
Program Obfuscation with Leaky Hardware∗

Nir Bitansky† Ran Canetti∗ Shafi Goldwasser‡ Shai Halevi§

Yael Tauman Kalai¶ Guy N. Rothblum‖

December 6, 2011

Abstract

We consider general program obfuscation mechanisms using “somewhat trusted” hardware
devices, with the goal of minimizing the usage of the hardware, its complexity, and the required
trust. Specifically, our solution has the following properties:

(i) The obfuscation remains secure even if all the hardware devices in use are leaky. That is, the
adversary can obtain the result of evaluating any function on the local state of the device, as long
as this function has short output. In addition the adversary also controls the communication
between the devices.

(ii) The number of hardware devices used in an obfuscation and the amount of work they
perform are polynomial in the security parameter independently of the obfuscated function’s
complexity.

(iii) A (universal) set of hardware components, owned by the user, is initialized only once and
from that point on can be used with multiple “software-based” obfuscations sent by different
vendors.

∗An extended abstract of this paper appears in the proceedings of ASIACRYPT ’11.
†Tel Aviv University and Boston University. Supported by the Check Point Institute for Information Security, a

Marie Curie reintegration grant and an ISF grant.
‡MIT and Weizmann Institute of Science.
§IBM T.J. Watson Research Center.
¶Microsoft Research.
‖Microsoft Research. Most of this work was done while the author was at the Department of Computer Science

at Princeton University and Supported by NSF Grant CCF-0832797 and by a Computing Innovation Fellowship.

Contents

1 Introduction 1
1.1 Minimally Hardware-Assisted Obfuscation . 2
1.2 Obfuscation using universal hardware devices . 2
1.3 Dealing With Leaky Hardware . 2
1.4 From OCL+ to LDS . 4
1.5 The End-Result: Obfuscation with Leaky Hardware 5
1.6 Related Work . 5

2 Tools 7
2.1 The GR Compiler . 7
2.2 Non-committing Encryption . 9
2.3 Leakage resilient MACs . 9
2.4 Fully Homomorphic Encryption . 10
2.5 Universal Arguments . 10

3 Hardware Assisted Obfuscation 12
3.1 The Model . 12
3.2 The Construction . 13

3.2.1 A detailed description of our construction. 14
3.3 Proof of Security . 18

4 General-Purpose (Sendable) Obfuscation 21
4.1 The Model . 22
4.2 The Transformation . 22
4.3 Proof of Security . 23

5 Obfuscation with Leaky Hardware 25
5.1 An Overview . 26
5.2 The LDS Model . 27
5.3 The Construction . 29
5.4 Obfuscation with Leaky Hardware - Proof of Security 31
5.5 The Leakage-Rate . 35

6 Putting it All Together. 37

1

1 Introduction

Program obfuscation is the process of making a program unintelligible while preserving its func-
tionality. (For example, we may want to publish an encryption program that allows anyone to
encrypt messages without giving away the secret key.) The goal of general program obfuscation is
to devise a generic transformation that can be used to obfuscate any arbitrary input program.

It is known from prior work that general program obfuscation is possible with the help of a
completely trusted hardware device (e.g., [9, 34, 23]). On the other hand, Barak et al. proved that
software-only general program obfuscation is impossible, even for a very weak notion of obfusca-
tion [8]. In this work we consider an intermediate setting, where we can use hardware devices but
these devices are not completely trusted. Specifically, we consider using leaky hardware devices,
where an adversary controlling the devices is able to learn some information about their secret
state, but not all of it.

We observe that the impossibility result of Barak et al. implies that hardware-assisted obfus-
cation using a single leaky device is also impossible, even if the hardware device leaks only a single
bit (but this bit can be an arbitrary function of the device’s state). See Section 1.3. Consequently,
we consider a model in which several hardware devices are used, where each device can be locally
leaky but the adversary cannot obtain leakage from the global state of all the devices together. Im-
portantly, in addition to the leakage from the separate devices, our model also gives the adversary
full control over the communication between them.

The outline of our solution is as follows: Starting from any hardware-assisted obfuscation so-
lution that uses a completely trusted device (e.g., [23, 29]), we first transform that device into a
system that resists leakage in the Micali-Reyzin model of “only computation leaks” (OCL) [37] (or
actually in a slightly augmented OCL model). In principle, this can be done using OCL-compilers
from the literature [33, 28, 26] (but see discussion in Section 1.4 about properties of these compil-
ers). The result is a system that emulates the functionality of the original trusted device; however,
now the system is made of several components and can resists leakage from each of the components
separately.

This still does not solve our problem since the system that we get from OCL-compilers only
resists leakage if the different components can interact with each other over secret and authenticated
channels (see discussion in Section 1.3). We therefore show how to realize secure communication
channels over insecure network in a leakage-resilient manner. This construction, which uses non-
committing encryption [15] and information theoretic MACs (e.g., [42, 4]), is the main technical
novelty in the current work. See Section 1.4.

The transformation above provides an adequate level of security, but it is not as efficient and
flexible as one would want. The OCL-compilers in the literature [28, 26] produce systems with
roughly as many components as there are gates in the underlying trusted hardware device; hence,
we wish to minimize the size of this device. In addition, we also wish to minimize the number
of device calls during a single evaluation of the obfuscated program. We show that using fully
homomorphic encryption [39, 22] and universal arguments [6] we can get a system where the
number of components and amount of work per evaluation depends only on the security parameter
and is (almost) independent of the complexity of the obfuscated program. See Section 1.1.

Another drawback of the solution above is that it requires a new set of hardware devices for
every program that we want to obfuscate. Instead, we would like to have just one set of devices,
which are initialized once and thereafter can be used to obfuscate many programs. We show how to
achieve such a reusable obfuscation system using a simple trick based on CCA-secure encryption,

1

see Section 1.2.
We now proceed to provide more details on the various components of our solution.

1.1 Minimally Hardware-Assisted Obfuscation

Forgetting for the moment about leakage-resilience, we begin by describing a hardware-assisted
obfuscating mechanism where the amount of work done by the trusted hardware is (almost) in-
dependent of the complexity of the program being obfuscated. The basic idea is folklore: The
obfuscator encrypts the program f using a fully homomorphic encryption scheme [39, 22], gives the
encrypted program to the evaluator and installs the decryption key in the trusted hardware device.
Then, the evaluator can evaluate the program homomorphically on inputs of its choice and ask the
device to decrypt.

Of course, the above does not quite work as is, since the hardware device can be used for
unrestricted decryption (so in particular it can be used to decrypt the function f itself). To solve
this, we make the evaluator prove to the device that the ciphertext to be decrypted was indeed
computed by applying the homomorphic evaluation procedure on the encrypted program and some
input. Note that to this end we must add the encrypted program itself or a short hash of it to
the device (so as to make “the encrypted program” a well-defined quantity). To keep the device
from doing a lot of work, the proof should be verifiable much more efficiently than the computation
itself, e.g., using the “universal arguments” of Barak and Goldreich [6]. We formalize this idea
and show that this obfuscation scheme satisfies a strong notion of simulation based obfuscation. It
can even be implemented using stateless hardware with no source of internal randomness (so it is
secure against concurrent executions and reset attacks). See Section 3 for more details.

1.2 Obfuscation using universal hardware devices

A side-effect of the above solution is that the trusted hardware device must be specialized for the
particular program that we want to protect (e.g., by hard-wiring in it a hash of the encrypted
program), so that it has a well-defined assertion to verify before decryption. Instead, we would like
the end user to use a single universal hardware device to run all the obfuscated programs that it
receives (possibly from different vendors).

We obtain this goal using a surprisingly simple mechanism: The trusted hardware device is
installed with a secret decryption key of a CCA-secure cryptosystem, whose public key is known to
all vendors. Obfuscation is done as before, except that the homomorphic decryption key and the
hash of the encrypted program are encrypted using the CCA-secure public key and appended to the
obfuscation. This results in a universal (or “sendable”) obfuscation, the device is only initialized
once and then everyone can use it to obfuscate their programs. See more details in Section 4.

1.3 Dealing With Leaky Hardware

The more fundamental problem with the hardware-assisted obfuscation is that the hardware must
be fully leak-free and can only provide security as long as it is accessed as a black box. This assump-
tion is not true in many deployments, so we replace it by the weaker assumption that our hardware
components are “honest-but-leaky”. Namely, in our model an obfuscated program consists of soft-
ware that is entirely in the clear, combined with some leaky hardware components. Our goal is
therefore to design an obfuscator that transforms any circuit with secrets into a system of software

2

and hardware components that achieves strong black-box obfuscation even if the components can
leak.

We remark that the impossibility of universal obfuscation [8] implies that more than one hard-
ware component is necessary. To see this, observe that if we had a single hardware component that
resists (even one-bit) arbitrary leakage then we immediately get a no-hardware obfuscation in the
sense of Barak et al. [8]: The obfuscated program consists of our software and a full description
of the hardware component (including all the embedded secrets). This must be a good obfusca-
tion since any predicate that we can evaluate on this description can be seen as a one-bit leakage
function evaluated on the state of the hardware component. If the device was resilient to arbitrary
one-bit leakage, it would mean that any such leakage/predicate can be computed by a simulator
that only has black-box access to the function; hence, we have a proper obfuscator.

The model of leaky distributed systems. Given the impossibility result for a single leaky
hardware component, we concentrate on solutions that use multiple components. Namely, we have
(polynomially) many hardware components, all of which are leaky. The adversary in our model can
freely choose the inputs to the hardware components and obtain leakage by repeatedly choosing
one component at a time and evaluating an arbitrary (polynomial-size) leakage function on the
current state and randomness of that component. We place no restriction on the order or the
number of times that components can be chosen to leak, so long as the total rate of leakage from
each component is not too high.

In more detail, we consider continual leakage, where the lifetime of the system is partitioned
into time units and within each time unit we have some bound on the number of leakage bits
that the adversary can ask for. The components are running a randomized refresh protocol at
the end of each time unit and erase their previous state.1 A unique feature of our model is that
the adversary sees and has complete control over all the communication between these components
(including the communication needed for the refresh protocol). We term our leakage model the
leaky distributed system model (LDS), indeed this is just the standard model of a distributed system
with adversarially controlled communication, when we add to it the fact that the individual parties
are leaky.

We stress that this model seems realistic: the different components can be implemented by
physically (and even geographically) separated machines, amply justifying the assumption on sep-
arate leakage. We also note that a similar (but somewhat weaker) model was suggested recently
by Akavia et al. [2], in the context of leakage-resilient encryption.

Only-computation-leaks vs. leaky distributed systems. Our leakage model shares some
similarities to the “only computation leaks” (OCL) model, in that the adversary can get leakage
from different parts of the global state separately but not from the entire global state at once.
These two models are nonetheless fundamentally different, for two reasons. One difference is that
in the OCL the different components “interact” directly by writing to and reading from memory,
and communication is neither controlled by nor visible to the adversary. In the LDS model, on the
other hand, the adversary sees and controls the entire communication. Another difference is that
in the OCL model, the adversary can only get leakage from the components in the order in which
they perform the computation, whereas in LDS model, it can get leakage in any order.

1This is reminiscent to the proactive security literature [38, 16].

3

An intermediate model, that we use as a technical tool in this work, is where the adversary
can get leakage from the components in any order (as in the LDS model), but the components
communicate securely as in the OCL model. For lack of a better name, we call this intermediate
model the OCL+ model. Clearly, resilience to leakage in the model of leaky distributed systems
is strictly harder than in the OCL or OCL+ models and every solution secure in our model will
automatically be secure also in the two weaker models.

1.4 From OCL+ to LDS

We present a transformation that takes any circuit secure in the OCL+ model and converts it into
a system of components that maintains the functionality and is secure in the model of leaky dis-
tributed systems. Recently, Goldwasser-Rothblum [26] constructed a universal compiler, which
transforms any circuit into one that is secure in the OCL+ model. (Unlike previous compil-
ers [21, 28, 33], the [26] compiler does not require a leak-free hardware component.) Combining
the compiler with our transformation, we obtain a compiler that takes any circuit and produces a
system of components with the same functionality that is secure in the LDS model. The number
of components in the resulting system is essentially the size of the original circuit, assuming we use
the underlying Goldwasser-Rothblum compiler. However, as we explain in Section 1.5 below, we
can reduce the number of components to be independent of the circuit size, by first applying the
hardware-assisted obfuscator from Section 1.1.

The main gap between the OCL+ model and our model of leaky distributed systems, is that
in the former, communication between the components is completely secure, whereas in the latter
it is adversarially controlled. In the heart of our transformation stands an implementation of
leakage-tolerant communication channels that bridges the above gap, based on the following tools:

Non-Committing Encryption. Our main technical observation is that secret communication
in the face of leakage can be obtained very simply using non-committing encryption [15]. Recall that
non-committing encryption is a (potentially interactive) encryption scheme such that a simulator
can generate a fake transcript, which can later be “opened” as either an encryption of zero or as an
encryption of one. This holds even when the simulator needs to generate the randomness of both the
sender and the receiver. In our context, the distributed components use non-committing encryption
to preserve the privacy of their messages. The observation is that non-committing encryption can
be used to implement “leakage resilient channels”, in the sense that any leakage query on the state
of the communicating parties could be transformed into a leakage query on the underlying message
alone. We refer the reader to Section 2.2 for the formal definition of non-committing encryption
and to Section 5 for the way we use it to implement leakage-tolerant secure channels.

Leakage-resilient MACs. In addition to secrecy, we also need to ensure authenticity of the
communication between the components. We observe that this can be done easily using information-
theoretic MAC schemes based on universal-hashing [42, 4]. Roughly, each pair of components will
maintain rolling MAC keys that are only used Θ(1) times. To authenticate a message, they will
use the MAC key sent with the prior message and will send a new MAC key to be used for
the next message. (We use a short MAC key to authenticate a much longer message, so the
additional bandwidth needed for sending future MAC keys is tolerable.) Since these MAC schemes
offer information-theoretic security, it is very easy to prove that they can also tolerate bounded
leakage. Authenticating the communication assures that secrecy is kept (e.g. the adversary cannot

4

have a component encrypt a secret message under an unauthentic key) and also ensures that the
components remain “synchronized” (see Section 5).

1.5 The End-Result: Obfuscation with Leaky Hardware

To obfuscate a program, we first apply the hardware-assisted obfuscator from Section 1.1, thus
obtaining a universal hardware device, whose size and amount of computation (per input) depend
only on the security parameter, and which can be used to evaluate obfuscated programs from various
vendors. We next apply the Goldwasser-Rothblum compiler [26], together with our transformation
from Section 1.4, to the code of the hardware device, resulting in a system of components that can
still be used for obfuscation in exactly the same way (as the universal device), but is now guaranteed
to remain secure even if the components are leaky and even if the communication between them is
adversarially controlled.

To obfuscate a program f using this system, the obfuscator generates keys for the FHE scheme
and encrypts f under these keys. In addition, it uses the public CCA2 key generated with the
original universal device to encrypt the secret FHE key together with a hash of the encrypted
program. The encrypted program and parameters are then sent to the user. Evaluating the
obfuscated program consists of running the FHE evaluation procedure and then interacting with
the system of components (in a universal argument) to decrypt the resulting ciphertext. The system
verifies the proof in a leakage-resilient manner and returns the decrypted result.

We remark that our transformation from any circuit/device to a leaky system of components,
as well as our transformation from circuit-specific obfuscation schemes to general-purpose ones, are
generic and can be applied to any device-assisted obfuscation scheme, such as the schemes of [23, 29].
When doing so, the end result will inherit the properties of the underlying scheme. In particular,
when instantiated with [23, 29], the amount of work performed by the devices is proportional to
the size of the entire computation (the hardware used for each gate in the obfuscated circuit).

1.6 Related Work

Research on formal notions of obfuscation essentially started with the work of Barak et. al. [8],
who proved that software-only obfuscation is impossible in general. This was followed by other
negative results [24] and some positive results for obfuscating very simple classes of functions (e.g.,
point functions) [41, 14, 18]. The sweeping negative results for software-only obfuscation motivated
researchers to consider relaxed notions where some interesting special cases can be obfuscated (e.g.,
[27, 31, 10]).

In contrast, the early works of Best [9], Kent [34] and Goldreich and Ostrovsky [23] addressed
the software-protection problem using a physically shielded full-blown CPU. The work of Goyal
et. al. [29] showed that the same can be achieved also with small stateless hardware tokens. These
solutions only consider perfectly opaque hardware. Furthermore, in these works the amount of
work performed by the secure hardware device during the evaluation of one input is proportional
to the size of the entire computation.2

The work by Goldwasser et. al. [25] on one-time programs shows that programs can be ob-
fuscated using very simple hardware devices that do very little work. However, their resulting
obfuscated program can be run only once.

2On the other hand, the solutions in [23, 29] can be based on one-way functions, while our solution requires
stronger tools such as FHE and universal arguments.

5

Our focus on obfuscation with leaky hardware follows a large corpus of recent works addressing
leakage-resilience cryptography (see, e.g., [20, 3] and references within). In particular, our construc-
tion can be based on the results of Goldwasser and Rothblum [28, 26] or Juma and Vahlis [33], which
show how to convert circuits into ones that are secure in only computation leaks model of Micali
and Reyzin [37], or even in the stronger OCL+ model described above. ([26] is the only one though
that achieves the latter without the use of any leak-free hardware.) Leakage-resilient circuits (or
“private circuits”) were previously considered in the works of Ishai, Sahai and Wagner [32] and of
Faust et al. [21], under different restrictions than OCL. The first, only allows leakage on a bounded
number of individual wires; the second, only considers AC0 leakage (and relies on a leak-free hard-
ware component). Another work by Ajtai[1] extends model of Goldreich and Ostrovsky [23] to also
account for leakage under a restriction that is similar in spirit to that of [32] (namely that only a
bounded number of individual instructions leak).

Our construction of leakage-tolerant secure channels and the relation between leakage-tolerance
and adaptive security were further investigated and generalized in [11], who consider general uni-
versally composable leaky protocols.

6

2 Tools

2.1 The GR Compiler

The works of Goldwasser and Rothblum [28] and Juma and Vahlis [33] show how to convert any
circuit into a circuit that is secure in the “only computation leaks” (OCL) model, using a very simple
and stateless hardware device.3 Very recently Goldwasser and Rothblum [26] introduced a major
improvement, showing a new transformation that makes no use of secure hardware and where the
security is unconditional.

In their model a circuit C is converted into a circuit C ′ that consists of m disjoint and ordered
sub-computations (or modules) sub1, . . . , subm, where the input to sub-computation subi should
depend only on the output of earlier sub-computations. Each of these sub-computations subi can be
modeled as a non-uniform poly-size circuit, with a “secret state”. They prove that no information
about the circuit C is leaked even if each of these sub-computations is leaky. More specifically, the
adversary can request to see a bounded-length function of each subi (separately) and these leakage
functions may be adaptively chosen.

They also consider the continual leakage setting, where the leakage happens over and over again.
In this setting, the secret state of each subi needs to be continually updated (or refreshed). To this
end, after each computation, each of the subi’s is updated by applying a randomized Update function
to its secret state. We stress that leakage may occur during each of these update procedures, in
which case the leakage may be a function of both the current secret state and the randomness used
by the Update procedure.

In this work, we consider a strengthening of the OCL model, where we give the attacker more
power. In the OCL model, the sub-computations are ordered sub1, . . . , subm and the adversary
must leak in that order (i.e., first leak from sub1, then from sub2, etc.). We strengthen the power of
the adversary, by allowing it to leak from the sub-computations in any order it wishes. Moreover,
it can leak a bit from subi, then leak a bit from subj and based on the leakage values, leak again on
subi. So, the adversary controls which subi it wishes to leak from. We refer to this stronger model
as the OCL+ model. We note that the [28, 26] compilers are secure even in this stronger OCL+

model.
For the sake of simplicity, we start by defining single-input security with bounded leakage and

then we define multi-input security with continual leakage.
Throughout this paper, subi denotes a non-uniform poly-size circuit with a “secret state” that

is hardwired into the circuit. A computation C ′ = (sub1, . . . , subm) is a large circuit, which is the
concatenation of all the subi’s. For simplicity, we always think of sub1 as the sub-circuit that takes
the input and of subm and the sub-circuit that generates the output.

Definition 2.1 (Single-input leakage attack A[λ : sub1, . . . , subm]). A single-input λ-bit leakage
attack of adversary A on the computation C ′ = (sub1, . . . , subm), is modeled as follows.4 The
adversary A can adaptively choose (at most λ · m) PPT functions L1, . . . Lλ·m, where each Li is
a Boolean circuit that chooses a subj, takes as input the secret state of subj and outputs a single
bit. At any point, the adversary A can choose an input x for C ′. From that point on, any leakage
functions Li, takes as input both the secret state of subj and the input to subj during the computation

3For example, in the GR compiler, this hardware device essentially generates encryptions of 0 or encryptions of a
random bit b, using the BHHO [12] encryption scheme. Thus, this hardware device does not have any secret state.

4The input to each sub-computation subi should depend only on the output of earlier sub-computations.

7

of C ′ on input x and outputs a single bit. The only restriction is that the total amount of leakage
from each module subi is at most λ bits. The view of the adversary in the attack consists of the
pair (x,C(x)) and the outputs of all the leakage functions.

Definition 2.2 (Continual leakage attackA[λ : sub1, . . . , subm : Update]). A continual λ-bit leakage
attack of adversary A on the circuit C ′ = (sub1, . . . , subm) with update procedure Update, is defined
as follows. The adversary A can (adaptively) launch polynomially many single-input λ-bit leakage
attacks. However, between every two consecutive attacks the secret state of each subi is updated, by
applying a PPT algorithm Update. We allow the adversary A to leak during these Update procedures,
where the leakage function takes as input both the entire (secret) state of subi and the randomness
used by the Update procedure.

For each subi, we let its t-th time period be the time period between the beginning of its (t −
1)st Update procedure and the end of its t-th Update procedure (note that these time periods are
overlapping). We allow the adversary A to leak at most λ bits from each subi during each time
period. As in the single-input case, the leakage can be adaptive and can be applied to any subi in
an arbitrary order.

If the leakage on subi is during an update procedure, the leakage function takes as input the secret
state of subi and the randomness used by Update. If the leakage on subi is during a computation
of C ′(x) then the leakage, as in the single-input case, takes as input the (current) secret state of
subi and the input to subi during the computation of C ′ on input x.

The view of A in the attack consists of all the input-output pairs {xi, C(xi)}, where xi is the
input to the i-th single-input attack and the outputs of all the leakage functions.

Remark 2.1. We note that the reason that in Definition 2.2 we partitioned the time periods as we
did, is so that the t time period includes the entire time in which the t-th updated secret state is in
the system and thus can be leaked. Note that during the t-th Update procedure, both the (t− 1)st
secret state and the t-th secret state may leak, which is why the time periods overlap.

Definition 2.3. We say that a PPT compiler C is secure in the single-input λ-OCL+ model if
for any PPT adversary A, which executes a single-input λ-bit leakage attack, there exists a PPT
simulator S, such that for any ensemble of poly-size circuits {Cn}:

{A(z)[λ : sub1, . . . , subm]} n∈N,C∈Cn
z∈{0,1}poly(n)

≈c
{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (sub1, . . . , subm)← C(C) and z is an arbitrary auxiliary input.

Definition 2.4. We say that a PPT compiler C is secure in the continual λ-OCL+ model if for any
PPT adversary A, that executes a continual λ-bit leakage attack, there exists a PPT simulator S,
such that for any ensemble of poly-size circuits {Cn}:

{A(z)[λ : sub1, . . . , subm : Update]} n∈N,C∈Cn
z∈{0,1}poly(n)

≈c
{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (sub1, . . . , subm : Update)← C(C) and z is an arbitrary auxiliary input.

Remark 2.2. One could restrict the simulator S in Definitions 2.3 and 2.4 to query the oracle C
only on inputs x which A feeds to his circuit C ′. We note that the GR compiler is secure also w.r.t.
these more stringent definitions. For the sake of simplicity, we decided not to add this requirement
to the definitions.

8

Theorem 2.1 (The existence of λ-OCL+ compilers [28, 26]). There (unconditionally) exists a
universal compiler in the continual λ-OCL+ model, where the size of each (leaky) sub-computation,
subi, is Θ(λ3).5

2.2 Non-committing Encryption

The notion of non-committing encryption was introduced by Canetti et. al. [15]. Informally,
non-committing (bit) encryption schemes are semantically secure, possibly interactive encryption
schemes, with the additional property that a simulator can generate special ciphertexts that can
be “opened” (i.e. demonstrated to be the encryption of) to both 0 and 1.

Definition 2.5. [15, 19] A non-committing (bit) encryption scheme consists of a tuple (NCGen,NCEnc,NCDec,NCSim)
where (NCGen,NCEnc,NCDec) is a semantically secure encryption scheme and NCSim is a PPT sim-
ulation algorithm that on input 1n outputs a tuple (e, c, r0

G, r
0
E , r

1
G, r

1
E) such that for every b ∈ {0, 1}

the following distributions are computationally indistinguishable:

1. The joint view of an honest sender and an honest receiver in a normal encryption of b:

{(e, c, rG, rE) : (e, d) = NCGen(1n; rG), c = NCEnce(b; rE)} .

2. A simulated view of an encryption of b:

{(e, c, rbG, rbE) : (e, c, r0
G, r

0
E , r

1
G, r

1
E)← NCSim(1n)} .

2.3 Leakage resilient MACs

A c-time MAC scheme, (MAC,Vrfy), assures that given authentications of c distinct messages, it
is impossible to forge an authentication of a new message. The scheme is λ-leakage-resilient if it
remains secure, even when the adversary obtains an arbitrary (poly-size) leakage function L of the
secret key, as long as the output length of L is at most λ. The leakage function L can be chosen
adaptively according to the authentication tags that the adversary had already seen.

Concretely, we shall use a scheme with the following properties:

1. It is c-time secure for some c = Θ(1).

2. The secret key is of length `, where ` = nΘ(1) (polynomially related to the security parameter
n).

3. It can authenticate messages of length poly(`) > `.

4. It is λ-leakage-resilient for some λ = Θ(`).

Information-theoretic schemes with properties (1) − (3) can be obtained based on universal
hashing [42, 4]. We note that any information theoretic MAC also has some leakage resilience in
the following sense: If the forging probability is at most 2−ε` for some constant ε, then in particular,
it can withstand ε`− ω(log n) bits of leakage and remain secure.

5In [28] it is shown that allowing simple leak-free hardware, there exist under the Decision-Diffie-Hellman assump-
tion, a universal compiler where the size of each sub-computation is Θ(λ) (i.e., with a constant leakage-rate.

9

2.4 Fully Homomorphic Encryption

A fully homomorphic public-key encryption scheme (FHE) E consists of algorithms
(Gen,Enc,Dec,Eval). The first three are the standard generation, encryption and decryption algo-
rithms of a public key scheme. The additional algorithm Eval is a deterministic polynomial-time
algorithm, that takes as input a public key pk, a ciphertext x̂ = Encpk (x) and a circuit C and
outputs, a new ciphertext c = Evalpk (x̂, C), such that Decsk (c) = C (x), where sk is the secret key
corresponding to the public key pk. It is required that the size of c depends polynomially on the
security parameter and the length of C (x), but is otherwise independent of the size of the circuit
C.

Such schemes were recently constructed by the breakthrough work of Gentry [22] and of van
Dijk, Gentry, Halevi and Vaikuntanathan [40].

2.5 Universal Arguments

Consider the relation

RU = {(y, w) : y = (M,x, t) and M is a Turing machine that accepts (x,w) after at most t steps}

and its corresponding language

LU = {y : ∃w such that (y, w) ∈ RU} .

We recall the notion of universal arguments, defined by Barak and Goldreich [6], based on the work
of Kilian [35] and Micali [36].

Definition 2.6 (Universal arguments [6]). A universal argument system is a pair of interactive
Turing machines, denoted by (P,V), that satisfy the following properties.

• Efficient verification. There exists a fixed polynomial p such that for any y = (M,x, t) ∈
{0, 1}n the total runtime of V, on common input y, is at most p (n). In particular, all the
messages exchanged in the protocol are of length at most p (n).

• Completeness. There exists a polynomial q such that for every y = (M,x, t) ∈ LU the total
runtime of P on input (y, w) is at most q (|M |, t) and Pr[(P (w) , V) (y) = 1] = 1.

• Computational soundness. For any polynomial-size circuit family P∗ = {P∗n}, any large
enough n, y ∈ {0, 1}n \ LU :

Pr[(P∗n, V) (y) = 1] ≤ negl (n) .6

• A weak proof of knowledge. For every polynomial p there exists a polynomial p′ and a
probabilistic oracle machine E satisfying the following. For any polynomial-size circuit family
{P∗n}n∈N, every large enough n and every y = (M,x, t) ∈ {0, 1}n, if Pr[(P∗n,V) (y) = 1] ≥ 1

p(n)
then

Pr
r

[
∃w ∈ RU (y) s.t. ∀i, EP∗nr (y, i) = wi

]
≥ 1

p′(n)
.7

6This soundness condition might seem quite weak, as it protects only against poly-size cheating provers. However,
the latter polynomial bound need not be a-priori fixed, which is sufficient for our applications.

7This requirement strengthens the soundness requirement and is often not required for UA’s. It will be useful
though for our purpose.

10

Theorem 2.2 ([6]). Assuming the existence of collision-resistant hash functions, there exists a
4-message universal argument system with a public-coin verifier.

11

3 Hardware Assisted Obfuscation

In this section we construct a hardware assisted obfuscation scheme. For this scheme, the size
and amount of work performed by the device are bounded by a fixed polynomial in the security
parameter that is independent of the size of the circuit being obfuscated. However, this construction
will have two main drawbacks: First, the hardware is “circuit-specific” in the sense that each
obfuscated circuit requires its own specific device. Second, the device is assumed to be totally
opaque (i.e. it is treated as a black-box). In Sections 4 and 5 we overcome these drawbacks.

The basic model and definitions are presented in Section 3.1. The construction is presented in
Section 3.2 and analyzed in Section 3.3.

3.1 The Model

In the setting of hardware assisted obfuscation, a circuit C (taken from a family Cn of poly-size
circuits) is obfuscated in two stages. First, the PPT obfuscation algorithm O is applied to C,
producing the “software part” of the obfuscation obf, together with (secret) parameters params for
device initialization. At the second stage, the hardware device HW is initialized with params. The
evaluator is given obf and black-box access to the initialized device HWparams. In our security defi-
nition, we consider a setting in which the adversary is given t = poly (n) independent obfuscations
of t circuits, where obfuscation i consists of a corresponding device HWparamsi and obfuscated data
obfi. In this model each obfuscated circuit may have its own specialized device.

Definition 3.1 (Circuit-specific hardware-assisted obfuscation (CSHO)). (O,HW,Eval) is a CSHO
scheme for a circuit ensemble C = {Cn}, if it satisfies:

• Functional Correctness. Eval is a poly-time oracle aided TM , such that for any n ∈ N,
C ∈ Cn and input v for C: EvalHWparams

(
1|C|, obf, v

)
= C (v), where (obf, params)← O (C).

• Circuit-Independent Efficiency. The size of HWparams is poly(n), independently of |C|,
where (params, obf) ← O(C). Also, during each run of EvalHWparams

(
1|C|, obf, v

)
on any input v,

the total amount of work performed by HWparams is poly(n), independently of |C|.

• Polynomial Slowdown. O is a PPT algorithm. In particular, there is a polynomial q, such
that for any n ∈ N and C ∈ Cn, |obf| ≤ q (|C|).

• t-Composable Virtual Black Box (VBB). Any adversary, given t obfuscations, can be
simulated, given oracle access to the corresponding circuits. That is, for any PPT A (with
arbitrary output) there is a PPT S such that:{
AHW1,...,HWt (z, obf1, . . . , obft)

}
n∈N

C1...Ct∈Cn
z∈{0,1}poly(n)

≈c
{
SC1,...,Ct (z, 1n, |C1|, . . . , |Ct|)

}
n∈N

C1...Ct∈Cn
z∈{0,1}poly(n)

,

where HWi = HWparamsi, (obfi, paramsi)← O (Ci) and z is an arbitrary auxiliary input.

We say that the scheme is stand-alone VBB if it is 1-composable. We say that the scheme is
composable if its t-composable for any polynomial t.

While previous solutions [23, 29] satisfy the correctness and security requirements of Definition 3.1,
they require that the total amount of work performed by the device for a single evaluation is

12

proportional to |C|, the size of the entire circuit. Namely, they do not achieve circuit-independent
efficiency. In this section we show that how to construct schemes which do achieve this feature,
based on a different approach. The main result is given by Theorem 3.1.

Theorem 3.1. Assuming fully homomorphic encryption, there exists a composable CSHO scheme
for all polynomial size circuit ensembles C = {Cn}.

3.2 The Construction

We now present a concrete construction satisfying Theorem 3.1. We first describe the main ideas
behind the scheme, which are practically considered “folklore”. Then, we present the detailed
construction and its analysis.

The main ideas. Informally, given a FHE scheme E , we obfuscate a circuit C by sampling
(sk, pk) ← Gen (1n), encrypting Ĉ = Encpk (C) and creating a “proof-checking decryption de-
vice” HW = HWsk which is meant to decrypt “proper evaluations”. The obfuscation consists
of obf = (Ĉ, pk) and oracle access to HW. To evaluate the obfuscation on input v, compute
e = Evalpk(Ĉ, Us,v), where Us,v is a universal circuit that given a circuit C of size s outputs C (v).8

Then, “prove” to HW that indeed e = Evalpk(Ĉ, Us,v). In case HW is “convinced”, it decrypts
C (v) = Decsk (e) and returns the result to the evaluator. Intuitively, the semantic security of E
and the soundness of the proof system in use should prevent the evaluator from learning anything
about the original circuit C other than its input-output behavior.

We briefly point out the main technical issues that arise when applying the above approach and
the way we deal with these issues.

• Minimizing the device’s workload. Proving the validity of an evaluated ciphertext e
w.r.t. an encrypted circuit Ĉ amounts to proving that a poly(|C|)-long computation was
performed correctly. However, the running time of our device should be independent of |C|
and hence cannot process such a computation. In fact, it cannot even process the assertion
itself as it includes the poly(|C|)-long encryption Ĉ. To overcome this, we use universal
arguments (UA’s) that also have a proof of knowledge property [6]and collision resistant
hashing. Specifically, the device only stores a (short) hash h(Ĉ) and the evaluator proves it
“knows” an encrypted circuit Ĉ ′ with the same hash and that the evaluated ciphertext is the
result of applying Evalpk to Ĉ ′ and the universal circuit Us,v (corresponding to some input v).

• Using a stateless device with no fresh randomness. Our device can be implemented
as a boolean circuit that need not maintain a state between evaluator calls nor generate fresh
randomness; in particular, it should withstand concurrent proof attempts and “reset attacks”
(as termed by [17]). To enable this, we use similar techniques to those in [7]. Informally,
these techniques allow transforming the UA protocol we use to a “resettable” protocol, where
the verifier’s randomness is fixed to some pseudo random function. 9

8Abusing notation, we denote by Eval both evaluation algorithms EvalHWparams(obf, v) and Evalpk. To distinguish
between the two, we always denote the evaluation algorithm of the FHE scheme by Evalpk .

9The mentioned techniques essentially transform any public-coin constant-round protocol to a “resettable” one.

13

3.2.1 A detailed description of our construction.

We now provide a detailed description of the scheme and prove its security. We first state some
simplifying assumptions and our assumptions regarding the hardware device.

Simplifying assumptions. We assume that the input and output of the circuit C (to be obfus-
cated) are bounded by a fixed polynomial in the security parameter. The size of C on the other
hand is not a priori bounded.

Assumptions regarding the device. As mentioned above, we assume that the device can only
be accessed as a “black-box”. In particular, it cannot be tampered with and does not leak any
information.

The device is merely a boolean circuit which does not maintain a state between evaluator calls
and does not generate randomness. The size of this circuit and the number of calls (per evaluation)
should be bounded by a fixed polynomial in the security parameter n, independently of the circuit
size |C|.

Recall that whenever the evaluator, who is given an encrypted circuit Ĉ = Encpk (C), wishes

to evaluate the circuit on input v, it homomorphically evaluates Ĉ = Encpk (C) on input v, by

computing e = Evalpk(Ĉ, Uv,s), where s = |C| and Us,v is a universal circuit that given a circuit
C of size s outputs C (v). Then, he is required to prove to the device that e is indeed valid; i.e.,
that it is the result of applying Evalpk to Ĉ and the universal circuit Us,v. However, the size of
this computation is proportional to |C|, while our device is bounded by a fixed polynomial in the
security parameter.

As explained above we overcome this technicality using a UA, which essentially allows one to
verify the validity of a “t-long computation” in time which is polynomial in the input size and in
|t| = log t (rather than in the entire computation time t).

Recall that an input y = (M,x, t) for a UA consists of a “validating TM” M , input x and a
time bound t. The triplet y is valid (i.e. y ∈ LU) if and only if there is a witness w such that M
accepts (x,w) within t steps. The running time of the UA verifier is poly (|y|) and is independent
of the witness size w, which can be “long”.

Since the encryption Ĉ itself is too large for our device to process, it cannot appear explicitly
in the input y. To solve this, we first use a collision resistant hash function (CRH) h ← H and
let the input include h, h(Ĉ) instead of Ĉ. The hash function h and the value h(Ĉ) are generated
by O during the obfuscation phase and are hardwired into the device (as part of the specifying
parameters params).

We then use the proof of knowledge property of the UA. That is, to validate an evaluation e,
the evaluator proves in a UA that “it knows a witness” Ĉw with the same hash h(Ĉw) = h(Ĉ) such
that e = Evalpk(Ĉw, Us,v). We stress that while the mere existence of a witness Ĉw is trivially true

(due to hash collisions), “proving knowledge” of Ĉw essentially implies that Ĉw = Ĉ as required.
Otherwise, the prover can find collisions in h.

Remark 3.1. We make the following remarks regarding the above hashing approach:

1. The above strategy is similar to the one used by [5] in the context of non-black-box ZK for
non-uniform verifiers.

14

2. The hashing can be avoided if instead of obfuscating circuits of arbitrary size, we would
restrict ourselves to obfuscating TM’s whose running time is not a-priori bounded by a fixed
poly (n), but their description is.

3. For our purpose it is sufficient to assume universal one way functions rather than the stronger
notion of CRH’s. However, the strong tools used in this section (FHE and UA’s) already imply
(or require) the use of CRH’s. Hence, we allow ourselves to stick to this more familiar notion.

In our case, the input y = (M, x, t) to the UA consists of a fixed prescribed machine M and the
extra input (x, t), which is jointly constructed by the evaluator and the device. We next specify M
and the construction process of (x, t).

The evaluation validating machine M. Let E = (Gen,Enc,Dec,Eval) be a FHE scheme and
let H = {Hn : {0, 1}∗ → {0, 1}n}n∈N be a collision resistance hash ensemble (CRH). M is a (deter-

ministic) TM which accepts (x,w) =
((
v, e, pk, h, h(Ĉ), s

)
, Ĉw

)
if and only if

h(Ĉw) = h(Ĉ) ∧ e = Evalpk(Ĉw, Us,v) ,

where Us,v is a universal circuit which given a circuit C of size s returns C (v) and h is interpreted
as a hash function taken from Hn.

The running time of M and the associated UA time bound T . The machine M runs in

time p
(
|x|, |Ĉw|

)
for some fixed polynomial p (assuming |Ĉw| is polynomially related to s). Indeed,

the hash function h and the evaluation algorithm Eval are polynomial-time computable and the
circuit Us,v is computable in time polynomial in s. In particular, there exists a polynomial p′ such

that p
(
|x|, |Ĉw|

)
≤ p′ (n, s), where n is the security parameter and s = |C| is the circuit size. We

accordingly set the running time bound T = T (n, s) for the UA to be p′ (n, s).

Constructing the input for the UA. The input (M, x, T) for the UA is constructed jointly by
the evaluator and the device. The evaluator should supply an input v (for C) and an evaluation e
(to be validated). The device supplies the code of M, the time bound T , the public key pk, the

hash function and the hash value
(
h, h(Ĉ)

)
and the circuit size s = |C|.

Handling multiple UA sessions without state or randomness. Our device is eventually
used to evaluate the obfuscated circuit on multiple inputs. This is done by engaging a UA session,
as the one described above, for each input v. Since we require the device to manage without state
or (fresh) randomness, we need to take care of two issues: (a) We need to answer the need of the
UA verifier to generate randomness; (b) We need to handle attackers carrying out “reset attacks”
[17]. Specifically, the standard UA verifier maintains a state along its interaction with the prover,
while our device lacks such an inner state. As a result the state of the device (or the underlying UA
verifier) is re-specified as part of the input with each device call. Thus, the attacker can essentially
run the device from any state at any point in time; in particular, it can interleave sessions of
different inputs. 10

10For a more elaborate discussion on the resettable model see [17, 7].

15

To deal with the above issues we use the same ideas used in [7] to achieve “resettable soundness”.
11 This is done based on the following two properties of the UA system given in Theorem 2.2: (a) It
is constant round; (b) It is public-coins. (Concretely, the UA verifier sends a total of two messages,
where each of them is just a fresh random string.)

When validating an input-evaluation pair (v, e) the device will essentially need to deal with
two types of messages: (a) A message specifying the input-evaluation pair (v, e); (b) A UA prover
message in a UA interaction for validating the pair (v, e).

Since the device does not maintain a state between calls, for each pair (v, e) we require that
the evaluator specifies in each message the transcript of all the previous messages. To answer the
evaluator’s messages we equip the device with a PRF f : {0, 1}∗ → {0, 1}poly(n) (chosen at random
from a PRF family). The random messages of the UA verifier are replaced with pseudo-random
messages, which are computed by applying f to the evaluator’s messages. The last (third) evaluator
message, in an interaction on a pair (v, e), is validated by applying the UA verifier to the entire
transcript (with the corresponding coins generated by applying f to this transcript). In case the
proof is accepted, the device decrypts e for the evaluator.

The full description of the obfuscation scheme and the device is given in Figure 1.

11We remark that Goyal and Sahai [30] show how to implement any two-party functionality in a setting where one
of the parties is resettable. Their result, however, is less sensitive of the resettable party’s running time and hence
can not be applied as is in our case. In addition, we are only interested in the security of the resettable party (the
device); hence, we find that it is more natural to adopt the relevant techniques of [7] rather than adjust the general
compiler of [30] to our setting.

16

Ingredients.

• Let E = (Gen,Enc,Dec,Eval) be a FHE scheme.

• Let (P,V) be the prover and verifier of the UA system.

• Let H = {Hn : {0, 1}∗ → {0, 1}n} be a CRH, let F =
{
Fn : {0, 1}∗ → {0, 1}poly(n)

}
be a PRF,

where poly (n) is a bound on the randomness required for V.

• Let M be the evaluation validating machine, as defined above. Let T = p′(n, s) be a bound
on the running time on M and thus a time bound for the UA.

Obfuscator O.

• Input. Security parameter n. Circuit C of size s.

• Encryption. Sample (sk, pk)← Gen (1n). Encrypt Ĉ = Encpk (C).

• Device initialization. Sample a CRH h← Hn and a PRF f ← Fn. Initialize the device HW

with params =
(
sk, pk, f, h, h(Ĉ), s

)
.

• Output. obf =
(
pk, Ĉ, h, s

)
and the initialized device HWparams.

Device HWparams

• Input specification. Given a message X = (v, e) return f (X) (corresponds to the first
message of V in a UA).

• First UA prover message. Given a message Y = ((v, e),MP,1) return f (Y) (corresponds
to the second message of V in a UA).

• Second UA prover message. Given a message Z = ((v, e),MP,1,MP,2), compute
r1 = f (v, e), r2 = f ((v, e),MP,1). Apply the UA verifier V with randomness r1, r2, in-

put
(
M,
(
v, e, pk, h, h(Ĉ), s

)
, T (n, s)

)
and prover responses MP,1,MP,2. In case the verifier

is convinced, return Decsk (e). Otherwise, return ⊥.

• Faults. Given a message of invalid form, i.e. inconsistent with any of the above, return ⊥.

Evaluation. To evaluate the obfuscated circuit C on input v, compute e = Evalpk(Ĉ, Us,v) and
apply P to prove to HW that e is a valid evaluation, according to the rules prescribed above.

Figure 1: Obfuscation with a proof checking decryption device.

Device size and work load. The device is implemented as a deterministic circuit with hardwired
params. The total size of the hardwired parameters is bounded by a fixed polynomial in the security

17

parameter n; i.e., |params| =
∣∣∣(sk, pk, f, h, h(Ĉ), s

)∣∣∣ ≤ poly (n).12 Since V,Dec, h, f can all be

implemented by fixed polynomial size circuits, the circuit size implementing HWparams is also of
fixed polynomial size in n.

The number of rounds of communications between the evaluator and the device for each eval-
uation is a constant (three).

3.3 Proof of Security

In this section we analyze the security of the scheme, proving Theorem 3.1.
The correctness of the scheme follows directly from the correctness of the FHE E and the

completeness of the UA system. The polynomial slowdown property is also evident. We concentrate
on the VBB security guarantee. We first show that the scheme is stand-alone VBB and then explain
how to deduce composability.

Proof outline. Recall that to show stand-alone VBB, we need to show that for any PPT adver-
sary A there exists a PPT simulator S, such that for every C ∈ Cn and for every auxiliary input z,
the simulator S simulates the output of A given z and black-box access to C, whereas A gets z
and an obfuscation of C (software, obf and device, HW).

The simulator S will feed the adversary with an encryption of 0|C| (instead of Ĉ)and will simulate
the proof checking part of the device. Specifically, S verifies the UA argument as prescribed in the
scheme. Whenever the simulated device accepts, i.e. gets convinced of the validity of an input-
evaluation pair (v, e), the simulator will simulate the decryption by querying the oracle C with the
input v and will return the result to the evaluator. The formal description of S is given in Figure 2.

Simulator S
• Oracle Access. Circuit C. Adversary A.

• Input. Security parameter n. Circuit size s = |C|. Auxiliary input z (to be used by A).

• Simulation Sample a public key, a hash function and a PRF: pk ← Gen (1n) , h ← Hn, f ←
Fn. Create a dummy encryption Ĉd = Encpk (0s). Emulate an execution of A on input

obf =
(
pk, Ĉd, h, s

)
, a dummy advice HWd defined below and auxiliary input z.

• Simulating a dummy device. Emulate a dummy device HWd with parameters(
pk, f, h, h(Ĉd), s

)
. When required to give a decryption answer for an input-evaluation pair

(v, e), after the simulated device accepts a validity proof, use oracle C to return C (v).

• Output. The output of the emulated A.

Figure 2: The Simulator

We next prove the validity of the simulator S. To this end, for every security parameter n, fix a
circuit C ∈ Cn and auxiliary input z ∈ {0, 1}poly(n). We first show that in a real execution, A cannot

12Since the circuit size s is not a priori bounded by a specific polynomial, we assume that it is always represented
by, say, log2(n) bits.

18

fool the device to decrypt invalid evaluations, except with negligible probability. That is, the device
does not accept pairs (v, e) such that e 6= Evalpk(Ĉ, Us,v), except with negligible probability.

Lemma 3.1. Let F denote the event that A convinces HW = HWparams to decrypt an invalid
evaluation (at some point during the entire execution). Then:

Pr[F] = negl (n) ,

where the probability is over the coins of the obfuscator O, including the choice of parameters
pk← Gen (1n) , h← Hn, f ← Fn and the coins used for encrypting C.

Proof of Lemma 3.1. Assume toward contradiction that F occurs with non-negligible proba-
bility ε = ε (n) (for infinitely many n’s). First, we show how to use A to construct a circuit prover
strategy P∗ for a single stand-alone UA. P∗ will be given as input a hash function h ← H and
will generate an instance y /∈ LU and convince the UA verifier V to accept y with non-negligible
probability. We will then use the proof-of-knowledge property of the UA to show that P∗ can in
fact be used to find collisions in h.

As a first step, we assume that the hardware device HW, given toA, has access to a truly random
function R : {0, 1}∗ → {0, 1}poly(n) instead of a PRF. We denote this device by HWR. Indeed, using
HWR the event F still occurs with probability at least ε (n) − negl (n), since otherwise, we could
violate the security of the PRF F .

In order to simplify the analysis, we adjust A to behave as follows: (a) It does not repeat the
same device call twice; (b) it is monotone; i.e., before making a device call ((v, e),MP,1,MP,2),
it already made the two previous device calls X = (v, e) and Y = ((v, e),MP,1) ;13 (c) Once A
manages to convince the device to accept an invalid pair (v, e) it halts (this event can indeed be
verified by A by applying V on the session’s transcript). We note that the above adjustments do
not reduce the occurrence of F nor add a significant overhead to the size of A.

Let d = d (n) be the polynomial bounding the number of device calls that A makes. We note
that in any execution where A succeeds in proving an invalid statement, there are three calls
1 ≤ i1 < i2 < i3 ≤ d which consist the “fooling session”. That is, the UA session where the device
accepts a proof for an invalid pair (v, e).

The cheating prover P∗ simulates an entire execution of A and tries to guess the three “fooling
locations” in order to use them in its interaction with the external UA verifier V. Concretely, given
a hash function h as external input, P∗ picks at random 1 ≤ i1 < i2 < i3 ≤ d and emulates A on

input
(
pk, Ĉ, h, s

)
, where pk← Gen(1n), Ĉ ← Encpk(C) and s = |C|.

For each device call j /∈ {i1, i2, i3}, P∗ simulates the device as follows. A call of the form (v, e)
or of the form ((v, e),MP,1) is answered with a random string. P∗ stores these random answers in
a table. For a call of the form ((v, e),MP,1,MP,2), P∗ checks whether V accepts the proof, with
the corresponding randomness taken from the table. If the proof is not accepted, P∗ answers A
with ⊥. Otherwise, P∗ aborts. As for the calls i1 < i2 < i3. If call i1 is of the form (v, e) then it
is forwarded to the external verifier V and its answer is returned to A. Otherwise, P∗ aborts. If
call i2 is of the form ((v, e),MP,1), then MP,1 is forwarded to the external verifier V. Otherwise,
P∗ aborts.

We note that due to the adjustments we made in A and the fact that the UA protocol is public
coin (i.e., each verifier message is merely a fresh random string), the view of the simulated A is

13A may interleave calls for different proof sessions but in a monotone manner.

19

distributed identically to the view of A in a true interaction with HWR. It follows that:

Pr[P∗ fools V] ≥ Pr[A fools HWR ∧ (i1, i2, i3) ∈R [d]3 hit the fooling session]

≥ Pr[F]

d3
≥ ε (n)− negl (n)

d3
.

We now show how P∗ can be used to break the collision resistance of H. To this end, fix the coins
of P∗ so that:

Pr
V,h

[P∗ fools V] ≥ ε

d3
− negl (n) .

This, in particular, fixes the public key pk and encryption Ĉ = Encpk (C). This, together with the in-

put h, determines the pair (v, e), which in turn determines the instance y = (M, (v, e, pk, h, h(Ĉ), s), T (n, s)),
for the UA.

We now treat P∗ as a two stage prover strategy P∗1 ,P∗2 , where P∗1 takes as input h← Hn and
generates an instance y = (M, (v, e, pk, h, h(Ĉ), s), T (n, s)) and a state (state). Then, P∗2 (state)
tries to prove to V that y ∈ LU . Our assumption on P∗, together with a standard Markovian
argument, implies that for a

(
ε

2d3
− negl (n)

)
-fraction of the functions in h ∈ Hn,

Pr [y /∈ LU ∧ (P∗2 (state) ,V)(y) = 1] ≥ ε

2d3
, (1)

where (y, state) = P∗(h) and where the probability is over the random coin tosses of V. We denote
the set of h ∈ H that satisfy Equation (1) by GOOD. Our assumption that P∗ is deterministic
implies that for every h ∈ GOOD, it holds that y /∈ LU , where (y, state) = P∗(h).

We next define an algorithm B that finds collisions in H: Given h ← Hn, the algorithm
B(h) computes (y, state) ← P∗1 (h), where y = (M, (v, e, pk, h, h(Ĉ), s), T (n, s)). Then, it does the

following at most M = poly
(
n, 2d3

ε

)
times:

1. Choose randomness r for the UA extractor E.

2. For every i ∈ [s], compute wi = E
P∗2 (state)
r (y, i). Denote the witness obtained by Ĉw.

3. If Ĉw satisfies h(Ĉw) = h(Ĉ) and e = Evalpk(Ĉw, Us,v), then it must be that Ĉw 6= Ĉ and

output the pair (Ĉ, Ĉw) as a collision to h. Otherwise, go back to 1. If the number of
repetitions exceeds M then abort.

We note the weak proof-of-knowledge property of the UA system (see Definition 2.6), together with
a Chernoff bound, implies that for every h ∈ GOOD,

Pr[B(h) finds a collision] = 1− negl(n) ,

where the probability is over the randomness of B. This in turn implies that

Pr[B(h) finds a collision] ≥ Pr[h ∈ GOOD]− negl(n) ≥ ε

2d3
− negl(n) ,

where the probability is over h← Hn and over the randomness of B.
This completes the proof of Lemma 3.1

20

Proving the validity of S. Let A be a PPT adversary and let

ViewA =
{
AHWparams (z, obf)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

denote the output distribution of A, where obf =
(
pk, Ĉ, h, s

)
and params =

(
sk, pk, f, h, h(Ĉ), s

)
.

Denote by

ViewS =
{
SC
(

1|C|, z
)}

n∈N,C∈Cn
z∈{0,1}poly(n)

the output distribution of the simulator S. We show that

ViewA ≈c ViewS .

To this end, we first consider an alternative simulation process View′S , where S is given as extra
auxiliary input a public key pk and an encryption of the circuit C, Ĉ = Encpk (C). It then uses pk

and Ĉ for the emulation of A instead of using the dummy encryption. The semantic security of
the encryption scheme (against polynomial size circuits) implies that ViewS ≈c View′S .

Next, we note that the behavior of the emulated device in View′S differs from the behavior
of the real device in ViewA only when the adversary A convinces the device HW that an invalid
evaluation pair (v, e) is a valid one. In this case, the real device will decrypt the evaluation, while
the simulated device will turn to the oracle C, which might produce a different answer. However,
by Lemma 3.1 this event occurs only with negligible probability. The validity of S follows.

Deducing composability. The proof above holds for the stand-alone case where A gets a single
obfuscation. However, it can be easily extended to the case of multiple obfuscations, yielding a
composable scheme. For this purpose, we note that S is a straight-line black box simulator scheme.
That is, there is a single simulator S which simulates all PPT adversaries A as follows. Given input
(z, 1n, |C|), S simulates an input obf for A using (1n, |C|) only (i.e. independently of z). S then
runs A on (z, obf), simulating the answers for all the device calls made by A. Composability now
follows by the following general Proposition 3.1.

Proposition 3.1. If (O,HW) has a straight-line black box simulator, then it is composable.

The proof for Proposition 3.1 naturally follows the same ideas used in the Universal Composition
Theorem [13].

4 General-Purpose (Sendable) Obfuscation

In this section we show how to convert any circuit-specific obfuscation scheme, such as the one in
Section 3, to a scheme which uses a single universal (general-purpose) hardware device. The basic
model and definitions are presented in Section 4.1, the transformation is presented in Section 4.2
and analyzed in Section 4.3.

21

4.1 The Model

In circuit-specific obfuscation, the obfuscator gives the user a device that depends on the obfuscated
circuit C. More precisely, the “specifying parameters” params, produced by O (C), depend on C
and are hardwired into the device before it is sent to the user. Thus, each device supports only a
single obfuscated circuit.

We consider a more natural setting in which different parties can send obfuscations to each other
online, without the need of exchanging devices per each obfuscation. Informally, in this setting we
assume that a trusted manufacturer creates devices, where each device is associated with private
and public parameters (prv, pub). The private parameters are hardwired into the device and are
never revealed (they can be destroyed), while the public ones are published together with the
“identity” of the device (e.g., on the manufacturer’s web page www.obfuscationdevices.com). Any
user, who wishes to send an obfuscation of a circuit C to another user who holds such a device,
retrieves the corresponding public parameters and sends the required obfuscation.

Concretely, a general-purpose obfuscation scheme consists of two randomized algorithms (Gen,O)
and a device HW. First, Gen (1n) generates private and public parameters (prv, pub) (independently
of any circuit). Then, HW is initialized with prv and the initialized device HWprv is given to the
user. The corresponding pub are published. Anyone in hold of pub can obfuscate a circuit C by
computing obf ← O (C, pub) and sending obf to the user holding the device.

Definition 4.1 (General-purpose hardware-assisted obfuscation (GPHO)). (O,Gen,HW,Eval) is a
GPHO scheme for C = {Cn} if it satisfies:

• Functional Correctness. Eval is a polynomial-time oracle aided TM, such that for any n ∈ N,
C ∈ Cn and input v for C: EvalHWprv

(
1|C|, obf, v

)
= C (v),

where (prv, pub)← Gen (1n) and obf ← O (C, pub).

• Circuit-Independent Efficiency. The size of HWprv is polynomial in n, independent of |C|,
where (prv, pub)← Gen (1n). Moreover, during each run of EvalHWprv

(
1|C|, obf, v

)
on any input v,

the total amount of work performed by HWprv is polynomial in n, independent of |C|.

• Polynomial Slowdown. O and Gen are PPT algorithms. In particular, there is a polynomial
q such that for any n ∈ N, C ∈ Cn, |pub, prv| ≤ q (n) and |obf| ≤ q (|C|).

• Virtual Black Box (VBB). For any PPT adversary A and polynomial t there is a PPT
simulator S such that:{

AHWprv (z, obf1, . . . , obft)
}

n∈N
C1...Ct∈Cn

z∈{0,1}poly(n)

≈c
{
SC1,...,Ct (z, 1n, |C1|, . . . |Ct|)

}
n∈N

C1...Ct∈Cn
z∈{0,1}poly(n)

,

where (prv, pub)← Gen (1n) and obfi ← O (Ci, pub) and z is an arbitrary auxiliary input.

4.2 The Transformation

Essentially, we wish to avoid restricting the device to a specific circuit C (like hard-wiring h(Ĉ) into
the device as done in our circuit-specific scheme). Instead, we would like to have the user “initialize”
his device with the required parameters params for each obfuscation he wishes to evaluate. However,
params cannot be explicitly given to the evaluator as they contain sensitive information.

22

For this purpose, we simply use a CCA2 public key encryption scheme. That is, the obfuscator
will generate params, but instead of hard-wiring them into the hardware device (which will make
the device circuit-specific), he will encrypt params and send the resulting ciphertext to the user.
The fact that the underlying encryption scheme is CCA2 secure implies that the user can neither
gain any information about params nor change it to related parameters params′.

More formally, the new general-purpose device HW′ is manufactured together with a pair of
CCA2 keys (prv, pub) = (sk, pk). The secret key sk is hardwired into the device (and destroyed),
while pk is published. Each device call is appended with the CCA2 encryption of params. The device
HW′ answers its calls by first decrypting the encrypted parameters params and then applying the
device HWparams of the underlying circuit-specific scheme (e.g. the scheme in Section 3). The full
description of the transformation is given in Figure 3.

• Ingredients. A circuit-specific scheme (O,HW) and a CCA2 scheme (Gen,Enc,Dec).

• Parameter generation and device initialization. Sample (prv, pub) = (sk, pk) ←
Gen (1n).

• Obfuscator O′. Given a circuit C and a public key pk (of to the underlying CCA2 encryption
scheme), sample (params, obf) ← O (C), compute bind = Encpk (params) and output obf ′ =
(obf, bind).

• Device HW′ = HW′sk. On input M ′ = (M, bind). Compute params = Decsk (bind). If params
is not of a valid form return ⊥; otherwise return HWparams (M).

• Evaluation. Given obf ′ = (obf, bind) and input v, apply the evaluation procedure of the
underlying scheme using (obf, v). Each time the evaluation procedure queries its hardware
device with input M , query HW′ with input M ′ = (M, bind).

Figure 3: From circuit-specific obfuscation to general-purpose obfuscation.

Theorem 4.1. Assume (O,HW) is a circuit-specific obfuscation scheme as in Definition 3.1 and
assume that E = (Gen,Enc,Dec) is a CCA2 secure encryption scheme. Then the scheme given in
Figure 3 is a general-purpose obfuscation scheme as in Definition 4.1.

Corollary 4.1 (of Theorems 3.1,4.1). Assume that there exists a fully homomorphic encryption
scheme and a CCA2 encryption scheme, then there exists a general-purpose obfuscation scheme.

Remark 4.1. The above transformation would also work (as is) for schemes with no circuit-
independent efficiency. The amount of work performed by the general-purpose device is essentially
inherited from the underlying scheme (with the fixed overhead of CCA2 decryption). In particular,
we can apply it to the scheme of [29] and get a general-purpose solution that is based solely on the
existence of CCA2 schemes, but which makes poly(|C|) device calls.

4.3 Proof of Security

In this section we prove Theorem 4.1.

23

Proof outline. The functional correctness of the scheme follows directly from the correctness
of the underlying circuit-specific obfuscation scheme and from the completeness of the underlying
encryption scheme. Similarly, the polynomial slowdown property and the circuit-independent ef-
ficiency property follow immediately from the fact that the underlying circuit-specific obfuscation
scheme has these properties. We thus focus on proving the virtual black-box property.

To this end, we show that the view of any adversary A′ for the general-purpose scheme (who
gets t obfuscations) can be simulated by an adversary A for the underlying circuit-specific scheme
(O,HW), who gets t obfuscations according to (O,HW) (including access to t devices).

Informally, the adversary AHW1,...,HWt(z, obf1, . . . , obft) (who is given input as in (O,HW))
generates a pair of keys (sk, pk) ← Gen(1n) for the CCA2 secure encryption scheme. Then
for every i ∈ [t], it creates a dummy binding encryption bindi = Encpk(0̄). It then emulates

(A′)HW′sk(z, (obf1, bind1), . . . , (obft, bindt)). This is done by separating its oracle queries into two
types: (a) Honest calls, in which A′ passes a correct value bindi where i ∈ [t]; (b) Malicious calls, in
which A′ changes the binding ciphertexts and gives some other value bind′ /∈ {bindi}. The calls of
type (a) can be simulated by the corresponding device HWi. For calls of type (b), A will decrypt
the bind′ value on its own and answer accordingly. The fact that A succeeds in emulating the
output of A follows from the fact that if A distinguishes this emulated interaction from a real one,
it would also be able to break the security of the CCA2 encryption scheme. Details follow.

• Oracle Access. Adversary A′ (for the general-purpose scheme). Multiple devices{
HWi = HWparamsi

}
i∈[t]

.

• Input. {obfi}i∈[t]. Auxiliary input z (used by A′).

• Simulation. Sample a pair of keys (pk, sk) ← Gen (1n) for the underlying CCA2 secure
encryption scheme. Create dummy binding encryptions bindi = Encpk

(
0`i
)
, where `i =

|paramsi|. Emulate an execution of (A′)HW′sk on input
(
z, {obfi, bindi}i∈[t]

)
.

• Simulating the device HW′sk. On input (M, bindi) feed the input M to HWi. On input(
M, bind′

)
where bind′ /∈ {bindi}i∈[t], compute params′ = Dec′sk

(
bind′

)
. If params′ is of a valid

form return HWparams′ (M). Otherwise return ⊥.

• Output. The output of the emulated A′.

Figure 4: The Simulator A.

Proof of Theorem 4.1. Let A′ be a PPT adversary and denote the output distribution of A′ by

ViewA′ =
{

(A′)HW
′
sk

(
z,
{
obf ′i

}
i∈[t]

)}
n∈N

C1,...,Ct∈Cn
z∈{0,1}poly(n)

,

where obf ′i = (obfi, bindi), (paramsi, obfi)← O(Ci) and bindi = Encpk(paramsi). Denote the output
distribution of the corresponding simulator by

ViewA =
{
A{HWi}

(
z, {obfi}i∈[t]

)}
n∈N

C1,...,Ct∈Cn
z∈{0,1}poly(n)

,

24

where HWi = HWparamsi and (paramsi, obfi)← O(Ci). We show that ViewA′ ≈c ViewA.
Indeed, assume there exists a PPT distinguisher D that distinguishes between these two dis-

tribution ensembles with non-negligible probability ε(n), for (infinitely many) C1, . . . , Ct ∈ Cn and
z ∈ {0, 1}poly(n). We show how to construct a polynomial size breaker B that uses D to break the
security of the CCA2 scheme E w.r.t t messages.

Breaker B
• Input. pk (corresponding to a secret key sk).

• Message generation. Sample {(paramsi, obfi)← O (Ci)}i∈[t] as specified in the underlying

circuit-specific obfuscation scheme. Send the CCA2 challenger ~M0 = {paramsi}i∈[t] ,
~M1 ={

0|paramsi|
}
i∈[t]

.

• Challenge. {bindi = Encpk (Mb,i)}i∈[t], where b
U← {0, 1}.

• Guessing b with access to a decryption oracle. Given access to a decryption ora-
cle Decsk|/∈{bindi} (which decrypts all ciphers but ciphers in {bindi}), emulate A′ on input(
z, {obfi, bindi}i∈[t]

)
. When A′ makes an oracle query (M, bindi) to its hardware device

answer with HWparamsi (M). Given a call
(
M, bind′

)
, where bind′ /∈ {bindi}, use the decryp-

tion oracle to compute params′ = Decsk
(
bind′

)
. If params′ is of a valid form, answer with

HW′params (M). Otherwise, answer A′ with ⊥. Eventually, when A′ outputs View, guess
b = D (View).

Figure 5: CCA2 Breaker.

One can verify that when b = 0, View is distributed identically to the output of the real
interaction ViewA′ , whereas when b = 1, View is distributed identically to output of the simulated
interaction ViewA. The result follows.

5 Obfuscation with Leaky Hardware

We now turn to the task of dealing with leaky hardware. As we explained in the introduction, if
we allow arbitrary leakage functions (even with small output) then it is impossible to obfuscate
using a single leaky hardware device. Hence, our goal is to show how to use many leaky hardware
devices to achieve obfuscation.

We first show how to obfuscate any function f using leaky hardware devices, where the number
of devices is proportional to the size of the circuit computing f . Then, when we apply this obfuscator
to the function computed by the hardware device from Section 3 (or Section 4, respectively), to get
circuit-specific (or general-purpose, respectively) obfuscation with leaky hardware devices, where
the number of devices is polynomial in the security parameter, independent of the function being
obfuscated.

25

5.1 An Overview

In what follows, we give an informal definition of obfuscation with leaky hardware and a high-
level overview of our construction. The formal definitions and detailed construction are given in
Sections 5.2 and 5.3. The security analysis can be found in Section 5.4.

The leaky distributed system (LDS) model. In the LDS model a functionality f (with
secrets) is implemented by a system of multiple hardware components (HW1,HW2, . . . ,HWm). The
components can maintain a state and generate fresh randomness. To evaluate the functionality f ,
an input v is given to HW1 and the components communicate to jointly compute f(v), which is
eventually outputted by HWm. The adversary (evaluator) in our model can freely choose the inputs
to the computation and is given full control over the communication between the components. In
addition, the adversary can choose one component at a time and evaluate a leakage function on its
inner state and randomness.

We consider a continual leakage model, where the lifetime of each component HWi is partitioned
into time periods (that are set according to the inputs that HWi receives). At the end of each time
period, HWi “refreshes” its inner state by applying an Update procedure (that erases the previous
state). The Update procedures performed at different components are coordinated by exchange of
messages. As the rest of the computation, the Update procedure is also exposed to leakage and the
adversary controls the exchange of messages during the update.

We place no restriction on the order and timing of the adversary’s interaction with the system.
In particular, it can pass messages to any component at any time and get leakage on any component
at any time (which can depend on previous leakage and messages).

Constructing secure leaky distributed systems (LDS). Our goal is to compile (or “ob-
fuscate”) any functionality, given by some circuit C (with hardwired secrets), into an LDS that
perfectly protects C, as long as the leakage from each HWi in each time period is bounded.
In the terminology of obfuscation, the LDS should perform as a virtual black-box: The view of any
adversary A attacking the LDS can be simulated by a simulator S which can only access C as a
black-box. In particular, S should simulate on its own the communication between the components
and all the leakage. We achieve this goal in two main steps:

1. We apply the Goldwasser-Rothblum compiler to the circuit C to get a circuit that is secure
in the (augmented) only computation leaks (OCL+) model.

2. Then, we provide a general transformation that takes any OCL+-secure circuit and transforms
it to a secure LDS.

Hence, our main goal is to show that an adversary in the LDS model can be simulated by an
adversary in the OCL+ model (that does not witness the communication between the modules).
Then, by the OCL+-security (implied by the GR compiler), we can deduce that simulation can be
done only with black-box access to the underlying functionality.

In the heart of our transformation stands an implementation of leakage tolerant communication
channels. We first explain the main ideas required to achieve secrecy and then explain how to get
authenticity.

26

Leaky secret channels from non-committing encryption. In the OCL+ model, the compo-
nents can securely exchange messages. Still, the adversary might get some leakage on the contents
of these messages as the (leaky) state of the components includes the messages at some point. The
OCL+ security guarantee implies, however, that a bounded amount of leakage does not compromise
the security of the entire system.

To enhance OCL+-security to LDS-security we implement the secure communication channels.
As explained above, we assume for now that the adversary delivers all messages intact and deal
only with secrecy. The standard solution for secret channels would be to encrypt all communication
between the components; however, in the face of leakage this approach encounters the following
difficulty: Consider a sender component HWS in the LDS model that wishes to communicate a
message M to a receiver component HWR (using some encryption scheme). Note that the adversary
can obtain arbitrary (bounded) leakage on the state of both HWS ,HWR, including leakage on
both the plaintext M and the randomness rS , rR used to encrypt/decrypt. Moreover, the leakage
function can depend on the corresponding ciphers which were already sent. This implies that
naively simulating the communication (by say encryptions of 0) won’t work.

Our main technical observation is that the above obstacle can be overcome using non-committing
encryption (NCE) [15]. NCE schemes (which can potentially be interactive) allow simulating a fake
cipher (or transcript) c together with two optional random strings (r0

S , r
1
S), (r0

R, r
1
R) for both the

sender S and the receiver R. The simulated cipher can later be “opened” as an encryption of either
1 or 0 (using the suitable randomness).14 This tool allows us to show that the view of an attacker
A in the LDS model can be simulated by an attacker A′ in the OCL+ model, provided that the
components communicate using NCE.

Specifically, for any single bit message, the OCL+ adversary A′ (which does not see any com-
munication) will use the NCE to generate fake communication with corresponding randomness
r̄ = (r0

S , r
1
S), (r0

R, r
1
R). Then, when the simulated A performs a leakage query L to be evaluated on

both the plaintext b and the encryption’s randomness, A′ can translate it to a new leakage query
L′ which will only be evaluated on the plaintext message. The leakage function L′ will have
the simulated randomness r̄ hardwired into it and will choose which randomness to use according
to the plaintext b.

Leakage resilient MACs. To deal with adversaries that interfere with message delivery we use
leakage-resilient c-time MAC schemes (as described in Section 2.3). Informally, each two com-
ponents maintain rolling MAC keys that are used at most c = O(1) times. After c − 1 times the
components run the Update protocol to regain fresh MAC keys. The communication during the up-
date is done using NCE as described above, while authentication is done using the c-th application
of the previous key(see details in Section 5.3).

5.2 The LDS Model

Our leakage model postulates an adversary A that interacts with a system of distributed leaky
hardware components. Each component maintains a state and is capable of producing fresh ran-

14NCE was so far mainly used in the setting of multi-party-computation as a tool for dealing with adaptive
corruptions. Indeed, leakage can be viewed as a restricted form of “honest but curious” corruption, where the
adversary learns part of the state, whereas in full corruption, it learns the entire state. In both cases, the choice of
leakage/corruption is done adaptively according to the view of the adversary so far. The relation between leakage-
tolerant protocols and adaptively secure protocols is further generalized in [11].

27

domness. At the onset of the interaction, the components are pre-loaded with some secret state
and thereafter they can receive messages, send messages and leak information to the attacker. In
our model all the I/O of the components and their communication is done via the attacker A.

Definition 5.1 (Single-input leakage). In a distributed single-input λ-leakage attack a PPT ad-
versary A interacts with hardware components (HW1, . . . ,HWm) and can do the following (in any
order, possibly in an interleaving manner):

1. Feed O(C) a single input of his choice.

2. Interact with each component, sending it messages and receiving the resulting outputs and
replies. These devices are message-driven, so they are activated by receiving messages from
the attacker, then they compute and send the result, then wait for more messages.

3. Adaptively send up to λ 1-bit leakage queries to each of the hardware components. Each
leakage query is modeled as a poly-size Boolean circuit and is applied to the entire state of
a single hardware device. Without loss of generality, we can think of the state of the device
as it was in the last time that the device was activated, including all the randomness that the
device generated in order to deal with the last activation.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm].

Definition 5.2 (Continual leakage). A continual λ-leakage attack is an attack where a PPT adver-
sary A repeats a single-input λ-leakage attack poly many times, where between any two consecutive
attacks the devices’ secret state is updated by applying a PPT algorithm Update to the state of each
HWi separately. A obtains leakage during the Update procedure, where the leakage function takes
as input both the current secret state of HWi and the randomness used by Update.

We denote by time period t at device HWi the time period between the beginning of the (t −
1)st Update procedure and the end of the t-th Update procedure (note that these time periods are
overlapping).15 We allow the adversary A to leak at most λ bits from each HWi during each (local)
time period.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm : Update].

Below we consider an obfuscator O that takes as input a circuit C and outputs an “obfuscated”
version of C that uses leaky hardware devices as above. Namely, we have (HW1, . . . ,HWm)← O(C),
where the HWi’s are the leaky hardware devices, initialized with the appropriate circuits.

Remark 5.1. In Definitions 3.1 and 4.1, the obfuscator O outputs a “software part” obf and param-
eters params for initializing the hardware. In the current setting, the obfuscation does not contain
a software part. The simplified notation (HW1, . . . ,HWm)← O(C), should be interpreted as sam-
pling {paramsi} ← O(C) (where paramsi corresponds to the i-th sub-computation)and initializing
the hardware devices {HWi} accordingly.

Definition 5.3. We say that O is an LDS-obfuscator with continual λ-leaky hardware if for any
circuit C and (HW1, . . . ,HWm) ← O(C), the distributed system (HW1, . . . ,HWm) maintains the

15Intuitively, time period t is the entire period where the t-th updated secret states can be leaked. During the t-th
Update procedure, both the (t − 1)st secret state and the t-th secret state may leak, which is why the time periods
are overlapping.

28

functionality of C when all the messages between them are delivered intact and in addition we have
the following:

For any PPT attacker A, executing a continual λ-bit leakage attack, there exists a PPT simulator
S, such that for any ensemble of poly-size circuits {Cn}:

{A(z)[λ : HW1, . . . ,HWm : Update]} n∈N,C∈Cn
z∈{0,1}poly(n)

≈c
{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (HW1, . . . ,HWm)← O(C) and z is an arbitrary auxiliary input.

Remark 5.2. As in Definitions 2.3 and 2.4, one could restrict the simulator S in Definition 5.3, to
query the oracle C only on inputs x which A feeds to his circuit C ′. We note that our construction
guarantees these more stringent definitions (assuming the security of our underlying OCL+ compiler
satisfies these more stringent definitions). We chose not to add this restriction to the definitions
for the sake of simplicity.

We now present the detailed construction, followed by its analysis.

5.3 The Construction

In this section we show how to construct obfuscation with leaky hardware.
We build our solution using a compiler C that is secure in the continual λ-OCL+ model. (Recall

that the OCL+ model is similar to our distributed-system model, except that the different compo-
nents can interact freely, not under the control of the adversary.) Namely, C converts any circuit
C into a collection of leaky sub-components (sub1, . . . , subm) (that also have an update procedure,
Update′), which are secure long as the adversary can only get λ leakage from each in each time unit
and cannot see or influence the communication between them. (See Section 2.1 for definitions of
the OCL+ model.)

In our model, however, we need to worry about the communication between our components,
so the system (sub1, . . . , subm) cannot be used as such. To secure the communication, we use
non-committing encryption (as defined in Section 2.2) for secrecy and use c-time leakage resilient
MACs (as defined in Section 2.3) for authentication.

The construction. Given a circuit C, the obfuscator O does the following:

1. Apply the λ-OCL+ compiler C to the circuit C and obtain a circuit

C ′ = (sub1, . . . , subm)

and an Update′ procedure, such that (C ′,Update′) is secure in the continual λ-OCL+ model.

We assume for simplicity that: (a) sub1 is the input module, that takes as input the “original”
input x ∈ {0, 1}n and passes it to the relevant subj ’s. (b) subm generates the final output.
(c) The exchanged messages between the modules are all of the same size ` = `(n).

2. Put each module subi in a separate hardware component HWi.

3. For every two communicating modules i, j ∈ [m], generate a random key Ki,j ← {0, 1}t for
a λ-leakage-resilient MAC scheme (MAC,Vrfy), with keys of length t = Θ(λ) + nΩ(1).16 For

16We usually consider λ that polynomially related to the security parameter n, so one can think of t = Θ(λ).

29

every i ∈ [m], hard-wire in HWi the set of keys {(j,Ki,j)}, for every j such that subj and subi
communicate.17

4. For every i ∈ {1, . . . ,m − 1} and every j ∈ {2, . . . ,m}, whenever subi is supposed to send
a message M = (M1, . . . ,M`) to subj , the corresponding hardware HWi sends M to HWj

using the non-committing encryption scheme NCE. Moreover, all the communication in this
process is authenticated using the MAC scheme (MAC,Vrfy). More specifically, the hardware
devices HWi and HWj communicate as follows:

(a) Hardware HWj does the following:

i. For each k ∈ [`], sample a random string rG,k ∈ {0, 1}poly(n) and compute (ek, dk) =
NCGen(1n; rG,k).
Henceforth, let e = (e1, . . . , e`),d = (d1, . . . , d`).

ii. Compute σe = MAC(e;Ki,j).

iii. Send (e, σe) to HWi and keep d as part of the secret state.

(b) Hardware HWi does the following:

i. Verify that Vrfy(e, σe;Ki,j) = 1 and verify that (e, σe) was not already sent by HWj

during this time period. If this check fails then discard the message e.

ii. If the check passes, for each k ∈ [`] choose a random string rE,k ∈ {0, 1}poly(n),
compute ck = NCEnc(Mk, ek; rE,k). Henceforth, let c = (c1, . . . , c`).

iii. Compute σc = MAC(c;Ki,j).

iv. Send (c, σc) to HWj .

(c) Hardware HWj does the following:

i. Verify that Vrfy(c, σc;Ki,j) = 1 and verify that (c, σc) wasn’t already sent by HWi.
If this check fails then discard the message c.

ii. If the check passes, compute for each k ∈ [`], Mi = NCDec(ci, di).

Once HWj gets M, it runs subj on input M (unless subj is waiting for additional inputs).

5. Finally, HWm sends an output message (assuming subm is the sub-computation that generates
the outputs).

6. For each HWi, after each “valid” activation (i.e., after it did its share in a computation), HWi

erases all its computations and updates its secret state, using an update procedure Update,
defined as follows.

(a) Apply the Update′ procedure to update the state of subi.

(b) Refresh the MAC keys by choosing new random MAC keys K ′i,j for every j > i such
that HWi and HWj communicate. Then send K ′i,j to HWj .

(c) Erase the previous MAC keys Ki,j .

(d) Communication: All the communication within the update procedure is done as in
step 4. Namely, for each message, repeat steps 4(a) − 4(c), where the MACs are w.r.t.
the previous MAC key Ki,j .

17For simplicity, one can think of Ki,j = Kj,i.

30

Remark 5.3. For the sake of simplicity, we assume that at the end of each computation, all the
hardware devices HWi apply the Update procedure to their state and we think of these updates as
starting at the same time and ending at the same time. This assumption is only for the sake of
simplicity, to avoid the need to consider both the case where HWi updates its own state and the
case where it interacts with another HWj during the Update of HWj . Instead, we consider all these
communications as part of the Update of each HWi.

We denote O(C) = (HW1, . . . ,HWm : Update). The user (evaluator) should hand the input to HW1

and get the output from HWm. We next claim that the circuit O(C) is secure against continual
λ-leakage attacks.

Theorem 5.1. O is an obfuscator with continual λ-leaky hardware. Namely, for every PPT adver-
sary A, executing a continual λ-leakage attack, there exists a PPT simulator S such that for every
ensemble of poly-size circuits C = Cn,

{A(z)[λ : HW1, . . . ,HWm : Update]} n∈N,C∈Cn
z∈{0,1}poly(n)

≈c
{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (HW1, . . . ,HWm : Update)← O(C) and z is an arbitrary auxiliary input.

5.4 Obfuscation with Leaky Hardware - Proof of Security

In this section we prove Theorem 5.1, i.e., we prove that the obfuscator above is secure against
continual λ-leakage attacks. First, as a warm-up, we prove that the obfuscator is secure against
single-input λ-leakage attacks. Namely, we change the construction so that the component HW1

refuses to accept more than one input and then prove security against bounded leakage without an
update. Then we prove that it is secure against continual λ-leakage attacks (with multiple inputs
and corresponding updates).

Proof Sketch of Theorem 5.1 (for single-input λ-leakage attackers). Fix any PPT ad-
versary A(z)[λ : HW1, . . . ,HWm] that executes a λ-leakage attack. We need to construct a PPT
simulator S, such that

A(z)[λ : HW1, . . . ,HWm] ≈c SC(z, 1|C|) . (2)

To this end, we construct a (OCL+) PPT adversary A′(z)[λ : sub1, . . . , subm] that launches a single-

input λ-leakage attack on C ′ = (sub1, . . . , subm), such that

A(z)[λ : HW1, . . . ,HWm] ≈c A′(z)[λ : sub1, . . . , subm] . (3)

Then, we use the security of C ′ in the λ-OCL+ model to claim that there exists a PPT simulator

S, such that
A′(z)[λ : sub1, . . . , subm] ≈c SC(z, 1|C|) .

This, together with Equation (3), implies Equation (2), as desired.
Thus, it remains to construct a (OCL+) PPT adversary A′(z)[λ : sub1, . . . , subm] that satisfies

Equation (3). In what follows we define such a PPT adversary A′(z)[λ : sub1, . . . , subm]. The
adversary A′ simulates A as follows.

31

1. Choose a random MAC key Ki,j for every two communicating hardware devices HWi and
HWj .

2. When the adversary A feeds HW1 with some input x ∈ {0, 1}n, the adversary A′ simulates
the entire message exchange between all the hardware devices using the simulator NCSim of
the NCE scheme, as follows: Each time HWi is supposed to send HWj a message (of length
`) via the NCE scheme, the adversary A′ does the following:

(a) For k ∈ [`], sample an equivocal tuple, (ek, ck, r
0
G,k, r

0
E,k, r

1
G,k, r

1
E,k)← NCSim(1n).

(b) Compute σe = MAC(e;Ki,j)

(c) Simulate HWj sending the pair (e, σe) to HWi.

(d) Compute σc = MAC(c;Ki,j) and simulate HWi sending the pair (c, σc) to HWj .

In addition, A′ will start the computation of C ′(x) and obtain y = C(x). Finally, it simulates
HWm outputting y.

The adversary A sees all the communication View , ({(e, σe), (c, σc)}, y) and based on this
information, may choose to adaptively leak from each hardware device.

3. Each time A sends a leakage query L to HWi, the adversary A′ will send a leakage query L′

to subi. Given the state of subi, L
′ will simulate the corresponding state of HWi and apply

L on the simulated state. The simulated state is computed as follows.

(a) If A determines the leakage function L before it determines the input x, then the (secret)
state of HWi contains only the state of subi and the set of MAC keys {j,Ki,j} for every
subj that communicates with subi. In this case,

L′(subi) , L(subi, {j,Ki,j}) ,

simulates the leakage correctly, since

(subi, {j,Ki,j}) ≡ state(HWi) ,

where state(HWi) is the internal state of HWi, as desired and subi should be interpreted
as the entire state of subi, including inputs and randomness.

(b) If L is determined after the adversary A specifies the input x, then L′ will also need to
simulate all the encryption randomness within the state of HWi. This includes both the
randomness {rG}, used in key generation for incoming messages and randomness {rE},
used for encryption of outgoing messages.

The input subi for L′ determines all incoming and outgoing (plaintext) messages, which
will be used to simulate the input for L as follows.

i. For each incoming message M = (M1, . . . ,M`) from some subj , use the equivo-
cal (key generation) randomness, computed in Step 2(a) above, choosing the ran-
domness corresponding to the plaintext M. Denote this simulated randomness
by RG(j,M) = (rM1

G,1 . . . , r
M`
G,`).

ii. For each incoming message M′ = (M ′1, . . . ,M
′
`) from some subj , use the equivocal

(encryption) randomness according to the plaintext M′, to compute

RE(j,M′) = (r
M ′1
E,1 . . . , r

M ′`
E,`).

32

Finally, let
L′(subi) , L(subi, {j,Ki,j}, {RG(j,M)}, {RE(j,M′)}) .

Let COMSIM
i denote the incoming/outgoing communication of HWi in a simulated exe-

cution and let COMREAL
i denote the communication in a real execution, with the addi-

tional assumption that the adversary does not interfere with the communication. (This
assumption can be removed as explained later, in the Item 4). We note that by the
definition of a non-committing encryption,

COMSIM
i , (subi, {j,Ki,j}, {RG(j,M)}, {RE(j,M′)}) ≈c COMREAL

i , state(HWi) .

This follows from the fact that if there exists a PPT adversary that can distinguish
between the two, where in the latter the public keys and the ciphertext are generated
using the NCGen and NCEnc (as opposed to using the simulator NCSim), then one can
use this adversary to break the computational indistinguishability between the real view
and the simulated view of the non-committing encryption (see Definition 2.5).

4. If at any time A tries to interfere the message exchange, by trying to feed HWi an input (m,σ),
which supposedly came from HWj , the adversary A′ discards this message.

Note that if HWj hasn’t previously sent HWi the message (m,σ) then the probability that
σ is a valid MAC for m is negligible. This follows from the fact that the underlying MAC
scheme is robust to λ-bits of leakage (i.e., it remains secure even if λ bits of its secret keys
are leaked). Thus, with overwhelming probability HWi will discard m. On the other hand, if
(m,σ) is a message that was already sent from HWj to HWi, then HWi also discards m.

Denote all the simulated communication between the hardware devices by

View ,
{
COMSIM

i

}
, {(e, σe), (c, σc)}

and by oi the output of the i-th leakage query. The adversary A′ outputs whatever A would had
it received oi from its i-th leakage query. Namely, A′ outputs A(View, o1, . . . , ot).

All in all, it follows that the simulation of A is computationally indistinguishable from a real
leakage attack and thus

A(z)[λ;HW1, . . . ,HWm] ≈c A′(z)[λ; sub1, . . . , subm],

as desired. (Formally, the above is shown via a standard hybrid argument, where in the i’th hybrid,
HW1, . . . ,HWi−1 communicate as in a simulated interaction, HWi+1, . . . ,HWm communicate as in
the real interaction and HWi communicates with the first components as in a simulated interaction
and with latter components as in a real interaction.)

Proof Sketch of Theorem 5.1 (for continual λ-leakage attacks). Fix any PPT adversary
A(z)[λ;HW1, . . . ,HWm : Update] that executes a continual λ-leakage attack. We need to construct
a PPT simulator S, such that

A(z)[λ : HW1, . . . ,HWm : Update] ≈c SC(z, 1|C|) , (4)

33

To this end, as in the single-input case, we construct a (OCL+) PPT adversary

A′(z)[λ : sub1, . . . , subm : Update′]

that launches a continual λ-leakage attack on
(
C ′ = (sub1, . . . , subm),Update′

)
, such that

A(z)[λ : HW1, . . . ,HWm : Update] ≈c A′(z)[λ : sub1, . . . , subm : Update′] . (5)

Then, we use the security of (C ′,Update′) in the continual λ-OCL+ to claim that there exists a PPT
simulator S such that

A′(z)[λ : sub1, . . . , subm : Update′] ≈c SC(z, 1|C|) .

This, together with Equation (5), implies Equation (4), as desired. It remains to construct a (OCL+)

PPT adversary A′(z)[λ : sub1, . . . , subm : Update′] that satisfies Equation (5). In what follows we
define such a PPT adversary A′(z)[λ : sub1, . . . , subm : Update′].

The adversary A′ simulates A exactly as in the single-input case. The only difference is that
in this setting the secret states are being updated and there may be leakage during the update
procedures.

• The adversary A′ simulates the Update procedure of each HWi as follows:

1. The secret state of subi is updated by the Update′ procedure of C ′ = (sub1, . . . , subm).

2. To simulate the update of the secret keys {Ki,j} for the MACs of HWi, the adversary A′
chooses a fresh key K ′i,j for every j > i for which HWi and HWj communicate. Then, it
simulates HWi sending K ′i,j to HWj encrypted using the NCE scheme and adds a MAC
using the previous MAC key Ki,j . However, A′ will use the simulator NCSim to simulate
the ciphertext (rather than using the real encryption algorithm NCEnc). Namely, denote
K ′i,j = (b1, . . . , b`). The adversary A′ does the following.

(a) For k ∈ [`], compute (ek, ck, r
0
G,k, r

0
E,k, r

1
G,k, r

1
E,k)← NCSim(1n).

Let e = (e1, . . . , e`),c = (c1, . . . , c`)

(b) Compute σe = MAC(e;Ki,j) and simulate HWj sending the pair (e, σe) to HWi.

(c) Compute σc = MAC(c;Ki,j) and simulate HWi sending the pair (c, σc) to HWj .

The simulation property of the NCE scheme (see Definition 2.5) implies that the simulated
communication during the simulated update is computationally indistinguishable from the
communication in the real Update.

• The adversary A′ simulates any leakage query L that A sends to HWi during the above
Update procedure, by sending a leakage function L′ to subi during its own Update procedure.
L′ applies L to the “simulated state” of HWi, which contains the following values (in addition
to the state of subi).

1. The MAC keys {j,Ki,j} for every j ∈ [m] for which HWi and HWj interact.

2. The new MAC keys {j,K ′i,j} for every j ∈ [m] for which HWi and HWj interact.

34

3. Simulated randomness for the transmission of the new keys {RG(j,K ′i,j)} and
{RE(j,K ′j,i)}, which is taken from the equivocal tuples generated in Step 2(a) above,
according to each one of the plaintexts K ′i,j .

We remark that the incoming and outgoing messages (as well as the randomness for their
transmission) are not a part of the state of HWi during the update phase.

A′ then creates the leakage function

L′(subi, r
′) , L

(
subi, r

′; {Ki,j}; {K ′i,j}, {RG(j,K ′j,i)}, {RE(j,K ′j,i)}
)

,

where r′ denotes the randomness used by Update′ and the tuple
(r′, {K ′i,j}, {RG(j,K ′j,i)}, {RE(j,K ′j,i)}) should be thought of as the randomness used by the
Update procedure of HWi. (Recall that as mentioned in Remark 5.3, we consider all the
computation done by HWi in between two consecutive computations, as part of the Update
procedure of HWi).

As was argued in the single-input case, the simulation property of the non-committing en-
cryption scheme implies:(

subi, r
′; {Ki,j}; {K ′i,j}, {RG(j,K ′j,i)}, {RE(j,K ′j,i)}

)
,COMSIM

i ≈c state(HWi), r,COM
REAL
i ,

where r denotes the real randomness used by Update and where COMSIM
i ,COMREAL

i denote
the simulated and real communication during an update.

Therefore, A′ simulates both the Update procedures and leakage during the Update procedures
in a computationally indistinguishable manner. In addition, as argued in the single-input case,
A′ simulates the communication and the leakage which is not during the Update phase also in a
computationally indistinguishable manner. Thus, we conclude that

A(z)[λ;HW1, . . . ,HWm : Update] ≈c A′(z)[λ; sub1, . . . , subm : Update],

as desired. (As before, to show the above formally, one should use an hybrid argument, where in
each hybrid the first invocations are performed as in a simulated execution and the last as in a real
execution.)

5.5 The Leakage-Rate

Theorem 5.1 states that the obfuscator O, constructed in Section 5.3, is secure with continual
λ-leaky hardware. Here, λ refers to the maximal number of leakage bits that the underlying OCL+

compiler can take, when the secret state of each subi is of size Σ = Σ(λ, n) (where n is the security
parameter). In what follows, we address the relation between λ and the size of the secret state
of each HWi in our construction, which we will denote by Σ′ = Σ′(λ, n). We show that (with a
slight augmentation) our construction can tolerate the same leakage-rate as the underlying OCL+

compiler, up to constant factors; namely, we show that Σ′ = O(Σ).
We first note the following facts regarding the construction presented in Section 5.3: During

each activation, each component HWi interacts with a constant number of components and this
interaction includes exchanging a constant number of messages. Hence, the secret state of HWi

includes:

35

1. The secret state of subi, which is of size Σ.

2. A constant number of MAC keys Ki,j , each of size Θ(λ) + nΩ(1).

3. A constant number of decryption keys d. Each d corresponds to a single incoming message
M and is of size at least |M| · nΩ(1). Indeed, d includes an NCE decryption key of size nΩ(1)

for each message bit. In particular, since the messages during updates include the MAC keys,
the size of the corresponding d’s is at least λ · nΩ(1).

4. When HWi transmits a message, its secret state also includes the randomness rE for the
encryption, which is also done bit-by-bit. Here however, we can assume that after creating
each encryption, rE is deleted. Hence, the size of this part only is dominated by the other
parts.

Therefore, the total size of the secret state is

Σ′ = Σ + Θ(λ) + λ · nΩ(1) .

It follows that if Σ = λ · nΩ(1), then indeed Σ′ = O(Σ). For the [26] compiler (see Theorem 2.1) it

indeed holds that Σ = Θ(λ3), where λ is polynomially related to the security parameter n.
We next explain how to augment our scheme so that Σ′ = O(Σ), even if Σ/λ = no(1). (Indeed,

[28] achieve Σ = O(λ), albeit with the assumption of a leak-free hardware component.) For
this purpose, for each transmitted message M with ` bits, instead of storing all the keys in the
corresponding tuple d = (d1, . . . , d`), we would like to transmit M bit-by-bit and in between delete
the keys di (as we do with the randomness rE). However, this also implies that we would have to
authenticate each corresponding public key ei separately, instead of authenticating the entire e all
at once, as we do now. This, however, can not be done, as long as we are using information theoretic
MAC schemes. Indeed, the number of messages that can be authenticated by a single key can not
exceed the key’s length (while the messages do exceed the key length, as they include the MAC keys
for the next activation). The solution for this is rather simple. Instead of transmitting the message
itself bit-by-bit, we first establish one-time-pad random bits, using bit-by-bit NCE transmissions
(with secret key erasures), but without authentication. Only once we finished transmitting, we
authenticate all the communication at once. If the authentication went through, we can then use
the one-time pads to transmit the message. Storing the random bits blows up the size only by an
additive factor of O(Σ), as required.

36

6 Putting it All Together.

To combine the results of Sections 3,4 and 5. We start with a “circuit-specific” scheme as the one
constructed in Section 3. We then use the transformation from Section 4 to get a “general-purpose”
scheme. Finally, we augment the scheme as follows. Instead of supplying the adversary with the
single (general-purpose) device, we use the procedure in Section 5 to re-compile the device into
multiple devices, which communicate via the adversary and can withstand leakage.

Specifically, our scheme consists of algorithms (Gen,O,Eval). Gen(1n,
−−→
HW) outputs public pa-

rameters pub and initializes the system of hardware devices
−−→
HW = {HWi}i∈[m] with corresponding

private parameters. The system
−−→
HW is then given to the evaluator and the parameters pub are

published. Any party that wishes to send an obfuscation of a circuit C to the evaluator, applies
obf ← O(pub, C) and sends the resulting blob obf. To evaluate C on input x, the evaluator applies

Eval
−−→
HW(x, obf) (including interaction with the system

−−→
HW).

The algorithms (Gen,O,Eval) are instantiated according to the general-purpose scheme
(GenGP ,OGP ,EvalGP) (that is not leakage-resilient) and the LDS-obfuscator (compiler) OLDS .
That is, Gen applies GenGP to obtain the public parameters pub and a secret circuit Cprv im-
plementing the general-purpose device. It then applies OLDS(Cprv) to get the initialized hardware

system
−−→
HW. The obfuscation O is done by applying OGP . The evaluation is done by applying

EvalGP as follows. Whenever, EvalGP performs a query q meant for Cprv, we interact with the

system
−−→
HW to compute Cprv(q).

Theorem 6.1. Let (GenGP ,OGP ,EvalGP) be a general-purpose obfuscation scheme (as in Defini-
tion 4.1) and let OLDS be an LDS-obfuscator against λ-continual leakage (as in Definition 5.3).
Then the scheme (Gen,O,Eval) described above is a general-purpose obfuscation scheme which is
secure in the leaky distributed system model against λ-continual leakage.

Proof sketch. The functional correctness of the scheme is straight forward. We focus on the
security requirement. We would like to show that any attacker A has a simulator S so that for any
poly set of circuits C1, . . . , Ct and auxiliary input z ∈ {0, 1}poly(n) it holds that:

A(z, obf1, . . . , obft)
[
λ :
−−→
HW

]
≈c S(z)C1,...,Ct(z, |C1|, . . . , |Ct|)

Where obfi ← OGP (pub, Ci), (pub, Cprv)← GenGP (1n) and
−−→
HW← OLDS(Cprv).

Indeed, sinceOLDS is secure against λ-continual leakage, A can be simulated by a PPT simulator
SLDS that only gets oracle access to Cprv, i.e.:

A(z, obf1, . . . , obft)
[
λ :
−−→
HW

]
≈c S

Cprv

LDS(z, obf1, . . . , obft)

Moreover, since (GenGP ,OGP) is a general-purpose scheme SLDS has a simulator S such that:

SCprv

LDS(z, obf1, . . . , obft) ≈c S(z)C1,...,Ct(z, |C1|, . . . , |Ct|)

The result follows.

37

References

[1] Miklós Ajtai. Secure computation with information leaking to an adversary. In STOC, pages
715–724, 2011.

[2] Adi Akavia, Shafi Goldwasser, and Carmit Hazay. Distributed Public Key Encryption Schemes.
manuscript, 2010.

[3] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, Theory of Cryptography -
TCC 2009, volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer, 2009.

[4] Mustafa Atici and Douglas R. Stinson. Universal hashing and multiple authentication. In
CRYPTO, pages 16–30, 1996.

[5] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115,
2001.

[6] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J. Com-
put., 38(5):1661–1694, 2008.

[7] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound zero-
knowledge and its applications. In FOCS, pages 116–125, 2001.

[8] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[9] Robert M. Best. Microprocessor for executing enciphered programs. US Patent 4168396, 1979.

[10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Advances in Cryptology - CRYPTO 2010, pages 520–537, 2010.

[11] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage tolerant interactive protocols.
Manuscript, 2011. http://eprint.iacr.org/2011/204.

[12] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-Secure Encryption
from Decision Diffie-Hellman. In Advances in Cryptology - CRYPTO 2008, volume 5157 of
Lecture Notes in Computer Science, pages 108–125. Springer, 2008.

[13] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[14] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In EUROCRYPT’08, pages 489–508, 2008.

[15] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively Secure Multi-party
Computation. In 28th Annual ACM Symposium on the Theory of Computing - STOC’96,
pages 639–648, Philadelphia, PA, May 1996. ACM.

[16] Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor. Proactive security: Long-term
Protection against break-ins. CryptoBytes, 3(1), 1997.

38

http://eprint.iacr.org/2011/204

[17] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-knowledge
(extended abstract). In STOC, pages 235–244, 2000.

[18] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane membership.
In TCC, pages 72–89, 2010.

[19] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-
committing encryption with applications to adaptively secure protocols. In ASIACRYPT,
pages 287–302, 2009.

[20] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th FOCS -
2008, pages 293–302. IEEE Computer Society, 2008.

[21] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In EUROCRYPT,
pages 135–156, 2010.

[22] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
ACM Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[23] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, 1996.

[24] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In 46th FOCS, pages 553–562. IEEE Computer Society, 2005.

[25] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David
Wagner, editor, Advances in Cryptology - CRYPTO 2008, volume 5157 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2008.

[26] Shafi Goldwasser and Guy Rothblum. Unconditionally securing general computation against
continuous only-computation leakage. Manuscript, 2011.

[27] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC’07, pages
194–213, 2007.

[28] Shafi Goldwasser and Guy N Rothblum. Securing computation against continuous leakage. In
Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 59–79. Springer, 2010.

[29] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Found-
ing cryptography on tamper-proof hardware tokens. In TCC, pages 308–326, 2010.

[30] Vipul Goyal and Amit Sahai. Resettably secure computation. In EUROCRYPT, pages 54–71,
2009.

[31] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for cryptographic pur-
poses. In TCC’07, pages 214–232, 2007.

[32] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003.

39

[33] Ali Juma and Yevgeniy Vahlis. Protecting Cryptographic Keys against Continual Leakage. In
Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 41–58. Springer, 2010.

[34] Stephen Thomas Kent. Protecting externally supplied software in small computers. PhD thesis,
Massachusetts Institute of Technology, 1981.

[35] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723–732, 1992.

[36] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[37] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In TCC’04, volume 2951
of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

[38] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In 10th Annual
ACM Symposium on Principles of Distributed Computing, PODC’91, pages 51–59. ”ACM”,
1991.

[39] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[40] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of
Lecture Notes in Computer Science, pages 24–43. Springer, 2010. http://eprint.iacr.org/
2009/616.

[41] Hoeteck Wee. On obfuscating point functions. In STOC’05, pages 523–532, 2005.

[42] M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
In J. of Computer and System Sciences, volume 22, pages 265–279, 1981.

40

http://eprint.iacr.org/2009/616
http://eprint.iacr.org/2009/616

	Introduction
	Minimally Hardware-Assisted Obfuscation
	Obfuscation using universal hardware devices
	Dealing With Leaky Hardware
	From OCL+ to LDS
	The End-Result: Obfuscation with Leaky Hardware
	Related Work

	Tools
	The GR Compiler
	Non-committing Encryption
	Leakage resilient MACs
	Fully Homomorphic Encryption
	Universal Arguments

	Hardware Assisted Obfuscation
	The Model
	The Construction
	A detailed description of our construction.

	Proof of Security

	General-Purpose (Sendable) Obfuscation
	The Model
	The Transformation
	Proof of Security

	Obfuscation with Leaky Hardware
	An Overview
	The LDS Model
	The Construction
	Obfuscation with Leaky Hardware - Proof of Security
	The Leakage-Rate

	Putting it All Together.

