := Evalek(C, c1, . . . , cN) (or receives it from A is the server is corrupted). It also computes
ĉ = Encpk(y, 1) and

{
µj ← SimShareDec(ĉ, y, {µi}i∈T)

}
j∈T

from the values {µi}i∈T sent by A.
We define View3 to be the view having all cj encrypting 0. Putting these N − t hybrids together,
we conclude that View2

c
≈ View3.

Hybrid 4: We change how the public/evaluation key pairs
{
(pkj , ekj)

}
j∈T

and the combined evalu-
ation key ek is generated. Instead of creating them using Keygen and CombineKeys, we use the
SimCombKeys algorithm with {(pki, ski, eki)}i∈T .(

ek,
{
(pkj , ekj)

}
j∈T

)
← SimCombKeys

(
{(pki, eki)}i∈T

)
12

{cj = Encpk(0)}j∈T , ĉ← Encpk(y, 1) , {µj}j∈T ← SimShareDec(ĉ, y, {µi}i∈T)

We claim that View3
c
≈ View4 by key-simulation indistinguishability of E . The reduction takes

{(pki, ski, eki)}i∈T from A and computes (ek,
{
(pkj , ekj)

}
j∈T

)← SimCombKeys
(
{(pki, eki)}i∈T

)
and pk := CombinePK({pki}i∈[N]). It also computes {cj ← Encpk(0)}j∈T and ĉ = Encpk(y, 1).
With {ci}i∈T that A sends, it computes c := Evalek(C, c1, . . . , cN) (or receives it from A is the
server is corrupted). With {µi}i∈T thatA sends, it computes

{
µj ← SimShareDec(ĉ, y, {µi}i∈T)

}
j∈T

.

Therefore, View2
c
≈ View3 by key-simulation indistinguishability of E .

We have proved that View0
c
≈ View4. Since View4 is the view that Ssh produces, and View0 is the

view produced in an execution of Πsh, we have that IDEALF ,Ssh(~x)
c
≈ REALΠsh,A(~x).

5 Tolerating Malicious Adversaries

The protocol described in Section 4 is not secure against malicious adversaries. We now describe the
changes we need to make for our protocol to be able to tolerate this kind of attack. We assume a
rushing adversary, that is, we assume that the adversary can choose his messages adaptively, depending
on the messages from the honest players. In order to protect against malicious players, we need to
guarantee that the public and evaluation keys chosen by the players are independent. To achieve this,
we add a commitment key ck for a trapdoor commitment scheme (e.g. a semantically secure encryption
scheme) to the crs. This guarantees that ck is generated honestly. We then have all parties commit,
using ck, to the randomness ri

(gen) that they will use in Keygen. The same is true for decryption
shares; we must guarantee that they are independent, and therefore also have the parties commit to
the the randomness ri

(dec) that they will use in ShareDec. This is combined with having each player
provide a zero-knowledge proof along with (pki, eki) that proves that the keys were indeed created
using the randomness ri

(gen) he commited to previously. Similarly, we require each player to prove
that he computed his decryption share µi with the randomness he committed to, and the secret-key
that was output by Keygen on randomness ri

(gen). Furthermore, we need to ensure that the ciphertexts
ci are independent, and so we have all players provide a proof of plaintext knowledge (POPK) for ci.

There is a subtely here. Because we have a rushing adversary, in the proof the simulator will
have to provide simulated proofs for the honest parties and still require soundness from the proofs
created by the adverary on behalf of corrupt players. We therefore need to use simulation-sound
NIZKs (SS-NIZKs). For the same reason, we need simulation-extractability (SE) for the POPK of ci:
the simulator must still be able to extract from an adversarial proof, even if the adversary has seen
many simulated proofs.

To protect against a malicious server, the parties must also verify the computation performed by
the server. The ciphertext c is a deterministic function of the set of ciphertexts provided by the parties
{ci}i∈N , so they could potentially verify the correctness of c by doing the homomorphic operations
themselves. This is obviously unsatisfactory, as they would perform computation proportional to the
size of the computation. This is precisely the problem we’re trying to solve! Note, however, that pre-
cisely because the parties need to verify the computation, we cannot hope to have the communication
complexity and computation time of the parties be independent of the complexity of f , as required by
the definition of cloud-assisted MPC given in Section 3. We therefore relax the definition and require
the communication complexity and computation time of parties P1, . . . , PN to be polylogarithmic in
|C| and the computation time of the server to be polynomial in |C|.

13

To prove that it did the evaluation correctly, we require the server to provide a short argument ϕ,
which the parties can verify in little time. This can be done in one of four different ways, each with its
own benefits and drawbacks. We comment that the circuit in the discussion below is the evaluation
circuit, which can be viewed as the circuit resulting from replacing each gate in C by poly(κ) many
gates. Thus, both the size and depth of the evaluation circuit are (at most) a polynomial factor (in
κ) larger than the size and depth of C.

1. Use the argument system of [Kil92, Kil95]. The benefit in doing this is that the communication
complexity of the argument is polylogarithmic in the size of the computation, and the compu-
tation time of the verifier is linear in the input length (up to polylogarithmic factors). On the
other hand, the system of [Kil92, Kil95] is an interactive system consisting of 3 rounds, and
therefore this approach implies increasing the number of rounds in our protocol by 2 rounds.

2. Use computationally sound (CS) proofs [Mic94]. The benefit of using this approach is that the
verifier runs in nearly linear time and the communication complexity is again polylogarithmic
in the size of the computation. The drawback, however, is that CS proofs require the use of a
random oracle, and thus, we could only hope to achieve security in the random oracle model.

3. Use the one-round argument system of [GKR08]. On the one hand, using this approach allows
the server to provide an argument for the correct computation of c without PCPs, but on the
other hand, both the communication complexity and the computation time of the verifier are
polynomial in the depth of the circuit, thus restricting the type of functions we can compute to
those in NC. The construction of [GKR08] also needs to assume the existance of a secure PIR
scheme.

4. Use the one-round argument system of [BCCT11] or [GLR11]. With this approach, the com-
munication complexity is again polylogarithmic in the size of the computation, the computation
time of the verifier is nearly linear in the input size, and security holds in the standard model.
However, the use of either of these argument systems requires us to make a non-falsifiable as-
sumption [Nao03].

We give a full description of the modified protocol that is secure against malicious adversaries
in Figure 10. We require the same properties from E , namely, we assume E is a key-homomorphic
threshold FHE. We also need an argument system Φ = (SetupΦ,Prove,Verify) for verifiable com-
putation, and a trapdoor commitment scheme (KeygenCom,Com). We describe the protocol in the
(Fbc,FDcrs,FEkeys,FErand.bc,FR(gen)

zk.bc , FR(x)

zk.bc,FR(dec)

zk.bc)-hybrid model, where R(gen), R(x) and R(dec) are
NP relations:

R(gen) =
{

(params, pki, eki, ck, ρi
(gen), i) , (ri

(gen), si
(gen)) | (pki, ·, eki) := Keygen(params, i ; ri

(gen)) ∧

ρi
(gen) := Comck(ri

(gen) ; si
(gen))

}
R(x) = {(c, pk) , (x, r) | c := Encpk(x, 0 ; r)}

R(dec) =
{

(params, c, µi, pki, ρi
(dec), ρi

(gen), ck, i) , (ri
(dec), si

(dec), ri
(gen), si

(gen)) |

(pki, ski, ·)← Keygen(params, i ; ri
(gen)) ∧ ρi

(gen) := Comck(ri
(gen) ; si

(gen)) ∧

µi := ShareDecski
(c ; ri

(dec)) ∧ ρi
(dec) := Comck(ri

(dec) ; si
(dec))

}
,

Lemma 5.1. Let f be an N -input function, and let F be the ideal functionality computing f . Let E be a
key-homomorphic threshold FHE scheme. Let Φ be an argument system for verifiable computation, and

14

Protocol Πmal

Let C be a circuit computing f . Let E = (Setup,Keygen,Enc,Eval,CombinePK,CombineKeys,
ShareDec,ShareCombine,ReRand) be a key-homomorphic threshold FHE scheme. Let Φ =
(SetupΦ,Prove,Verify) be an argument system for verifiable computation, and let (KeygenCom,Com) be
a trapdoor commitment scheme.

For session ID sid:

Phase 1: Each Pi calls FD
crs with (sid, i) and receives (params, ck). Samples randomness ri

(gen) and
ri

(dec) and computes ρi
(gen) := Comck(ri

(gen) ; si
(gen)) and ρi

(dec) ← Comck(ri
(dec) ; si

(dec)). Sends
(sid, i, (ρi

(gen), ρi
(dec))) to Fbc.

Phase 2: Each Pi chooses an encryption key tuple: (pki, ski, eki) := Keygen(1κ, i; ri
(gen)), and sends

(sid, i, (ski, eki)) to FE
keys, (sid, i, pki) to Fbc, and (sid, i, (pki, eki, ck, ρi

(gen), i), (ri
(gen), si

(gen))) to
FR(gen)

zk.bc .

Phase 3: Upon receiving (sid, ek, {(eki)}i∈[N]) from FE
keys, (sid, i, pki) from Fbc and

(sid, i, (pki, eki, ck, ρi
(gen), i) from FR(gen)

zk.bc for all i ∈ [N], each Pi computes
pk := CombinePK({pki}i∈[N] and ci := Encpk(xi ; ri

(x)) and sends (sid, i, (ci, pk), (xi, ri
(x))) to

FR(x)

zk.bc.

Phase 4: Upon receiving (sid, i, (ci, pk)) from FR(x)

zk.bc for all i ∈ [N] and (sid, ek, {eki}i∈[N]) from FE
keys,

server S computes c := Eval (c1, . . . , cN), and sends (sid, 0, c) to FE
rand.bc. Also computes ϕ ←

Prove (c , c1, . . . , cN) and sends (sid, 0, ϕ) to Fbc.

Phase 5: Upon receiving (sid, c, ĉ) from FE
rand.bc, and ϕ from Fbc, each client Pi verifies ϕ, computes

µi := ShareDecski
(ĉ; ri

(dec)) and sends (sid, i, (ĉ, µi, pki, ρi
(dec), ck, i), (ski, ri

(dec), si
(dec), ri

(gen))) to
FR(dec)

zk.bc .

Local Computation: Upon receiving (sid, i, (ĉ, µi, pki, ρi
(dec), ck, i)) from FR(dec)

zk.bc for all i ∈ [N], each
client Pi computes and outputs y := ShareCombine(c, µ1, . . . , µN).

Figure 10: Protocol Πmal. Implements F in the (Fbc,FDcrs,FEkeys,FErand.bc,FR(gen)

zk.bc ,FR(x)

zk.bc,FR(dec)

zk.bc)-
hybrid model, where D is the distribution of (params, ck), where params← Setup(1κ, N) and (ck, ·)←
KeygenCom(1κ). Secure against malicious adversaries.

let R(x), R(dec) be NP-relations as described above. Then the protocol Πmal described in Figure 10 se-
curely implements F against (static) malicious adversaries, in the (Fbc,FEkeys,FErand.bc,FR(x)

zk.bc,FR(dec)

zk.bc)-
hybrid model.

The proof of Lemma 5.1 is given in Appendix A.1. Instantiating key-homomorphic threshold
FHE based on the PLWE assumption, a special case of the “Ring LWE” assumption of [LPR10], as
in Section 6, and combining Lemma 5.1 with protocols implementing FEkeys and FErand.bc for this
instantiation (shown in Section 7), SS-NIZKs for FR(gen)

zk.bc ,FR(dec)

zk.bc , and SE-NIZKs for FR(x)

zk.bc, we arrive
at the following theorem:

Theorem 5.2. Assuming the hardness of PLWEf,q,χ for parameters f, q, χ as described in Section 6.1,
there exists a protocol that securely implements F against (static) malicious adversaries, in the (Fbc,FDcrs)-
hybrid model.

15

6 Instantiating Key-Homomorphic Threshold FHE

We now show how to instantiate public-key key-homomorphic threshold FHE (KHT-FHE, Defini-
tion 4.1). Our construction will be based on PLWE assumption [BV11b], which is a special case
of the Ring LWE assumption of [LPR10]. We therefore first review the PLWE assumption (Sec-
tion 6.1) and then present the scheme. To do the latter, we first review the somewhat homo-
morphic scheme of [BV11b] (Section 6.2) and show how to use the re-linearization and modulus
reduction techniques of [BV11a, BGV11] to convert it into a (leveled) fully homomorphic scheme
(Section 6.3). We then show that the scheme satisfies key homomorphism and also show how to
instantiate the algorithms CombinePK,CombineKeys,ShareDec,ShareCombine,ReRand and simulators
SimCombKeys,SimShareDec (Section 6.4).

6.1 The Polynomial-LWE Assumption

In this section, we describe the polynomial LWE (or, PLWE) assumption from [BV11b], which is
a special case of the “ring learning with errors” (RLWE) assumption of Lyubaskevsky, Peikert and
Regev [LPR10]. The PLWE assumption is analogous to the by now standard “learning with errors”
(LWE) assumption, first defined by Regev [Reg05, Reg09] (generalizing the learning parity with noise
assumption of Blum et al. [BFKL93]). In the PLWE assumption, we consider rings R

.= Z[x]/ 〈f(x)〉
and Rq

.= R/qR for some degree n integer polynomial f(x) ∈ Z[x] and a prime integer q ∈ Z.
Note that Rq ≡ Zq[x]/ 〈f(x)〉, i.e. the ring of degree n polynomials modulo f(x) with coefficients in
Zq. Addition in these rings is done component-wise in their coefficients (thus, their additive group
is isomorphic to Zn and Zn

q respectively). Multiplication is simply polynomial multiplication modulo
f(x) (and also q, in the case of the ring Rq). Thus an element in R (or Rq) can be viewed as a degree
n polynomial over Z (or Zq). We represent such an element using the vector of its coefficients. For an
element a(x) = a0 + a1x + . . . + an−1x

n−1 ∈ R, we let ‖a‖ = max |ai| denote its `∞ norm.
The PLWEf,q,χ assumption is that for a random ring element s← Rq, given any polynomial number

of samples of the form (ai, bi = ai · s + ei) ∈ (Rq)2, where ai is uniformly random in Rq and ei is
drawn from the error distribution χ, the bi’s are computationally indistinguishable from uniform in
Rq. We use the hermite normal form of the assumption, as in [BV11b], where the secret s is sampled
from the noise distribution χ rather than being uniform in Rq. This presentation is more useful for
the purposes of this paper and it turns out that to be equivalent to the original one up to obtaining
one additional sample [AiCPS09, LPR10].

Definition 6.1 (The PLWE Assumption - Hermite Normal Form [BV11b, LPR10]). For all κ ∈ N,
let f(x) = fκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z be a prime integer, let
the ring R

.= Z[x]/ 〈f(x)〉 and Rq
.= R/qR, and let χ denote a distribution over the ring R.

The polynomial LWE assumption PLWEf,q,χ states that for any ` = poly(κ) it holds that

{(ai, ai · s + ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “error polynomials” ei are
sampled from the error distribution χ, and finally, the ring elements ui are uniformly random over
Rq.

Fact 6.2 ([BV11b]). The PLWE`
f,q,χ assumption implies that,

{(ai, ai · s + 2 · ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] .

where ai, s, ei and ui are as in Definition 6.1.

16

Choice of Parameters The correctness, security, and homomorphic properties of the scheme of
[BV11b] rely on specific choices of the polynomial f(x), the modulus q, and the error distribution χ.
For security parameter κ:

• We set f(x) to be the 2blog keth cyclotomic polynomial. This implies that f(x) = Φ2blog κe(x) =
xn + 1 for n = 2blog κe−1. Since n ∈ (κ/4, κ], all asymptotics can be stated in terms of n.

• The error distribution χ is the (truncated) discrete Gaussian distribution DZn,r,B(r) for standard
deviation r > 0 and truncation bound B(r). A sample from this distribution defines a polynomial
e(x) ∈ R with each coefficient bounded by B(r). If B(r) = ω(log κ · r, then the truncated
distribution DZn,r,B(r) is statistically close from the (non-truncated) discrete Gaussian DZn,r

The Worst-case to Average-case Connection. We state a worst-case to average-case reduction
from the shortest vector problem on ideal lattices to the PLWE problem for our setting of parameters.
The reduction stated below is a special case the results of [LPR10].

Theorem 6.1 (A special case of [LPR10]). Let κ be the security parameter. Let k ∈ N and let
m = 2blog κe be a power of two. Let Φm(x) = xn + 1 be the mth cyclotomic polynomial of degree
n = ϕ(m) = m/2. Let r ≥ ω(

√
log n) be a real number, and let q ≡ 1 (mod m) be a prime integer.

Let R = Z[x]/ 〈Φ2blog κe(x)〉. Then:

• There is a randomized reduction from 2ω(log n) · (q/r)-approximate R-SVP to PLWEΦ
2blog κe ,q,χ

where χ = DZn,r is the discrete Gaussian distribution. The reduction runs in time poly(n, q).

• There is a randomized reduction from (n2q/r) · (n(` + 1)/ log(n(` + 1)))1/4-approximate R-SVP

to PLWE
(`)
Φ

2blog κe ,q,χ where χ = DZn,r is the discrete Gaussian distribution. The reduction runs
in time poly(n, q, `).

6.2 A Somewhat-Homomorphic Scheme

We describe the scheme of Brakerski and Vaikuntanathan [BV11b] based on PLWE.3 For security
parameter κ, the scheme is parameterized by a prime number q, a degree n polynomial f(x) ∈ Z[x],
and an error distribution χ over the ring Rq

.= Zq[x]/ 〈f(x)〉. The parameters n, f, q and χ are public
and we assume that given κ, there are polynomial-time algorithms that output f and q, and sample
from the error distribution χ.

• Setup(1κ) : Sample a ring element vector a← Rn
q , and set params := a.

• Keygen(params): Sample a ring element s← χ and a ring element vector x← χn, and set

sk := s and pk := p = as + 2x ∈ Rn
q

• Enc(sk,m): To encrypt a bit m ∈ {0, 1}, sample e← χn, and compute

c0 := 〈p, e〉+ m ∈ Rq and c1 := 〈a, e〉 ∈ Rq

and output the ciphertext c := (c0, c1) ∈ R2
q .

3The scheme presented in [BV11b] is a private-key FHE. We make the natural modifications and present it as a
public-key scheme.

17

• Dec(sk, c): To decrypt, we first compute c0 − c1s ∈ Rq, and then output m = c0 − c1s (mod 2)
as the message. Note that the condition for correct decryption is that the `∞ norm of the
polynomial c0 − c1s is smaller than q/2.

Theorem 6.2 ([BV11b]). Let n, q, f(x) be as in the scheme, let r = poly(n) and q = 2nε
for some

0 < ε < 1. Then, the scheme allows evaluation of degree-O(nε/ log n) polynomials with at most
2O(nε/ log n) terms, and is secure under the worst-case hardness of approximating shortest vectors on
ideal lattices to within a factor of O(2nε

).

We will use the fact that ciphertexts of this scheme are pseudorandom. This follows from the fact
that p is a PLWE sample and therefore pseudorandom, and the fact that for e chosen according to the
discrete gaussian, 〈a, e〉 is statistically close to uniform.

6.3 Getting a (Leveled) Fully-Homomorphic Scheme via Re-linearization and Mod-
ulus Reduction

We now describe how to transform the somewhat homomorphic scheme from Section 6.2 into a (leveled)
fully homomorphic scheme. We use the re-linearization and modulus reduction techniques of [BV11a,
BGV11], as opposed to the “squashing” and “bootstrapping” blueprint of [Gen09b] used in [BV11b].
We do this in order to keep the CombineKeys algorithm and thus the N -party protocol implementing
the “combine keys” functionality FEkeys, simple.

6.3.1 Re-linearization

Let us first look at the symbolic linear function fc(x) : Rq → {0, 1} defined as: fc(x) = c1 − c0x
mod 2. We can describe homomorphic addition and multiplication in terms of f . First note that
decrypting a ciphertext c corresponds to simply evaluating fc(s). For ciphertexts c and c′ encrypting
m and m′ respectively, we have:

m + m′ = fc(s) + fc′(s) = (c0 + c′0)− (c1 + c′1)s

Therefore, it is natural to define cadd = c + c′ = (c0 + c0, c1 + c′1). Multiplication is a bit more
tricky. We have:

m ·m′ = fc(s) · fc′(s) = (c0 − c1s)(c′0 − c′1s) = c0c
′
0 − (c0c

′
1 + c1c

′
0)s + c1c

′
1s

2 = h0 + h1s + h2s
2

In [BV11b], the authors let cmult = (h0, h1, h2), so that the size of the ciphertext grows linearly
with the number of multiplications performed. This requires the secret key to be s = (1, s, s2, . . . , sD),
where D is the maximal degree of homomorphism tolerated by the scheme. In our setting of multiparty
computation, this would require a very complex protocol Πkeys to compute CombineKeys, and therefore
we opt for another strategy. Instead of letting the ciphertext grow with each multiplication, we use the
re-linearization technique of Brakerski and Vaikuntanathan [BV11a] to reduce the size of the resulting
ciphertext cmult after each multiplication.

To be able to homomorphically evaluate a polynomial of degree D while keeping the ciphertext
size constant, we have Keygen sample D different polynomials s0, . . . , sD ← χ, one for each level, and
set sk = (s0, . . . , sD), where s0 is used to create the public key pk := p = as0 + x and sD is used for
decryption.4 The evaluation key is computed as follows. For all d ∈ [D], τ ∈ {0, . . . , blog qc}, sample

4The secret key sk could potentially be composed of only sD. However, we let it contain all si’s because we will need
them when we implement the CombineKeys algorithm.

18

(ad,τ , bd,τ = ad,τsd + 2ed,τ) ∈ R2
q and (a′d,τ , b

′
d,τ = a′d,τsd + 2e′d,τ) ∈ R2

q , where ad,τ , a
′
d,τ ← Rq and

ed,τ , e
′
d,τ ← χ. Compute

c̃0,d,τ := bd,τ + 2τsd−1 ∈ Rq and c̃1,d,τ := ad,τ

z̃0,d,τ := b′d,τ + 2τs2
d−1 ∈ Rq and z̃1,d,τ := a′d,τ

5

We let
c̃0,d = (c̃0,d,0, . . . , c̃0,d,blog qc) and c̃1 = (c̃1,d,0, . . . , c̃1,d,blog qc)

z̃0,d = (z̃0,d,0, . . . , z̃0,d,blog qc) and z̃1 = (z̃1,d,0, . . . , z̃1,d,blog qc)

and set the evaluation key
ek := {c̃0,d, c̃1,d, z̃0,d, z̃1,d}d∈[D]

SH.Eval(p, (c1, . . . , cN)): We show how to evaluate an N -variate polynomial p : {0, 1}N → {0, 1} of
degree D. To this end, we show how to homomorphically add and multiply two elements in {0, 1}.

• Given two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) under the same secret key sd−1, output the

ciphertext cadd = c + c′ = (c0 + c′0, c1 + c′1) ∈ R2
q , as an encryption of the sum of the underlying

messages.
• Given two ciphertexts c = (c0, c1) and c′ = (c′0, c

′
1) under the same secret key sd−1, an encryption

of their product is computed as follows.
Define h0, h1, h2 ∈ Rq as before: h0 + h1x + h2x

2 = (c0 − c1x)(c′0 − c′1x). Then in particular,
h0 + h1sd−1 + h2s

2
d−1 (mod 2) = m ·m′. Let u = (u0, . . . , ublog qc) ∈ R

dlog qe
2 for ui ∈ R2 be the

binary representation of h1, and let v = (v0, . . . , vblog qc) ∈ R
dlog qe
2 for vi ∈ R2 be the binary

representation of h2, so that:

h1 =
blog qc∑
τ=0

2τuτ and h2 =
blog qc∑
τ=0

2τvτ

Output
cmult = (h0 + 〈u, c̃0,d〉+ 〈v, z̃0,d〉 , 〈u, c̃1,d〉+ 〈v, z̃1,d〉),

which is a valid encryption of m ·m′ under secret key sd. To see why this is the case, simply
notice that:

〈u, c̃0,d〉 =
blog qc∑
τ=0

uτc0,d,τ =
blog qc∑
τ=0

uτad,τsd +
blog qc∑
τ=0

uτ2τsd−1 + 2e = 〈u, c̃1,d〉 sd + h1 + sd−1 + 2e

and

〈v, z̃0,d〉 =
blog qc∑
τ=0

vτz0,d,τ =
blog qc∑
τ=0

vτa
′
d,τsd +

blog qc∑
τ=0

vτ2τs2
d−1 + 2e′ = 〈v, z̃1,d〉 sd + h2 + s2

d−1 + 2e′,

where e and e′ are “small” error terms. Thus,

h0+〈u, c̃0,d〉+〈v, z̃0,d〉−(〈u, c̃1,d〉+〈v, z̃1,d〉)sd (mod 2) = h0+h1sd−1+h2s
2
d−1 (mod 2) = m·m′

5The reader may notice that (ec0,d,τ , ec1,d,τ) and (ez0,d,τ , ez1,d,τ) are private-key pseudo-encryptions of 2τsd−1 and
2τsd−1,respectively, under secret key sd. We say they are pseudo-encryptions because even though they were created as
normal ciphertexts, they cannot be decrypted in the usual way since 2τsd−1 and 2τs2

d−1 are not in the message space
{0, 1}.

19

6.3.2 Modulus Reduction

We have shown how to keep the ciphertext size constant when performing evaluation. However, the
magnitude of the noise in the ciphertext still grows with each operation. In order to handle this, we
use the modulus reduction technique of [BV11a, BGV11] as a noise management technique. We use
the notation of [BGV11]. For a secret key s, we let s = (1, s) and re-write the decryption function as:
[〈c, s〉]q (mod 2), where [·]q denotes reducing modulo q.

Modulus reduction allows us to transform a ciphertext c ∈ R2
q into a different ciphertext c′ ∈ R2

p

while preserving correctness:
[
〈
c′, s

〉
]p = [〈c, s〉]q (mod 2)

The transformation from c to c′ involves simply scaling by (p/q) and rounding appropriately. Moreover,
if s is short and p is sufficiently smaller than q, the “noise” in the ciphertext actually decreases.

Lemma 6.3 ([BGV11]). Let p and q be two odd moduli, and let c be an integer vector. Define c′ to
be the integer vector closest to (p/q) · c such that c′ = c (mod 2). Then, for any s with ‖[〈c, s〉]q‖ <
q/2− (q/p) · ‖s‖1, we have

[
〈
c′, s

〉
]p = [〈c, s〉]q (mod 2) and

∥∥[〈c′, s〉]p∥∥ < (p/q) · ‖[〈c, s〉]q‖+ ‖s‖1

where ‖s‖ and ‖s‖1 are the `∞ and `1 norms of s, respectively.

To see why the lemma statement is true, consider a coordinate (〈c, s〉)i of 〈c, s〉. We know that
there exists k ∈ Z such that:

[(〈c, s〉)i]q = (〈c, s〉)i − kq ∈
[
−q

2
+

q

p
‖s‖1 ,

q

2
− q

p
‖s‖1

]
,

so that
(〈(p/q) · c, s〉)i − kp ∈

[
−p

2
+ ‖s‖1 ,

p

2
− ‖s‖1

]
Substituting (p/q) · c by c′ incurrs and error of at most ‖s‖1. Therefore,

(
〈
c′, s

〉
)i − kp ∈

[
−p

2
,
p

2

]
and [(

〈
c′, s

〉
)i]p = (

〈
c′, s

〉
)i − kp

This proves the second part of the lemma. To prove the first part, notice that since p and q are
both odd, we know kp ≡ kq (mod 2). Moreover, we chose c′ such that c ≡ c (mod 2). We thus have

(
〈
c′, s

〉
)i − kp ≡ (〈c, s〉)i − kq (mod 2)

[(〈c, s〉)i]p ≡ [(〈c, s〉)i]q (mod 2)

We now show the changes we need to make to the evaluation algorithm. Let D be the maximum
level of homomorphism we wish to achieve, and let q0, . . . , qD be a ladder of decreasing moduli.
As before, Keygen samples D different polynomials s0, . . . , sD ← χ, one for each level, and sets
sk = (s0, . . . , sD), where pk := p = as0 + x and sD is used for decryption. The evaluation key is
computed as before, except that c̃0,d,τ , c̃1,d,τ , z̃0,d,τ , z̃1,d,τ are reduced modulo qd−1. In more detail:
for all d ∈ [D], τ ∈ {0, . . . , blog qd−1c}, sample (ad,τ , bd,τ = ad,τsd + 2ed,τ) ∈ R2

qd−1
and (a′d,τ , b

′
d,τ =

a′d,τsd + 2e′d,τ) ∈ R2
qd−1

, where ad,τ , a
′
d,τ ← Rqd−1

and ed,τ , e
′
d,τ ← χ. Compute

c̃0,d,τ := bd,τ + 2τsd−1 ∈ Rqd−1
and c̃1,d,τ := ad,τ

z̃0,d,τ := b′d,τ + 2τs2
d−1 ∈ Rqd−1

and z̃1,d,τ := a′d,τ

20

Let
c̃0,d = (c̃0,d,0, . . . , c̃0,d,blog qc) and c̃1 = (c̃1,d,0, . . . , c̃1,d,blog qc)

z̃0,d = (z̃0,d,0, . . . , z̃0,d,blog qc) and z̃1 = (z̃1,d,0, . . . , z̃1,d,blog qc)

and set the evaluation key
ek := {c̃0,d, c̃1,d, z̃0,d, z̃1,d}d∈[D]

SH.Eval(p, (c1, . . . , cN)): We show how to evaluate an N -variate polynomial p : {0, 1}N → {0, 1} of
degree D. To this end, we show how to homomorphically add and multiply two elements in {0, 1}.

• Given two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) under the same secret key sd−1 and modulus

qd−1, output the ciphertext cadd = c + c′ = (c0 + c′0, c1 + c′1) ∈ R2
qd−1

, as an encryption of the
sum of the underlying messages.

• Given two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) under the same secret key sd−1 and modulus

qd−1, an encryption of their product is computed as follows.
First, re-linearize: define h0, h1, h2 ∈ Rqd−1

as before, h0 + h1x + h2x
2 = (c0 − c1x)(c′0 − c′1x).

Let u = (u0, . . . , ublog qc) ∈ R
dlog qe
2 for ui ∈ R2 be the binary representation of h1, and let

v = (v0, . . . , vblog qc) ∈ R
dlog qe
2 for vi ∈ R2 be the binary representation of h2. Let

cmult = (h0 + 〈u, c̃0,d〉+ 〈v, z̃0,d〉 , 〈u, c̃1,d〉+ 〈v, z̃1,d〉)

Finally, reduce the modulus: let c′mult be the integer vector closest to (qd/qd−1) · cmult such that
c′mult = cmult (mod 2). Output c′mult.

6.4 Key-Homomorphic Threshold FHE from PLWE

We describe an instantiation of key-homomorphic threshold FHE based on the FHE described in
Section 6.2 and Section 6.3. Our scheme is parametrized by two noise distributions, χ0 and χ1, with
χb = DZn,rb,B(rb), as described in Section 6.1.

Algorithms. We instantiate algorithms Dec and Eval as described in Section 6.2 and Section 6.3.
Below we show how to instantiate the algorithms Keygen,Enc,CombinePK,CombineKeys,ShareDec,
ShareCombine,ReRand and simulators SimCombKeys,SimShareDec. For threshold decryption we use a
scheme analogous to the one of [BD10] for standard LWE. We note, however, that threshold decryption
in [BD10] is only secure (ie. shares do not reveal information about the secret key) if the ciphertext
that is being decrypted has a random (or statistically close to random) c1. This is the reason why
in our cloud-assisted MPC protocol, we need the parties to jointly re-randomize the ciphertext c =
Evalek(C, c1, . . . , cN) before they can threshold decrypt it.

• Setup(1κ, N) : Let a← Rn
q . For i ∈ [N], d ∈ {0, . . . , D} , τ ∈ {0, . . . , blog qdc}, sample a

(i)
d,τ , a

′(i)
d,τ ←

Rqd
. Output

params =
(
a,
{

a
(i)
d,τ , a

′(i)
d,τ

}
d,τ,i

)
• Keygen(1κ, i, params) : Sample D different polynomials s

(i)
0 , . . . , s

(i)
D ← χ0 and a vector x ← χn.

Set ski := (s(i)
0 , . . . , s

(i)
D) and pki := as0 + x. The evaluation key is computed as before, using

21

the a
(i)
d,τ , a

′(i)
d,τ in params instead of sampling them randomly from Rqd−1

. In more detail: for all

d ∈ [D], τ ∈ {0, . . . , blog qd−1c}, sample e
(i)
d,τ , e

′(i)
d,τ ← χ0 and compute

c̃
(i)
0,d,τ := a

(i)
d,τ + 2e

(i)
d,τ + 2τs

(i)
d−1 ∈ Rqd−1

and c̃
(i)
1,d,τ := a

(i)
d,τ

z̃
(i)
0,d,τ := a′

(i)
d,τ + 2e′

(i)
d,τ + 2τ (s(i)

d−1)
2 ∈ Rqd−1

and z̃
(i)
1,d,τ := a′

(i)
d,τ

Let
c̃(i)
0,d = (c̃(i)

0,d,0, . . . , c̃
(i)
0,d,blog qc) and c̃(i)

1 = (c̃(i)
1,d,0, . . . , c̃

(i)
1,d,blog qc)

z̃(i)
0,d = (z̃(i)

0,d,0, . . . , z̃
(i)
0,d,blog qc) and z̃(i)

1 = (z̃(i)
1,d,0, . . . , z̃

(i)
1,d,blog qc)

and set the evaluation key
eki :=

{
c̃(i)
0,d, c̃

(i)
1,d, z̃

(i)
0,d, z̃

(i)
1,d

}
d∈[D]

• CombinePK({pki}i∈[N]) : Set pk := pk1 + . . . + pkN .

• CombineKeys({ski}i∈[N] , {eki}i∈[N]) : Parse ski = (s(i)
0 , . . . , s

(i)
D) and define sj =

∑N
i=1 s

(i)
j . Set

sk := (s0, . . . , sD)

Parse eki =
{
c̃(i)
0,d, c̃

(i)
1,d, z̃

(i)
0,d, z̃

(i)
1,d

}
d∈[D]

. The evaluation key is computed as in Section 6.3 for secret

key sk = (s0, . . . , sD). For all d ∈ [D], τ ∈ {0, . . . , blog qd−1c}, sample (ad,τ , bd,τ = ad,τsd+2ed,τ) ∈
R2

qd−1
and (a′d,τ , b

′
d,τ = a′d,τsd + 2e′d,τ) ∈ R2

qd−1
, where ad,τ , a

′
d,τ ← Rqd−1

and ed,τ , e
′
d,τ ← χ.

Compute
c̃0,d,τ := bd,τ + 2τsd−1 ∈ Rqd−1

and c̃1,d,τ := ad,τ

z̃0,d,τ := b′d,τ + 2τs2
d−1 ∈ Rqd−1

and z̃1,d,τ := a′d,τ

Let
c̃0,d = (c̃0,d,0, . . . , c̃0,d,blog qc) and c̃1 = (c̃1,d,0, . . . , c̃1,d,blog qc)

z̃0,d = (z̃0,d,0, . . . , z̃0,d,blog qc) and z̃1 = (z̃1,d,0, . . . , z̃1,d,blog qc)

and set
ek := {c̃0,d, c̃1,d, z̃0,d, z̃1,d}d∈[D]

• Encsk(m,mode; e) : If ‖e‖ ≥ Bmode, output ⊥. Otherwise compute

c0 := 〈p, e〉+ m ∈ Rq0 and c1 := 〈a, e〉

and output c = (c0, c1). Also recall that when unspecified, we assume mode = 0.

Without loss of generality, assume below that ciphertext c is a ciphertext under secret key sD and
modulus qD.

• ShareDecski
(c) : Parse c = (c0, c1) and ski = (s(i)

0 , . . . , s
(i)
D). Sample e(i) ← χ0 and output

µi := c1s
(i)
D + 2e(i) ∈ RqD

22

• ShareCombine(c, µ1, . . . , µN) : Parse c = (c0, c1). Output c0 −
∑N

i=1 µi (mod 2).

• ReRandpk(c, 1) : Sample e← χn
1 and output ĉ← c + Encpk(0 ; e).

Theorem 6.4. The scheme described above is a key-homomorphic threshold FHE encryption scheme.

Proof. (Sketch)

Correct Key Combination: It is easily seen that

pk = pk1 + . . . + pkN =
N∑

i=1

(as
(i)
0 + x(i)) = a

(
N∑

i=1

s
(i)
0

)
+

(
N∑

i=0

x(i)

)
= as0 + x′

Furthermore, ek is correct by construction.

Key-Simulation Indistinguishability: We define:

SimCombKeys({(pki, eki)}i∈T) : Let T = [N]\T . For j ∈ T , lets pkj ← Rq0 . Sets

c̃(j)
1,d = (a(j)

d,1, . . . , a
(j)
d,blog qd−1c) and z̃(j)

1,d = (a′(j)d,1, . . . , a
′(j)
d,blog qd−1c). Chooses c̃(j)

0,d, c̃
(j)
0,d ←

R
blog qd−1c
qd , and sets ekj =

{
c̃(j)
0,d, c̃

(j)
1,d, z̃

(j)
0,d, z̃

(j)
1,d

}
d∈[D]

. Chooses ek = (c̃0,d, c̃1,d, z̃0,d, z̃1,d)←

R
4blog qd−1c
qd−1 .

We use a hybrid argument, one per each d ∈ {0, . . . , D}. First, by PLWE with secret s
(j)
0 ,

we know that pkj and (c̃(j)
0,d, c̃

(j)
1,d, z̃

(j)
0,d, z̃

(j)
1,d) as output by SimCombKeys is computationally indis-

tinguishable from an honestly created public key and honestly created tuples. The remaining
hybrids are similar. For d 6= 0, by PLWE with secret s

(j)
d , we know that (c̃(j)

0,d, c̃
(j)
1,d, z̃

(j)
0,d, z̃

(j)
1,d) as

output by SimCombKeys is computationally indistinguishable from honestly created tuples, and
therefore so is ekj . By PLWE with secret sd =

∑N
i=1 s

(i)
d , which is computationally hidden from A

(since A only knows {s(i)
d }i∈T), we know that ek as output by SimCombKeys is computationally

indistinguishable from an honestly created ek.

Correct Share Decryption of Combined Key: Let c = (c0, c1) be an encryption of m under
secret key sD. Then c0 = c1sD + 2e + m and Decsk(c) = m as long as ‖e‖ � qD/2. Let
µi = c1s

(i)
D + 2e(i). Then

ShareCombine(c, µ1, . . . , µN) = c0 −
N∑

i=1

µi = (c1sD + 2e + m)−

(
N∑

i=1

c1s
(i)
D + 2e(i)

)
(mod 2)

= c1sD − c1

N∑
i=1

s
(i)
D + 2

(
e−

N∑
i=1

e(i)

)
+ m (mod 2) = m,

as long as
∥∥∥e−∑N

i=1 e(i)
∥∥∥� qD/2

Share-Simulation Indistinguishability: We define:

SimShareDec(c,m, {µi}i∈T) : Parse c = (c0, c1). Fix j∗ ∈ T . For all j 6= j∗, let
µj ← RqD . Let µj∗ := c0 −m −

∑
i∈[N],i6=j∗ µi and output {µj}j∈T

23

By correct share decryption, we know that regardless of how {µj}j∈T were created, µj∗ := c0 −
m −

∑
i∈[N],i6=j∗ µi. Since this is a deterministic function of the rest of the variables, we simply

need to prove that {
µj := c1s

(j)
D + 2e(j)

}
j∈T ,j 6=j∗

c
≈ {uj ← RqD}j∈T ,j 6=j∗ (1)

Because c ← Encsk(m), we know that the distribution of c1 is statistically close to uniform in
RqD and thus, (1) simply follows from a series of hybrid arguments, one for each j, in which we
use the pseudo-randomness of a PLWE sample with secret s

(j)
D .

Semantic Security: Semantic security follows from the pseudorandomness of PLWE. Given any
{pki}i∈T , if

{
pkj

}
j∈T

are honestly generated then in partiparticular, they are pseudorandom (by
PLWE), and thus pk = pk1+ . . .+pkN is also pseudorandom. Thus, a ciphertext encrypted under
this public key is pseudorandom and semantic security follows.

Ciphertext Re-Randomization: The output of c = Evalek(c1, . . . , c`) is not indistinguishable from
a fresh encryption c′ ← Encpk(y, 0) since the noise in c might be much larger than in c′. We
remedy this by adding noise that is super-polynomially bigger than the noise in c (in the form
of an encryption of 0, Encpk(0, 1)). We choose χ0 and χ1 appropriately. Recall that χ0 and χ1

are (truncated) discrete Gaussians DZn,r0,B(r0) and DZn,r1,B(r1), which are statistically close to
the discrete Gaussian distributions DZn,r0 and DZn,r1 . We choose r1 to a be a super-polynomial
factor larger than r0: r1 ≥ 2ω(log κ)r0. Recall that

ReRand(c) = Evalek(c1, . . . , c`) + Encpk(0, 1)

where the first term, Evalek(c1, . . . , c`) has noise distributed according to DZn,poly(κ)·r0
, while

the second has noise distributed according to DZn,r1 . Because r1 is super-polynomially bigger
than r0, we have that the noise distributions of ReRand(c) and a fresh encryption Encpk(y, 1) are
statistically close.

7 Implementing FErand.bc and FEkeys

We show how to implement FEkeys and FErand.bc for our key-homomorphic threshold FHE scheme.

7.1 Ciphertext Re-Randomization

Protocol Πsh
rand shown in Figure 11 securely implements FErand.bc in the Fbc-hybrid model, against

(static) semi-honest adversaries. In Πsh
rand, we simply ask each party to send a random encryption of

0. Since corrupted parties are semi-honest, this re-randomizes the ciphertext.

Theorem 7.1. Protocol Πsh
rand described in Figure 11 securely implements FErand.bc against (static)

semi-honest adversaries, in the (Fbc,FDcrs,FEkeys)-hybrid model.

The proof of Theorem 7.1 is given in Appendix A.2. Protocol Πmal
rand shown in Figure 12 securely

implements FEkeys in the (Fbc,FDcrs,FR(zero)

zk.bc)-hybrid model. To tolerate malicious adversaries, we need
to guarantee that the encryption zi is a “fresh” encryption; in particular, we need to guarantee that zi

is not correlated to any other zj . In order to guarantee this, we place a commitment key for a trapdoor

24

Protocol Πsh
rand

Inputs: All parties P1, . . . , PN and server S get public key pk as input. Server S additionally gets a ciphertext
c ∈ Cpk, where Cpk is the ciphertext space defined by pk.

For session ID sid:

Round 1: Each party Pi samples zi ← Encpk(0, 1) and sends (sid, i, zi) to Fbc.
Round 2: Upon receiving (sid, i, zi) for all i ∈ [N] from Fbc, server computes ĉ := c +

∑N
i=1 zi and

sends (sid, 0, c, ĉ) to Fbc.

Figure 11: Protocol Πsh
rand. Implements FErand.bc in the Fbc-hybrid model. Secure against semi-honest

adversaries.

commitment scheme (KeygenCom,Com) in the crs. This way we know that it is correctly distributed.
We then have each party commit in advance, using ck, to the randomess ri

(0) they will use to create
zi. Along with zi parties also provide a SS-NIZK proof that zi was indeed computed with randomness
ri

(0). Formally, we require each party to compute a SS-NIZK for the NP-relation:

R(zero) = { (ρ , ck, z, pk) , (r , s) | ρ← Comck(r ; s) ∧ z := Encpk(0, 1 ; r) }

Protocol Πmal
rand

Inputs: All parties P1, . . . , PN and server S get public key pk as input. Server S additionally gets a ciphertext
c ∈ Cpk, where Cpk is the ciphertext space defined by pk.

For session ID sid:

Round 1 Each party Pi:

• Calls FD
crs with sid and receives (sid, ck). Chooses encryption and commitment randomness ri

(0)

and si
(0), and computes a commitment ρi

(0) ← Com(ri
(0); si

(0)).
• Sends (sid, i, ρi

(0)) to Fbc.

Round 2: Each party Pi, samples zi ← Encpk(0, 1; ri
(0)) and sends (sid, i, (ρi

(0), zi, pk), (ri
(0), si

(0))) to
FR(zero)

zk.bc .
Round 3: The server S:

• Upon receiving (sid, i, (ρi
(0), zi, pk)) from FR(zero)

zk.bc for every i ∈ [N], compute ĉ := c +
∑N

i=1 zi and
send (sid, S, c, ĉ) to Fbc.

Figure 12: Protocol Πmal
rand. Implements FErand.bc in the (Fbc,FDcrs,FR(zero)

zk.bc)-hybrid model, where D
is the distribution defined by KeygenCom. Secure against malicious adversaries.

Theorem 7.2. Protocol Πmal
rand described in Figure 12 securely implements FErand.bc against (static)

malicioius adversaries, in the (Fbc,FDcrs,FEkeys,FR(zero)

zk.bc)-hybrid model.

The proof of Theorem 7.2 is given in Appendix A.2.

7.2 Key Combination

Protocol Πsh
keys shown in Figure 13 securely implements FEkeys in the Fbc,FDcrs-hybrid model, against

(static) semi-honest adversaries. We wish to obtain pseudoencryptions of sd−1 and (sd−1)2, where
sd−1 is the combined secret key sd =

∑N
i=1 s

(i)
d−1. In Πsh

keys, parties begin by sending encryptions of

25

0, w
(k)
d,τ , w′(k)

d,τ using each of the a
(k)
d,τ , a

′(k)
d,τ in params. Using these and the pseudoencryptions in the

evaluation keys ekk, by key-homomorphism they can then compute pseudoencryptions x̃
(k)
d,τ of 2τs

(k)
d−1

under the combined secret key sd. Adding these yields a pseudoencryption of 2τsd−1. Furthermore,
multiplying these by s

(i)
d−1 and re-randomizing, yields a pseudoencryption of 2τs

(i)
d−1s

(k)
d−1, under the

combined secret key sd. Adding these pseudoencryptions for all k, i yields a pseudoencryption of
2τ (sd)2:

2τ
N∑

i,k=1

s
(i)
d−1s

(k)
d−1 = 2τ (

N∑
i

s
(i)
d)2 = 2τ (sd)2

Theorem 7.3. Protocol Πsh
keys described in Figure 13 securely implements FEkeys against (static) semi-

honest adversaries, in the (Fbc,FDcrs)-hybrid model.

The proof of Theorem 7.3 is given in Appendix A.3. Figure 14 describes protocol Πmal
keys that

securely implements FEkeys in the (Fbc,FDcrs,FR(enc)

zk.bc ,FR(rand)

zk.bc)-hybrid model, against (static) malicious
adversaries. To tolerate malicious adversaries, all we have to change is to have the parties provide
SS-NIZK proofs that they computed the w

(i)
d,τ ’s correctly, as encryptions of 0, using secret s

(i)
d , and

also that multiplied in s
(i)
d−1 and re-randomized correctly. More formally, they provide SS-NIZK proofs

for the following NP relations:

R(enc) = { (a, c) , (s, e) | c = as + 2e }
R(rand) =

{
(c, c′, pk) , (s, r) | c′ = sc + Encpk(0 ; r)

}

Theorem 7.4. Protocol Πmal
keys described in Figure 14 securely implements FEkeys against (static) ma-

licious adversaries, in the (Fbc,FDcrs,FR(enc)

zk.bc ,FR(rand)

zk.bc)-hybrid model.

The proof of Theorem 7.4 is given in Appendix A.3.

8 Performance

In this section we argue that the protocol from Section 4 can be executed in 4 rounds in the (Fbc,FDcrs)-
hybrid model. We also analyze the communication complexity and the computation time of the parties
Pi and server S. We first look at the semi-honest case and then turn our attention to the changes
needed to the protocol secure against malicious adversaries.

In Section 7, we described protocols Πsh
rand and Πsh

keys that securely implement the functionality
FErand.bc, each in 2 rounds. Since the circuit C is never used in these protocols, the communication
complexity and the computation time of all parties and the server in Πsh

rand and Πsh
keys is independent of

|C|. We want to run these protocols inside Πsh in the least number of rounds, subject to the following
restrictions:

• Parties must know pk before Round 1 of Πsh
rand.

• Round 2 of Πsh
rand must be placed in Phase 3 of Πsh.

• Server must know ek in (and therefore Πsh
keys must be completed by) Phase 3 of Πsh, so that the

server can perform homomorphic operations.

We do this by sending some of the messages in parallel:

26

Protocol Πsh
keys

Inputs: All parties Pi get as input a valid key tuple (pki, ski, eki), and for j 6= i, Pi and S also receive
(pkj , ekj).

For session ID sid, each party Pi:

Round 1: Calls FD
crs with sid and receives (sid, params), where params =

(
. . . ,

{
a
(k)
d,τ , a′

(k)
d,τ

}
d,τ,k

, ...

)
.

For k ∈ [N]:

• Parses ekk :=
{
c̃(k)
0,d, c̃(k)

1,d, z̃(k)
0,d, z̃(k)

1,d

}
d∈[D]

.

• Verifies that c̃(k)
1,d = (a(k)

d,1, . . . , a
(k)
d,blog qd−1c) and z̃(k)

1,d = (a′(k)
d,1, . . . , a

′(k)
d,blog qd−1c)

• Samples e
(i,k)
d,τ ← χ0 and computes

w
(i,k)
d,τ := a

(k)
d,τs

(i)
d + 2e

(i,k)
d,τ

• Sends (sid, i, w
(i,k)
d,τ) to Fbc.

Round 2: Upon receiving (sid, j, w
(j,k)
d,τ) from Fbc for all j, k ∈ [N], d ∈ [D], τ ∈ {0, . . . , blog qd−1c}:

• Computes

x̃
(k)
0,d,τ :=

∑
j 6=k

w
(j,k)
d,τ + c

(k)
0,d,τ = a

(k)
d,τsd + 2

∑
j 6=k

e
(j,k)
d,τ + e

(k)
d,τ

+ 2τs
(k)
d−1 and x̃

(k)
1,d,τ = a

(k)
d,τ

ỹ
(i,k)
0,d,τ = s

(i)
d−1x̃

(k)
d,τ and ỹ

(i,k)
1,d,τ = s

(i)
d−1a

(k)
d,τ

• Let x̃(k)
d,τ = (x̃(k)

0,d,τ , x̃
(k)
1,d,τ) and ỹ(i,k)

d,τ = (ỹ(i,k)
0,d,τ , ỹ

(i,k)
1,d,τ). Computes

c̃(k)
d,τ = (c̃(k)

0,d,τ , c̃
(k)
1,d,τ)← x̃(k)

d,τ + Encpk(0)

z̃(i,k)
d,τ = (z̃(i,k)

0,d,τ , z̃
(i,k)
1,d,τ)← ỹ(i,k)

d,τ + Encpk(0)

• Sends (sid, i, c̃(k)
d,τ , z̃(i,k)

d,τ) to Fbc.

(Local Computation): Upon receiving (sid, j, c̃(k)
d,τ , z̃(j,k)

d,τ) from Fbc for all j, k ∈ [N], d ∈ [D], τ ∈
{0, . . . , blog qd−1c}:
• Computes

c̃0,d,τ :=
∑

k

c̃
(k)
0,d,τ and c̃1,d,τ :=

∑
k

c̃
(k)
1,d,τ

z̃0,d,τ :=
∑
j,k

z̃
(j,k)
0,d,τ and z̃1,d,τ :=

∑
j,k

z̃
(j,k)
1,d,τ

• For b ∈ {0, 1}, sets c̃b,d := (c̃b,d,1, . . . , c̃b,d,blog qd−1c) and z̃b,d := (z̃b,d,1, . . . , z̃b,d,blog qd−1c), and
ek := (c̃0,d, c̃1,d, z̃0,d, z̃1,d).

Figure 13: Protocol Πsh
keys. Implements FEkeys in the (Fbc,FDcrs)-hybrid model, where D is the distri-

bution defined by Setup. Secure against semi-honest adversaries.

Round 1: Each party computes its key tuple, as in Πsh, and also runs Round 1 of Πsh
keys

Round 2: Each party computes an encryption of its input, as in Πsh. Since all parties know pk, also
runs Round 1 of Πsh

rand and Round 2 of Πsh
keys.

27

Protocol Πmal
keys

Inputs: All parties Pi get as input a valid key tuple (pki, ski, eki), and for j 6= i, Pi and S also receive
(pkj , ekj).

For session ID sid, each party Pi:

Round 1: Calls FD
crs with sid and receives (sid, params), where params =

(
. . . ,

{
a
(k)
d,τ , a′

(k)
d,τ

}
d,τ,k

, ...

)
.

For k ∈ [N],

• Parses ekk :=
{
c̃(k)
0,d, c̃(k)

1,d, z̃(k)
0,d, z̃(k)

1,d

}
d∈[D]

.

• Verifies that c̃(k)
1,d = (a(k)

d,1, . . . , a
(k)
d,blog qd−1c) and z̃(k)

1,d = (a′(k)
d,1, . . . , a

′(k)
d,blog qd−1c)

• Samples e
(i,k)
d,τ ← χ0 and computes

w
(i,k)
d,τ := a

(k)
d,τs

(i)
d + 2e

(i,k)
d,τ

• Sends (sid, i, (w(i,k)
d,τ , a

(i,k)
d,τ), (s(i)

d , e
(i,τ)
d,τ)) to FR(enc)

zk.bc .

Round 2: Upon receiving (sid, j, (w(j,k)
d,τ , a

(j,k)
d,τ)) from FR(enc)

zk.bc for all j, k ∈ [N], d ∈ [D], τ ∈
{0, . . . , blog qd−1c}:
• Computes

x̃
(k)
0,d,τ :=

∑
j 6=k

w
(j,k)
d,τ + c

(k)
0,d,τ = a

(k)
d,τsd + 2

∑
j 6=k

e
(j,k)
d,τ + e

(k)
d,τ

+ 2τs
(k)
d−1 and x̃

(k)
1,d,τ = a

(k)
d,τ

ỹ
(i,k)
0,d,τ = s

(i)
d−1x̃

(k)
d,τ and ỹ

(i,k)
1,d,τ = s

(i)
d−1a

(k)
d,τ

• Let x̃(k)
d,τ = (x̃(k)

0,d,τ , x̃
(k)
1,d,τ) and ỹ(i,k)

d,τ = (ỹ(i,k)
0,d,τ , ỹ

(i,k)
1,d,τ). Chooses randomness r

(k)
d,τ , r

(i,k)
d,τ and computes

c̃(k)
d,τ = (c̃(k)

0,d,τ , c̃
(k)
1,d,τ)← x̃(k)

d,τ + Encpk(0 ; r(k)
d,τ)

z̃(i,k)
d,τ = (z̃(i,k)

0,d,τ , z̃
(i,k)
1,d,τ)← ỹ(i,k)

d,τ + Encpk(0 ; r(i,k)
d,τ)

• Sends (sid, i, (c̃(k)
d,τ , x̃(k)

d,τ), (1, r
(k)
d,τ)) and (sid, i, (z̃(i,k)

d,τ , x̃(k)
d,τ), (s(i)

d , r
(i,k)
d,τ)) to FR(rand)

zk.bc .

(Local Computation): Upon receiving (sid, j, (c̃(k)
d,τ , x̃(k)

d,τ)) and (sid, j, (z̃(j,k)
d,τ , x̃(k)

d,τ) from FR(rand)

zk.bc for
all j, k ∈ [N], d ∈ [D], τ ∈ {0, . . . , blog qd−1c}:
• Computes

c̃0,d,τ :=
∑

k

c̃
(k)
0,d,τ and c̃1,d,τ :=

∑
k

c̃
(k)
1,d,τ

z̃0,d,τ :=
∑
j,k

z̃
(j,k)
0,d,τ and z̃1,d,τ :=

∑
j,k

z̃
(j,k)
1,d,τ

• For b ∈ {0, 1}, sets c̃b,d := (c̃b,d,1, . . . , c̃b,d,blog qd−1c) and z̃b,d := (z̃b,d,1, . . . , z̃b,d,blog qd−1c), and
ek := (c̃0,d, c̃1,d, z̃0,d, z̃1,d).

Figure 14: Protocol Πmal
keys. Implements FEkeys in the (Fbc,FDcrs,FR(enc)

zk.bc ,FR(rand)

zk.bc)-hybrid model, where
D is the distribution defined by Setup. Secure against malicious adversaries.

Round 3: The server knows ek because Πsh
keys was completed in the previous round. The server

performs the homomorphic evaluation, as in Πsh, and runs Round 2 or Πsh
rand.

28

Round 4: The parties share decryption shares as in Πsh
keys.

(Local Computation): The parties combine the ciphertext and decryption shares to obtain the
output.

It is clear that the communication complexity and the computation time of the parties in the
resulting protocol is independent of |C|, and polynomial in (

∑
|xi|, |y|, N, κ). The computation time

of the server, on the other hand, is linear in |C| and polynomial in (
∑
|xi|, |y|, N, κ).

In the malicious case, Πmal
keys has exactly the same number of rounds and same restrictions as

Πsh
keys, but the protocols Πmal and Πmal

rand require one more round than their semi-honest counterparts,
where the parties commit to the randomness they will use throughout the protocol. Therefore, we
can achieve 5 rounds, in exactly the same way as before, except that we have one more round in the
beginning, where the parties send commitments to randomness. Furthermore, the server must provide
and the parties verify a short argument for the validity of c, that is, for the correct homomorphic
evaluation of |C|. As we saw in Section 5, this can be done in one of four ways. Table 1 summarizes
the round and communication complexity of the resulting protocol for each of the 4 options, together
the computation time of the parties. The computation time of the server is always polynomial in |C|,
as well as in (

∑
|xi|, |y|, N, κ).

VC Proof RC CC(poly(·)) CT(poly(·)) Model / Assumptions

[Kil92, Kil95] 7 log (|C|) log (|C|) CRHF
[Mic94] 5 log (|C|) log (|C|) Random Oracle

[BCCT11, GLR11] 5 log (|C|) log (|C|) Non-Falsifiable
[GKR08] 5 d, log (|C|) d, log (|C|) Secure PIR Scheme

Table 1: Performance of Πmal in the (Fbc,FDcrs)-hybrid model, for N clients and circuit C of
depth d. Communication complexity (CC) and computation time (CT) displayed are in addition
to poly(

∑
|xi|, |y|, N, κ).

References

[AiCPS09] Benny Applebaum, David Cash inand Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai Halevi,
editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 595–618.
Springer, 2009.

[BCCT11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
Cryptology ePrint Archive: Report 2011/443, 2011.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture
Notes in Computer Science, pages 201–218. Springer, 2010.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT,
volume 6632 of Lecture Notes in Computer Science, pages 169–188. Springer, 2011.

29

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO,
volume 773 of Lecture Notes in Computer Science, pages 278–291. Springer, 1993.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion without bootstrapping. Manuscript (in submission), 2011.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. To Appear in FOCS, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In Rogaway [Rog11], pages 505–524.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[DPSZ11] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535,
2011. http://eprint.iacr.org/.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science. Springer, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Cynthia Dwork, editor, STOC, pages 113–122. ACM,
2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive: Report
2011/456, 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Com-
puting without simultaneous interaction. In Rogaway [Rog11], pages 132–150.

30

http://eprint.iacr.org/
crypto.stanford.edu/craig

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In STOC, pages 723–732. ACM, 1992.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In Don Coppersmith,
editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 311–324.
Springer, 1995.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party compu-
tation. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Gilbert [Gil10], pages 1–23.

[Mic94] Silvio Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453. IEEE, 1994.

[MSas11] Steven Myers, Mona Sergi, and abhi shelat. Threshold fully homomorphic encryption
and secure computation. Cryptology ePrint Archive, Report 2011/454, 2011. http:
//eprint.iacr.org/.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer,
2003.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science. Springer, 2011.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 1999.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In FOCS, pages 427–436, 1992.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography, pages 420–443, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Gilbert [Gil10], pages 24–43.

A Proofs

A.1 Security Under Malicious Adversaries

Proof of Lemma 5.1: Correctness follows from correctness of key combination, correctness of homo-
morphic evaluation, correctness of share decryption of E , and correctness of the NIZK proof systems
Π(x),Π(gen),Π(dec) and the short argument system Φ.

31

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

We now turn to security. To show more clearly why we need simulation-sound and simulation-
extractable NIZKs (as opposed to standard NIZKs), we instantiate in Πmal from Figure 10, FR(gen)

zk.bc ,FR(dec)

zk.bc

with SS-NIZKs, and FR(x)

zk.bc with a SE-NIZK and present the proof of Lemma 5.1 after this instantia-
tion. Let A be a real-world malicious adversary corrupting t < N clients, and possibly the server. Let
T ([N] be the set of corrupted clients. We describe the simulator Smal in Figure 15. We prove that
REALΠmal,A(~x)

c
≈ IDEALF ,Smal(~x) via a series of hybrids. The view of the A consists of

View =
(
params,

{
xi, ρi

(gen), ρi
(dec), (pki, ski, eki), πi

(gen), ci, πi
(x), µi, πi

(dec)
}

i∈T
,{

(ρj
(gen), ρj

(dec))
}

j∈T
, pk, ek,

{
(pkj , ekj), πj

(gen)
}

j∈T
,
{

cj , πj
(x)
}

j∈T
, c, ϕ, ĉ,

{
µj , πj

(dec)
}

j∈T

)
We simply prove that for all

{
xi, ρi

(gen), ρi
(dec), (pki, ski, eki), πi

(gen), ci, πi
(x), µi, πi

(dec)
}

i∈T
output

by A, the joint distribution of these variables in the simulation is computationally indistinguish-
able from the joint distribution of the same variables in a real-world execution of protocol Πmal.
We let Viewi be the joint distribution of these variables in hybrid i. In all hybrids, params ←
Setup(1κ, N) , (crs(x), tk(x), xtk)← SetupX(1κ) , (crs(dec), tk(dec))← SetupGen(1κ) , (crs(gen), tk(gen))←
SetupDec(1κ) , (ck, xtk(com)) ← KeygenCom(1κ) , pk ← CombinePK({pki}i∈[N]). Also, we can assume
c = Eval(C, c1, . . . , cN), even when the server is corrupted, as this is guaranteed by soundness of the
short argument system Φ. We gradually change how each of the other variables is computed.

Hybrid 0: This is the real-world execution of Πmal. We have:

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(rj
(dec) ; sj

(dec)){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← ProveX((cj , pk) , (xj , rj

(x)))
}

j∈T
, ĉ← ReRand(c) ,

{
µj ← ShareDecskj

(ĉ)
}

j∈T{
πj

(x) ← ProveDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j) , (rj
(dec), sj

(dec), rj
(gen), sj

(gen)))
}

j∈T

Hybrid 1: We now change the proofs πj
(x) so that they are simulated proofs, created with the SimX

algorithm, instead of created honestly using ProveX.

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(rj
(dec) ; sj

(dec)){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← ReRand(c) ,
{
µj ← ShareDecskj

(ĉ)
}

j∈T{
πj

(x) ← ProveDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j) , (rj
(dec), sj

(dec), rj
(gen), sj

(gen)))
}

j∈T

We have that View0
c
≈ View1 by the zero-knowledge property of Π(x).

32

Simulator Smal

1. Run params ← Setup(1κ, N) , (crs(x), tk(x), xtk) ← SetupX(1κ) , (crs(dec), tk(dec)) ←
SetupGen(1κ) , (crs(gen), tk(gen)) ← SetupDec(1κ), and (ck, xtk(com)) ← KeygenCom(1κ). Let
params′ := (params, crs(x), crs(dec), crs(gen), ck) and run A on inputs {xi}i∈T and params′ while playing
the role of the honest parties:

Phase 1: For all j ∈ T , compute ρj
(gen) ← Comck(0) and ρj

(dec) ← Comck(0). Send
(sid, j, ρj

(gen), ρj
(dec)) to A on behalf of Fbc.

Phase 2:

• Upon receiving (sid, i, ρi
(gen), ρi

(dec)) as a message to FE
keys for all i ∈ T , use the commitment

trapdoor to extract randomness ri
(gen), ri

(dec):

ri
(gen) := ExtCom

xtk(com)(ρi
(gen)) , ri

(dec) := ExtCom
xtk(com)(ρi

(dec))

• For all i ∈ T , let (p̃ki, s̃ki, ẽki)← Keygen(1κ, i; ri
(gen)).

• For all j ∈ T , compute πj
(gen) ← SimGen

tk(dec)(pkj , ekj , ck, ρj
(gen), j) and send (sid, j, (pkj , ekj ,

ck, ρj
(gen), j), πj

(gen)) to A on behalf of Fbc.
• Upon receiving (sid, i, (pki, eki, ck, ρi

(gen), i), πi
(gen)) as a message to Fbc for all i ∈ T , verify

that πi
(gen) is valid. Upon receiving (sid, i, (pki, ski, eki)) as a message to FE

keys for all i ∈ T ,
check that (p̃ki, s̃ki, ẽki) = (pki, ski, eki) and halt if the key tuples are not the same.

• Let pk := CombinePK({pki}[N]), and run (ek,
{
(pkj , ekj)

}
j∈T

) ←

SimCombKeys

({
(p̃ki, s̃ki, ẽki)

}
i∈T

)
. Send (sid, ek, {(pki, eki)}i∈[N]) to A on behalf

of FE
keys.

Phase 3:

• For j ∈ T , compute cj ← Encpk(0) and πj
(x) ← SimX

tk(x)(cj , pk). Send (sid, j, (cj , pk), πj
(x)) to

A on behalf of Fbc.
• Upon receiving (sid, i, (ci, pk), πi

(x)) as a message to Fbc for all i ∈ T , verify that πi
(x) is valid,

and if so, use the extraction trapdoor to extract the witness x̃i:

x̃i := ExtXxtk(x)((ci, pk), πi
(x))

Send {x̃i}i∈T to F and receive ỹ.

Phase 4: If server is not corrupted, compute c := Eval(C, c1, . . . , cN) and ϕ ← Prove(c, c1, . . . , cN)
honestly, and send (sid, 0, ϕ) to Fbc. Otherwise, receive (sid, 0, c) from A as a message to
FE

rand.bc, and (sid, 0, ϕ) as a message to Fbc. In the latter case, verify that ϕ is valid. In either
case, compute ĉ← Encpk(y, 1) and send (sid, 0, c, ĉ) on behalf of FE

rand.bc.
Phase 5:

• For i ∈ T , compute µ̃i := ShareDecski(ĉ ; ri
(dec)).

• Compute {µj}j∈T ← SimShareDecski
(ĉ, ỹ, {µ̃i}i∈T), and for j ∈ T , send (sid, j, µj) on behalf

of Fbc.
• Upon receiving (sid, i, µi) from A as a message to Fbc for all i ∈ T , verify that µ̃i = µi, and

halt if they are not the same.

2. Output A’s output.

Figure 15: Simulator Smal for (static) malicious adversary A corrupting clients T ([N] and possibly
server S.

Hybrid 2: We change how ĉ is created. We let

x̃i ← Decsk(ci) for i ∈ T and x̃j := xj for j ∈ T

33

Instead of using the ReRand algorithm, we simply sample a fresh encryption of ỹ = C(x̃1, . . . , x̃N)
with mode = 1:

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(rj
(dec) ; sj

(dec)){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(sk, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) ,
{
µj ← ShareDecskj

(ĉ)
}

j∈T{
πj

(x) ← ProveDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j) , (rj
(dec), sj

(dec), rj
(gen), sj

(gen)))
}

j∈T

We claim that View1
s
≈ View2 by ciphertext re-randomization of E . The reduction computes{

ρj
(gen), ρj

(dec)
}

j∈T
honestly and receives

{
ρi

(gen), ρi
(dec)

}
i∈T

. It also computes
{
(pkj , skj , ekj),

πj
(gen)

}
j∈T

honestly, receives
{
(pki, ski, eki), πi

(gen)
}

i∈T
from A, and verifies that all πi

(gen) are
valid. It computes (pk, sk, ek) using CombinePK and CombineKeys and computes{
cj ← Encpk(xj) , πj

(x)
}

j∈T
honestly. It receives

{
ci, πi

(x)
}

i∈T
from A and verifies that all

πi
(x) are valid. If the server is honest, it computes c := Evalek(C, c1, . . . , cN) and ϕ honestly;

otherwise it receives c, ϕ from A, in which case it verifies ϕ. It computes {x̃i ← Decsk(ci)}i∈T

and ỹ = C(x̃1, . . . , x̃N). Given ĉ which is either ĉ = ReRand(c) or ĉ = Encpk(y, 1), it computes{
µj ← ShareDecskj

(ĉ), πj
(dec)

}
j∈T

honestly.

If all proofs πi
(gen) verify, by soundness of Π(gen) we know that (pki, ski, eki) is a valid key tuple

for all i ∈ T . Likewise, by soundness of Π(x) we know that for all i ∈ T there exists xi, ri
(x)

such that ci = Encpk(xi, 0; ri
(x)), and by construction we have x̃i = xi (except with negligible

probability). Therefore, View1
s
≈ View2 by ciphertext re-randomization of E .

Hybrid 3: We now change how the x̃i are created. Instead of decrypting the ciphertext ci, we obtain
x̃i by using the proof of knowledge extractor of Π(x).

x̃i ← ExtX(πi
(x)) for i ∈ T and x̃j := xj for j ∈ T

We claim that View2
c
≈ View3 by the simulation-extractability property of Π(x). Note that we

must rely on the stronger property of simulation-extractability instead of standard proof of
knowledge since the adversary sees the simulated proofs πj

(x) before producing the proofs πi
(x).

We therefore need to be able to extract the witness x̃i from the proof πi
(x) even if the adver-

sary sees simulated proofs before creating πi
(x). This is precisely what simulation-extractability

guarantees.

Hybrid 4: We now change the proofs πj
(dec) so that they are simulated proofs, created with the

SimDec algorithm, instead of created honestly using ProveDec.

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(rj
(dec) ; sj

(dec)){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T

34

{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) ,
{
µj ← ShareDecskj

(ĉ)
}

j∈T{
πj

(dec) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We have that View3
c
≈ View4 by the zero-knowledge property of Π(dec).

Hybrid 5: We now change the commitment ρj
(dec) so that it is a commitment of 0, instead of the

real randomness used in decryption.

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(0){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) ,
{
µj ← ShareDecskj

(ĉ)
}

j∈T{
πj

(dec) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We have that View4
c
≈ View5 by the hiding property of the trapdoor commitment scheme Com.

Hybrid 6: In this hybrid, for i ∈ T we let

ri
(dec) := ExtCom(ρi

(dec)) and µ̃i := ShareDecski
(ĉ ; ri

(dec))

and halt if µ̃i 6= µi, where {µi}i∈T are the shares sent byA. We claim that View5
c
≈ View6. This is

guaranteed by the soundness of Π(dec) and the extraction property of the trapdoor commitment.

Hybrid 7: We change the way the decryption shares {µj}j∈T are generated. Instead of using the
ShareDec algorithm with secret key skj , we now use the SimShareDec algorithm with ỹ =
C(x̃1, . . . , x̃N) and {µ̃i}i∈T :

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(0){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T{
πj

(gen) ← ProveGen((pkj , ekj , ck, ρj
(gen), j) , (rj

(gen), sj
(dec)))

}
j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) , {µj}j∈T ← SimShareDec(ĉ, ỹ, {µ̃i}i∈T)

35

{
πj

(dec) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We claim that View6
c
≈ View7 by share-simulation indistinguishability of E . The reduction com-

putes
{
ρj

(gen), ρj
(dec)

}
j∈T

and receives
{
ρi

(gen), ρi
(dec)

}
i∈T

. It also computes
{
(pkj , skj , ekj), πj

(gen)
}

j∈T

honestly, receives
{
(pki, ski, eki), πi

(gen)
}

i∈T
from A, and verifies that all πi

(gen) are valid. It com-
putes (pk, sk, ek) using CombinePK and CombineKeys and computes

{
cj ← Encpk(xj) , πj

(x)
}

j∈T

with a simulated proof. It receives
{
ci, πi

(x)
}

i∈T
from A and verifies that all πi

(x) are valid. If the
server is honest, it computes c := Evalek(C, c1, . . . , cN) and ϕ honestly; otherwise it receives c, ϕ
from A, in which case it verifies ϕ. It computes

{
x̃i ← ExtX(πi

(x))
}

i∈T
and ỹ = C(x̃1, . . . , x̃N)

and ĉ ← Enc(ỹ, 1). It then computes ri
(dec) ← ExtCom(ρi

(dec)) and µ̃i := ShareDecski
(ĉ ; ri

(dec)),
{µj}j∈T ← SimShareDec(ĉ, ỹ, {µ̃i}i∈T) and simulated proofs

{
πj

(dec)
}

j∈T
. It receives

{
µi, πi

(dec)
}

i∈T

from A, verifies all proofs πi
(dec), and halts if µ̃i 6= µi for any i ∈ T .

If all proofs πi
(gen) verify, by soundness of Π(gen) we know that (pki, ski, eki) is a valid key tuple

for all i ∈ T . Likewise, by simulation-soundness of Π(dec) we know that for all i ∈ T there exists
ri

(dec) such that µi := ShareDecski
(ĉ ; ri

(dec)). By construction, ĉ← Enc(ỹ). Thus, View5
c
≈ View6

by share-simulation indistinguishability of E .

Hybrid 8: We now change the proofs πj
(gen) so that they are simulated proofs, created with the

SimGen algorithm, instead of created honestly using ProveGen.

ρj
(gen) ← Comck(rj

(gen) ; sj
(gen)) , ρj

(dec) ← Comck(0){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T
,
{

πj
(gen) ← SimGen((pkj , ekj , ck, ρj

(gen), j))
}

j∈T

(pk, ·, ek) := CombineKeys
(
{(pki, ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) , {µj}j∈T ← SimShareDec(ĉ, y, {µ̃i}i∈T){
πj

(x) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We have that View7
c
≈ View8 by the zero-knowledge property of Π(gen).

Hybrid 9: We change the commitment ρj
(gen) so that it is a commitment of 0, instead of the real

randomness used in key generation.

ρj
(gen) ← Comck(0) , ρj

(dec) ← Comck(0){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T
,
{

πj
(gen) ← SimGen((pkj , ekj , ck, ρj

(gen), j))
}

j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(xj)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) , {µj}j∈T ← SimShareDec(ĉ, y, {µ̃i}i∈T){
πj

(x) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We have that View8
c
≈ View9 by the hiding property of the trapdoor commitment scheme Com.

36

Hybrid 10: In this hybrid, for i ∈ T we let

ri
(gen) := ExtCom(ρi

(gen)) and (p̃ki, ·, ·) := Keygen(1κ, i ; ri
(gen))

and halt if p̃ki 6= pki, where {(pki, ·, ·)}i∈T are the public keys sent by A. We claim that

View9
c
≈ View10. This is guaranteed by the simulation-soundness of Π(gen) and the extraction

property of the trapdoor commitment.

Hybrid 11: This is actually a series of N − t hybrids. We change how the ciphertexts {cj}j∈T are
created, one at a time. Instead of having cj∗ be an encryption of input xj∗ , we have it be an
encryption of 0.

ρj
(gen) ← Comck(0) , ρj

(dec) ← Comck(0){
(pkj , ·, ekj)← Keygen(1κ, j ; rj

(gen))
}

j∈T
,
{

πj
(gen) ← SimGen((pkj , ekj , ck, ρj

(gen), j))
}

j∈T

(·, ek) := CombineKeys
(
{(ski, eki)}i∈[N]

)
, {cj = Encpk(0)}j∈T ,j≤j∗ , {cj = Encpk(xj)}j∈T ,j>j∗{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) , {µj}j∈T ← SimShareDec(ĉ, ỹ, {µ̃i}i∈T){
πj

(x) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We claim two consecutive hybrids are computationally indistinguishable by semantic security of
E . The reduction computes

{
ρj

(gen), ρj
(dec)

}
j∈T

and receives
{
ρi

(gen), ρi
(dec)

}
i∈T

. It computes

ri
(gen) := ExtCom(ρi

(gen)) and sends
{

(p̃ki, s̃ki, ẽki) := Keygen(1κ, i ; ri
(gen))

}
i∈T

to the challenger.

It forwards (ek,
{
(pkj , ekj)

}
j∈T

from the challenger to A and sends to A simulated proofs πj
(gen).

Upon receiving (pki, ski, eki), πi
(gen) from A, it verifies πi

(gen) and checks that p̃ki = pki and
halts otherwise. It uses the challenge ciphertext as cj∗ and computes the other ciphertexts
cj accordingly, with simulated proofs πi

(x) for all j ∈ T . When it receives ci, πi
(x), it verifies

πi
(x). If the server is honest, it computes c := Evalek(C, c1, . . . , cN) and ϕ honestly; other-

wise it receives c, ϕ from A, in which case it verifies ϕ. It computes ri
(dec) ← ExtCom(ρi

(dec))
and µ̃i := ShareDecski

(ĉ ; ri
(dec)), {µj}j∈T ← SimShareDec(ĉ, ỹ, {µ̃i}i∈T) and simulated proofs{

πj
(dec)

}
j∈T

. It receives
{
µi, πi

(dec)
}

i∈T
from A, verifies all proofs πi

(dec), and halts if µ̃i 6= µi

for any i ∈ T . We define View11 to be the view having all cj encrypting 0. Putting these N − t

hybrids together, we conclude that View10
c
≈ View11.

Hybrid 12: We change how the public/evaluation key pairs
{
(pkj , ekj)

}
j∈T

and the combined eval-
uation key ek are generated. Instead of creating them using Keygen and CombineKeys, we use
the SimCombKeys algorithm.

ρj
(gen) ← Comck(0) , ρj

(dec) ← Comck(0)(
ek,
{
(pkj , ekj)

}
j∈T

)
← SimCombKeys

(
{pki, eki}i∈T

)
{

πj
(gen) ← SimGen((pkj , ekj , ck, ρj

(gen), j))
}

j∈T
, {cj = Encpk(0)}j∈T{

πj
(x) ← SimX((cj , pk))

}
j∈T

, ĉ← Encpk(ỹ, 1) , {µj}j∈T ← SimShareDec(ĉ, y, {µ̃i}i∈T)

37

{
πj

(x) ← SimDec((ĉ, µj , pkj , ρj
(gen), ρj

(dec), ck, j))
}

j∈T

We claim that View11
c
≈ View12 by key-simulation indistinguishability of E . The reduction com-

putes
{
ρj

(gen), ρj
(dec)

}
j∈T

honestly and receives
{
ρi

(gen), ρi
(dec)

}
i∈T

. It computes ri
(gen) := ExtCom(ρi

(gen))

and
{

(p̃ki, s̃ki, ẽki) := Keygen(1κ, i ; ri
(gen))

}
i∈T

. Given keys (ek,
{

(p̃kj , ẽkj)
}

j∈T
) which are ei-

ther created honestly using Keygen and CombineKeys, or simulated using SimCombKeys, it for-
wards these to A. It then receives

{
(pki, ski, eki), πi

(gen)
}

i∈T
from A, and verifies πi

(gen). It

halts if p̃ki 6= pki for any i ∈ T ; otherwise it computes pk := CombinePK
(
{pki}i∈[N]

)
. It also

computes {cj ← Encpk(0)}j∈T with simulated proofs πj
(x), receives

{
(ci, πi

(x))
}

i∈T
from A and

verifies πi
(x). If the server is honest, it computes c := Evalek(C, c1, . . . , cN) and ϕ honestly;

otherwise it receives c, ϕ from A, in which case it verifies ϕ. It computes
{
x̃i ← ExtX(πi

(x))
}

i∈T

and ỹ = C(x̃1, . . . , x̃N) and ĉ← Enc(ỹ, 1). It then computes ri
(dec) ← ExtCom(ρi

(dec)) and µ̃i :=
ShareDecski

(ĉ ; ri
(dec)), {µj}j∈T ← SimShareDec(ĉ, ỹ, {µ̃i}i∈T) and simulated proofs

{
πj

(dec)
}

j∈T
.

It receives
{
µi, πi

(dec)
}

i∈T
from A, verifies all proofs πi

(dec), and halts if µ̃i 6= µi for any i ∈ T .

If all proofs πi
(gen) verify, by simulation-soundness of Π(gen) we know that (pki, ski, eki) is a valid

key tuple for all i ∈ T . Thus, View11
c
≈ View12 by key-simulation indistinguishability of E .

We have proved that View0
c
≈ View12. Since View12 is the view that Smal produces, and View0 is

the view produced in an execution of Πmal, we have that IDEALF ,Smal(~x)
c
≈ REALΠmal,A(~x).

A.2 Ciphertext Re-Randomization

For security, we are not concerned with privacy as the parties do not have any inputs that they wish to
keep private. However, we are concerned with correctness; we need to ensure that the output ĉ of the
protocol, is indistinguishable from a fresh encryption of the plaintext y. This is fairly straight-forward
in the case of a semi-honest adversary but requires more care when dealing with a malicious adversary.
In this case, we also rely on simulation-sound NIZK proofs. As before, we show the proof of security
for protocol Πmal

rand after the functionality FR(gen)

zk.bc has been instantiated with simulation-sound NIZK
proofs.

Proof of Theorem 7.1: We describe the simulator Ssh
rand for a (static) semi-honest adversary A cor-

rupting parties in T ([N] (and possibly server S) in Figure 17. We prove that IDEALΠsh
rand,Ssh

rand
(~x)

c
≈

REALFE
rand.bc,A(~x) using a series of hybrids. The view of A consists of

View = (pk, c, z1, . . . , zN , ĉ)

We simply prove that the joint distribution of these variables in the simulation (where the ciphertext
output is a fresh encryption of y) is computationally indistinguishable from the joint distribution of
the same variables in a real-world execution of protocol Πsh

rand. This is easy to see because zj∗ is a
deterministic function of ĉ and {zj}i∈N,i6=j∗ , all zi’s for i 6= j∗ are distributed the same in both cases
(since the adversary is semi-honest), and the distribution of ĉ is statistically close to Encpk(y, 1) since
the noise in each zi is a super-polynomial factor larger than the noise in c.

Proof of Theorem 7.2: We describe the simulator Smal
rand for a (static) semi-honest adversary A cor-

rupting parties in T ([N] (and possibly server S) in Figure 17. We prove that IDEALΠmal
rand,Smal

rand
(~x)

c
≈

38

Simulator Ssh
rand

Inputs: All parties P1, . . . , PN and server S get public key pk as input. Server S additionally gets a ciphertext
c ∈ Cpk. The simulator also receives input y, which is the plaintext of c.

• Upon receiving (sid, i, zi) as a message to Fbc for all i ∈ T :

– Let ĉ ← Encpk(y, 1), and let j∗ ∈ T . For all j ∈ T , j 6= j∗, set zj := Encpk(0, 1). Set zj∗ := ĉ −∑
i∈[N],i 6=j∗

zi

– For all j ∈ T , send (sid, j, zj) to A on behalf of Fbc.

• Output whatever A outputs.

Figure 16: Simulator Ssh
rand for (static) semi-honest adversary A corrupting parties in T ([N] in

protocol Πsh
rand

REALFE
rand.bc,A(~x) using a series of hybrids. The view of the A consists of

View =
(

pk, ck, c,
{

ρi
(0), zi, πi

(0)
}

i∈[N]
, ĉ

)

Simulator Smal
rand

Inputs: All parties P1, . . . , PN and server S get public key pk, and a commitment key ck as input. Server
S additionally gets a ciphertext c ∈ Cpk. The simulator also receives input y, which is the plaintext of c.

Round 1: For j ∈ T , compute commitments ρj
(0) ← Comck(0) and send (sid, j, ρj

(0)) to A on behalf of
Fbc.

Round 2: Upon receiving (sid, i, ρi
(0)) as a message to Fbc for all i ∈ T

• Let
ri

(0) := ExtCom(ρi
(0)) and z̃i := Encpk(0, 1 ; ri

(0))

• Compute ĉ ← Encpk(y, 1), and let j∗ ∈ T . For all j ∈ T , j 6= j∗, set z̃j := Encpk(0, 1). Set
z̃j∗ := ĉ −

∑
i∈[N],i 6=j∗

z̃i.

• For j ∈ T , compute πj
(0) ← SimZero(ρj

(0), zj , pk).
• For j ∈ T , send (sid, j, z̃j , πj

(0)) to A on behalf of Fbc

Round 3: Upon receiving (sid, i, zi, πi
(0)) as a message to Fbc for all i ∈ T , verify πi

(0) and check that
z̃i = zi; halt if they are not equal. If the server S is honest, send (sid, 0, c, ĉ) to A on behalf of Fbc.

Output whatever A outputs.

Figure 17: Simulator Smal
rand for (static) malicious adversary A corrupting parties in T ([N] in protocol

Πmal
rand

We simply prove that the joint distribution of these variables in the simulation is computationally
indistinguishable from the joint distribution of the same variables in a real-world execution of protocol
Πmal

rand. We let Viewi be the joint distribution of these variables in hybrid i.

Hybrid 0: This is the real-world execution of Πmal
rand. We have{

ρj
(0) := Comck(rj

(0) ; sj
(0))
}

j∈T
,

{
zj ← Enc(0, 1 ; rj

(0))
}

j∈T

39

{
πj

(0) ← ProveZero((ρj
(0), zj , pk), (rj

(0), sj
(0)))

}
, ĉ := c +

N∑
i=1

zi

Hybrid 1: We now change the proofs πj
(0) so that they are simulated proofs, created with the SimZero

algorithm, instead of created honestly using ProveZero.{
ρj

(0) := Comck(rj
(0) ; sj

(0))
}

j∈T
,

{
zj ← Enc(0, 1 ; rj

(0))
}

j∈T

{
πj

(0) ← SimZero(ρj
(0), zj , pk)

}
, ĉ := c +

N∑
i=1

zi

View0
c
≈ View1 by the zero-knowledge property of Π(zero).

Hybrid 2: We change the commitments ρj
(0) so that they are now commitments of 0 instead of the

randomness rj
(0). {

ρj
(0) := Comck(0)

}
j∈T

,
{

zj ← Enc(0, 1 ; rj
(0))
}

j∈T

{
πj

(0) ← SimZero(ρj
(0), zj , pk)

}
, ĉ := c +

N∑
i=1

zi

View1
c
≈ View2 by the hiding property of the trapdoor commitment scheme.

Hybrid 3: In this hybrid, for i ∈ T we let

ri
(0) := ExtCom(ρi

(0)) and z̃i := Encpk(0, 1 ; ri
(0))

and halt if z̃i 6= zi, where {zi}i∈T are the ciphertexts sent by A. We claim that View2
c
≈ View3.

This is guaranteed by the simulation-soundness of Π(zero) and the extraction property of the
trapdoor commitment.

Hybrid 4: Let j∗ ∈ T , and for j ∈ T , let z̃j = zj . We view z̃j∗ as a deterministic function of ĉ and

the rest of the z̃i’s: zj∗ = ĉ−
N∑

i=1

z̃i. We now change ĉ to be a fresh encryption of y.

{
ρj

(0) := Comck(0)
}

j∈T
,

{
zj ← Enc(0, 1 ; rj

(0))
}

j∈T ,j 6=j∗
, zj∗ = ĉ−

N∑
i=1

z̃i

{
πj

(0) ← SimZero(ρj
(0), zj , pk)

}
, ĉ← Encpk(y, 1)

We claim that View3
s
≈ View4. In both cases, zj∗ is the same deterministic function of ĉ and the

rest of the z̃j ’s. The distribution of ĉ is statistically close to Encpk(y, 1) since the noise in each
zi is a super-polynomial factor larger than the noise in c.

We have proved that View0
c
≈ View4. Since View4 is the view that Smal

rand produces, and View0 is
the view produced in an execution of Πmal

rand, we have that IDEALF ,Smal
rand

(~x)
c
≈ REALΠmal

rand,A(~x).

40

A.3 Key Combination

Proof of Theorem 7.3: We describe the simulator Ssh
keys for a (static) semi-honest adversary A cor-

rupting parties in T ([N] in Figure 18. We prove that IDEALΠsh
keys,Ssh

keys
(~x)

c
≈ REALFE

keys,A(~x) using
a series of hybrids. The view of the A consists of

View =
(
{ski}i∈T , {pki, eki}i∈[N] ,

{
w

(j,k)
d,τ , c̃(k)

d,τ , z̃(j,k)
d,τ

}
j∈T ,k∈[N]

)

Simulator Ssh
keys

Round 1:

• Runs params =
(
a,
{

a
(i)
d,τ , a′

(i)
d,τ

}
d,τ,i

)
← Setup(1κ, N). When a corrupted party Pi calls FD

crs with

sid, sends (sid, params).
• For k ∈ [N],

– Parses ekk :=
{
c̃(k)
0,d, c̃(k)

1,d, z̃(k)
0,d, z̃(k)

1,d

}
d∈[D]

.

– Verifies that c̃(k)
1,d = (a(k)

d,1, . . . , a
(k)
d,blog qd−1c) and z̃(k)

1,d = (a′(k)
d,1, . . . , a

′(k)
d,blog qd−1c)

– For all j ∈ T and k ∈ [N], samples w
(j,k)
d,τ ← Rqd

and sends (sid, j, w
(j,k)
d,τ) to A on behalf of

Fbc.

Round 2: Upon receiving (sid, i, w
(i,k)
d,τ) from Fbc for all i ∈ T , k ∈ [N], d ∈ [D], τ ∈ {0, . . . , blog qd−1c}:

• For all j ∈ T and k ∈ [N], samples c̃(k)
d,τ , z̃(j,k)

d,τ ← R2
qd

and sends (sid, j, c̃(j,k)
d,τ , z̃(j,k)

d,τ) to A on behalf
of Fbc.

Output whatever A outputs.

Figure 18: Simulator Ssh
keys for (static) semi-honest adversary A corrupting parties in T ([N] in

protocol Πsh
keys

We simply prove that the joint distribution of these variables in the simulation is computationally
indistinguishable from the joint distribution of the same variables in a real-world execution of protocol
Πsh

keys. We further prove that the distribution of ek as output by the simulator is computationally
indistinguishable from the output of the algorithm CombineKeys. We let Viewi be the joint distribution
of these variables in hybrid i.

Hybrid 0: This is a real-world execution of Πsh
keys. We have{

w
(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{
c̃(k)

d,τ ← x̃(k)
d,τ + Encpk(0)

}
j∈T ,k∈[N]{

z̃(j,k)
d,τ ← ỹ(j,k)

d,τ + Encpk(0)
}

j∈T ,k∈[N]

Hybrid 1: We change how we compute z̃(j,k)
d,τ . We now choose each pair uniformly at random from

R2
qd

. {
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{
c̃(k)

d,τ ← x̃(k)
d,τ + Encpk(0)

}
j∈T ,k∈[N]

41

{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

View0
c
≈ View1 because the ciphertext Encpk(0) added to ỹ(j,k)

d,τ in Hybrid 0 is pseudorandom, and

therefore z̃(j,k)
d,τ in Hybrid 0 is pseudorandom as well.

Hybrid 2: We change how we compute c̃(k)
d,τ . We now choose each pair uniformly at random from

R2
qd

.{
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{
c̃(k)

d,τ ← R2
qd

}
,

{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

View1
c
≈ View2 because the ciphertext Encpk(0) added to x̃(k)

d,τ in Hybrid 0 is pseudorandom, and

therefore c̃(k)
d,τ in Hybrid 0 is pseudorandom as well.

Hybrid 3: We change how we compute w
(j,k)
d,τ . We now choose it uniformly at random from Rqd

.{
w

(j,k)
d,τ ← Rqd

}
j∈T ,k∈[N]

,
{
c̃(k)

d,τ ← R2
qd

}
,

{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

The fact that View2
c
≈ View3 follows from a series of hybrid arguments, one per each s

(j)
d , in which

we use the fact that w
(j,k)
d,τ is a PLWE sample with secret s

(j)
d and is therefore pseudorandom.

We have proved that View0
c
≈ View3. Since View3 is the view that Ssh

keys produces, and View0

is the view produced in an execution of Πsh
keys, we have that IDEALF ,Ssh

keys
(~x)

c
≈ REALΠsh

keys,A(~x).
Furthermore, the distribution of ek as output by the simulator is computationally indistinguishable
from the output of CombineKeys. This again follows from a series of hybrid arguments, all based on
the PLWE assumption with secret sd.

Proof of Theorem 7.4: We describe the simulator Smal
keys for a (static) semi-honest adversary A cor-

rupting parties in T ([N] in Figure 19. We prove that IDEALΠmal
keys,Smal

keys
(~x)

c
≈ REALFE

keys,A(~x) using
a series of hybrids. The view of the A consists of

View =
(
{ski}i∈T , {pki, eki}i∈[N] ,

{
w

(j,k)
d,τ , π

(j,k)
d,τ , c̃(k)

d,τ , φ
(k)
d,τ , z̃(j,k)

d,τ , ϕ
(j,k)
d,τ

}
j∈T ,k∈[N]

)
We simply prove that the joint distribution of these variables in the simulation is computationally

indistinguishable from the joint distribution of the same variables in a real-world execution of protocol
Πsh

keys. We further prove that the distribution of ek as output by the simulator is computationally
indistinguishable from the output of the algorithm CombineKeys. We let Viewi be the joint distribution
of these variables in hybrid i.

Hybrid 0: This is a real-world execution of Πmal
keys. We have{

w
(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← ProveEnc((w(j,k)

d,τ , a
(j,k)
d,τ), (s(j)

d , e
(j,τ)
d,τ))

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← x̃(k)

d,τ + Encpk(0 ; r(k)
d,τ)
}

j∈T ,k∈[N]
,
{

φ
(k)
d,τ ← ProveRand((c̃(k)

d,τ , x̃
(k)
d,τ), (1, r

(k)
d,τ)))

}
j∈T ,k∈[N]{

z̃(j,k)
d,τ ← ỹ(j,k)

d,τ + Encpk(0 ; r(j,k)
d,τ)

}
j∈T ,k∈[N]

,
{

ϕ
(j,k)
d,τ ← ProveRand((z̃(j,k)

d,τ , x̃(k)
d,τ), (s

(j)
d , r

(j,k)
d,τ))

}
j∈T ,k∈[N]

42

Simulator Smal
keys

Round 1:

• Runs params =
(
a,
{

a
(i)
d,τ , a′

(i)
d,τ

}
d,τ,i

)
← Setup(1λ, N). When a corrupted party Pi calls FD

crs with

sid, sends (sid, params).
• For k ∈ [N],

– Parses ekk :=
{
c̃(k)
0,d, c̃(k)

1,d, z̃(k)
0,d, z̃(k)

1,d

}
d∈[D]

.

– Verifies that c̃(k)
1,d = (a(k)

d,1, . . . , a
(k)
d,blog qd−1c) and z̃(k)

1,d = (a′(k)
d,1, . . . , a

′(k)
d,blog qd−1c)

– For all j ∈ T and k ∈ [N], samples w
(j,k)
d,τ ← Rqd

and computes π
(j,k)
d,τ ← SimEnc(w(j,k)

d,τ , a
(k)
d,τ).

Sends (sid, j, w
(j,k)
d,τ , π

(j,k)
d,τ) to A on behalf of Fbc.

Round 2: Upon receiving (sid, i, w
(i,k)
d,τ) from Fbc for all i ∈ T , k ∈ [N], d ∈ [D], τ ∈ {0, . . . , blog qd−1c},

for all j ∈ T and k ∈ [N]:

• Samples c̃(k)
d,τ , z̃(j,k)

d,τ ← R2
qd

• Computes φ
(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃(k)
d,τ) and ϕ

(j,k)
d,τ ← SimRand(z̃(i,k)

d,τ , x̃(k)
d,τ).

• Sends (sid, j, c̃(j,k)
d,τ , z̃(j,k)

d,τ , φ
(k)
d,τ , ϕ

(j,k)
d,τ) to A on behalf of Fbc.

Output whatever A outputs.

Figure 19: Simulator Smal
keys for (static) malicious adversary A corrupting parties in T ([N] in protocol

Πmal
keys

Hybrid 1: We change how the proofs φ
(k)
d,τ , ϕ

(j,k)
d,τ are created. Instead of computing them honestly

using the ProveRand algorithm, we compute simulated proofs using the SimRand algorithm.{
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← ProveEnc((w(j,k)

d,τ , a
(j,k)
d,τ), (s(j)

d , e
(j,τ)
d,τ))

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← x̃(k)

d,τ + Encpk(0 ; r(k)
d,τ)
}

j∈T ,k∈[N]
,

{
φ

(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃
(k)
d,τ)
}

j∈T ,k∈[N]{
z̃(j,k)

d,τ ← ỹ(j,k)
d,τ + Encpk(0 ; r(j,k)

d,τ)
}

j∈T ,k∈[N]
,

{
ϕ

(j,k)
d,τ ← SimRand(z̃(j,k)

d,τ , x̃(k)
d,τ)
}

j∈T ,k∈[N]

View0
c
≈ View1 by the zero-knowledge property of Π(rand).

Hybrid 2: We change how we compute z̃(j,k)
d,τ . We now choose each pair uniformly at random from

R2
qd

.{
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← ProveEnc((w(j,k)

d,τ , a
(j,k)
d,τ), (s(j)

d , e
(j,τ)
d,τ))

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← x̃(k)

d,τ + Encpk(0 ; r(k)
d,τ)
}

j∈T ,k∈[N]
,

{
φ

(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃
(k)
d,τ)
}

j∈T ,k∈[N]{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

,
{

ϕ
(j,k)
d,τ ← SimRand(z̃(j,k)

d,τ , x̃(k)
d,τ)
}

j∈T ,k∈[N]

View1
c
≈ View2 because the ciphertext Encpk(0) added to ỹ(j,k)

d,τ in Hybrid 1 is pseudorandom, and

therefore z̃(j,k)
d,τ in Hybrid 1 is pseudorandom as well.

43

Hybrid 3: We change how we compute c̃(k)
d,τ . We now choose each pair uniformly at random from

R2
qd

.{
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← ProveEnc((w(j,k)

d,τ , a
(j,k)
d,τ), (s(j)

d , e
(j,τ)
d,τ))

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← R2

qd

}
j∈T ,k∈[N]

,
{

φ
(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃
(k)
d,τ)
}

j∈T ,k∈[N]{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

,
{

ϕ
(j,k)
d,τ ← SimRand(z̃(j,k)

d,τ , x̃(k)
d,τ)
}

j∈T ,k∈[N]

View2
c
≈ View3 because the ciphertext Encpk(0) added to x̃(k)

d,τ in Hybrid 2 is pseudorandom, and

therefore c̃(k)
d,τ in Hybrid 2 is pseudorandom as well.

Hybrid 4: We change how the proofs φ
(k)
d,τ , π

(j,k)
d,τ are created. Instead of computing them honestly

using the ProveEnc algorithm, we compute simulated proofs using the SimEnc algorithm.{
w

(j,k)
d,τ := a

(k)
d,τs

(j)
d + 2e

(j,k)
d,τ

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← SimEnc(w(j,k)

d,τ , a
(j,k)
d,τ)

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← R2

qd

}
j∈T ,k∈[N]

,
{

φ
(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃
(k)
d,τ)
}

j∈T ,k∈[N]{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

,
{

ϕ
(j,k)
d,τ ← SimRand(z̃(j,k)

d,τ , x̃(k)
d,τ)
}

j∈T ,k∈[N]

View3
c
≈ View4 by the zero-knowledge property of Π(enc).

Hybrid 5: We change how we compute w
(j,k)
d,τ . We now choose it uniformly at random from Rqd

.{
w

(j,k)
d,τ ← Rqd

}
j∈T ,k∈[N]

,
{

π
(j,k)
d,τ ← SimEnc(w(j,k)

d,τ , a
(j,k)
d,τ)

}
j∈T ,k∈[N]{

c̃(k)
d,τ ← R2

qd

}
j∈T ,k∈[N]

,
{

φ
(k)
d,τ ← SimRand(c̃(k)

d,τ , x̃
(k)
d,τ)
}

j∈T ,k∈[N]{
z̃(j,k)

d,τ ← R2
qd

}
j∈T ,k∈[N]

,
{

ϕ
(j,k)
d,τ ← SimRand(z̃(j,k)

d,τ , x̃(k)
d,τ)
}

j∈T ,k∈[N]

The fact that View4
c
≈ View5 follows from a series of hybrid arguments, one per each s

(j)
d , in which

we use the fact that w
(j,k)
d,τ is a PLWE sample with secret s

(j)
d and is therefore pseudorandom.

We have proved that View0
c
≈ View5. Since View5 is the view that Smal

keys produces, and View0

is the view produced in an execution of Πmal
keys, we have that IDEALF ,Smal

keys
(~x)

c
≈ REALΠmal

keys,A(~x).
Furthermore, the distribution of ek as output by the simulator is computationally indistinguishable
from the output of CombineKeys. This again follows from a series of hybrid arguments, all based on
the PLWE assumption with secret sd.

44

	Introduction
	Our Results
	Other Related Work

	Preliminaries
	Cloud-Assisted MPC
	Cloud-Assisted MPC From Key-Homomorphic Threshold FHE
	Construction
	Security Under Semi-Honest Adversaries

	Tolerating Malicious Adversaries
	Instantiating Key-Homomorphic Threshold FHE
	The Polynomial-LWE Assumption
	A Somewhat-Homomorphic Scheme
	Getting a (Leveled) Fully-Homomorphic Scheme via Re-linearization and Modulus Reduction
	Re-linearization
	Modulus Reduction

	Key-Homomorphic Threshold FHE from PLWE

	Implementing Frand.bcE and FkeysE
	Ciphertext Re-Randomization
	Key Combination

	Performance
	Proofs
	Security Under Malicious Adversaries
	Ciphertext Re-Randomization
	Key Combination

