
A Scalable Method for Constructing Galois NLFSRs
with Period 2n−1 using Cross-Join Pairs

Elena Dubrova

Royal Institute of Technology (KTH), Forum 120, 164 40 Kista, Sweden
{dubrova}@kth.se

Abstract. This paper presents a method for constructingn-stage Galois NLFSRs
with period 2n−1 from n-stage maximum length LFSRs. We introduce nonlin-
earity into state cycles by adding a nonlinear Boolean function to the feedback
polynomial of the LFSR. Each assignment of variables for which this function
evaluates to 1 acts as a crossing point for the LFSR state cycle. By adding acopy
of the same function to a later stage of the register, we cancel the effect of nonlin-
earity and join the state cycles back. The presented method requires no extra time
steps and it has a smaller area overhead compared to the previous approaches
based on cross-join pairs. It is feasible for largen. However, it has a number of
limitations. One is that the resulting NLFSRs can have at most⌊n/2⌋-1 stages
with a nonlinear update. Another is that feedback functions depend only on state
variables which are updated linearly. The latter implies that sequences generated
by the presented method can also be generated using a nonlinear filter generator.

1 Introduction

This paper addresses the problem of synthesis of Nonlinear Feedback Shift Registers
(NLFSRs) with a guaranteed long period. This problem is known to be notoriously hard.
None of the available algorithms is feasible for large NLFSRs.

One of the proposed approaches is to start from a shift register producing several
shorter cycles and then to join them into one cycle. Pure cycling registers [10, 13, 14],
pure summing registers [9], or LFSRs [20] has been used as a starting point in the
previous algorithms.

An alternative approach is to start from a shift register with a known period and to
obtain another shift register with the same period by using cross-join pairs [11]. The
cross-join pair methods are based on the following idea. Thenew state cycle is obtained
from a given state cycleC by first splittingC into two cycles,C1 andC2, and then by
joining C1 andC2 back into another cycle. The splitting in done by interchanging the
successors of a pair of states,{S1,S2}. This pair is called thecross pair. The joining
in done by interchanging the successors of another pair of states,{S3,S4}, such that
S3 ∈ C1 andS4 ∈ C2. This pair is called thejoin pair. Different methods use different
strategies for selecting cross and join pairs [4,12].

Helleseth and Kløve [18] proved that the number of cross-join pairs in a maxi-
mum lengthn-stage LFSR equals to(2n−1−1)(2n−1−2)/6. This important result pro-
vides a theoretical base for constructingn-stage NLFSRs with period 2n−1 from max-
imum length LFSRs. Unfortunately, the problem of choosing abest set of compatible

2

cross-join pairs minimizing the circuit complexity of feedback functions of the resulting
NLFSR is intractable.

In this paper, we show that the circuit complexity of feedback functions can be easily
controlled if we use the Galois instead of the Fibonacci configuration of NLFSRs. We
present a method in which the cross-join pairs are determined by a nonlinear function
which is added to the input stage of the LFSR. Each assignmentof variables for which
this function evaluates to 1 acts as a crossing point for the original LFSR cycle. By
adding a copy of the same nonlinear function to a later stage of the LFSR, we join the
cycles back.

Since our method works with Boolean functions rather than with state cycles, it is
feasible for largen. However, it has a number of limitations. One is that the resulting
NLFSRs can have at most⌊n/2⌋-1 stages with a nonlinear update. Another is that feed-
back functions depend only on state variables which are updated linearly. The latter
implies that sequences generated by the presented method can also be generated using
a nonlinear filter generator.

The paper is organized as follows. Section 2 gives a background on FSRs. Section 3
describes previous work. Section 4 presents our method for constructing NLFSRs. Sec-
tion 5 discusses the relation between NLFSRs constructed using the presented approach
and nonlinear filter generators. Section 6 concludes the paper.

2 Preliminaries

Throughout the paper, we use ”+” and ”·” to denote addition and multiplication in
GF(2). We usex to denote the complement ofx, which is defined byx = 1+ x. The
Boolean functionsGF(2n)→ GF(2) are represented using theAlgebraic Normal Form
(ANF) [23] which is a polynomial inGF(2) of type

f (x0,x1, . . . ,xn−1) =
2n−1

∑
i=0

ci ·x
i0
0 ·xi1

1 · . . . ·xin−1
n−1,

whereci ∈ {0,1} and(i0i1 . . . in−1) is the binary expansion ofi.
A Feedback Shift Register (FSR)consists ofnbinary storage elements, calledstages.

Each stagei ∈ {0,1, . . . ,n− 1} has an associatedstate variable xi which represents
the current value of the stagei and afeedback function fi : GF(2n) → GF(2) which
determines how the value ofi is updated (see Figure 1). For anyi ∈ {0,1, . . . ,n−1}, fi
depends onx(i+1)modn and a subset of variables from the set{x0,x1, . . . ,xi}.

A stateof an FSR is a vector of values of its state variables(x0,x1, . . . ,xn−1). At
every clock cycle, the next state of an FSR is determined fromits current state by
simultaneously updating the value of each stagei to the value offi . Theperiod of an
FSR is the length of the longest cyclic output sequence it produces [16]. Theoutputof
an FSR is the value of its stage 0. Theinputof an FSR is the value of its stagen−1.

If all feedback functions of an FSR are linear, then it is called aLinear Feedback
Shift Register(LFSR). Otherwise, it is called aNon-Linear Feedback Shift Register
(NLFSR).

3

...

......

n−1fn−2output input0 f0 n−2 fn−1

Fig. 1. The general structure of an FSR.

An FSR can be implemented either in theFibonaccior in theGaloisconfiguration
In the former, the feedback is applied to the input stage of the shift register only, while
in the latter the feedback can potentially be applied to every stage.

Its is known that the recurrence relation generated by the feedback function of an
n-stage LFSR has a characteristic polynomial of degreen [16]. If this polynomial is
primitive, then the state space of the LFSR consists of two cycles, of length 2n − 1
and 1. The cycle of length 2n − 1 includes all but all-0 state. The output sequences
corresponding to this cycle are calledmaximum lengthsequences, orm-sequences.

Let S= (s0,s1, . . . ,sn−1) be a state of ann-bit FSR. TheconjugateŜand thecom-
panion S′ of Sare defined by [10]:

Ŝ= (s0,s1, . . . ,sn−1),
S′ = (s0,s1, . . . ,sn−1).

In the Fibonacci configuration of FSRs, each state has two possible predecessors
and two possible successors. The predecessors are conjugates of each others. The suc-
cessors are companions of each others. The transitions between these four states define
an adjacency quadrupleassociated with the binary(n− 1)-tuple which they have in
common (see Figure 2).

Two pairs of states{S1,S2} and{S3,S4} are called across-join pair if by inter-
changing the successors ofS1 andS2 we split the state cycle into two cycles, and by
interchanging the successors ofS3 and S4 we join the two cycles back into one cy-
cle [11]. In the traditional cross-join pair based methods,S2 = Ŝ1 andS4 = Ŝ3 [18]. In
the method presented in this paper,S2 = Ŝ1, butS4 6= Ŝ3.

An n-stage NLFSR is calleduniform if, for some 0≤ τ < n:

fi(x0,x1, . . . ,xn−1) = x(i+1)modn +hi(x0, . . . ,xτ) for τ ≤ i < n
fi(xi+1) = xi+1 for 0≤ i < τ

wherehi does not depend on the variablex(i+1)modn. The stageτ is called theterminal
stage[8].

Let fi and f j be feedback functions of the stagesi and j of an n-stage NLFSR,

respectively. The operationshifting, denoted byfi
M
→ f j , moves a set of ANF monomials

M from fi to f j . The index of each variablexk in each monomial inM is changed to
x(k−i+ j)modn.

4

... ...0 s1 sn−1

s1 0 s1

1 s1 sn−1

1

sn−2

sn−2sn−2

sn−2

sn−1sn−1

Fig. 2. An adjacency quadruple describing possible transitions between four states of an FSR in
the Fibonacci configuration associated with the binary(n−1)-tuple(s1,s2, . . . ,sn−1) which they
have in common.

The following theorem, proved in [8], describes a sufficientcondition for equiva-
lence of NLFSRs before and after shifting. Two NLFSRs areequivalentif their sets of
output sequences are equal.

Theorem 1. Given a uniform NLFSR with the terminal stageτ, a shifting fτ
M
→ fτ′ ,

τ′ < τ, results in an equivalent NLFSR if the transformed NLFSR is uniform as well.

3 Previous work

Most of the previous works focused on the synthesis of full-length NLFSRs with pe-
riod 2n. Sequences generated by full-length NLFSRs are usually called de Bruijn se-
quences[7]. An excellent survey of algorithms for generating de Bruijn sequences given
in [11].

Early algorithms used thecirculating register[22] (also referred to as thepure cy-
cling register[25]) as a starting point. A circulating register is ann-stage FSR whose
feedback functions are of typefi(x(i+1)modn) = x(i+1)modn for i ∈ {0,1, . . . ,n−1}. In
other words, the content of the output stage of the register is cycled around to the input
stage. This partitions the space of 2n n-tuples intoZn cycles, where

Zn =
1
n ∑

d/n

φ(d)2n/d

the sum is over all divisorsd of the register lengthn andφ is the Euler’s totient func-
tion [11].

The circulating register generatesZn state cycles. It is known that, if the feed-
back function of the input stage of an FSR in the Fibonacci configuration is of type
fn−1(x0,x1, . . . ,xn−1) = x0 +h(x1, . . . ,xn−1), then the number of it state cycles changes
by one as the weight of the truth table ofh changes by one [11]. So, changing any of
the 0s in the truth table ofh either joins or splits two of theZn cycles. The cycles of
the circulating register cannot be splitted since for this to happen a cycle of lengthn
has to contain an even and an odd number of 1s. Therefore, witha single change from
0 to 1 two cycles can be joined together. This idea has been exploited to join cycles in
different ways.

Circulating registers were studied by Golomb [16], Fredricksen [12] and Roth [29].
The number of possible interconnections between these cycles was derived by Mykkel-

5

veit [25] and van Lantschoot [22]. Fredricksen [10] have shown how to generate 22n−5

full cycles from a circulating register of lengthnusing 6nbits of storage andn time steps
to produce the next state from a current state. Algorithms using composition to generate
full cycles were developed by Fredricksen and Kessler [13],Etzion and Lempel [9], and
a generalization tok-ary sequences was done by Fredricksen and Maiorana [14] and
Ralston [26].

Etzion and Lempel [9] presented an algorithm for the generation of full cycles
based onpure summing registers, whose feedback function of the input stage is of type
fn−1(x0,x1, . . . , xn−1) = x0+x1+ . . .+xn−1. Their algorithm generates 2n2/4 full cycles
usingn2/4 bits of storage andn time steps to produce the next state from a current state.

Jensen [20] presented an algorithm for joining state cyclesarising from an arbitrary
shift register. This algorithm is based on the property that, if there exists a stateS in a
cycleC1 and a stateS′ in a cycleC2 which is a companion ofS, then two cycles can
be joined by interchanging the predecessors ofS andS′. In its essence, the algorithm
modifies the original feedback function of the shift register by complementing an entry
in its truth table every time it encounters a special state, called thestate representative.
of the cycle. Therefore, the run-time of the algorithm is directly proportional to the
time it takes to find cycle representatives. The shorter are the cycles of the original shift
register, the faster is the algorithm. Jensen has shown that, if LFSR with short state
cycles are used as a starting point, then such an approach makes possible to generate
O(22n/log2n) full length sequences using 3n bits of storage and at most 4n time steps for
producing the next state from a current state.

An algorithm based on cross-join pairs was proposed by Fredriksen [12] for a class
of NLFSRs generating ”prefer one” de Bruijn sequences. In a ”prefer one” de Bruijn
sequence, then-tuple (1,a1,a2, . . . ,an−1) precedes then-tuple (0,a1,a2, . . . ,an−1) for
all n−1-tuples(a1,a2, . . . ,an−1) except all-0.

A recursive algorithm for generating de Bruijn sequences based on Lempels D-
homomorphism was presented by Annexstein [1]. A more efficient, non-recursive al-
gorithm based on Lempels D-homomorphism was given by Chang et al in [4]. In these
algorithms,n-variable Boolean functions generating de Bruijn sequenceof ordern are
constructed from Boolean functions with a smaller number ofvariables.

Janicka-Lipska and Stoklosa [19] presented a heuristic algorithm for random gen-
eration of feedback functions for full-length NLFSRs. The algorithm is based on the
properties which are derived based on the results of an exhaustive search for feedback
functions of full length NLFSRs of up to 6 variables. It is conjectured that these prop-
erties hold for functions with a larger number of variables.

Chang et al [5] conjectured that the number of cross-join pairs in maximum length
LFSRs equals to(2n−1 − 1)(2n−1 − 2)/6. Helleseth and Kløve [18] gave an elegant
proof of this conjecture.

4 Constructing NLFSRs from LFSRs

The following Theorem describes the basic step of the presented method for construct-
ing n-stage Galois NLFSRs with period 2n−1 from n-stage maximum length LFSRs.

6

Theorem 2. Let N be an n-stage NLFSR with the feedback functions of type

fn−1(x0,x1, . . . ,xn−2) = x0 + fL(x1,x2, . . . ,xn−2)+ fN(x1,x2, . . . ,xn−2)
fn−2(x0,x1, . . . ,xn−3,xn−1) = xn−1 + fN(x0,x1, . . . ,xn−3)
fn−3(xn−2) = xn−2

. . .
f0(x1) = x1

(1)

where fL is a linear Boolean function of type

fL(x1,x2, . . . ,xn−2) = c1x1 + . . .+cn−2xn−2

where ci ∈ {0,1}, for i ∈ {1,2, . . . ,n− 2}, and fN is an arbitrary nonlinear Boolean
function. Then N has period2n−1 if the polynomial

g(x) = 1+c1x+c2x2 + . . .+cn−2xn−2 +xn

is primitive.

Proof: The primitive characteristic polynomialg(x) = 1+c1x+c2x2+ . . .+cn−2xn−2+
xn gives rise to ann-stage LFSR in the Fibonacci configuration whose input stageis
updated using the function

fn−1(x0,x1, . . . ,xn−2) = x0 +c1x1 + . . .+cn−2xn−2 = x0 + fL(x1,x2, . . . ,xn−2)

and fi(xi+1) = xi+1, for i ∈ {0,1, . . . ,n−2}. Sinceg(x) is primitive, the LFSR period is
2n−1 [16].

Since f + f = 0 for any Boolean functionf , we can re-write the above as

fn−1(x0, . . . ,xn−2) = x0 + fL(x1, . . . ,xn−2)+ fN(x1,x2, . . . ,xn−2)+ fN(x1,x2, . . . ,xn−2)

where fN is an arbitrary nonlinear Boolean function.

By applying the shiftingfn−1
M fN→ fn−2, whereM fN is the set of all monomials of

the ANF of fN, we obtain:

fn−1(x0,x1, . . . ,xn−2) = x0 + fL(x1,x2, . . . ,xn−2)+ fN(x1,x2, . . . ,xn−2)
fn−2(x0,x1, . . . ,xn−3,xn−1) = xn−1 + fN(x0,x1, . . . ,xn−3)

and fi(xi+1) = xi+1 for i ∈ {0,1, . . . ,n− 3}. By Theorem 1, the output stage of this
NLFSR generates the same sets of sequences as the output stage of the LFSR, therefore
its period is 2n−1.

2

Figure 3 illustrates the effect of nonlinear functions on the state cycle of the LFSR.
Each non-0 assignment(s1,s2, . . . ,sn−2) ∈ GF(2n−2) of variables(x1,x2, . . . , xn−2) for
which fN(x1,x2, . . . , xn−2) evaluates to 1 complements two entries in the truth table
of fn−1(x0,x1, . . . ,xn−2). Thus, the values of the input stages of the successors of
the states(0,s1, . . . ,sn−2,sn−1) and(1,s1, . . . ,sn−2,sn−1) are complemented. For each
sn−1 ∈ {0,1}, this splits the LFSR state cycle into two cycles.

7

...

...

......

...

s1 sn−2 sn−1 a...s1 sn−2 sn−1 a

s2 ... bsn−1 sn−2 sn−1s1

s2 ... basn−1sn−2 sn−1s1 ...

a 0

1

...

Fig. 3. An illustration of the effect of nonlinear functions on the state cycle of the LFSR for the
case whenfN(0,0, . . . ,0) = 0. The dashed lines show the connections in the original LFSR state
cycle. The solid lines show the connections in the constructed NLFSR state cycle; a,b∈ {0,1}
are constants.

Since the functionfN(x0,x1, . . . ,xn−3) which is added tofn−2(x0,x1, . . . ,xn−3,xn−1)
evaluates to 1 for the assignment(s1,s2, . . . ,sn−2) of variables(x0,x1, . . . ,xn−3), two en-
tries in the truth table offn−2(x0,x1, . . . ,xn−3,xn−1) are also complemented. As a result,
the values of then−2nd stages of the successors of the states(s1, . . . ,sn−2,sn−1,a) and
(s1, . . . ,sn−2,sn−1,a) are complemented. For eachsn−1 ∈ {0,1}, this joints the previ-
ously splitted LFSR cycles back into one cycle.

We can see that these transformations result in interchanging pairs of companion
states in the LFSR cycle. For each non-0 assignment(s1,s2, . . . ,sn−2) ∈ GF(2n−2), two
pairs of companion states,{(s1, . . . ,sn−2,0,a),(s1, . . . ,sn−2,0,a)} and{(s1, . . . ,sn−2,1,
a),(s1, . . . ,sn−2,1,a)}, are interchanged.

Figure 4 illustrates the special case of all-0 assignment. If fN(0,0, . . . ,0) = 1, then
the all-0 state is joined into the main cycle and the state(0, . . . ,0,1) is splitted from the
main cycle. The states(0, . . . ,0,1,0) and(0, . . . ,0,1,1) are interchanged.

From the above, we can easily derive the following property.Let wt(f) denote the
Hamming weight of the truth table of a Boolean functionf . Let HD(a,b) denote the
Hamming distance between the binary vectorsa andb.

Lemma 1. Let N be an n-stage NLFSR constructed using Theorem 2 and L be its un-
derlying maximum length LFSR in the Fibonacci configuration. Let AL and AN be se-
quences of the input stages of the L and N, respectively, of length2n−1. If L and N are
initialized to the same state which is neither(0, . . . ,0,0) nor (0, . . . ,0,1), then

HD(AL,AN) =

{

4∗wt(fN), if fN(0,0, . . . ,0) = 0
4∗wt(fN)−1, otherwise.

(2)

8

...

...

...

...

... 0100

...0 0 1 1

...1 100

0

... 1

01

000

0 000

0...

...

... 010

110 ... b

b

Fig. 4. The special case offN(0,0, . . . ,0) = 1.

Note, that it is important that in Theorem 2 neitherfL nor fN depend on the variable

xn−1. Otherwise, the NLFSR after shiftingfn−1
M fN→ fn−2 is not uniform and the equiv-

alence to the original LFSR in not guaranteed by Theorem 1. Asan example, consider
the following 4-stage NLFSR in whichfN depends on the variablex3:

f3(x0,x1,x2,x3) = x0 +x1 +x1x2x3

f2(x0,x1,x2,x3) = x3 +x0x1x2

f1(x2) = x2

f0(x1) = x1

This NLFSR is constructed by adding the nonlinear functionx1x2x3 to the linear func-
tion x0 + x1 corresponding to the primitive polynomial 1+ x+ x4. The resulting state
cycles are shown in Figure 5. Their period is 1.

In general, it is not necessary to shift a copy offN to the feedback function of the
n−2nd stage, as in Theorem 2. We can shift it to the stages with a lower index. We can
also shift its monomials to several different feedback functions. The only requirement
is to keep the NLFSR after shifting uniform, in order to preserve its equivalence to the
NLFSR before shifting.

By shifting a copy offN to the stages with a lower index, we allow more stages of
the resulting NLFSR to have a nonlinear update. For example,if the equations (1) are

9

11101010 0101 1011 0110 1101 1000 0001 0011 0111

1100 1111 0100

0010

1001

0000

Fig. 5. An example of the state transition graph of an NLFSR constructed using Theorem 2 for
the case whenfN depends onxn−1.

modified to:

fn−1(x0,xk−1,xk) = x0 + fL(x1,x2, . . . ,xn−k)+ fN(xk−1,xk)
fn−2(xn−1) = xn−1

. . .
fn−k+1(xn−k+2) = xn−k+2

fn−k(x0,x1,xn−k+1) = xn−k+1 + fN(x0,x1)
fn−k−1(xn−k) = xn−k

. . .
f0(x1) = x1

wherek = ⌊n/2⌋, then the Theorem 2 still holds.
The above example shows that up to⌊n/2⌋−1 of the NLFSR constructed using the

presented method can have a nonlinear update.
By shifting the monomials offN to several feedback functions, we can reduce the

depth of feedback functions and share common monomials. This leads to faster and
smaller NLFSRs [3]. For example, suppose thatn is even and we use the nonlinear
function fN(x1,x2, . . . ,x2) = x1x2 + x3x4 + . . .+ xn−3xn−2. Then, we can construct the
following NLFSR with period 2n−1:

fn−1(x0,x1,x2) = x0 + fL(x1,x2)+x1x2

fn−2(x0,x1,xn−1) = xn−1 +x0x1

fn−3(x1,x2,xn−2) = xn−2 +x1x2

fn−4(x0,x1,xn−3) = xn−3 +x0x1

. . .
f3(x1,x2,x4) = x4 +x1x2

f2(x0,x1,x3) = x3 +x0x1

f1(x2) = x2

f0(x1) = x1

Such a distribution of monomials makes possible, in theory,to realize ann-stage NLFSR
with period 2n−1 using only 2 two-input AND gates andn two-input XOR gates. In
practice, however, gates have a limited fan-out, i.e. theiroutput can be connected only

10

to a limited number of gate inputs. Note, that the linear function fL may depend on
more variables, but then its variables with indexes larger that 2 have to be shifted down
in order to get a uniform NLFSR.

By shifting the monomials offN to several feedback functions, we can also obtain a
different type of nonlinear update for different stages of the NLFSR. For example, ifn=
6, the primitive polynomial is 1+x+x6, and the nonlinear function isfN(x1,x2,x3,x4) =
x1x2 +x4 +x3x4, then we can construct the following NLFSR:

f5(x0,x1,x2) = x0 +x1 +x1x2

f4(x0,x1,x5) = x5 +x0x1

f3(x1,x2,x4) = x4 +x2 +x1x2

f2(x0,x1,x3) = x3 +x1 +x0x1

f1(x2) = x2

f0(x1) = x1

5 Relation to Nonlinear Filter Generators

A known approach to improving the security of LFSRs is to passthe outputs of selected
stages of an LFSR into a nonlinear filtering function which combines them to create
a keystream. Suchnonlinear filter generatorsare an important building block in many
stream ciphers [27].

There is an obvious relation between sequences generated byNLFSRs constructed
using the presented approach and nonlinear filter generators. A filter generator using
x0+ fL + fN as its filtering function can produce the same sets of sequences as the input
stage of an NLFSR constructed using the Theorem 2. Furthermore, since the NLFSR
contains two copies offN, the filter generator will be smaller than the NLFSR.

However, if not only a sequence, but also its shifted versions are required, then NLF-
SRs will be more hardware-efficient than filter generators. We can use up to⌊n/2⌋−1
stages for shifting the content of the input stage. To obtainthe same set of sequences
with a nonlinear filter generator, an additional shift register is needed. Since flip-flops
are more expensive than gates, this is less efficient than adding a second copy offN.
For example, in UMC 90nm CMOS technology, the smallest flip-flop is 4.2 times larger
than a two-input NAND gate.

Due to the relation between nonlinear filter generators and NLFSRs, the attacks
on filter generators can be adopted to attack NLFSRs constructed using the presented
approach (see Golić [15] and Rønjom, Gong and Helleseth [28] for excellent surveys
of the various attacks on filter generators). On the other hand, we can make use of
the accumulated knowledge on selecting Boolean functions for filter generators [6] and
on linear complexity of their sequences [21, 24] to choose a cryptographically strong
function fN for the NLFSR.

Our results provide an alternative way of looking into sequences produced by non-
linear filter generators and might contribute to further understanding of their structure.

11

+ +Nonlinear update Linear update

Keystream

...

...

... ...

fN2

x0 + fL

fN1

f shi f ted
N1

Fig. 6. A keystream generation method based on the presented NLFSRs.

6 Conclusion

In this paper, we presented a method for constructingn-stage NLFSRs in the Galois
configuration with period 2n − 1 from maximum length LFSRs. Our method has no
time overhead and it has a smaller area overhead compared to the previous approaches
based on cross-join pairs. It is feasible for largen.

A limitation of the presented approach is that the resultingNLFSRs can have at most
⌊n/2⌋-1 stages with a nonlinear update. The rest of their stages isupdated linearly. An-
other limitation is that feedback functions depend only on state variables which are up-
dated linearly. Therefore the algebraic degree of the polynomial representing the value
of the input stage of an NLFSR aftert time steps will be at most by 1 larger than the
algebraic degree of the polynomial representing the feedback function fn−1.

The presented method might be useful for applications that require nonlinear se-
quences together with a set of their shifted versions, e.g. in the design of correlators for
spread spectrum communication systems, randing systems, or radar systems. It will also
be interesting to investigate if it can help us to construct asecure stream cipher which
is smaller than the top stream ciphers such as Grain-128 [17]and Trivium [2]. Figure 6
shows a possible diagram in which the outputs of selected stages with the nonlinear
update are passed to another nonlinear function,fN2, for creating a keystream.

References

1. F. S. Annexstein. Generating de Bruijn sequences: An efficient implementation.IEEE Trans-
actions on Computers, 46:198 – 200, 1997.

2. C. Cannìere and B. Preneel. Trivium.New Stream Cipher Designs: The eSTREAM Finalists,
LNCS 4986, pages 244–266, 2008.

3. J.-M. Chabloz, S. Mansouri, and E. Dubrova. An algorithm for constructing a fastest Galois
NLFSR generating a given sequence. In C. Carlet and A. Pott, editors,Sequences and Their

12

Applications - SETA 2010, volume 6338 ofLecture Notes in Computer Science, pages 41–54.
Springer Berlin / Heidelberg, 2010.

4. T. Chang, B. Park, Y. H. Kim, and I. Song. An efficient implementation of the D-
homomorphism for generation of de bruijn sequences.IEEE Transactions on Information
Theory, 45:1280–1283, 1999.

5. T. Chang, I. Song, and S. H. Cho. Some properties of cross-join pairs in maximum length
linear sequences. InProceeding of ISZTA ’90, pages 1077–1079, 1990.

6. T. W. Cusick and P. Stǎniča. Cryptographic Boolean functions and applications. Academic
Press, San Diego, CA, USA, 2009.

7. N. G. de Bruijn. A combinatorial problem.Nederl. Akad. Wetensch, 49:758–746, 1946.
8. E. Dubrova. A transformation from the Fibonacci to the Galois NLFSRs. IEEE Transactions

on Information Theory, 55(11):5263–5271, November 2009.
9. T. Etzion and A. Lempel. Algorithms for the generation of full-length shift register se-

quences.IEEE Transactions on Information Theory, 3:480–484, May 1984.
10. H. Fredricksen. A class of nonlinear deBruijn cycles.J. Comb. Theory, 19(A):192–199,

Sept. 1975.
11. H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM

Review, 24(2):195–221, 1982.
12. H. M. Fredricksen. Disjoint cycles from de Bruijn graph. Technical Report 225, USCEE,

1968.
13. H. M. Fredricksen and I. J. Kessler. Lexicographic compositionsand de Bruijn sequences.

J. Comb. Theory, 22:17–30, 1977.
14. H. M. Fredricksen and J. Maiorana. Neklaces of beads in k colorsand k-ary de Bruijn

sequences.Discrete Math., 23:207–210, 1978.
15. J. D. Golíc. On the security of shift register based keystream generators.Fast Software

Encryption, LNCS 809, pages 90–100, 1994.
16. S. Golomb.Shift Register Sequences. Aegean Park Press, 1982.
17. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain family of stream ciphers.New

Stream Cipher Designs: The eSTREAM Finalists, LNCS 4986, pages 179–190, 2008.
18. T. Helleseth and T. Kløve. The number of cross-join pairs in maximumlength linear se-

quences.IEEE Transactions on Information Theory, 31:1731–1733, 1991.
19. I. Janicka-Lipska and J. Stoklosa. Boolean feedback functions for full-length nonlinear shift

registers.Telecommunications and Informatioin Technology, 5:28–29, 2004.
20. C. J. Jansen.Investigations On Nonlinear Streamcipher Systems: Construction and Evalua-

tion Methods. Ph.D. Thesis, Technical University of Delft, 1989.
21. E. Key. An analysis of the structure and complexity of nonlinear binary sequence generators.

IEEE Transactions on Information Theory, 22:732 – 736, 1976.
22. E. J. v. Lantschoot. Double adjacencies between cycles of a circulating shift register.Trans-

actions on Computers, C-22:944–954, 1973.
23. R. Lidl and H. Niederreiter.Introduction to Finite Fields and their Applications. Cambridge

Univ. Press, 1994.
24. J. L. Massey and S. Serconek. Linear complexity of periodic sequences: A general theory.

In Advances in Cryptology-Crypto’96, Lecture Notes in Computer Science, pages 358–371.
Springer-Verlag, 1996.

25. J. Mykkelveit. Generating and counting the double adjacencies in a pure cycling shift regis-
ter. Transactions on Computers, C-24:299–304, 1975.

26. A. Ralston. A new memoryless algorithm for de Bruijn sequences.J. Algorithms, 2:50–62,
1981.

27. M. Robshaw. Stream ciphers. Technical Report TR - 701, July 1994.

13

28. S. Rønjom, G. Gong, and T. Helleseth. A survey of recent attacks on the filter generator. In
S. Boztas and H.-F. Lu, editors,Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, volume 4851 ofLNCS, pages 7–17. Springer Berlin / Heidelberg, 2007.

29. E. Roth. Permitations arranged around a cycle.Amer. Math. Monthly, pages 990–992, 1971.

