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Abstract: Random number generator designs are discussed, which utilize oscillatory metastability, induced
by switching between two stable states of ring-connected digital gates. For a short time after the switch-over
the circuits behave quite randomly, influenced by the circuit noise. We provide simple programs, which
simulate the fundamental behavior of our circuits. We also present a mathematical model and theoretical
explanations of the underlying physical phenomena, the random phase drift and pulse decay. These also
illuminate the principles of other recently published random number generators. The feasibility of the designs
was confirmed by FPGA prototypes. These random number generators are small, fast and built of standard
logic gates. The simplest example contains just one XOR gate as the source of randomness.
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Introduction

Many applications need a lot of random numbers, including communication protocols with frequently
changing session keys, nonces; secure servers; scientific or engineering simulations; Monte Carlo- or
randomized computations; dithering; gambling; electronic games... Often less secure pseudorandom
numbers are used; or off-line or off-site generated true random numbers, which may need expensive
large secure buffers, or secure communication channels.

In this paper the theory and the most important practical implementation issues of a family of electronic
random number generators are discussed. These generators help reduce costs, improving security and
performance in many applications. The circuits can be built of few standard digital components, so they
are simple, inexpensive, fast, and of low power.

The basic principle of operation of random number generation is amplifying some effects of the always
present noise to detectable levels. In the circuits considered below, little, noise-induced phase jitter
leads to large differences in settling waveforms.

The idea of using metastability for random number generators in our proposed circuits originates from
various designs published or disclosed on or after 2001: [14], [15], [16], [17], [21], [22] and [23]. One
family of such random number generators, elaborated below, utilizes the start-up artifacts of rings,
which appeared in [23] and in 2008, the first version of this paper, submitted to CHES. The random
startup behavior of long latch circuits (instead of oscillators) was exploited later in [25], and a similar
idea was explored in [24], without practical considerations, theoretical background or explanations.

Another manifestation of the oscillatory metastability, elaborated in this paper, is in the stopping cycles
of ring oscillators, when they are turned to latches. Since these kinds of circuits have not been
considered for random number generation before, we put the largest emphasis on them.

The main points of this work are practical random number generator designs, the mathematical model
for the randomness in oscillatory metastability, and explanations of the observed physical phenomenon,
the pulse decay. We also present MATLAB macros, which simulate some aspects of the observed circuit
behaviors reasonable well, despite the simplicity of their code.



Oscillatory Metastability at Stopping a Ring Oscillator

Many electronic random number generators use oscillators, designed to change states at uncertain time
points. When they are sampled at a low enough frequency, such that the phase of the oscillator can drift
more than a full oscillation period in the average, the samples appear to be sufficiently random.
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Figure 1. Ring oscillator of odd number of inverters

However, gates in standard logic libraries are designed to be insensitive to noise and supply voltage
variations, so their switching point is quite stable. For sufficient drift millions of switching events have to
take place, making the random number generation slow, and too sensitive to interference.

Flipping a Ring

In the quest for improvements we looked at ways to stop the ring oscillator, and make it to maintain the
logic level at the time of the stop. The simplest option is to replace an inverter with an XOR gate, as
shown on Figure 2. (Alternatively, a multiplexer could switch between a buffer and an inverter, or an
inverter could be bypassed through a digital switch.)

.

Figure 2. Flip-able ring: Oscillator or Latch

If the free input C of the XOR gate is connected to logic level 1, the gate behaves as an inverter of the
signal on its other input, maintaining ring oscillator functionality. When applying logic level 0 to input C,
the ring oscillator becomes a long (slow) latch circuit (consisting of a buffer and an even number of
inverters for positive feedback). Note that a single XOR gate (of large delay) could work like this [23].

Experiments

The ring oscillator output settles to a stable logic level. However, the settling is not instantaneous, as it is
seen in the oscilloscope trace below, captured on an FPGA prototype circuit (details will follow). The
pulses decay gradually:

Figure 3. Pulse decay after turning a ring oscillator to a latch

The top signal trace on Figure 3 shows the output waveform before and after the level on the C input of
the XOR gate changes (inverted lower trace).

If the flipping a negative feedback ring oscillator to a positive feedback latch occurs in the middle of a
pulse, the duty cycle of the new pulse train at the output will be close to 50%. There will be no
significant change in the shape of the signal for a long time (Figure 4 and Figure 5).
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Figure 5. Flip in the middle of a positive pulse

The two oscilloscope traces show practically the same behavior after the feedback is switched over from
negative to positive, regardless of the high or low output voltage level at the time of the flip.

When the new pulses are narrow, we see changes in their shape. They get gradually narrower and their
amplitude drops (Figure 6). This phenomenon is called pulse decay.
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Figure 6. Flip close to the edge of a pulse: pulses shorten and their amplitude drops

This pulse decay is best visible, when the pulses are very short. The train of narrow (positive or negative)
pulses stops, when they become too short for properly switching the next gate. Very narrow pulses
disappear almost instantly, and the circuit output settles to a constant level (Figure 7).
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Figure 7. Oscillation stops when the pulses get too short
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Pulse Decay

Note that when we see a sequence of wide pulses at the output of our circuit (e.g. on Figure 3), the
pulses of the preceding and subsequent inverter in the ring are narrow. Therefore the observed decays
of narrow and wide pulses (settling to different stable levels) are just seemingly different manifestations
of the same phenomenon. Wide pulses become even wider in time, and eventually disappear, when the
output settles to the logic level 1. Narrow pulses almost always settle to logic 0. One can also formulate
this pulse decay behavior as the edges circulating on a ring of inverters "attract" each other.

The physical explanation of this phenomenon is simple: The inverters remain immediately after an edge
has passed slightly charged in the direction of the state they were in before the edge passed, therefore a
closely following second edge will need less charge to restore the charge level before the previous edge
and can, therefore, propagate slightly faster. Over a few inverters the second edge gets too close to the
first one, and the short pulse between them disappears.

Noise Effects

With ideal inverters and in the absence of noise the shape of the pulses in the flipped ring oscillator
would remain constant and the oscillation would never stop. The feedback keeps everything repeated
forever. However, external disturbances and internal noise vary the position of the pulse edges.
Unsteady switch on/off times of the gates and the pulse decay also alter the pulse shapes.

Switching events take time because of the finite slope of the incoming signal and the limited slew rate
and gain of the gates. During the transitional period the circuit noise randomly shifts the switching
threshold, causing jitter: wobbling time positions of the edge of the pulses, at every inverter.

When stopping a ring oscillator at time points independent from the oscillation signal, randomness
comes twofold into play: (a) the phase drift moves the stopping point randomly within the output pulses
and (b) the settling waveform varies dependent on the noise.

Random Numbers from Oscillatory Metastability

Oscillatory metastability can be exploited for a random number generation in different ways: e.g.
capturing the transitional waveforms or just measuring the time till settling (by counting pulses). The
stopping waveform is quite regular, so counting the number of pulses either for a certain time period or
till the circuit settles to a stationary state is adequate. The final logic level could be included, too.

Counting pulses in a fixed time period is easier and more robust, because the circuit occasionally keeps
oscillating for a long time: if we flip an oscillator too often, the output signal has not always enough time

to settle to a stable logic level (marked with an arrow on the waveform of Figure 8).

\
v

SRR R R AR R RN ]
P PP P R

i
Figure 8. Output logic levels at periodic start/stop on response to input C
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Design Tradeoffs

By choosing the ring length and the timer values properly, the random number generator will be stable
and of high throughput. The exact values depend on the implementation platform.

e longer ring oscillators accumulate more jitter, and so they provide more randomness in their
oscillation period (proportional to the square root of the length of the ring, because of averaging
effects). However, the oscillation period increases proportionally to the length of the ring, thus the
resulting throughput decreases. The circuits of the largest throughput are the ones having the
shortest still stable rings, and high frequencies of switching them on/off.

e Stop-to-Restart period

0 Ifitistoo long, the throughput (the number of random bits a second) will be small, because the
output often settles early to a logic level.

0 Ifitis too short, the output has rarely time to settle to a logic level. The circuit will provide little
randomness, behaving similarly to a random number generator which periodically samples a
faster ring oscillator.

e  Start-to-Stop period

o Ifitis long, the oscillation pulses drift too much, and after the stop we will too often see slow
settling. The throughput fluctuates. In this case the circuit could benefit from some commonly
used feedback based stabilization to keep the settling times reasonable, e.g. [18].

0 Ifitis short, the oscillation pulses do not drift much. The circuit is stable, but the randomness
comes mostly from the settling process, the contribution of the oscillator drift is smaller.

0 Without the need for external stabilizer circuits, an optimally chosen, short start-to-stop period
length represents the best tradeoff between complexity and throughput!

e We have to maintain the optimum stopping position within the ring pulses, roughly, for reasonable
settling times. A typical value could be a start-to-stop period 9.1 times the ring period. The start-
stop clock is best laid out as another ring oscillator, so the stopping point within the ring period stays
constant: temperature and supply voltage affect the two rings similarly. Moreover, the jitter of this
clock ring further improves the randomness.

Physical Background

The variability of the observed stopping (and starting) behavior of feedback rings may also contribute to
the apparent good randomness of some recently published random number generators ([3], [4]), so
understanding it is of theoretical, and of practical importance, as well.

The ring oscillator exhibits random phase drift (due to the noise), so an asynchronous stop occurs at a
random position between the edges of the output signal. When the XOR gate is turned to a buffer (by a
0 in the input C), its output inverts keeping the remaining portion of the oscillator pulse inverted, and
introducing an extra edge in the circulating waveform. We saw that the oscillation continues for a while,
at virtually double frequency, because the output pulse has been cut into two. The newly established
positive feedback keeps the pulse structure of the ring shifting circularly, under ideal conditions
unchanged, forever. Because the delay of the flipped gate is usually slightly different in inverting and in
non inverting state, the frequency doubling is only approximate. Also, when these types of rings are
built from noise sensitive components, there can be significant jitter of the edges, making frequency
claims only valid in the average.
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We observed that the settling time depends on the position of the flip relative to the edges of the
output pulses, but with large random variations. If the flip occurs near to the edge of the output signal,
we saw narrow output pulses, vanishing quickly (Figure 6), if the flip occurs in the middle of the output
pulses, the circuit keeps on oscillating for a long time (Figure 4 and Figure 5).

Real life circuits exhibit phase jitter, making the pulse widths varying, when they pass through a gate.
This edge jitter accumulates as the pulses propagate.

If a pulse gets too narrow, the earlier explained pulse decay phenomenon makes it progressively
narrower as it propagates through the ring, and eventually it cannot make the output of a gate to reach
a logic level. In a few transitions the pulse disappears, settling the output to a fixed level (Figure 3).

Random Walk Model
We make a number of observations:

Noise originates from many independent sources. Their cumulative effects (at every gate) are nearly of
normal distribution (as the central limit theorem states: the mean of a large number of independent
random variables is approximately normally distributed, under very general conditions [26]).

The noise shifts the pulse edges. The resulting edge jitter is, therefore, very close to normally distributed
in time, too, when the noise is small enough, such that its affects on the transition function of the gates
around the switching point is close to linear. (Note that at very strong interferences this linearity
assumption does not hold, they could fully synchronize the ring, masking the small noise.)

The feedback of the ring keeps the shifted pulse edges in their new position (relative to an ideal
oscillator of the same fundamental frequency as the ring), until the noise moves them again.

The width of pulses is the time between its edges. The ring feedback keeps the relative position of the
edges, and so it keeps the altered pulse widths at their new values, until noise adds to or subtracts from
them. Consequently, in a noisy ring the pulse widths vary like at Gaussian random walks, with a standard

deviation of the steps (called pulse width jitter) V2 times the standard deviation of the edge jitter.

These observations hold until a (positive or negative) pulse gets too narrow. At this point the oscillation
stops (within a few pulse periods).

Random Walk of Discrete Steps

The translation distance theorem of random walks (see e.g. [1] or [2]) states that for steps distributed
according to any distribution with 0 mean and a finite variance o® (not just at normal distribution), the
root mean squared translation distance after n steps (S,) satisfies the equation

E(S?) =on

Accordingly, after several oscillation periods the drift of the pulse widths in a ring is approximately the
same at continuous noise of standard deviation g, as at noise pulses of the discrete values +o. Thus, one
can regard the pulse width jitter as drifting by the discrete values o, and model the pulse width drift of
the ring as a random 1-dimensional walk, starting at the position corresponding to the flipping event
within a pulse. At every other signal transition at each gate a random step is made left or right in the
random walk model, representing the drift of the pulse width. The signal settles to a logic level if the
random walk reaches its boundaries [to, tp— to], where t; is the total ring delay (the period length), and t,
is the minimum pulse width for properly switching the gates.
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Settling Time

Note that the random walk model gives the same estimates as the accumulation of edge jitter via the
Central Limit Theorem (summation formula), which also applies to stable oscillations in ring oscillators.

Considering discrete phase steps allows the application of the Boundary Theorem (see [2]). The
Boundary Theorem of unit step random walks, states that if a and b are positive integers, then the
expected number of steps until a one dimensional simple random walk starting at O first hits b or —a is
ab. The probability that this walk will hit b before —a is a/(a+b).

In our case a and b correspond to the distance of the stopping point from the two surrounding signal
edges, in the units of the standard deviation of the jitter. The above formulae give the expected time
until the flipped ring oscillator settles to 0 output level as a’b/(a+b), and the expected time until the

stopped ring settles to 1 is b%a/(a+h). Their ratio is a/b.

If a or b is small, the signal of the stopped ring oscillator settles quickly to the logic level corresponding
to the closer edge, although there is always a slight chance that the settling takes long, or even reaches
the logic level corresponding to the opposite edge. If a and b are nearly equal, the expected settling time
is a2/2, which can be very large (if the jitter is small relative to the total delay).

Using time values in usual notation: let t, denote the total ring delay, the period length; t, the minimum
pulse width for properly switching the gates (t, < tp), and t; the standard deviation of the edge jitter. We

saw that the standard deviation of the pulse width jitter o = \/Et,-. The position of the event flipping the
ring, from the leading edge of the pulse it dissects, is tp.
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The expected time till a positive or negative pulse becomes too narrow, or too wide, and disappears is
approximately

a+b=
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If the flip occurs in the middle of a pulse, the expected time till the oscillation stops (at either logic level)
is approximately

t
16-tj
Note that in the approximate equations we disregarded t;, the time limit of the pulse decay effects,
which affect very narrow pulses. This would make only insignificant differences in the analysis, when the

oscillator is stopped at relatively far from the edges. A stopping point close to an edge, on the other
hand, shows fast settling and practically no randomness.

Simulations
The equations derived from our random walk model above, agree principally to our measurements,
depicted in Figure 3...Figure 8. Below we present very simple software simulations, based on this model.

The MATLAB macro below draws an animated figure, simulating the waveform of the positive feedback
ring, primed with a pulse of a specified width (a snapshot of the oscillating state, before turning the
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oscillator to a latch). With this program we did not intended to build an accurate physical model of the
circuits, but to build the possible simplest discrete model, which still demonstrated the pulse decay
observed in the prototype FPGA circuits. The simulation waveforms are reasonably close to real life
measurements, showing that the random walk model captures the most important characteristics of the
stopped-ring circuit. (Commercial circuit modeling SW can be used for more accurate simulations.)

The model contains R (even) identical inverters, with the same switching delay D+0.5 for inputs with
positive or negative slope. The noise effects are modeled with randomly changing the delay of every
switching event to D or D+1, at equal probability. The initial condition is the stable (latch) state,
artificially flipped over for a certain time period P. This corresponds to a free running negative feedback
ring oscillator, when it is switched to a positive feedback ring, in the position in the last output pulse
corresponding to P.

In real life circuits, when a pulse gets narrower than a certain width, the pulse decay phenomenon
makes the resulting output pulse narrower than the input. This does not cause an immediate stop of the
oscillation, but the pulses get progressively narrower, so within a few periods the oscillation likely stops.
This condition is included in the simulation model in a very simple form: when a pulsewidth becomes
less than the limit W (4), the pulsewidth gets reduced by 1.

Note that if the pulse decay function is removed from the model, we experience larger uncertainty of
the settling time, but the principal circuit behavior remains the same: the output settles to a fix level in
randomly varying time, dependent on the arming pulsewidth.

R = 4; % ring length (even)
N = 499; % display time window
L = 1e6; % max simulation length
D = 11; % gate delay (0.5 edge shift = jitter)
P =5; % arming pulse width in [2,D-1]
W = 4; % width of long enough pulses, which don"t shorten
S = repmat(~mod(1:R,2), L,1); % S(time,gate#) = STATE of gate at time
S(N-P:N-1,:) = ~S(N-P:N-1,:); % inject initial pulse of width P
stop = 0; ¢ = O;
for t = N:L
if t == stop, break, end
for 1 = 1:R
J = mod(i-2,R)+1; % previous inverter in ring
if S(t-D-1,j) == S(t-D,j) % new output from input before delay
S(t,i) = ~S(t-D,j); % no state change at input -> no output jitter
else
S(t,1) = round(rand(1)); % edge in input: +0.5 random delay
c=c+1; % count edges
stop = t + R*(D+1); % no edge for a long time -> oscillation stopped
end
f = [Find(SCE-(1:W),1)==S(t,i)); W+1];
if f() > 1 && () <= W % £(1)-1 = width of last pulse
S(t-1,1) = S(t,i1); % shorten pulse by 1
end
if 1I==2, hold on, end % output traces shown in one figure
plot(S(t-N+1:t, i) + 2*i-2) % last N states of iInvert#i, shifted up
end
axis([O N+1 -0.05 2*R-0.95])
pause(le-6); % small delay to display animation plot
hold off
end

title(["Number of pulses ~= * num2str(ceil(c/R/2))])

Figure 9 below shows a snapshot of the simulation window (containing the output waveforms of the 4
inverters in a ring), taken just after the ring output settled to a fixed logical level (the oscillations
stopped).
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Figure 9. Simulated waveforms of 4 inverters in a ring, when the oscillation stops

Reference FPGA Implementation

We have seen that the settling time depends on the noise in the system, making it highly random. It can
be captured by a circuit counting the edges of the output signal. This counter value and the somewhat
random final output level together are the generated random numbers.

There are many implementation possibilities in terms of the size of the ring oscillator; and the lengths of
the on- and off periods. In case of our test bed, an Altera Cyclone Ill FPGA board, we implemented
dozens of variants. The highest throughput was achieved with a ring of 15 inverter-buffer pairs. The on-
off clock was 390KHz, with 50% duty cycle. The counter values provided 6 bits of entropy, close to
normally distributed. It corresponds to 390K*6 = 2.34 Mbit/s throughput with using 40 logic elements.

For higher yield several such random number generator circuits can run in parallel. Our experiments did
not show synchronization between individual rings on the same FPGA, but for safety they could include
a varying number or types of buffer- or inverter gates, ensuring sufficiently different oscillation
frequencies, which do not interfere with each other.

29-Inverter Ring with 98 KHz Start/Stop

This circuit was typical among the many we implemented. It was neither the fastest nor the most stable,
although stable enough without any extra measures, and provided reasonably high throughput. The
counter values (with the final logic state) were very close to normally distributed (Figure 10).
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Figure 10. Histogram of the counter values Figure 11. Autocorrelation

9/15



The raw entropy is 5.63 bits per sample, but there is 35% autocorrelation between neighboring counter
values (Figure 11). The high autocorrelation is mostly the result of the non-uniform distribution. It can
be radically reduced by keeping only the 5 LS bits of the edge counter (Figure 12).
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Figure 12. Histogram of the 5 LS bits Figure 13. Autocorrelation of the 5 LS counter bits

The empirical entropy is 4.99 bit per counter, as expected, proving that the autocorrelation was due
mostly to the (discarded) high order bits. The autocorrelation is reduced to less than 2% at all offsets
(Figure 13), confirming 500 KHz throughput, by 5 bits entropy at every 10 ps.

Note that the generated random numbers still show somewhat non-uniform distribution, which, for
most applications, has to be corrected by whitening, slightly more reducing the throughput.

Statistical Randomness Tests

We applied statistical tests to the generated random numbers. Many such randomness tests are
published, for example [5], [6], [7], [8] or [10]. In [9] there is a survey. The most recent test suite, the
NIST 800-22 Randomness tests, is provided as C-99 source code, to be compiled by the user. It
confirmed the expected good quality of the generated random numbers: after whitening by general file
compression software (about 1% reduction the size of the captured data files), all tests passed.

Practical Considerations

More implementation details are deferred to a follow-up paper. Here we only informally list the main
ideas and our experiences.

Stability

The stability of the reference implementations of the discussed circuits was found satisfactory on FPGAs,
when the free running oscillation period was sufficiently short. If, for whatever reason, longer free
oscillation periods are chosen, well known and commonly used feedback techniques can be used to
keep the circuits in their optimal operational conditions, (at varying environmental conditions or
unstable supply voltages). See e.g. [18].

Experimental stabilizers were implemented by inserting a multiplexer in the ring to select one of several
delay elements (different types of buffers or inverters, one or more in series) to be included in the ring.
A simple circuit maintained a running count of the number of times the output signal settled too slowly
or too quickly after flipping. If either of these occurred more often than a preset limit, the multiplexer
advanced to another delay element. This way the optimum flipping point was maintained with the help
of just two dozen extra logic elements.
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Interferences

Strong internal or external signals might synchronize ring oscillators, and cause deterministic phase drift.
Therefore, random number generator circuits practically always need some protection. Off the shelf,
general solutions work well here, too. For example, duplicating the circuits and correlating the output
sequences reveal the presence of strong interference, and the affected bits could be discarded.

Whitening

Near perfect randomness can be achieved with entropy amplification, also known as whitening. Here
again well known, general techniques can be used: estimating the entropy and applying simple lossy
compression to the corresponding degree, or compressing the output stream with a good lossless
compression algorithm. (See, for example [11], [12] or [13].) The whitening step is mandatory for
cryptographic applications, where it is achieved by seeding a secure pseudorandom number generator
with imperfect physical random numbers. It is practically hashing based whitening.

Metastability in Ring Startup

Instead of investigating the (noise induced) uncertainties at stopping an oscillator, one can consider the
complementary option: the metastable start up of a ring oscillator or latch. The gates are brought to a
fixed state (e.g. all off), and let the circuit go by switching the gates to inverters, all in the same time.

A possible implementation is a ring of 2-input NAND (or analogously of NOR) gates, with all free inputs
connected to a switch S. If S is at the logic level O, all gate outputs are high (logic level 1). Turning switch
S to logic level 1, makes all the NAND gates behave like inverters of their ring-connected inputs. After an
initial chaotic (metastable) period the circuit behaves like a regular ring oscillator (with odd number of
inverters) or settles to a stable state of alternating on/off outputs (at even number of inverters).

1—9\56
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Figure 14. Starting a ring oscillator with metastable initial state

Physical Model

Immediately after arming the ring is metastable. All gates flip at roughly the same time, to another
metastable state. Little parameter differences and the noise make the gates flip at slightly different
times. These phase differences accumulate, and eventually separate the flipping events, resolving to a
stable oscillatory state — or to a static state, dependent on the parity of the number of inverters in the
ring.

As we saw at the analysis of the stopped ring oscillators, the pulses start up at the period length of the
total delay in the ring, that is half of the period at which the ring would oscillate (in case of odd number
of inverters). Because of the jitter, some of the pulses get narrower, others get wider. Again, as we
discussed earlier, if a pulse gets too narrow (or too wide), it cannot properly switch the next inverter,
making the pulse even narrower (inverted or straight) as it propagates through the ring. It eventually
disappears. At that time the ring settles either to a stable oscillation mode or to fixed logic levels.

The drift always behaves as a one dimensional random walk, and so our physical model for the stopping
of a ring oscillator applies to the ring startup, as well. The starting point is halfway between the stopping
points (a = b), which makes the settling slow (thousands of pulses in our prototype FPGA circuits).
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Practical Considerations

In practice the parameters of the gates are always slightly different, making the steps in the random
walk different in positive and negative direction, at each gate. This makes the circuit to settle earlier,
and mostly to the same state. With intentionally imbalanced implementations the settling can be made
faster, while its exact waveforms remain strongly dependent on the noise.

Another way to speed up the settling process is making the initial pulses intentionally asymmetric by
introducing synchronous switching events in the beginning. (It has similar effects to stopping a ring
oscillator from an artificially set up snapshot of the oscillatory state.) This makes the circuit more
complex, but faster, more predictable and stable under varying environmental conditions. See [24], [25].

Extracting Random Numbers

There are many ways the startup uncertainty could be turned to random numbers. The simplest (lowest
throughput) solution is to count the number of signal edges at a gate, in a certain time period, because
in the metastable state (of randomly varying length) pulses are generated at higher frequency. A higher
throughput but more complex possibility is taking frequent high resolution snapshots of the gate
outputs, and concatenating the resulting bit sequences to form long numbers, encoding the whole
chaotic startup process. The hash values of these numbers provide very good quality random numbers.

Simulations

The MATLAB macro below draws an animated figure of the simulated startup process of rings of
inverters. Again, we strived for the simplest discrete model, which still exhibits the observed
randomness in startup (this time by using a circular sliding window, so arbitrary slow settling can still be
handled). The simulation is based on the random walk model described earlier, with a pulse decay
condition, simplified to its extreme: if a pulse width becomes 1, the pulse is removed.

Despite of the excessive simplifications, the simulation results exhibit similar pulse width variations and
settling waveforms to real life circuits, showing that our model captured the most important aspects of
the circuit behaviors. (Note again that commercial SW can model our circuits more accurately.)

R = 3; % ring length
D = 5; % gate delay (D+0.5 + 0.5 edge shift = jitter)
N = 500; % simulation time window (circular)

e 0; ¥ = 0; % last edge positions of gatel

sm = 0; cnt = 1;

% S(time,inverter#) = STATE of inverter at time

% initially fast erratic oscillation, slowly get to normal period ~2R*(D+0.5)

S = zeros(N,R); % all gates start from reset
for idx = D+1:1e9
t = 0Cidx,N); % O(x,m) = mod(x-1,m)+1, user function
u = 0(t-D-1,N); v = 0(t-D,N); % new output from input before delay
for i = 1:R
J = 0(i-1,R); % preceding inverter
it S(u,j) == S(v.i)
S(t,i) = ~S(v,]J); % no state change at input -> no output jitter
else
S(t,i) = round(rand(1)); % edge in input: +*0.5 random delay
end
w = 0(t-1,N);
if S(w,i) ~= S(t,i) && S(w,i) ~= S(O(t-2,N),i)
S(w,i) = S(t,1); % remove too narrow pulse (%)
end
end
if S(O(t-1,N),1)~= S(t,1) % output edge: compute period
if S(t,1), period = O(t-e,N); e = t;
else period = O(t-f,N); ¥ = t; end

if idx > 2*R*(D+1), sm = sm + period; cnt = cnt+l; % moving average of periods
else sm = period; end
end
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for i = 1:R % display all output traces
if i==2, hold on, end
plot(SCOCt+(1:N),N), i) + 2*i-2)

end

axis([0 N+1 -0.05 2*R-0.95])

title(["Last Period: " num2str(period) ", Avg: " num2str(sm/cnt)])
pause(le-6); % small delay to display animation plot
hold off

end

On Figure 15 the sartup behavior of rings with odd number of inverters (3) are simulated. In this case,
after an intial chaotic state, the circuit functions as a stable oscillator. (At even number of inverters
constant output levels would be reached.) Three different simulated startup traces are shown, with 12,
6 and 10 narrow pulses before the oscillation stabilizes. For demonstration we chose large jitter (10%),
which also visibly affects the stable oscillation mode (jitter).

o 50 100 150 200 250 300 350 400 450 50C

o 50 100 150 200 250 300 350 400 450 50C

L L ! | L L L
o 50 100 150 200 250 300 350 400 450 50C

Figure 15. Three sets of startup waveforms on the 3 inverters of a ring

Conclusions

We investigated two fundamentally different ways, how oscillatory metastability can be used for stable,
fast random number generation. The theoretical background of their working lies in a random walk

model, driven by the circuit noise; and in the pulse decay phenomenon, which explains the final settling
behavior of the proposed circuits.
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