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Abstract. This paper presents a method for constructirgjage Galois NLFSRs
with period 2' — 1 from n-stage maximum length LFSRs. We introduce nonlin-
earity into state cycles by adding a nonlinear Boolean function to the fekdbac
polynomial of the LFSR. Each assignment of variables for which thistfan
evaluates to 1 acts as a crossing point for the LFSR state cycle. By adcimy a
of the same function to a later stage of the register, we cancel the efffeanlin-
earity and join the state cycles back. The presented method requiresatiree
steps and it has a smaller area overhead compared to the previooscmEs
based on cross-join pairs. It is feasible for largeHowever, it has a number of
limitations. One is that the resulting NLFSRs can have at nmog2|-1 stages
with a nonlinear update. Another is that feedback functions depend argyate
variables which are updated linearly. The latter implies that sequencesaget
by the presented method can also be generated using a nonlinear fikeatgen

1 Introduction

This paper addresses the problem of synthesis of Nonlineedtfack Shift Registers
(NLFSRs) with a guaranteed long period. This problem is kméwbe notoriously hard.
None of the available algorithms is feasible for large NLESR

One of the proposed approaches is to start from a shift Ergsbducing several
shorter cycles and then to join them into one cycle. Pureingakgisters [10, 13, 14],
pure summing registers [9], or LFSRs [20] has been used aartingt point in the
previous algorithms.

An alternative approach is to start from a shift registetvétknown period and to
obtain another shift register with the same period by usigsjoin pairs [11]. The
cross-join pair methods are based on the following idea.nevestate cycle is obtained
from a given state cycl€ by first splittingC into two cyclesC; andCy, and then by
joining C; andC; back into another cycle. The splitting in done by interchagghe
successors of a pair of stat§sy, S }. This pair is called theross pair The joining
in done by interchanging the successors of another pairaésf{ Sz, S}, such that
S3 € Cp andS € Co. This pair is called théoin pair. Different methods use different
strategies for selecting cross and join pairs [4,12].

Helleseth and Klgve [18] proved that the number of cross-fmirs in a maxi-
mum lengtn-stage LFSR equals {@"! — 1)(2"~1 —2) /6. This important result pro-
vides a theoretical base for constructimgtage NLFSRs with period'2- 1 from max-
imum length LFSRs. Unfortunately, the problem of choosirtgeat set of compatible



cross-join pairs minimizing the circuit complexity of fdeatk functions of the resulting
NLFSR is intractable.

In this paper, we show that the circuit complexity of feedbfamctions can be easily
controlled if we use the Galois instead of the Fibonacci caméition of NLFSRs. We
present a method in which the cross-join pairs are detemiriryyea nonlinear function
which is added to the input stage of the LFSR. Each assignaieatiables for which
this function evaluates to 1 acts as a crossing point for tiggnal LFSR cycle. By
adding a copy of the same nonlinear function to a later stagiged.FSR, we join the
cycles back.

Since our method works with Boolean functions rather thath wiate cycles, it is
feasible for largen. However, it has a number of limitations. One is that the ltegy
NLFSRs can have at mogt/2]-1 stages with a nonlinear update. Another is that feed-
back functions depend only on state variables which are teddiaearly. The latter
implies that sequences generated by the presented methadiscabe generated using
a nonlinear filter generator.

The paper is organized as follows. Section 2 gives a backgron FSRs. Section 3
describes previous work. Section 4 presents our methodfwstoucting NLFSRs. Sec-
tion 5 discusses the relation between NLFSRs constructad tie presented approach
and nonlinear filter generators. Section 6 concludes therpap

2 Preliminaries

Throughout the paper, we use-" and ”.” to denote addition and multiplication in
GF(2). We usex to denote the complement &f which is defined byx = 1+ x. The
Boolean function§&sF(2") — GF(2) are represented using thdégebraic Normal Form
(ANF)[23] which is a polynomial ifGF(2) of type

2n-1

f(X0,X1,. -, Xn-1) = %c.x'é’x'llx:;‘j,
i=

wherec; € {0,1} and(igi1...in—1) is the binary expansion of

A Feedback Shift Register (FS€)nsists oh binary storage elements, callsthges
Each stage € {0,1,...,n— 1} has an associatestate variable xwhich represents
the current value of the stageand afeedback function; f GF(2") — GF(2) which
determines how the value ofs updated (see Figure 1). For aing {0,1,...,n—1}, f;
depends 0, 1)mogn @Nd a subset of variables from the $&f,x1, ..., % }.

A stateof an FSR is a vector of values of its state varial{lesxy, ..., xn—1). At
every clock cycle, the next state of an FSR is determined fitsncurrent state by
simultaneously updating the value of each stagethe value off;. The period of an
FSR is the length of the longest cyclic output sequence dyces [16]. Theutputof
an FSR is the value of its stage 0. Tihputof an FSR is the value of its stage- 1.

If all feedback functions of an FSR are linear, then it is@dlaLinear Feedback
Shift Registe(LFSR). Otherwise, it is called Blon-Linear Feedback Shift Register
(NLFSR).
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Fig. 1. The general structure of an FSR.

An FSR can be implemented either in thidonaccior in the Galois configuration
In the former, the feedback is applied to the input stage @Fttift register only, while
in the latter the feedback can potentially be applied toyestage.

Its is known that the recurrence relation generated by tediack function of an
n-stage LFSR has a characteristic polynomial of degrg¢®6]. If this polynomial is
primitive, then the state space of the LFSR consists of twalesy of length 2—1
and 1. The cycle of length"2- 1 includes all but all-0 state. The output sequences
corresponding to this cycle are callethximum lengtlsequences, an-sequences.

Let S= (%0,S1,...,5-1) be a state of an-bit FSR. Theconjugateé and thecom-
panion Sof Sare defined by [10]:

S= (S0,S1,-+-,%-1),
S = (50,51, 5-1)-

In the Fibonacci configuration of FSRs, each state has tweilplespredecessors
and two possible successors. The predecessors are cayugaach others. The suc-
cessors are companions of each others. The transitiongéettuese four states define
an adjacency quadrupl@associated with the binarjn — 1)-tuple which they have in
common (see Figure 2).

Two pairs of statedS;, S} and {S3,S4} are called across-join pairif by inter-
changing the successors $f and S we split the state cycle into two cycles, and by
interchanging the successors & and S; we join the two cycles back into one cy-
cle [11]. In the traditional cross-join pair based methdgis= S; andSy = & [18]. In
the method presented in this papgr=S;, butS; # S.

An n-stage NLFSR is calledniformif, for some 0< 1 < n:

fi(X0, X1, -+, Xn-1) = X(i+1)moan + hi(X0, ..., %) for T<i<n
fi(xit1) =xi11 for 0<i<t

whereh; does not depend on the variablg, 1) medn- The stage is called theterminal
stage[8].

Let fi and f; be feedback functions of the stageand j of an n-stage NLFSR,
respectively. The operati@hifting denoted byf; M f;, moves a set of ANF monomials
M from f; to fj. The index of each variabbg in each monomial irM is changed to
X(k—i+j) modn-
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Fig. 2. An adjacency quadruple describing possible transitions between fdaes sthan FSR in
the Fibonacci configuration associated with the bir@ry 1)-tuple(s;,sp,...,S—1) which they
have in common.

The following theorem, proved in [8], describes a sufficieahdition for equiva-
lence of NLFSRs before and after shifting. Two NLFSRsegaivalentf their sets of
output sequences are equal.

Theorem 1. Given a uniform NLFSR with the terminal stagea shifting § M fu,
T < 1, results in an equivalent NLFSR if the transformed NLFSRiiform as well.

3 Previouswork

Most of the previous works focused on the synthesis of fiigth NLFSRs with pe-
riod 2". Sequences generated by full-length NLFSRs are usuallgccdé Bruijn se-
quence$7]. An excellent survey of algorithms for generating de Brsequences given
in [11].

Early algorithms used theirculating register[22] (also referred to as thgure cy-
cling register[25]) as a starting point. A circulating register is arstage FSR whose
feedback functions are of typ(Xi+1)modn) = X(i+1)moan for i € {0,1,...,n—1}.In
other words, the content of the output stage of the registeyéled around to the input
stage. This partitions the space 8fr2tuples intoZ, cycles, where

Zo— 2 g2
nd/n

the sum is over all divisord of the register lengtim and@ is the Euler’s totient func-
tion [11].

The circulating register generat@ state cycles. It is known that, if the feed-
back function of the input stage of an FSR in the Fibonaccfigaration is of type
fao1(Xo, X1, - -, Xn—1) = X0+ h(x1,...,%n—1), then the number of it state cycles changes
by one as the weight of the truth table lothanges by one [11]. So, changing any of
the Os in the truth table df either joins or splits two of th&, cycles. The cycles of
the circulating register cannot be splitted since for thidhippen a cycle of length
has to contain an even and an odd number of 1s. Thereforeavgitihgle change from
0 to 1 two cycles can be joined together. This idea has bedboitegbto join cycles in
different ways.

Circulating registers were studied by Golomb [16], Frekisien [12] and Roth [29].
The number of possible interconnections between theseswas derived by Mykkel-
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veit [25] and van Lantschoot [22]. Fredricksen [10] havevghdow to generate? >

full cycles from a circulating register of lengthusing 6 bits of storage andtime steps

to produce the next state from a current state. Algorithnrsgusomposition to generate

full cycles were developed by Fredricksen and Kessler [E8jion and Lempel [9], and

a generalization t&-ary sequences was done by Fredricksen and Maiorana [14] and
Ralston [26].

Etzion and Lempel [9] presented an algorithm for the geimmadf full cycles
based ompure summing registersvhose feedback function of the input stage is of type
fao1(X0,X1, .-+, Xn—1) = X0+ X1+ ...+ Xn—1. Their algorithm generateé‘zz4 full cycles
usingn? /4 bits of storage andtime steps to produce the next state from a current state.

Jensen [20] presented an algorithm for joining state cyaliséng from an arbitrary
shift register. This algorithm is based on the property ttiahere exists a stat8in a
cycleC; and a stateS in a cycleC, which is a companion o§, then two cycles can
be joined by interchanging the predecessor§ahdS. In its essence, the algorithm
modifies the original feedback function of the shift regisig complementing an entry
in its truth table every time it encounters a special staibed thestate representative
of the cycle. Therefore, the run-time of the algorithm isedity proportional to the
time it takes to find cycle representatives. The shortertaeycles of the original shift
register, the faster is the algorithm. Jensen has shownifHaESR with short state
cycles are used as a starting point, then such an approacksrpaksible to generate
O(227/10¢2n) fyll length sequences using Bits of storage and at mosb4ime steps for
producing the next state from a current state.

An algorithm based on cross-join pairs was proposed by el [12] for a class
of NLFSRs generating "prefer one” de Bruijn sequences. Ipr@fer one” de Bruijn
sequence, tha-tuple (1,a;,a,...,a,-1) precedes the-tuple (0,a;,ay,...,an_1) for
all n— 1-tuples(ag, ay,...,a,—1) except all-0.

A recursive algorithm for generating de Bruijn sequenceseldaon Lempels D-
homomorphism was presented by Annexstein [1]. A more efficiBon-recursive al-
gorithm based on Lempels D-homomorphism was given by Chaabjr [4]. In these
algorithms,n-variable Boolean functions generating de Bruijn sequericgdern are
constructed from Boolean functions with a smaller numberasfables.

Janicka-Lipska and Stoklosa [19] presented a heuristiaréign for random gen-
eration of feedback functions for full-length NLFSRs. THgaaithm is based on the
properties which are derived based on the results of an sxiiaisearch for feedback
functions of full length NLFSRs of up to 6 variables. It is gectured that these prop-
erties hold for functions with a larger number of variables.

Chang et al [5] conjectured that the number of cross-joimsgai maximum length
LFSRs equals tg2"* — 1)(2"-! — 2)/6. Helleseth and Klgve [18] gave an elegant
proof of this conjecture.

4 Constructing NLFSRsfrom LFSRs

The following Theorem describes the basic step of the ptedenethod for construct-
ing n-stage Galois NLFSRs with period 2 1 from n-stage maximum length LFSRs.



Theorem 2. Let N be an n-stage NLFSR with the feedback functions of type

fr1(X0,X1,..., Xn—2) = X0+ fL(X1,X2,. .., Xn—2) + TN (X1, X2, ..., Xn_2)
fn_2(X0, X1, - - - s Xn—3,Xn—1) = Xn—1+ TN (X0, X1, - . ., Xn—3)

fr-3(Xn—2) = Xn_2 1)
fo(x1) =x1

where f is a linear Boolean function of type

f|_(X1,X2, .. ,Xn,z) =C1X1+ ...+ Ch_2Xn_2

where ¢ € {0,1}, fori € {1,2,...,n—2}, and { is an arbitrary nonlinear Boolean
function. Then N has peridel' — 1 if the polynomial

g(X) = 141X+ CoX? + ...+ Crox" 2 4 X
is primitive.

Proof: The primitive characteristic polynomig(x) = 1+ X+ CoX? + ... +Cq_2X" 2+
X" gives rise to am-stage LFSR in the Fibonacci configuration whose input stage
updated using the function

fao1(X0, X1, .-+, Xn—2) = X0+ C1X1 + ...+ Ch2Xn—2 = Xo + fL(X1, X2, ..., Xn—2)

andfi(X+1) = Xi+1, fori € {0,1,...,n—2}. Sinceg(x) is primitive, the LFSR period is
2" —1116].
Sincef + f = 0 for any Boolean functiori, we can re-write the above as

fao1(X0,- -+, Xn—2) =Xo+ fL(X1, ..., Xn—2) + fIN(X1, X2, . . ., Xn—2) + T (X1, X2, . .., Xn—2)

wherefy is an arbitrary nonlinear Boolean function.

M
By applying the shiftingf,_1 iy fn_2, whereMy,, is the set of all monomials of
the ANF of fy, we obtain:

fr-1(X0,X1, ..., Xn—2) = X0+ fL(X1, X2, ..., Xn—2) + TN (X1, X2, ..., Xn—2)
fr—2(X0,X1, ..., %n—3,%n—1) = Xn—1+ fn(X0, X1, ..., Xn—3)

and fi(xi+1) = xi4+1 fori € {0,1,...,n—3}. By Theorem 1, the output stage of this
NLFSR generates the same sets of sequences as the outputfdfag LFSR, therefore
its period is 2 — 1.

O

Figure 3 illustrates the effect of nonlinear functions oae #tate cycle of the LFSR.
Each non-0 assignmefsy, S, ...,S_2) € GF(2"2) of variables(xy, Xz, .. ., Xn_2) for
which fn(X1,X2,..., Xa—2) evaluates to 1 complements two entries in the truth table
of fn_1(X0,X1, -..,X—2). Thus, the values of the input stages of the successors of
the stateg0,sy,...,5-2,51) and(1,sy,...,S-2,5-1) are complemented. For each
sh—1 € {0,1}, this splits the LFSR state cycle into two cycles.
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Fig. 3. An illustration of the effect of nonlinear functions on the state cycle of th8RFor the
case wherfy(0,0,...,0) = 0. The dashed lines show the connections in the original LFSR state
cycle. The solid lines show the connections in the constructed NLFSR st&e ayb € {0,1}

are constants.

Since the functiorfy (X0, X1, - - . , Xn—3) Which is added tdp_2(Xo, X1, - - - , Xn—3, Xn—1)
evaluates to 1 for the assignmést, s, . .., Sn—2) of variables(xg, x1, . .. ,Xn—3), two en-
tries in the truth table ofp_2(Xo, X1, . . . ,Xn—3, Xn—1) are also complemented. As a result,
the values of the — 2nd stages of the successors of the stegges. ., sy—2,5-1,a) and
(St,...,S-2,5-1,8) are complemented. For easf 1 € {0,1}, this joints the previ-
ously splitted LFSR cycles back into one cycle.

We can see that these transformations result in interchgnggirs of companion
states in the LFSR cycle. For each non-0 assignifs,, ..., s, 2) € GF(2"2), two
pairs of companion state§(sy, . ..,S-2,0,a), (S1,...,5-2,0,8)} and{(s1,...,S-2,1,
a),(st,..-,51-2,1,8)}, are interchanged.

Figure 4 illustrates the special case of all-0 assignmérfy(0,0,...,0) =1, then
the all-0 state is joined into the main cycle and the st@fe .,0,1) is splitted from the
main cycle. The statg®,...,0,1,0) and(0,...,0,1,1) are interchanged.

From the above, we can easily derive the following properég.wt( f) denote the
Hamming weight of the truth table of a Boolean functibnLet HD(a,b) denote the
Hamming distance between the binary vectoendb.

Lemmal. Let N be an n-stage NLFSR constructed using Theorem 2 andtk be-i
derlying maximum length LFSR in the Fibonacci configuratiost A and Ay be se-
guences of the input stages of the L and N, respectivelyngti@" — 1. If L and N are
initialized to the same state which is neith@r...,0,0) nor (0,...,0,1), then

4xwi(fy), if fn(0,0,...,0) =0

HD(AL,An) = { 4xwt(fy) — 1, otherwise. @
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Fig. 4. The special case di(0,0,...,0) = 1.

Note, that it is important that in Theorem 2 neitifemor fy depend on the variable

M
Xn—1. Otherwise, the NLFSR after shiftinfy_1 sy fn_2 is not uniform and the equiv-
alence to the original LFSR in not guaranteed by Theorem JarAexample, consider
the following 4-stage NLFSR in whicky depends on the variabie:

f3(X0,X1,X2,X3) = X0 + X1 + X1 X2X3
f2(X0, X1, X2,X3) = X3+ XoX1X2

fi(x2) =%
fo(

Xl) =X1

This NLFSR is constructed by adding the nonlinear funckgpxs to the linear func-
tion X+ x1 corresponding to the primitive polynomiaHix +x*. The resulting state
cycles are shown in Figure 5. Their period is 1.

In general, it is not necessary to shift a copyffto the feedback function of the
n—2nd stage, as in Theorem 2. We can shift it to the stages witverlindex. We can
also shift its monomials to several different feedback fioms. The only requirement
is to keep the NLFSR after shifting uniform, in order to pmesdits equivalence to the
NLFSR before shifting.

By shifting a copy offy to the stages with a lower index, we allow more stages of
the resulting NLFSR to have a nonlinear update. For exanifleg equations (1) are
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Fig.5. An example of the state transition graph of an NLFSR constructed usingrdine2 for
the case wheifiy depends om,_1.

modified to:

fr—1(X0, Xk—1,%) = Xo+ fL(X1,X2, ..., Xn—k) + TN (Xk—1,Xk)
fa2(Xn—1) = Xn-1

frkr1(Xn—ki2) = Xn—kt2
k(X0 X1, Xn—k+1) = Xn—ky1+ fn (X0, X1)
fr—k—1(Xn—k) = Xn—k

fo(x1) = X1

wherek = |n/2|, then the Theorem 2 still holds.

The above example shows that ug tg'2| — 1 of the NLFSR constructed using the
presented method can have a nonlinear update.

By shifting the monomials ofy to several feedback functions, we can reduce the
depth of feedback functions and share common monomials. [Eads to faster and
smaller NLFSRs [3]. For example, suppose thas even and we use the nonlinear
function fy (X1, X2, ..., X2) = X1X2 +X3X4 + ... + Xn—3%Xn—2. Then, we can construct the
following NLFSR with period 2 — 1:

fn 1(X0,X1,%2) = %o + fL(X1,X2) + X1X2
n—2(X0,X1,Xn—1) = Xn_1 +XoX1
fr-3(X1, X2, Xn-2) = Xn—2 4+ X1X2

fn 4(X0,X1,%n-3) = Xn—3+XoX1

f3(X1,X27 ) = Xa+X1X2

f2(X0,X1,X3) = X3+ XoX1

fi(x) =%

fo(x1) =x

Such a distribution of monomials makes possible, in theaomealize am-stage NLFSR

with period 2' — 1 using only 2 two-input AND gates andtwo-input XOR gates. In
practice, however, gates have a limited fan-out, i.e. theiput can be connected only
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to a limited number of gate inputs. Note, that the linear fiorc f. may depend on
more variables, but then its variables with indexes largat 2 have to be shifted down
in order to get a uniform NLFSR.

By shifting the monomials ofy to several feedback functions, we can also obtain a
different type of nonlinear update for different stageshef NLFSR. For example, if=
6, the primitive polynomial is 3-x-+x8, and the nonlinear function i (xg, X2, X3, X4) =
X1X2 4 X4 + X3X4, then we can construct the following NLFSR:

f5(X0, X1,X2) = Xo + X1 + X1X2
fa(X0,X1,X5) = X5+ XoX1
f3(X1, X2, Xa) = X4+ X2 + X1X2
f2(X0, X1,X3) = X3+ X1 + XoX1
fl(Xz) = X2

fo(X]_) = X1

5 Relation to Nonlinear Filter Generators

A known approach to improving the security of LFSRs is to fhsoutputs of selected
stages of an LFSR into a nonlinear filtering function whicim@xdnes them to create
a keystream. Suchonlinear filter generatorare an important building block in many
stream ciphers [27].

There is an obvious relation between sequences generafdtFyRs constructed
using the presented approach and nonlinear filter generatofilter generator using
Xo+ fL+ fn as its filtering function can produce the same sets of se@saasthe input
stage of an NLFSR constructed using the Theorem 2. Furthrermsmce the NLFSR
contains two copies offy, the filter generator will be smaller than the NLFSR.

However, if not only a sequence, but also its shifted vessare required, then NLF-
SRs will be more hardware-efficient than filter generators.dAh use up topn/2| — 1
stages for shifting the content of the input stage. To obfainsame set of sequences
with a nonlinear filter generator, an additional shift régiss needed. Since flip-flops
are more expensive than gates, this is less efficient thaimg@dsecond copy ofy.
For example, in UMC 90nm CMOS technology, the smallest flyp-fs 4.2 times larger
than a two-input NAND gate.

Due to the relation between nonlinear filter generators ah83Rs, the attacks
on filter generators can be adopted to attack NLFSRs construsing the presented
approach (see Gdli[15] and Rgnjom, Gong and Helleseth [28] for excellent sysv
of the various attacks on filter generators). On the othedhare can make use of
the accumulated knowledge on selecting Boolean functioniifer generators [6] and
on linear complexity of their sequences [21, 24] to chooseyptographically strong
function fy for the NLFSR.

Our results provide an alternative way of looking into setpes produced by non-
linear filter generators and might contribute to further ersianding of their structure.
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Fig. 6. A keystream generation method based on the presented NLFSRs.

6 Conclusion

In this paper, we presented a method for constructirsiage NLFSRs in the Galois
configuration with period 2— 1 from maximum length LFSRs. Our method has no
time overhead and it has a smaller area overhead comparkd prdvious approaches
based on cross-join pairs. It is feasible for large

A limitation of the presented approach is that the resulihgrSRs can have at most
|n/2]-1 stages with a nonlinear update. The rest of their staggsdated linearly. An-
other limitation is that feedback functions depend only @tesvariables which are up-
dated linearly. Therefore the algebraic degree of the pmtyial representing the value
of the input stage of an NLFSR aftetime steps will be at most by 1 larger than the
algebraic degree of the polynomial representing the fegdhanction f,_1.

The presented method might be useful for applications thatire nonlinear se-
quences together with a set of their shifted versions, e.tihd design of correlators for
spread spectrum communication systems, randing systemaslar systems. It will also
be interesting to investigate if it can help us to construsteure stream cipher which
is smaller than the top stream ciphers such as Grain-128dd[rrivium [2]. Figure 6
shows a possible diagram in which the outputs of selectegkstaith the nonlinear
update are passed to another nonlinear functigy,for creating a keystream.

References

1. F. S. Annexstein. Generating de Bruijn sequences: An efficient mggigation |IEEE Trans-
actions on Computerg6:198 — 200, 1997.

2. C. Canngre and B. Preneel. TriviunNew Stream Cipher Designs: The eSTREAM Finalists,
LNCS 4986pages 244-266, 2008.

3. J.-M. Chabloz, S. Mansouri, and E. Dubrova. An algorithm forstarcting a fastest Galois
NLFSR generating a given sequence. In C. Carlet and A. Pott, edeggiences and Their



12

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Applications - SETA 201@olume 6338 of_ecture Notes in Computer Scienpages 41-54.
Springer Berlin / Heidelberg, 2010.

T. Chang, B. Park, Y. H. Kim, and I. Song. An efficient implementataf the D-
homomorphism for generation of de bruijn sequendé<E Transactions on Information
Theory 45:1280-1283, 1999.

. T. Chang, I. Song, and S. H. Cho. Some properties of cross-@ia m maximum length

linear sequences. roceeding of ISZTA '9(pages 1077-1079, 1990.

. T. W. Cusick and P. &hic. Cryptographic Boolean functions and applicatiofscademic

Press, San Diego, CA, USA, 2009.

. N. G. de Bruijn. A combinatorial probleniNederl. Akad. Wetensch9:758-746, 1946.
. E. Dubrova. A transformation from the Fibonacci to the Galois NLESIRSE Transactions

on Information Theory55(11):5263-5271, November 2009.

. T. Etzion and A. Lempel. Algorithms for the generation of full-length tshefyister se-

guenceslEEE Transactions on Information Theo3,480-484, May 1984.

H. Fredricksen. A class of nonlinear deBruijn cyclels.Comb. Theoryl19(A):192-199,
Sept. 1975.

H. Fredricksen. A survey of full length nonlinear shift registecleyalgorithms. SIAM
Review 24(2):195-221, 1982.

H. M. Fredricksen. Disjoint cycles from de Bruijn graph. TechhiReport 225, USCEE,
1968.

H. M. Fredricksen and |. J. Kessler. Lexicographic compositiomsde Bruijn sequences.
J. Comb. Theory22:17-30, 1977.

H. M. Fredricksen and J. Maiorana. Neklaces of beads in k calodsk-ary de Bruijn
sequenceDiscrete Math, 23:207-210, 1978.

J. D. Gole. On the security of shift register based keystream generafeast Software
Encryption, LNCS 80%ages 90-100, 1994.

S. GolombShift Register Sequencesegean Park Press, 1982.

M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain familgtoeam ciphersNew
Stream Cipher Designs: The eSTREAM Finalists, LNCS 488fes 179-190, 2008.

T. Helleseth and T. Klgve. The number of cross-join pairs in maxirength linear se-
guenceslEEE Transactions on Information Theo31:1731-1733, 1991.

I. Janicka-Lipska and J. Stoklosa. Boolean feedback functimrisif-length nonlinear shift
registers.Telecommunications and Informatioin Technoldgy28-29, 2004.

C. J. Jansernvestigations On Nonlinear Streamcipher Systems: Construction aridd&sva
tion Methods Ph.D. Thesis, Technical University of Delft, 1989.

E. Key. An analysis of the structure and complexity of nonlinear pisequence generators.
IEEE Transactions on Information Theqi32:732 — 736, 1976.

E. J. v. Lantschoot. Double adjacencies between cycles of a tingsift register.Trans-
actions on Computer€-22:944-954, 1973.

R. Lidl and H. Niederreiteintroduction to Finite Fields and their Application€ambridge
Univ. Press, 1994.

J. L. Massey and S. Serconek. Linear complexity of periodiceserps: A general theory.
In Advances in Cryptology-Crypto’96, Lecture Notes in Computer Scigacres 358—-371.
Springer-Verlag, 1996.

J. Mykkelveit. Generating and counting the double adjacencies ireacpaling shift regis-
ter. Transactions on Computer€-24:299-304, 1975.

A. Ralston. A new memoryless algorithm for de Bruijn sequendeAlgorithms 2:50-62,
1981.

M. Robshaw. Stream ciphers. Technical Report TR - 701, J@%.19



13

28. S. Rgnjom, G. Gong, and T. Helleseth. A survey of recent attatksedfilter generator. In
S. Boztas and H.-F. Lu, editorspplied Algebra, Algebraic Algorithms and Error-Correcting

Codesvolume 4851 o NCS pages 7-17. Springer Berlin / Heidelberg, 2007.
29. E. Roth. Permitations arranged around a cyBlaer. Math. Monthlypages 990-992, 1971.



