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Abstract
A hash function secure in the indifferentiability framework (TCC 2004) is able to

resist all meaningful generic attacks. Such hash functions also play a crucial role in
establishing the security of protocols that use them as random functions.

To eliminate multi-collision type attacks on the Merkle-Damgård mode (Crypto
1989), Lucks proposed widening the size of the internal state of hash functions. More
specifically, he suggested that hash functions h : {0, 1}∗ → {0, 1}n use underlying prim-
itives of the form C : {0, 1}a → {0, 1}2n (Asiacrypt 2005). The Fast Wide Pipe (FWP)
hash mode was introduced by Nandi and Paul at Indocrypt 2010, as a faster variant
of Lucks’ Wide Pipe mode. Despite the higher speed, the proven indifferentiability
bound of the FWP mode has so far been only up to the birthday barrier of n/2 bits.
The main result of this paper is the improvement of the FWP bound to 2n/3 bits (up
to an additive constant).

The 2n/3-bit bound for FWP comes with two important implications. Many popular
hash modes use primitives with a = 2n, that is C : {0, 1}2n → {0, 1}2n. For this
important case, the FWP becomes the only mode to achieve indifferentiability security
of more than n/2 bits; thus we solve a longstanding open problem. Secondly, among
n-bit hash modes with a > 2n, the FWP mode has the highest rate among all modes
which have beyond-birthday-barrier security.

To obtain the bound of 2n/3 bits, we follow the usual technique of constructing
games with simulators, with certain BAD events to distinguish between the games.
However, we introduce some novel ideas. In designing the BAD events, we used multi-
collisions in addition to collisions. We also allowed the query-response graphs, main-
tained by the simulators, to grow for two phases every iteration, rather than just one
phase. Finally, our carefully chosen set of sixteen BAD events establish an isomorphism
of simulator graphs, from which the 2n/3-bit bound follows.

We also provide evidence that extending the bound beyond 2n/3 bits may be possi-
ble if we allow the simulator-graph to grow for three (or more) phases every iteration.
Another noteworthy feature of our proof – that may be of independent interest – is
that we work with only three games rather than a long sequence games.
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1 Introduction

1.1 Motivation

Iterative hash functions are usually composed of two parts: (1) a basic primitive C with
finite domain and range, and (2) an iterative mode of operation H to extend the domain
of C. In studying the security of a hash function, both the security of the primitive C, as
well as the security of the mode of operation H need to be examined separately, since the
hash function can be attacked by breaking either C or the mode H. Our focus is on the
security of the hash mode H. Throughout the paper we would assume that the primitive
C is an ideal object, that is, it does not exhibit any non-trivial weakness.

Generic attacks on hash modes. In a generic attack, an adversary attempts to break
a property of a hash mode assuming the underlying primitive is an ideal object, such
as a random oracle, an ideal permutation, or an ideal cipher. For example, suppose the
hash function h : {0, 1}∗ → {0, 1}n, for a given input M ∈ {0, 1}∗, invokes a random
oracle ro : {0, 1}a → {0, 1}b, one or multiple times, to compute h(M). Informally, a generic
attack breaks a property of the hash function h (e.g. 1st/2nd pre-image, collision resistance)
utilizing less resources than would be required to break the same property of the random
oracle RO : {0, 1}∗ → {0, 1}n.

Generic attacks against hash modes are abundant in the literature. See, for exam-
ple, Joux’s multi-collision attack [23], Kelsey-Schneier expandable message attack [25], or
Kelsey-Kohno herding attack [24, 11], among others [1, 9, 22, 32].

Indifferentiability security. The indifferentiability security framework was introduced
by Maurer et al.[27] in 2004, and was first applied to analyze hash modes of operation
by Coron et al.[17] in 2005. A hash mode proven secure in this framework is able to re-
sist all generic attacks. More technically, the indifferentiability framework measures the
extent to which a hash function behaves as a random oracle under the assumption that
the underlying small compression function is an ideal object. Indifferentiability attacks
include more attacks [3, 9, 15] than just those with known practical significance. Thus in
some sense, an indifferentiable hash function can be viewed as eliminating potential future
attacks. We note that the security of many cryptographic protocols (e.g. RSA-OAEP [34],
RSA-PSS [16]) relies on the indifferentiability security of the underlying hash functions
that the protocols use as random oracles. In such a case, the security of the hash functions
against specialized attacks – such as collision, 1st/2nd pre-image attacks – is inadequate
to guarantee the security of the overlying protocol. As a result, most new proposals for
hash modes of operation include indifferentiability proofs of security. We note that some
limitations of the indifferentiability framework have recently been discovered in [19] and
[33]. These limitations, nevertheless, do not affect the proven security bounds of hash
functions based on ideal objects.
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Mode of Primitive Message Rate Indiff. bound Primitive
operation input (a) block (`) (`/a) lower upper

1. WP,chopMD [14, 17] 2n 0 0 0 0 ro
2. JH [30] 2n n 0.5 n/2 n(1− ε) ip
3. Grøstl [20] 2n n 0.5 n/2 n ip
4. Sponge [8] 2n n 0.5 n/2 n/2 ip
5. Parazoa [5] 2n n 0.5 up to n/2 n ip
6. FWP (this paper) 2n n 0.5 2n/3 n ro
7. Shabal [13] 4n n 0.25 n n ic
8. BLAKE [2, 15] 4n 2n 0.5 n/2 n/2 ic
9. FWP (this paper) 4n 3n 0.75 2n/3 n ro
10. WP,chop MD [14, 17] t+ 2n t t/(t+ 2n) n n ro
11. FWP (this paper) t+ 2n t+ n (t+ n)/(t+ 2n) 2n/3 n ro

Table 1: Indifferentiability security bounds (upper and lower) for several wide-pipe hash
modes, where the primitive output is 2n-bit (the hash size is n-bit). The primitives ro, ic
and ip are shorthand for random oracle, ideal cipher, and ideal permutation. The letter
t denotes a positive integer. The ε is a small fraction due to the preimage attack on JH
presented in [9].

Advantages of primitives with 2n-bit output. Many practical iterative hash modes
which use primitives with n-bit output have been shown to come under multi-collision
attacks with O(2n/2) queries [23]. Therefore, their indifferentiability security bounds can-
not be extended beyond n/2 bits. A few well known examples include Merkle-Damgård
[18, 29], HAIFA [10], EMD [6], and MDP [21].

As a result, to design a practical hash mode with indifferentiability security more than
n/2 bits, it seems necessary to use primitives with 2n bits of output (or more) [26]. Ex-
amples of hash modes with 2n bits of output include: Wide Pipe-MD [26], FWP [31], JH
[36], Grøstl [20], Sponge [8], Shabal [13], and Parazoa [5], to name a few.

The rate of a hash function. In any iterative hash function h : {0, 1}∗ → {0, 1}n, the
input to the underlying primitive C : {0, 1}a → {0, 1}b is composed of an `-bit message
block and an (a− `)-bit chaining value from the previous iteration. It is easy to see that,
for a fixed a and b, the higher the value of `, the faster the hash computation. To formalize
this property, we define the rate of a hash function as the ratio `/a, where ` is the (average)
length of a message block.1

1The average length of a message block is computed as the length of a padded message divided by the
total number of invocations of the primitive(s). This addresses the issue when the same message block is
used in multiple invocations of the primitive (e.g. Grøstl).
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The challenge. Based on the previous discussion, the challenge is to design an n-bit hash
function using primitives of the form C : {0, 1}a → {0, 1}2n which maximize both the rate
and the indifferentiability security bound. The rates and security bounds of several hash
modes with primitive output 2n-bit have been tabulated in Table 1.

1.2 Our contribution

IV

m1 m2 m3 mk−1 mk

hIV ′
C C C C C

` ` ` ` `− n

Figure 1: Diagram of the FWP mode. All unlabeled wires are n bits each. The shaded
region is viewed as compression function.

The FWP mode (2010). The Fast Wide Pipe (FWP) hash mode was proposed by Nandi
and Paul in 2010 [31], as a faster variant of the Wide Pipe (WP) mode [26] (see Figure 1).
The key idea used in FWP is that only half of the chaining value – instead of the full
chaining value – is used as input into the primitive C, while the other half is XOR-ed into
the output. Thus, FWP increases the rate by allowing message blocks larger than those
used by the WP mode. See Figure 11 of Appendix B, which compares the WP mode with
the FWP mode. As is the case with all other high rate hash modes with primitive output
2n bits, the indifferentiability bound of FWP has so far remained only up to n/2 bits [31].

The difficulty of breaking the birthday-barrier. It is apparent from Table 1 that
extending both the rate and the indifferentiability bound of a hash mode is a challenging
task. Note that the Shabal and Wide Pipe modes have n-bit security bounds, but their
rates are quite low. For the Sponge function – though having a high rate of 0.5 – the
security bound is n/2-bit, which cannot be improved further, since there is a preimage
attack with work approximately 2n/2 [7].

Several other designs (JH (2007), Grøstl (2007), FWP (2010) and the Parazoa family
(2011)) have shown promise. Each achieves the high rate of 0.5 (if a = 3n then the FWP
can achieve a rate of 0.67), and their indifferentiability bounds can potentially be improved
beyond the birthday barrier. Despite several attempts, so far none of them has been shown
to have the beyond-birthday-barrier security. See [9], [30], [31] and [4].
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In all of the previous attempts, the basic approach for proving indifferentiability security
has been more or less the same. First, a suitable compression function is constructed around
the primitive C. See, for example, the compression function contained in the shaded part
of Figure 1. Then a set of events are identified that primarily consider collisions on n
(out of 2n) bits of output of the compression function. These events are typically called
BAD events, and are used to differentiate between pairs of games. Lastly, using some
sophisticated combinatorial tricks and counting techniques, the total probability of the
BAD events are computed by summing them across all rounds and messages.

The main deficiency in the above approach is two-pronged. The probability of the
BAD events is dominated by the probability of n-bit collisions of the compression function
output, which is too high. Considering n-bit collisions can only give a bound of n/2 bits.
On the other hand, if we consider collisions on the 2n bits of the compression function
output, then after i queries we end up having O

(
i2
)
reconstructible messages (defined

later), and this will again lead to a bound only of n/2 bits.
Evidently to go beyond the n/2-bit security bound, we need to identify BAD events

whose probability of occurrence will be as low as the probability of random 2n-bit colli-
sions (rather than of n-bit collisions). We also need that the number of all reconstructible
messages after i queries will be linear in i, rather than quadratic.

The main result. Our main results is the improvement of the indifferentiability security
bound for the FWP mode from n/2 to 2n/3 bits (up to a constant factor). The FWP mode
is based on a primitive of the form C : {0, 1}a → {0, 1}2n, and our 2n/3-bit security bound
is valid for all a ≥ 2n. We make two important observations.

Let H(a, b, r) denote the class of all rate r, n-bit hash functions with a primitive of
the form C : {0, 1}a → {0, 1}b. The FWP mode is the only known hash mode with the
beyond-birthday-barrier security in the important class H(2n, 2n, 0.5). Compare FWP with
JH, Grøstl, Sponge, and the Parazoa family. This essentially settles a longstanding open
problem.

Let H̃(a, b) denote the class of all n-bit hash functions with the beyond-birthday-barrier
security based upon primitives of the form C : {0, 1}a → {0, 1}b. In the important class
H̃(a, 2n), the FWP mode achieves the highest rate for all a ≥ 2n. Compare FWP with
chop-MD, Shabal and BLAKE.

The tools. The first new idea used to break the n/2-bit bound is in using certain 3-multi-
collisions on n bits – in addition to collisions on 2n bits – as potential BAD events. We
show that the 3-multi-collisions on n bits as well as the 2n-bit collisions both occur with
low probabilities. In particular, we carefully design a set of sixteen bad events defined on
the query, primitive and compression function outputs.

The second trick is to split the above 2n-bit collisions into two distinct n-bit collisions
occurring in two different phases at the time of updating the simulator’s graph (techni-
cally we shall call it a reconstruction graph). Updating the reconstruction graph – whose
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branches represent messages built from the queries and their responses – in a sequence of
two phases, rather than just one, is crucial to the results in this work.

Using these two techniques, we are able to overcome the aforementioned obstacles in
moving beyond the n/2-bit bound. In particular, the absence of the BAD events allows the
reconstruction graph to grow for a maximum of two phases every round, while restricting
the number of newly added nodes in the graphs to a constant number. As a result, we
have O(i) reconstructible messages after i rounds, and at the same time, the probability of
occurrence of the BAD events remains low. Once these important requirements are fulfilled,
the final step is to prove an isomorphism of graphs, which then directly implies the claimed
bound.

Another feature of our work, which may be of independent interest, is that the proof
of our main theorem requires only three games. Compare this with the usual practice of
tackling such problems using a sequence of a large number of games. The smaller number
of games – in our opinion – makes third-party verification of the proof a great deal easier.
In addition, our proof technique can likely be used to improve the security analysis of other
modes.

Beyond the 2n/3-bit barrier It seems likely that the 2n/3-bit bound of FWP could be
further improved, if we switched from two phases to a three phase framework. We experi-
mented with a slightly different set of BAD events in the three (or more) phase framework.
The results provide ample evidence that the indifferentiability bound for the FWP mode
can be stretched closer to n bits. We leave it as an open problem to complete the theoret-
ical analysis required for such an improved bound.

Warning. As is necessary for any analysis of cryptosystems based on ideal objects, we
caution the reader that the security guarantee of 2n/3 bits for any practical hash function,
based on the FWP mode, can be achieved as long as the underlying concrete primitive is
free from all structural weaknesses, about which the paper makes no claims.

2 Preliminaries

2.1 Notation and convention

Throughout the paper we let n be a fixed integer. While representing a bit-string, we
follow the convention of low-bit first (or little-endian bit ordering). For concatenation of
strings, we use a||b, or just ab if the meaning is clear. The symbol 〈n〉m denotes the m-bit
encoding of n. The symbol |x| denotes the bit-length of the bit-string x, or sometimes
the size of the set x. Let x parse→ x1x2 · · ·xk means parsing x into x1, x2, · · · , xk such that
|x1| = |x2| = · · · = |xk−1| = n and |xk| = |x|−|x1x2 · · ·xk−1|. Let Dom(T ) = {i | T [i] 6=⊥}
and Rng(T ) = {T [i] | T [i] 6=⊥}. We write AB to denote an Algorithm A with oracle access
to B. Let [c, d] be the set of integers between c and d inclusive, and a[x, y] the bit-string
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between the x-th and y-th bit-positions of a. Finally, U [0, N ] is the uniform distribution
over the integers between 0 and N . The symbol r $← A denotes the operation of assigning
r with a value sampled uniformly from the set A. The symbol λ denotes the empty string.

2.2 Description of FWP mode

We now revisit the description of the FWP mode of [31]. Suppose that ` and n are integers
such that ` ≥ n ≥ 1. Let C : {0, 1}`+n → {0, 1}2n be a cryptographic primitive which
we use to build the hash function FWP: {0, 1}∗ → {0, 1}n. The diagram and the descrip-
tion of the FWP transform are given in Figures 1 and 3(a), where C is the random oracle ro.

Padding rule. The notation pad(M) = m1 · · ·mk−1mk is interpreted as follows: Using
an injective function pad : {0, 1}∗ → ∪i≥1{0, 1}(i+1)`−n, the message M is mapped into a
string pad(M) = m1 · · ·mk−1mk such that k =

⌈
|M |
`

⌉
+ 1, where |mi| = ` for 1 ≤ i ≤

k − 1, and |mk| = ` − n. In addition to the injectivity of pad(·), we will also require
another property that there exists a function dePad(·) that can efficiently compute M ,
given pad(M). Formally, the function dePad : ∪i≥1 {0, 1}(i+1)`−n → {⊥}∪{0, 1}∗ computes
dePad(pad(M)) = M , for all M ∈ {0, 1}∗, and otherwise dePad(·) returns ⊥. We note that
the padding rules of all practical hash functions have the above properties. An example
of pad(·), satisfying the above properties, is pad(M) = M ||1||0t, where t is the least non-
negative integer such that t = (−|M | − 1 mod `) + ` − n. Another example can be found
in [31].

2.3 Indifferentiability framework

Definition 2.1 (Indifferentiability framework) [17] An interactive Turing machine
(ITM) T with oracle access to an ideal primitive F is said to be (tA, tS , σ, ε)-indifferentiable
from an ideal primitive G if there exists a simulator S such that, for any distinguisher A,
the following equation is satisfied:

AdvT,FG,S (A) def=
∣∣∣Pr[AT,F = 1]− Pr[AG,S = 1]

∣∣∣ ≤ ε.
The simulator S is an ITM which has oracle access to G and runs in time at most tS . The
distinguisher A runs in time at most tA. The number of queries used by A is at most σ.
Here ε is a negligible function in the security parameter of T . See Figure 2(a) for a pictorial
representation. AdvT,FG,S (A) denotes the advantage of adversary A in distinguishing (T,F)
from (G,S).

The significance of the framework is as follows. Suppose, an ideal primitive G is indif-
ferentiable from an algorithm T based on another ideal primitive F . In such a case, any
cryptographic system P based on G is as secure as P based on TF (i.e., G replaces TF in
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Figure 2: (a) Indifferentiability framework formalized in Definition 2.1. (b) Schematic
diagrams of the security games – described in Section 3 – used in the indifferentiability
framework for FWP. The arrows show the directions in which the queries are submitted.

P). For a more detailed explanation, we refer the reader to [28]. Some limitations of the
indifferentiability framework have recently been discovered in [19] and [33]. They offer a
deep insight into the framework; nevertheless, the observations are not known to affect the
security of the indifferentiable hash functions in any meaningful way.

An oracle, a system, and a game. An oracle is an algorithm (accessed by another
oracle or algorithm) which, given an input as an appropriately defined query, responds
with an output. For example, in Figure 2(a), T , F , G and S are oracles. A system is a
set of oracles (e.g. System 1 = (T,F), System 2 = (G,S) in Figure 2(a)). A game is the
interaction of a system with an adversary. We refrain from providing a formal definition
of a game, since such formalization will not be necessary in our analysis.

3 Main Theorem: Beyond-birthday-barrier Security of FWP
Let RO : {0, 1}∗ → {0, 1}n and ro : {0, 1}`+n → {0, 1}2n be two random oracles (see Ap-
pendix A for a definition).

Our indifferentiability framework uses three systems G0 = (FWP, ro), G1 = (FWP1,S1),
and G2 = (RO,S) (see Figure 2(b)). The correspondence between the entities of Fig-
ures 2(a) and 2(b) are as follows: G = RO, T = FWP and F = ro. The description of
FWP1, S, and S1 will be provided in Sections 5, 6, and 7.

Now we state our main theorem using Definition 2.1.

Theorem 3.1 (Main Theorem) The hash function FWPro is (tA, tS , σ, ε)-indifferentiable
from RO, where tA =∞, tS = O

(
σ5), and σ = K22n/3, where K is a fixed constant derived
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from ε.

In the next few sections, we will prove Theorem 3.1 by breaking it into several compo-
nents. First, we briefly describe what the theorem means: it says that no adversary with
unbounded running time can mount a non-trivial generic attack on the hash function
FWPro using at most K22n/3 queries. The parameter K is an increasing function in ε, and
is constant for all n > 0, for a fixed ε. To reduce the notation complexity, we compute the
indifferentiability bound assuming ε = 1/2, for which, we shall derive K = 1/ 3√206.

3.1 Proof of Theorem 3.1: outline

Proof of Theorem 3.1 consists of the following two components (see Definition 2.1): Firstly,
we need to construct a simulator S with the worst-case running time tS = O

(
σ5). This is

done in Section 7. Secondly, we need to show that, for any adversary A, with unbounded
running time, ∣∣∣Pr

[
AG0 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ 103σ3

22n , (1)

assuming ε = 1/2. We will prove (1) by, again, splitting it into several parts.

• In Section 8, we show that

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
. (2)

• In Section 9, we will appropriately define a set of events BADi and GOODi for G1,
and establish in Section 10 that∣∣∣Pr

[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (3)

• Finally, we show in Section 12 that
σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤ 103σ3

22n , (4)

assuming
σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤ ε = 0.5.2

Note that (1) is easily established by combining (2), (3) and (4).

2Setting 103σ3

22n ≤ ε = 1/2, we get σ ≤ 1
3√204

22n/3. Therefore, K = 1/ 3√206.
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3.2 Organization

In Sections 4, 5, 6, and 7, we describe the systems G0, G1 and G2. Using them, in Section 8,
we prove (2). In Section 9, we define certain ‘bad’ events in system G1, using which in
Section 10 we prove (3). In Section 11, some combinatorial results are established to finally
prove (4) in Section 12.

In Section 13, we provide experimental evidence as to why the FWP should have a better
security bound than the proven 2n/3-bit. In the final section Section 14, we conclude, and
pose some open questions.

4 Data Structures
The systems G0, G1, and G2 have been mentioned in Section 3 (see schematic diagram in
Figure 2(b)). The pseudocode of them is given in Figures 3(a), 5, and 3(b). In this section
we describe several data structures used by these systems.

4.1 Objects used in pseudocode

4.1.1 Oracles

The main component of a system is the set of oracles that receive queries from the adversary.
In Figure 2(b), any algorithm that receives a query is an oracle. Note that, except the
adversary A, each rectangle denotes an oracle.

The systems use a total of 6 oracles. The oracles FWP, FWP1, and RO are map-
pings from {0, 1}∗ to {0, 1}n. The oracles S, ro, and S1 are mappings from {0, 1}`+n to
{0, 1}2n. Instruction-by-instruction description of these oracles and the used subroutines
are provided in the subsequent sections.

4.1.2 Global and local variables

The oracles described above will use several global and local variables. The local variables
are re-initialized every new invocation of the system, while the global data structures main-
tain their states across queries. The tables Dl, Ds and Dro are global variables initialized
with ⊥. The graphs Tro and Ts are also global variables which initially contain only the
root node (IV, IV ′). Other than them, all other variables are local, and they are initialized
with ⊥.

4.1.3 Query and round: definitions

In Figure 2(b), an arrow denotes a query. The submitter and receiver algorithms of a query
are denoted by the rectangles attached to the head and the tail of the arrow.
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Long query. Any query submitted to FWP, FWP1, or RO is a long query. A long query
and its response are stored in the table Dl.

Short query. Queries submitted to S, S1 are s-queries. The s-queries and their responses
are stored in table Ds. Similarly, queries submitted to ro are ro-queries; these queries and
their responses are stored in table Dro. Each of the above queries is classified as short
query. Note that, for G0, Ds = ∅; for G1, Dro ⊇ Ds; and, for G2, Dro = ∅.

Fresh and old queries. The current short query can also be of two disjoint types: (1) an
old query, which is already present in the relevant database (e.g. for G1, when an adver-
sary submits an s-query which is an intermediate ro-query of a previously submitted long
query); or (2) a fresh query, which is so far not present in the relevant database.

Message block. In order to compare the time complexities of the oracles FWP, FWP1
and RO on a uniform scale, we recall the notion of a message block. A long query M –
irrespective of the oracle – is assumed to be a sequence of k message blocks m1, m2, · · ·
mk, where pad(M) = m1m2 · · ·mk. Note that, for FWP and FWP1, every message block
mi corresponds to a ro-query x||mi for some bit-string x. However, it is not known how the
RO processes the message blocks of a long query M . We assume that the RO processes the
message blocks sequentially, and that the time taken to process a message block is equal
for all FWP, FWP1 and RO.

Round (and query). The time interval to process a short query or a message block
is defined as a round. We assume that each round takes an equal amount of time. To
simplify the analysis, henceforth, unless otherwise specified, a query would mean either a
short query or a message block.

Rules of the game. An adversary never re-submits an identical long or s-query.

4.2 Graph theoretic objects used in proof of main theorem

In addition to objects defined in the section above, we will use the following notions for a
rigorous mathematical analysis of our results.

Suppose, ro : {0, 1}`+n → {0, 1}2n is a random oracle, and D is a finite set of pairs of
the form (x, ro(x)).

4.2.1 Reconstructible message

From the high level, M is a reconstructible message for the set D, if D contains all the
ro-queries and responses (x, ro(x)), required to compute FWPro(M).
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More formally, M is a reconstructible message for D, if, for all 0 ≤ i ≤ k − 2, (yimi+1,
ro(yimi+1)) ∈ D, and (yk−1y

′
k−1mk, ro(yk−1y

′
k−1mk)) ∈ D, where pad(M) = m1m2 · · ·mk

and yi+1y
′
i+1 = ro(yimi+1)⊕ (y′i||0) for all 0 ≤ i ≤ k − 2. All yi’s and y′i’s are n bits each;

mi’s are ` bits each, except mk, which is an (`− n)-bit string.

4.2.2 (Full) Reconstruction graph

To put it loosely, a reconstruction graph stores reconstructible messages on its branches.
A full reconstruction graph stores all reconstructible messages. We now define it formally,
using the notion of a weighted digraph.

A weighted digraph T = (V,E) is defined by the set of nodes V , and the set of weighted
edges E. A weighted edge (v, w, v′) ∈ E is an ordered triple, such that v, v′ ∈ V , and w is
the weight of the ordered pair (v, v′).

Definition 4.1 (Reconstruction graph) Suppose a weighted digraph T = (V,E) is such
that V is a set of 2n-bit strings, and, for all (a, b, c) ∈ E, the weight b is an `-bit string.

The graph T is called a reconstruction graph for D if, for every (y1y
′
1, m2, y2y

′
2) ∈ E,

the following equation holds: y2y
′
2 = ro(y1m2)⊕ (y′1||0) (y1, y′1, y2, and y′2 are n bits each,

and m2 is `-bit), where (y1m2, ro(y1m2)) ∈ D. (An example of reconstruction graph is
given in Figure 4, which will be discussed in detail in the subsequent sections.)

A branch B of a reconstruction graph T , rooted at y0y
′
0 = IV IV ′, is fertile, if dePadn(m1

m2 · · · mk) 6=⊥, where {m1, m2, · · · , y′k−1mk} is the sequence of weights on the branch
B. The y′k−1 is computed following the recursion: yi+1y

′
i+1 = ro(yimi+1) ⊕ (y′i||0), for all

0 ≤ i ≤ k − 2. All yi’s and y′i’s are n bits each; mi’s are ` bits each, except mk, which is
an (`− n)-bit string.

Remark: Each fertile branch of a reconstruction graph corresponds to exactly one recon-
structible message.

Definition 4.2 (Full reconstruction graph) A reconstruction graph T (for the set D)
is full, if, for each reconstructible message M (for D), T contains a fertile branch B that
corresponds to M .

4.2.3 View

Very loosely, the data structure view records the history of the interaction between a system
and an adversary. Let xi and yi be the i-th query from the adversary and the corresponding
response from the system. The view of the system after j queries is the sequence of queries
and responses {(x1y1), . . . , (xjyj)}.
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FWP(M)
01. pad(M) := m1m2 . . .mk−1mk;
02. y0 := IV , y′0 := IV ′;
03. for (i := 1, 2, . . . , k − 1)

yiy
′
i := ro(yi−1||mi)⊕ (y′i−1||0);

04. r := ro(yk−1||y′k−1||mk);
05. return r[n, 2n− 1];

ro(x)
11. if x /∈ Dom(Dro) then Dro[x] $← {0, 1}2n;
12. return Dro[x];

(a) System G0: Global variable is the table Dro. All yi’s are n bits each; mi is an `-bit string for all
1 ≤ i ≤ k − 1; mk is (`− n)-bit long. See Section 5 for description.

RO(M)
001. if M ∈ Dom(Dl)

then return Dl[M ];
002. r $← {0, 1}n;

Dl[M ] := r;
003. return r;
MessageRecon(x, Ts)
201. x parse→ yy′m;
202. M′ := FindBranch(yy′, Ts);
203. M := {dePad(M ′m) |M ′ ∈M′};
204. returnM;

S(x)
101. r $← {0, 1}2n;
102. M := MessageRecon(x, Ts);
103. if |M| = 1 then r[n, 2n− 1] := RO(M);
104. Ds[x] := r;
105. FullGraph(Ds);
106. return r;

(b) System G2: Global variables are the tables Dl and Ds, and the graph Ts. |y| = |y′| = n and |m| = `−n.
See Section 6 for description.

Figure 3: The systems G0 and G2
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5 Main system G0
Following the definition in Section 2.2, the system G0 implements the FWP mode using
the random oracle ro : {0, 1}`+n → {0, 1}2n (see Figure 3(a)).

6 Main system G2
See Figure 3(b) for the pseudocode. The random oracle RO mentioned in Section 3 is
implemented through lazy sampling. The only remaining part is to construct the simulator
S. Our design strategy for the simulator is fairly straightforward and simple. Before going
into the details, we first provide a high level intuition.

6.1 Intuition for simulator S
The purpose of the simulator pair S is two-pronged: (1) to output values that are indis-
tinguishable from the output from the random oracle ro, and (2) to respond in such a way
that FWPro(M) and RO(M) are identically distributed. It will easily follow that as long
as the simulator S is able to output values satisfying the above conditions, no adversary
can distinguish between G0 and G2.

To achieve (1), the simulator S, for a distinct input x, should output a random value,
such that the distributions of S(x) and ro(x) are close.

To achieve (2), the simulator needs to do the following:

• Building the full reconstruction graph. To asses the adversarial power, the simulator S
maintains the full reconstruction graph Ts for the set Ds containing all s-queries and re-
sponses; this helps the simulator keep track of all ‘FWP-mode-compatible’ messages (more
formally, all reconstructible messages) that can be formed using the ‘known’ information.
This is accomplished by a special subroutine FullGraph. The pictorial representation of the
reconstruction graph Ts is given in Figure 4.

• Adjusting the elements of the tables Dl and Ds. Whenever a new reconstructible message
M is found using the aforementioned reconstruction graph Ts, the simulator makes this
crucial adjustment: it assigns FWPS(M) := RO(M). It is fairly intuitive that, if S and
ro produce outputs according to statistically close distributions, then the distributions of
FWPS(M) and FWPro(M) are also close. Since FWPS(M) = RO(M), the distributions of
RO(M) and FWPro(M) are also close. This is accomplished by the subroutine MessageRe-
con.
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6.2 Detailed description of simulator S
We first describe the two most important parts of the simulator S: the subroutines Full-
Graph and MessageRecon. See Figure 3(b) for the pseudocode.

FullGraph (Ds): This routine builds the full reconstruction graph Ts using all the s-queries
and responses stored in Ds. Hence the name FullGraph. We do not provide the pseudocode
for this subroutine, since its operation is straight-forward and brute force: every invocation
FullGraph constructs the graph Ts by searching through the elements in Ds, then creating
all possible nodes, and finally connecting them to create the graph Ts. The reconstruction
graph Ts is pictorially presented in Figure 4. In Appendix C, we compute the running time
of FullGraph on the i-th query to be O(i4).

y0y
′
0 = IV IV ′

m1
ma

m2

m3

yay
′
ay1y

′
1

y2y
′
2

y3y
′
3

Figure 4: The reconstruction graph Ts for Ds (or Tro for Dro) updated by FullGraph of G2
(or PartialGraph of G1).

MessageRecon(x, Ts). The graph Ts is already the full reconstruction graph for the set
Ds. Given the current s-query x, this subroutine derives all new reconstructible messages
M , such that, in the computation of FWPS(M), the final input to S is x, and all other
intermediate inputs to S are old s-queries.

To determine such messagesM , first, FindBranch(x, Ts) collects all branches between the
nodes (IV, IV ′) and x[0, 2n−1]; then, it selects the sequence of weightsX = m1m2 · · ·mk−1
for all such branches. Finally it returns the set {M = dePad(X||x[2n, `− 1])} for all X. If
no such M 6=⊥ is found, then the subroutine returns the empty set.

With the definition of the above subroutines, we now describe how S responds to queries.

18



An s-query and response: For an s-query, the simulator S assigns a uniformly sampled
2n-bit value to r. Then the subroutine MessageRecon(x, Ts) is invoked that returns a set
of reconstructible messages M. If |M| = 1 then the RO is invoked on M ∈ M, and the
value is assigned to r[n, 2n− 1]. Finally, the graph Ts is updated by FullGraph, before r is
returned. In Appendix C, we show that the worst-case running time of S after σ queries
is O(σ5).

7 Intermediate system G1
For description see Figure 5. For the sake of clear understanding, we first discuss the
motivation for designing this system.

7.1 Motivation

The main motivation for constructing a new system G1 is that it is difficult to compare
between the executions of the systems G0 and G2, instruction by instruction. The difficulty
arises from the fact that G2 has a graph Ts, and two extra subroutines FullGraph, and
MessageRecon, while G0 has no such graphs or subroutines. To get around this difficulty,
we reduce G0 to an equivalent system G1 by endowing it with additional memory for
constructing the graph Tro, and by supplying it with additional subroutines MessageRecon
and PartialGraph. These additional components do not result in any difference in the
input and output distributions of the systems G0 and G1 for any adversary (this result is
formalized in Proposition 8.1); therefore, in the indifferentiability framework, G0 can be
replaced by G1.

Even though G1 and G2 now appear ‘similar’, there are still important differences. The
most crucial of them is that, in the former case, the long queries are processed as a sequence
of ro-queries; therefore, current s-queries of G1 may match old ro-queries and responses,
while such events are not possible for G2. This difference comes with two implications:

1. The reconstruction graph Tro in G1 is built using s-queries, ro-queries and their
responses stored in the table Dro; in case of G2, the reconstruction graph Ts is built
using only s-queries and responses stored in Ds. We extract from Tro the maximally
connected subgraph built from all the s-queries and responses stored in Ds; we call
the subgraph Ts. Now the reconstruction graph Ts in both systems are comparable,
since they are both built from the set Ds.

2. In G1, the reconstruction graph Tro may not be full for the set Dro, since the subrou-
tine PartialGraph adds only a few nodes – rather than all nodes – to Tro every round;
by contrast, the reconstruction graph Ts – built by the subroutine FullGraph – for
G2 is necessarily full for the set Ds. In Section 9, we identify a set of events in the
system G1, and then, in Section 10, show that, if those events do not occur, then the
reconstruction graphs in both the systems are full.
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7.2 Detailed description of G1

Figure 5: System G1: Global variables are the tables Dl and Dro (Ds is contained in Dro),
and the graph Tro (Ts is a connected subgraph of Tro). See Section 7 for description.

FWP1(M)
001. pad(M) := m1m2 · · ·mk−1mk;
002. y0 := IV , y′0 := IV ′;
003. for (i := 1, · · · , k − 1){
004. r := ro(yi−1mi);
005. yiy

′
i := r ⊕ (y′i−1||0);

006. if yi−1mi is fresh then
PartialGraph(yi−1mi, r, Tro);}

007. if Type3 then BAD := True ;
008. r := ro(yk−1y

′
k−1mk);

009. if yk−1y
′
k−1mk is fresh then

PartialGraph(yk−1y
′
k−1mk, r, Tro);

010. Dl[M ] := r[n, 2n− 1];
011. return r[n, 2n− 1];

MessageRecon(x, Ts)
201. x parse→ yy′m;
202. M′ := FindBranch(yy′, Ts);
203. M := {dePad(M ′m) |M ′ ∈M′};
204. returnM;

ro(x)
301. if x /∈ Dom(Dro)

then Dro[x] $← {0, 1}2n;
302. return Dro[x];

S1(x)
100. if Type2 then BAD :=True ;
101. r := ro(x);
102. M := MessageRecon(x, Ts);
103. if |M| = 1 ∧M /∈ Dom(Dl) then

Dl[M ] := r[n, 2n− 1];
104. Ds[x] := r;
105. if x is fresh then PartialGraph(x, r, Tro);
106. return r;

PartialGraph(x, r, Tro)
400. x parse→ ycm; r parse→ y∗y′;
401. if Type0 then BAD := True ;
402. C := ContactPoints(yc);
/*1st Phase: (403 – 405)*/
403. E := {(ycy′c,m, yy′)|

y := y∗ ⊕ y′c, ycy′c ∈ C};
404. for e ∈ E {AddEdge(e);
405. if Type1-a ∨ Type1-b ∨ Type1-c then

BAD := True ;}
/*2nd Phase: (406 – 413)*/
406. for (x, r) ∈ Dro
407. for(ycy′c,m, yy′) ∈ E
408. if y = x[0, n− 1] then
409. {z := r[0, n− 1]⊕ y′;
410. z′ := r[n, 2n− 1];
411. m′ := x[n, n+ `− 1];
412. AddEdge(yy′,m′, zz′);
413. if Type1-d ∨ Type1-e ∨ Type1-f then

BAD := True ;}

In our first description of this system, we will ignore the statements where the vari-
able BAD is set, since they impact neither the output nor the global data structures.
The variable BAD is set when certain events occur in the global data structures. Those
events will be discussed in Section 9. We now describe the subroutines used by this system.
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PartialGraph(x, r, Tro): This subroutine is called only when a fresh ro-query is produced.
This subroutine updates the reconstruction graph Tro (for the set Dro) in the following way:
Rather than building all possible paths using elements of Dro, this routine augments the
Tro in at most two phases; hence the name PartialGraph. The details are as follows. First,
the subroutine ContactPoints(yc = x[0, n− 1]) is invoked, which returns a set C containing
all nodes in Tro, whose least-significant n bits are x[0, n − 1]. We note that the nodes of
Tro contained in C are the places where the fresh ro-query will be attached. The pictorial
representation of Tro is in Figure 4.

1st phase: Using the members of the set C and the fresh query-response pair (x, r), fresh
edges are constructed, stored in the set E, and then added to Tro using the subroutine
AddEdge.

2nd phase: In this phase, a 2nd set of fresh nodes are added to the fresh nodes of the 1st
phase, using all query-response pairs stored in table Dro. The details are as follows: if the
least significant n bits of an old query x ∈ Dom(Dro) equals the least significant n bits of
the tail node of an edge e ∈ EdgeNew, then a fresh edge is constructed as before, and then
it is attached to the tail node of e using AddEdge.

MessageRecon(x, Ts). This subroutine has already been described in the context of G2.
However, in this context of G1, there is an important point to note: The graph Ts used by
this subroutine is the maximally connected subgraph of Tro generated by the s-queries and
responses with root (IV, IV ′).

Now we describe how the oracles FWP1 and S1 respond to queries.

FWP1: FWP1 mimics FWP, while updating the graph Tro using the subroutine Partial-
Graph, whenever a fresh ro-query is generated. Dl[M ] is assigned r[n, 2n − 1], where r is
the output from the final ro call. Finally, r[n, 2n− 1] is returned.

Simulator S1: Given the s-query x, the s-oracle S1 computes ro(x) = r. Then the
subroutine MessageRecon(x, Ts) is called which returns a set of messagesM. If |M| = 1,
and ifM /∈ Dl[M ], then Dl[M ] is assigned the value of r[n, 2n−1]. Before finally returning
r[n, 2n − 1], the subroutine PartialGraph is called with input (x, r, Tro), if it is fresh, to
update the existing graph Tro.
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8 First Part of Main Theorem: Proof of (2)
With the description of the systems (in Sections 5, 6, and 7) at our disposal, we are well
equipped to prove (2).

Proposition 8.1 For any distinguishing adversary A,

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
.

Proof. From the description of S1, we observe that, for all x ∈ {0, 1}`+n, S1(x) = ro(x).
Likewise, from the description of FWP1 and FWP, for all M ∈ {0, 1}∗, FWP1(M) =
FWP(M). 2

9 Type0, 1, 2, and 3, of System G1
In this section, we concretely define the Type0, Type1, Type2, and Type3 events of the
system G1 (see Figure 5). Informally they will be called ‘bad’ events, since these events
set the variable BAD in G1. We first provide the motivation for these events.

9.1 Motivation

We recall that the adversary submits s- and long queries to the system G1 and receives
responses, and based on the history of query-response pairs – known as view – she then
tries to distinguish G1 from G2. Intuitively, those events are called ‘bad’, for which the
outputs from the ro oracles of G1 can be predicted by the adversary with probability better
than when interacting with G2. These events primarily involve various forms of collision
occurring in the outputs of queries, allowing the adversary to generate non-trivial recon-
structible messages. Secondly, we need to catch the events where current queries match
old queries too. One can intuit that these events may help the adversary in distinguishing
G1 from G2. It is also important to note that, if Tro is not a full reconstruction graph then
the adversary can also use this fact to compel G1 to produce outputs different from those
from G2 (since G2 always maintains the full reconstruction graph Ts). Lastly, the absence
of ‘bad’ events will be able to restrict the growth of the reconstruction graph Tro every
round; this limits the number of reconstructible messages.

Next sections deal with concrete definitions of these events, keeping the above motiva-
tion in mind.

9.2 Classifying elements of Dro, branches of Tro, and ro-queries
Definition of Type0 to Type3 events depend on the elements in Dro, the branches of Tro,
and the types of ro-queries. In the following sections we first classify them.
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9.2.1 Elements of Dro: six types

We deal with an event when the current s-query x is already in the table Dro. We classify
the elements stored in Dro, according to its known and unknown parts. The known part
of a ro-query and response is the part that is present in the view of the system G1, or it
can be derived from the view with probability 1; the unknown part is not present in the
view, and it cannot be derived from the view with probability 1. There are six types of an
old query-response denoted by Q1, Q2, Q3, Q4, Q5 and Q6, as shown in Figure 6(a)(i).
See Appendix D for the proof. The first five types were generated as the intermediate
ro-queries and responses during the execution of old long queries; the sixth type is an old
s-query and the response. The red and green circles denote the unknown and the known
parts. The higher order bits are placed on the right. We divide a Q5 query into two cases
according to its position in Tro (depicted in Figure 7): (Q5-1) In a branch, all ro-queries
preceding the Q5 query are of type Q6; (Q5-2) In a branch, there is at least one ro-query
(preceding the Q5 query) which is not of type Q6.

9.2.2 Branches of Tro: four types

The branches of Tro can be classified into four types, as shown in Figure 6(b)(i) to (iv). A
branch B is: type (i), if the final query is Q1, Q2 or Q5; type (ii), if the final query is Q3
or Q4; type (iii), if the final query is Q6, and if one of the intermediate queries is Q1, Q2,
Q3, Q4 or Q5; type (iv), if all queries are Q6. The first three types are called red branch.
The fourth type is called green branch.

9.2.3 The ro-queries: seven types

We observe that – based on the types described in the sections above – the current ro-query
can be categorized into the following classes.

1. Current ro-query is an s-query. This can be of two types.

(a) The ro-query is fresh.
(b) The ro-query is one of six types of elements in Dro described in Section 9.2.1.

2. Current ro-query is an intermediate ro-query for the current long query. This is of
three types.

(a) Current long query is present on a red branch – as defined in Section 9.2.2 – of
the graph Tro. The ro-query in this case is necessarily one of six types stored in
Dro; we divide it into two cases.
i. The ro-query is the final one.
ii. The ro-query is a non-final one.
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(b) Current long query is present on a green branch of the graph Tro. The ro-query
in this case is also one of six types stored in Dro.

(c) Current long query is not present on a branch of the graph Tro. We divide the
ro-query into two types.
i. The ro-query is fresh.
ii. The ro-query is one of six types of elements in Dro.

9.3 Definition: Type0 and Type1 on fresh queries

9.3.1 Intuition

We address the classes 1a, and 2c(i) of Section 9.2.3 together, since they are connected
by the fact that the ro-query is fresh. As described in Section 9.1, for a fresh query, the
absence of ‘bad’ events (1) prevents generation of nontrivial reconstructible messages, (2)
(linearly) restricts the growth of the graph Tro, and (3) makes Tro a full reconstruction
graph.

1. A non-trivial reconstructible message is generated, (i) if the fresh ro-query causes a
node collision in the graph Tro, or (ii) if it causes an old query to be attached to a fresh
node. Type1-a, Type1-c, Type1-d and Type1-f events cover all the above conditions. See
Figure 8(b).

2. Absence of Type0, Type1-b, and Type1-d restricts the growth of the graph Tro to a
constant number of nodes every fresh query (i.e., linearly after σ fresh queries). See Fig-
ures 8(a) and 8(b).

3. The goal of Type1-f – in addition to the one described in (1) – is that its absence makes
Tro a full reconstruction graph after two phases.

Importance of the two-phase framework: The first novelty of our work lies in our carefully
designed ‘bad’ events – especially the Type0 and Type1 events – that are spread across two
phases. More precisely, the absence of these events allows the graph Tro to be augmented
in two phases, rather than in one phase (see Figure 8); at the same time, it allows the
graph to have the aforementioned properties. The two-phase framework – as we will see
subsequently – is essential in breaking the birthday barrier of n/2 bits. In a similar way,
the two-phase framework could be extended to a three-phase framework to go even beyond
2n/3 bits (see Section 13). But a rigorous theoretical analysis of that is a challenging task.
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9.3.2 Type0 event: collision in outputs of ro

See Figure 8(a). This event occurs if the right coordinate (or the most significant n bits) of
the output of the ro-query is equal to the right coordinates of the outputs of two distinct
old queries in Dro.

The absence of this event ensures the following: Suppose a1, a2, a3, · · · , ak are the final
ro-queries for k distinct long queries, where a1[n, 2n−1] = a2[n, 2n−1] = · · · = ak[n, 2n−1].
Then k is at most 2. This event will be used in Section 11 to bound the number of certain
nodes in Tro.

9.3.3 Type1 event: collision in Tro

See Figure 8(b). Let (x, r) be the current fresh ro-query and response, such that x = yc||m,
and r = y∗||y′. Let the edge (ycy′c,m, yy′) be generated from (x, r). We define this event
by partitioning it into six cases.

•Type1-a: This event occurs if yy′ collides with a node already in Tro. This collision can
be used to generate at least two reconstructible messages in the next rounds – one of them
can be used to distinguish G1 from G2.

•Type1-b: This event occurs if y collides with the already colliding left-coordinates (or the
least-significant n bits) of two distinct nodes in Tro; that is, these nodes together form a
3-multi-collision. The absence of this event – as we will see in Section 11 – bounds the new
nodes added to Tro to a constant number every round.

•Type1-c: This event occurs if yy′ collides with the least significant 2n bits of an old query
stored in Dro; like before, this event can also be used to form a non-trivial reconstructible
message in the next rounds.

•Type1-d: This event occurs if y collides with the least significant n bits of an old query,
and if the resulting node zz′ (added in Phase 2) collides with a node already in Tro. Note
z||z′ = Dro[ym′][0, 2n − 1] ⊕ (y′||0). This collision can be used to generate at least two
reconstructible messages in the next rounds.

•Type1-e: This event occurs if y collides with the least significant n bits of an old query,
and if the left-coordinate z of the resulting node z||z′ (added in Phase 2) collides with the
left-coordinates of two distinct nodes already in Tro. Like Type1-b, the absence of this
event bounds the new nodes added to Tro to a constant number in the next round.

•Type1-f: This event occurs if y collides with the least significant n bits of an old query,
and if the left-coordinate z of the resulting node z||z′ (added in Phase 2) collides with the
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least significant n bits of an old query. The absence of this event serves two goals at the
same time: (1) it rules out the generation of a non-trivial reconstructible message and (2)
it restricts the growth of Tro only up to two phases every round.

9.4 Type2 and Type3 on old queries

9.4.1 Intuition

Now we deal with the classes 1b, 2a, 2b and 2c(ii) of Section 9.2.3. All of them address
the issue when the current queries match old ones.

The class 1b happens, when an s-query matches one of five types of old elements stored
in Dro; these events can potentially help the adversary in distinguishing between G1 and
G2, and we identify class 1b as Type2, and class 2a as Type3 events; the case by case
analysis of the events will follow in a while.

The remaining classes are now 2a, 2b and 2c(ii), when the adversary submits a long
query – say M – to the oracle FWP1, and it is found that M is already present on some
(fertile) branch of the graph Tro (2a and 2b), or it is not present at all on any branch of
Tro (2c(ii)). The class 2c(ii) necessarily includes a fresh ro-query followed possibly by old
ro-queries, and this scenario has already been considered in various forms of Type1 events.

It is clear that the class 2a(ii) and 2b will not help the adversary in distinguishing G1
from G2.

So now we focus on the class 2a(i), which deals with the final ro-query of a red branch.
Depending on the type of branch, the adversary tries to predict the most significant n bits
of the final ro-query (i.e., the hash output) with non-trivial probability; she succeeds only
for Type3 events that will be discussed shortly.

9.4.2 Type2

Recall that a query-response pair in Dro can be of six types: Q1 to Q6. Type2 event is
divided into several cases depending on the type of the current s-query. See Figure 6(a)(ii-
iv) for the pictorial presentation. Suppose (x, r) is the input-output of a fresh query.

Type2-a: If the query is of type Q1.

Type2-b: If the query is of type Q2.

Type2-c: If the query is of type Q5-2.

Type2-d: If the query is of type Q3, and if r is distinguishable from the uniform distri-
bution U [0, 22n − 1].
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Type2-e: If the query is of type Q4, and if r is distinguishable from the uniform distri-
bution U [0, 22n − 1].

Type2-f: If the query is of type Q5-1, and if r[0, n−1] is distinguishable from the uniform
distribution U [0, 2n − 1].

9.4.3 Type3

In this case, we consider the final ro-query of a red branch as the current query. Several
types of red branch – (i), (ii), and (iii) – are shown in Figure 6(b).

There are three types of Type3 event:

Type3-a If the current long query M is present as a red branch of type (i).3

Type3-b If the current long queryM is present as a red branch of type (ii), and if the most
significant n bits of output being distinguishable from the uniform distribution U [0, 2n−1].

Type3-c If the current long query M is present as a red branch of type (iii).

10 Second Part of Main Theorem: Proof of (3)
First, we first fix a few definitions.

10.1 Definitions: GOODi and BADi

Events GOODi and BADi. BADi denotes the event when the variable BAD is set during
round i of G1, that is, when Type0, Type 1, Type2, or Type3 events occur. Let the sym-
bol GOODi denote the event ¬

∨i
j=1 BADi. The symbol GOOD0 denotes the event when

no queries are submitted. From a high level, the intuition behind the construction of the
BADi event is straight-forward: we will show that if BADi does not occur, and if GOODi−1
did occur, then the views of G1 and G2 (after i rounds) are identically distributed for any
attacker A.

Events GOOD1i and BAD1i. In order to get around a small technical difficulty in establish-
ing the uniform probability distribution of certain random variables, we need to modify the
above events GOODi and BADi slightly. The event BAD1i occurs when Type0, Type2, or
Type3 events occur in the i-th round. The event GOOD1i is defined as GOODi−1∧¬BAD1i.

3Observe that this case implies a node-collision in Tro, since the yk−1y
′
k−1mk is the final ro-query for

two distinct l-queries, the current M and also an old one. Therefore, if Type1 event did not occur in the
previous rounds, this event is impossible in the current round.
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10.2 Proof of (3)

With the help of the Type0 to Type3 events described in Section 9, we are equipped to
prove (3). Recall that we need to show two things:∣∣∣Pr

[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ Pr
[
¬GOOD1σ

]
(5)

as well as
Pr
[
¬GOOD1σ

]
≤ Pr

[
¬GOODσ

]
≤

σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (6)

Proof of (6) is straight-forward. To prove (5), we proceed in the following way. Observe∣∣∣Pr
[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣∣
=
∣∣∣(Pr

[
AG1 ⇒ 1 | GOOD1σ

]
− Pr

[
AG2 ⇒ 1 | GOOD1σ

])
· Pr

[
GOOD1σ

]
+
(
Pr
[
AG1 ⇒ 1 | ¬GOOD1σ

]
− Pr

[
AG2 ⇒ 1 | ¬GOOD1σ

])
· Pr

[
¬GOOD1σ

]∣∣∣. (7)

If we can show that

Pr
[
AG1 ⇒ 1 | GOOD1σ

]
= Pr

[
AG2 ⇒ 1 | GOOD1σ

]
, (8)

then (7) reduces to (5), since∣∣∣Pr
[
AG1 ⇒ 1 | ¬GOOD1σ

]
− Pr

[
AG2 ⇒ 1 | ¬GOOD1σ

]∣∣∣ ≤ 1.

As a result, we focus on establishing (8), which is done in Appendix E.

11 A Few Combinatorial Results
In order to prove (4), we will need a few combinatorial results. We first fix some notation.

Node(i): The multiset of nodes in Tro after i rounds in system G1.

N
(i)
1 (and N (i)

2 ): The number of nodes added to Tro, during the 1st phase (and 2nd phase)
of the i-th iteration of system G1.

D
(i)
ro : The table Dro after i rounds.

N
(i)
right(a): The number of nodes in Tro after i rounds, where the most significant n bits

equal a.
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Left-CosetA(x): Suppose A is a multiset on {0, 1}2n. The multiset Left-CosetA(x) = {a ∈
A | a[0, n− 1] = x} contains all elements of A whose least significant n bits are equal to x.
Such a sub-multiset will be called a left-coset of A, or simply a left-coset if A is clear from
the context.

Right-CosetA(x): Suppose A is a multiset on {0, 1}2n. The multiset Right-CosetA(x) =
{a ∈ A | a[n, 2n− 1] = x} contains all elements of A whose most-significant n bits equal x.
As above, we will call such a sub-multiset a right-coset of A, or simply a right-coset.

twin-left/twin-right: A 2n-bit string a is a twin-left/twin-right of a 2n-bit string b, if a[0, n−
1] = b[0, n− 1]/if a[n, 2n− 1] = b[n, 2n− 1].

We now prove three important lemmas. The first one upper-bounds the size of the
graph Tro, while the other two provide upper-bounds for the collision probability on the
left and right coordinates of query-outputs and nodes on the graph.

Lemma 11.1 (Node Counting) Given GOODi−1 occurs (i ≥ 1), then (i) N (i)
1 ≤ 2, (ii)

N
(i)
2 ≤ i, (iii) N

(i−1)
right (a) ≤ 4 for all a ∈ {0, 1}n, and (iv) |Node(i−1)| ≤ 2i− 1.

Proof. Since GOODi−1 occurred, the events Type0, Type1-b and Type1-e did not occur
during the first i − 1 rounds of system G1. Therefore, the maximum size of the set Coset
is 2 after i− 1 rounds.

(i) N (i)
1 is upper-bounded by the maximum size of the set Coset after i − 1 rounds, from

which the result follows.

(ii) In the second phase of the i-th round, a query cannot be added to more than 1 node
of Tro, since the nodes generated during the first phase have distinct left-coordinates. As
there are i queries, we get the result.

(iii) We note that, given GOODi−1 occurred – which essentially implies that Type0 (or
3-multi-collision on the most significant n bits of the output of a query), Type1-b and
Type1-e (3-multi-collision on the least significant n bits of a node) did not occur – in the
first i − 1 rounds. Therefore, one query can be placed in a maximum of 2 places on Tro,
and at most two queries can have identical most significant n bits, implying the result.

(iv) We claim that the number of edges in Tro after i− 1 rounds is at most 2i− 2. Suppose
there were more than 2i − 2 edges in Tro. This would require that we have at least one
query which has been added to the graph at more than 2 nodes. However, this leads to
a contradiction due to the fact that GOODi−1 occurred. Namely, we have that events
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Type1-b and Type1-e did not occur. Now, since each edge has one tail node, including the
root-node (IV, IV ′) we get |Node(i−1)| ≤ 2i− 1. 2

Since we assume
∑σ
i=1 Pr

[
BADi | GOODi−1

]
≤ ε = 1/2 (see Section 3), (6) implies that

GOODi ≥ 1/2 for all 0 ≤ i ≤ σ. In the following two lemmas we will use this fact.

Lemma 11.2 (Left Coordinate Collision) The following inequality holds:

P ilcc(y,A) def:= Pr
[∣∣Left-CosetA(y)

∣∣ ≥ 2 | GOODi−1 ∧ ∃yx ∈ A
]
≤ 2(|A| − 1)

2n ,

where A ⊆ Node(i), and x ∈ {0, 1}n.

Proof. We now label the elements of A = {yjxj | j = 1, 2, · · · , k}. We choose any pair
yjxj and yj′xj′ from A, with j 6= j′ and note that

yj = ro(aj1)[n, 2n− 1]⊕ ro(aj2)[0, n− 1],
yj′ = ro(aj′1)[n, 2n− 1]⊕ ro(aj′2)[0, n− 1].

We note that, if GOODi−1 occurs then aj1 ||aj2 6= aj′1 ||aj′2 , implying

Pr
[
yj = yj′ | GOODi−1

]
= Pr

[
yj = yj′ | GOODi−1 ∧ aj1 ||aj2 6= aj′1 ||aj′2

]
=
(
Pr
[
yj = yj′ | GOODi−1 ∧ aj1 ||aj2 6= aj′1 ||aj′2

]
· Pr

[
GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

])
· 1

Pr
[
GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

]
= Pr

[
yj = yj′ ∧ GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

]
· 1

Pr
[
GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

]
≤ Pr

[
yj = yj′ | aj1 ||aj2 6= aj′1 ||aj′2

]
· 1

Pr
[
GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

] (9)

Now, Pr
[
GOODi−1 | aj1 ||aj2 6= aj′1 ||aj′2

]
=

Pr
[

GOODi−1

]
Pr
[
aj1 ||aj2 6=aj′1

||aj′2

] since

Pr
[
aj1 ||aj2 6= aj′1 ||aj′2 | GOODi−1

]
= 1.
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Putting this result in (9), we get,

Pr
[
yj = yj′ | GOODi−1

]
≤

Pr
[
aj1 ||aj2 6= aj′1 ||aj′2

]
Pr
[
GOODi−1

] · Pr
[
yj = yj′ | aj1 ||aj2 6= aj′1 ||aj′2

]
≤ 1

Pr
[
GOODi−1

] · Pr
[
yj = yj′ | aj1 ||aj2 6= aj′1 ||aj′2

]
= 1

Pr
[
GOODi−1

] · 1
2n

≤ 2
2n , since Pr

[
GOODi−1

]
≥ 1/2. (10)

Notice that P ilcc(y,A) is essentially the probability that the multiset A contains at least
one twin-left of the node yx ∈ A, given GOODi−1 occurred. Setting y1x1 = yx ∈ A, we get

P ilcc(y,A) ≤ Pr
[ |A|∨
j=2

(y1 = yj) | GOODi−1
]

≤
|A|∑
j=2

Pr
[
y1 = yj | GOODi−1

]
= 2(|A| − 1)

2n (using (10)). (11)

Thus the proof is complete. 2

Lemma 11.3 (Right Coordinate Collision) The following inequality holds:

P ircc(y,A) def:= Pr
[∣∣∣Right-CosetA(y)

∣∣∣ ≥ 2 | GOODi−1 ∧ ∃xy ∈ A
]
≤ 2(i− 2)

2n ,

where the multiset A = {xjyj | j = 1, 2, · · · , i − 1} contains the outputs of previous i − 1
ro-queries, and x ∈ {0, 1}n.

Proof. We choose any pair xaya and xbyb from A, with a 6= b and note that

ya = ro(m)[n, 2n− 1],
yb = ro(n)[n, 2n− 1],

where m and n are two previous ro-queries. Since m 6= n,

Pr
[
ya = yb | GOODi−1

]
≤ 1

Pr
[
GOODi−1

] · Pr
[
ya = yb

]
≤ 2

2n , since Pr
[
GOODi−1

]
≥ 1/2. (12)
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Notice that P ircc(y,A) is essentially the probability that the multiset A contains at least
one twin-right of a node xy ∈ A, given GOODi−1 occurred. W.l.g, setting x1y1 = xy ∈ A,
we get

P ircc(y,A) ≤ Pr
[ i−1∨
j=2

(y1 = yj) | GOODi−1
]

≤
i−1∑
j=2

Pr
[
y1 = yj | GOODi−1

]
≤ 2(i− 2)

2n (by (12)).

2

12 Third (or Final) Part of Main Theorem: Proof of (4)
To prove (4), we need individually compute the probabilities Type0i, Type1i, Type2i, and
Type3i events described in Section 9. The suffix i denotes the corresponding event in the
round i.

12.1 Estimating probability of Type0i
The Type0 event is displayed in Figure 8(a). The 2n-bit output of the ith ro-query –
which is fresh – is denoted by y∗i y

′
i. Let the multiset A = {y∗j y′j | j = 1, 2, · · · , i − 1}

contain outputs of all previous i − 1 ro-queries. Now, from the definition of Type0 event
we establish the following:
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Pr
[
Type0i | GOODi−1

]
≤ Pr

[
∃y∗y′i ∈ A ∧

∣∣∣Right-CosetA(y′i)
∣∣∣ ≥ 2 | GOODi−1

]
= Pr

[
∃y∗y′i ∈ A | GOODi−1

]
· Pr

[∣∣∣Right-CosetA(y′i)
∣∣∣ ≥ 2 | GOODi−1 ∧ ∃y∗y′i ∈ A

]
︸ ︷︷ ︸

Estimated in Lemma 11.3

≤ Pr
[ i−1∨
j=1

(y′i = y′j) | GOODi−1
]
· P ircc(y′i, A)

≤
i−1∑
j=1

Pr
[
y′i = y′j | GOODi−1

]
︸ ︷︷ ︸
y′i independent of GOODi−1

·P ircc(y′i, A)

=
i−1∑
j=1

Pr
[
y′i = y′j

]
· P ircc(y′i, A)

≤ i− 1
2n ·

2(i− 2)
2n

≤ 2i2

22n . (13)

12.2 Estimating probability of Type1i
We recall that if GOODi−1 occurs, then |Node(i−1)| = 2i − 1, N (i)

1 ≤ 2 and N
(i)
2 ≤ i by

Lemma 11.1. Now, we can bound the probability of various Type1 events. The factor 2 on
the left side of each inequality arises due to the two fresh nodes that can be added in the
1st phase. Several Type1 events are pictorially represented in Figure 8(b).

12.2.1 Computing probability of Type1-ai
Let N denote the number of nodes in the graph Tro after i−1 full rounds and the 1st phase
of round i, given GOODi−1 occurred. Therefore, N = |Node(i−1)|+N (i)

1 ≤ 2i−1+2 = 2i+1.
It is straight-forward to see from the figure,

Pr
[
Type1-ai | GOODi−1

]
≤ 2 · N22n = 2(2i+ 1)

22n ≤ 6i
22n . (14)
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12.2.2 Computing probability of Type1-bi
Let a new node generated in the 1st phase of the i-th round be denoted by yy′. Let A
denote the multiset of all nodes added to the graph Tro up to the end of the 1st phase
of the i-th round minus the node yy′. Therefore, |A| ≤ |Node(i)

1 | − 1 = 2i. We label the
elements of A = {yjxj | j = 1, 2, · · · , k}. For any x ∈ {0, 1}n,

Pr
[
Type1-bi | GOODi−1

]
≤ 2 · Pr

[
∃yx ∈ A ∧ |Left-CosetA(y)| ≥ 2 | GOODi−1

]
= 2 · Pr

[
∃yx ∈ A | GOODi−1

]
· Pr

[
|Left-CosetA(y)| ≥ 2 | GOODi−1 ∧ ∃yx ∈ A

]
︸ ︷︷ ︸

Estimated in Lemma 11.2

≤ 2 · Pr
[ |A|∨
j=1

(y = yj) | GOODi−1
]
· P ilcc(y,A)

≤ 2 ·
|A|∑
j=1

Pr
[
y = yj | GOODi−1

]
︸ ︷︷ ︸
y independent of GOODi−1

·P ilcc(y,A)

= 2 ·
|A|∑
j=1

Pr
[
y = yj

]
· P ilcc(y,A)

≤ 2 · |A|2n ·
2(|A| − 1)

2n

≤ 2 · 2i
2n ·

2(2i− 1)
2n

≤ 16i2

22n .

12.2.3 Computing probability of Type1-ci
Since the maximum number of queries after i rounds is also i, from Figure 8(b) we see:

Pr
[
Type1-ci | GOODi−1

]
≤ 2 · i

22n ≤
2i

22n . (15)

12.2.4 Computing probability of Type1-di
We now define two events E1 and E2 as shown in Figure 8(b). E1 denotes the event that
the least-significant n bits of an old query are equal to the least-significant n bits of a fresh
node – denoted by y – in the 1st phase. E2 denotes the event that the node zz′ – which is
generated in the 2nd phase – are equal to two distinct nodes in the graph Tro. Since there
are at most two fresh nodes in the 1st phase and there are at most i queries, we get
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Pr
[
Type1-di | GOODi−1

]
≤ 2 · i · Pr

[
E1 ∧ E2 | GOODi−1

]
= 2i · Pr

[
E1 | GOODi−1

]
· Pr

[
E2 | E1 ∧ GOODi−1

]
= 2i · Pr

[
E1 | GOODi−1

]
· Pr

[
E2 | GOODi−1

]
. (16)

The last equality of (16) holds since E1 is independent of GOODi−1, E2 and E2∧GOODi−1.
It is easy to see that Pr

[
E1 | GOODi−1

]
= 1/2n. Now we estimate Pr

[
E2 | GOODi−1

]
.

As denoted in Figure 8(b)(Type1-d), the node zz′ has been generated by the query Old1.
We observe that, given GOODi−1, the number of nodes, other than the node zz′, generated
from query Old1 in the graph Tro is at most 2 (otherwise, there is a 3-collision on the
left-coordinates in Tro, which is prohibited by GOODi−1). Similarly, given GOODi−1, the
number of nodes generated from query Old2 – which is different from Old1 – is at most
|Node(i−1)|+N

(i)
1 +N

(i)
2 ≤ 3i− 1 by Lemma 11.1. Therefore,

Pr
[
E2 | GOODi−1

]
≤

2∑
1

1
2n · 1 +

3i−1∑
1

1
2n
( 1

2n ·
1

Pr
[
GOODi−1

]) ≤ 3
2n .

Putting the above values in (16), we get

Pr
[
Type1-di | GOODi−1

]
≤ 2i · 1

2n ·
3
2n ≤

6i
22n . (17)

12.2.5 Computing probability of Type1-ei
As before, we define two events E1 and E2 as shown in Figure 8(b). E1 is defined identically
as before; therefore, Pr

[
E1 | GOODi−1

]
= 1/2n. The event E2 occurs when z equals the

least-significant n bits of two distinct nodes in the graph Tro. In other words, event E2
occurs if Left-CosetNode(i)(z) ≥ 3 which is equivalent to the event ∃zy ∈ A∧Left-CosetA(z) ≥
2 where, A = Node(i) \ {zz′}. As before, E1 is independent of GOODi−1, E2 and E2 ∧
GOODi−1. Therefore,

Pr
[
Type1-ei | GOODi−1

]
≤ 2i · Pr

[
E1 | GOODi−1

]
· Pr

[
E2 | GOODi−1

]
= 2i · 1

2n · Pr
[
E2 | GOODi−1

]
. (18)
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Now, we estimate the following probability

Pr
[
E2 | GOODi−1

]
= Pr

[
∃zy ∈ A ∧ Left-CosetA(z) ≥ 2 | GOODi−1

]
= Pr

[
∃zy ∈ A | GOODi−1

]
· Pr

[
Left-CosetA(z) ≥ 2 | GOODi−1 ∧ ∃zy ∈ A

]
︸ ︷︷ ︸

Lemma 11.2

.

≤ 3i
2n ·

2(3i− 1)
2n ≤ 18i2

22n (19)

since, given GOODi−1, |A| = |Node(i)|−1 = |Node(i−1)|+N (i)
1 +N (i)

2 −1 ≤ (2i−1)+2+i−1 =
3i by Lemma 11.1.

Using the above equation and (18), we finally estimate

Pr
[
Type1-ei | GOODi−1

]
≤ 36i3

23n . (20)

12.2.6 Computing probability of Type1-fi
The event has been described in Figure 8(b). The event E1 is the same as above. The
event E2 occurs when z equals the least-significant n bits of a query. As in the previous
case, E1 is independent of GOODi−1, E2 and E2 ∧ GOODi−1. Therefore,

Pr
[
Type1-fi+1 | GOODi

]
= 2i · Pr

[
E1 | GOODi−1

]
· Pr

[
E2 | GOODi−1

]
≤ 2i · 1

2n ·
i

2n = 2i2

22n . (21)

12.2.7 Final summation

Adding all the previous constituent probabilities we obtain,

Pr
[
Type1i | GOODi−1

]
≤ 6i/22n + 16i2/22n + 2i/22n + 6i/22n + 36i3/23n + 2i2/22n

≤ 14i/22n + 18i2/22n + 36i3/23n

≤ 68i2/22n.

12.3 Estimating probability of Type2i
The following probabilities are easy to compute using the definition of Type2 events in
Section 9.4.2.
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12.3.1 Estimating probability of Type2-ai

Note that a query of type Q1 is always the final ro-query for a long query; this implies that
the middle n bits of such a query are the most-significant n bits of the output of another
query. Since Type0 did not occur in the i− 1 rounds, there can be at most 2 queries with
outputs having identical most significant n bits; each of these queries can be attached to
the graph in at most 2 places, since Type1-b or Type1-e did not occur in the first i − 1
rounds. Therefore, the number of Q1 queries with identical middle n bits can be at most
4. Therefore,

Pr
[
Type2-ai | GOODi−1

]
≤

Pr
[
Type2-ai

]
Pr
[
GOODi−1

] ≤ 8
2n .

12.3.2 Estimating probability of Type2-bi

Since there can be at most i queries of type Q2,

Pr
[
Type2-bi | GOODi−1

]
≤

Pr
[
Type2-bi

]
Pr
[
GOODi−1

] ≤ 2i
22n .

12.3.3 Estimating probability of Type2-ci

Note that there can be at most 1 query of type Q5-2 with identical ` + n bits of input.
Also note that the Q5-2 query is the final query of one branch – call it B – as shown in
Figure 7. Now, we see that the branch B has at least one of Q1 to Q5 queries, followed by
a Q5 or a Q6 query. Therefore,

Pr
[
Type2-ci | GOODi−1

]
≤

Pr
[
Type2-ci

]
Pr
[
GOODi−1

] ≤ 2
2n .

12.3.4 Estimating probability of Type2-di

Let E1 denote the event that the current query is type Q3, and let E2 denote the event
that the output is distinguishable from the uniform distribution. Now Type2-d= E1 ∧E2.
Therefore,

Pr
[
Type2-di | GOODi−1

]
= Pr

[
E1 ∧ E2 | GOODi−1

]
≤ Pr

[
E2 | GOODi−1

]
≤ 2− 1

22n

= 1/22n.
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12.3.5 Estimating probability of Type2-ei

Let E1 denote the event that the current query is type Q4, and let E2 denote the event
that the output is distinguishable from the uniform distribution. Now Type2-e= E1 ∧E2.
Therefore,

Pr
[
Type2-ei | GOODi−1

]
= Pr

[
E1 ∧ E2 | GOODi−1

]
≤ Pr

[
E2 | GOODi−1

]
≤ 2− 1

22n

= 1/22n.

12.3.6 Estimating probability of Type2-fi

Let E1 denote the event that the current query is type Q5-1, and let E2 denote the event
that the least significant n bits of output are distinguishable from the uniform distribution.
Now Type2-f= E1 ∧ E2. Therefore,

Pr
[
Type2-fi | GOODi−1

]
= Pr

[
E1 ∧ E2 | GOODi−1

]
≤ Pr

[
E2 | GOODi−1

]
≤ 2− 1

2n
= 1/2n.

12.3.7 Final summation

Adding all the previous constituent probabilities we obtain,

Pr
[
Type2i | GOODi−1

]
≤ 11/2n + 2/22n + 2i/22n ≤ 15/2n

≤ 30/2n.

12.4 Estimating probability of Type3i
Examining the definition of Type3 events in the following results can be established.

12.4.1 Estimating probability of Type3-ai

This event cannot occur – as observed in Section 9.4.3 – if Type1 event did not occur in
the first i− 1 rounds. Therefore,

Pr
[
Type3-ai | GOODi−1

]
= 0.
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12.4.2 Estimating probability of Type3-bi

From the definition in Section 9.4.3,

Pr
[
Type3-bi | GOODi−1

]
≤ 2− 1

2n = 1/2n.

12.4.3 Estimating probability of Type3-ci

From the definition in Section 9.4.3,

Pr
[
Type3-ci | GOODi−1

]
≤

Pr
[
Type3-ci

]
Pr
[
GOODi−1

] ≤ 2
2n .

12.4.4 Final summation

Adding all the previous constituent probabilities we obtain,

Pr
[
Type3i | GOODi−1

]
≤ 3/2n.

12.5 Final step

We prove (4) by combining the above bounds into the following inequality which holds for
1 ≤ i ≤ σ:

Pr
[
BADi | GOODi−1

]
≤ Pr

[
Type0i | GOODi−1

]
+ Pr

[
Type1i | GOODi−1

]
+ Pr

[
Type2i | GOODi−1

]
+ Pr

[
Type3i | GOODi−1

]
≤ 2i2/22n + 68i2/22n + 30/2n + 3/2n

≤ 103i2/22n.

Therefore,
σ∑
1

Pr
[
BADi | GOODi−1

]
≤ 103σ3

22n .

13 Experimental Results: The Bound Improves Towards n
bits

We performed a series of experiments studying the effects of the bad events in our theoreti-
cal framework. Our simple C implementation of the game G1 simulated the random oracle,
ro, with randomness supplied by rand(), by maintaining a database of input/output pairs,
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assuring that ro commits to an output while allowing fresh queries to remain independent
of all past events.

We collected data providing accurate estimates for the values Pr
[
Type1i | GOODi−1

]
described in Section 9. Compiling these data we computed the relative percentage of
several Type1 events. The results are provided in Table 13. The experimental results
strongly agree with the bounds computed in Section 12.

In addition to these event probabilities, we calculated security bounds for several values
of n. The computation was achieved by randomly generating a large number of graphs, Tro,
and determining the number of queries, σ, required to cause

∑σ
i=1 Pr

[
Type1i | GOODi−1

]
≥

0.5. The results of the experiments following this method are summarized in the blue line
of Figure 9. Naturally, the data follow the theoretically obtained bound of σ = Ω(22n/3)
(see Theorem 3.1). Some of the values in the graph are slightly lower than 2/3, due to the
effect of constants. The data asymptotically approach 2/3.

We did not consider the Type2 and Type3 events, since, for any efficient adversary the
probabilities of these events are dominated by that of the Type1 events. We found that
choosing the values at which to place the 1st query uniformly at random from among all
possible maximal left-cosets was the most advantageous strategy for an adversary.

Hoping that the real indifferentiability security bound is more than 2n/3-bit, we exper-
imented with a smaller set of ‘bad’ events than the ones described in Section 9. We first
removed the ‘artificial’ Type1-b, Type1-e, and Type0 events; it is easy to see that (2) and
(3) can be proved without these events. These events were inserted so that it is mathe-
matically easier to derive the bounds on the size of the graph Tro (see Section 11). It is our
intuition that a cleverer mathematician will be able to obtain similar bounds even without
these ‘artificial’ events. Then we have switched from the two-phase framework to a natural
extension of three-phase (or multi-phase) framework. In short, with the construction of a
multi-phase version of the game G1, removing the artificial Type1-b, Type1-e, and Type0
events, we see that the normalized logarithm of σ increases towards one as n increases.
The Type1 events of the three-phase version of G1 are illustrated in Figure 10. These data
indicate that the bound may be significantly improved, possibly even to nearly n bits, as
reflected in the red line of Figure 9.

14 Conclusion and Open Problems
Indifferentiability security guarantees absence of all generic attacks. In this paper we
improved the indifferentiability security bound of the FWP hash mode from n/2 to 2n/3
bits. Many popular hash modes use primitives of the form C : {0, 1}2n → {0, 1}2n. For such
an important family, the FWP becomes the only mode to achieve indifferentiable security
of more than n/2 bits. Secondly, among n-bit hash modes with a > 2n, the FWP mode
has the highest rate among all modes which have beyond-birthday-barrier security. Our
experimental results strongly indicate that the bound could be further improved, possibly
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PPPPPPPPPEvent
n 6 7 8 9 10 11 12

Type1-a 6.2% 4.0% 2.7% 1.6% 1.0% 1.1% 0.6%
Type1-b 51.7% 58.2% 62.7% 67.2% 70.9% 74.2% 77.0%
Type1-c 5.5% 3.4% 2.3% 1.4% 0.7% 0.5% 0.5%
Type1-d 0.7% 0.3% 0.1% 0.1% 0.0% 0.0% 0.0%
Type1-e 1.4% 1.1% 0.9% 0.5% 0.4% 0.1% 0.3%
Type1-f 17.5% 15.7% 14.2% 12.5% 10.6% 10.0% 7.0%
Type0 17.1% 17.2% 17.1% 16.6% 16.5% 14.2% 14.6%

Table 2: The relative percentage of Type1 bad events for various values of n. Columns 6-9,
10-11, and 12 were computed by generating 100000, 10000, and 5000 trees, Tro, respectively.

Figure 9: Plot of experimental data of value of n versus the normalized logarithm of σ,
log2(σ)/n, for the systems “2-phase G1” (or simply G1) and “multi-phase G1” (labeled by
G′1).
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even close to n bits. In addition, our proof technique is novel, and it uses only three games
with a set of specially designed bad events.

Our work leaves room for more research. The security upper-bound for the FWP is
n-bit, while the proven lower-bound is 2

3n-bit. One research direction would be to close the
gap between these upper and lower bounds. Also, one may try to optimize the complexity
of the simulator running time.

Acknowledgment

We would like to thank Donghoon Chang, Mridul Nandi, Tom Shrimpton, Cristina Tone,
Meltem Sönmez Turan, and the Keccak team for their suggestions and remarks which
helped a lot to improve the quality of the paper.

References
[1] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John

Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage attacks on dithered hash
functions. In Smart [35], pages 270–288. (Cited on page 5.)

[2] Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with
Non-Ideal Compression Function. Cryptology ePrint Archive, Report 2011/620, 2011.
http://eprint.iacr.org/. (Cited on page 6.)

[3] Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with
Non-Ideal Compression Function. 3rd SHA-3 Candidate Conference, 2012. (Cited on
page 5.)

[4] Elena Andreeva, Bart Mennink, and Bart Preneel. On the Indifferentiability of the
Grøstl Hash Function. In Juan A. Garay and Roberto De Prisco, editors, SCN, volume
6280 of Lecture Notes in Computer Science, pages 88–105. Springer, 2010. (Cited on
page 7.)

[5] Elena Andreeva, Bart Mennink, and Bart Preneel. The Parazoa Family: Generalizing
the Sponge Hash Functions. IACR Cryptology ePrint Archive, 2011:28, 2011. (Cited
on page 6.)

[6] Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Ex-
tension and the EMD Transform. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT
2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer,
2006. (Cited on page 6.)

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge Func-
tions. ECRYPT 2007, 2007. http://sponge.noekeon.org/SpongeFunctions.pdf.
Accessed March 2012. (Cited on page 7.)

46

http://eprint.iacr.org/
http://sponge.noekeon.org/SpongeFunctions.pdf


[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indif-
ferentiability of the Sponge Construction. In Smart [35], pages 181–197. (Cited on
page 6.)

[9] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security Analysis of the
Mode of JH Hash Function. In Seokhie Hong and Tetsu Iwata, editors, FSE, volume
6147 of Lecture Notes in Computer Science, pages 168–191. Springer, 2010. (Cited
on pages 5, 6 and 7.)

[10] Eli Biham and Orr Dunkelman. A framework for iterative hash functions – HAIFA.
Second NIST Cryptographic Hash Workshop, 2006, 2006. (Cited on page 6.)

[11] Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the complexity of
the herding attack and some related attacks on hash functions. Des. Codes Cryptog-
raphy, 64(1-2):171–193, 2012. (Cited on page 5.)

[12] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science. Springer, 1990. (Cited
on pages 47 and 49.)

[13] E. Bresson, A. Canteaut, B. Chevallier-Mames, C .Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,
C. Thuillet, and M. Videau. SHABAL. The 1st SHA-3 Candidate Conference. (Cited
on page 6.)

[14] Donghoon Chang and Mridul Nandi. Improved indifferentiability security analysis of
chopMD hash function. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes
in Computer Science, pages 429–443. Springer, 2008. (Cited on page 6.)

[15] Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the Hash
Algorithm BLAKE. Cryptology ePrint Archive, Report 2011/623, 2011. http://
eprint.iacr.org/. (Cited on pages 5 and 6.)

[16] Jean-Sébastien Coron. Optimal security proofs for pss and other signature schemes. In
Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer
Science, pages 272–287. Springer, 2002. (Cited on page 5.)

[17] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård Revisited: How to Construct a Hash Function. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, 2005. (Cited on pages 5, 6 and 10.)

[18] Ivan Damgård. A Design Principle for Hash Functions. In Brassard [12], pages 416–
427. (Cited on page 6.)

47

http://eprint.iacr.org/
http://eprint.iacr.org/


[19] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some Observations on Indif-
ferentiability. In Ron Steinfeld and Philip Hawkes, editors, ACISP, volume 6168 of
Lecture Notes in Computer Science, pages 117–134. Springer, 2010. (Cited on pages 5
and 11.)

[20] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schlaffer,
and S. Thomsen. Groestl - a SHA-3 candidate. The 1st SHA-3 Candidate Conference.
(Cited on page 6.)

[21] Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-
Damgård Scheme with a Permutation. In Kaoru Kurosawa, editor, ASIACRYPT,
volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer, 2007.
(Cited on page 6.)

[22] Jonathan J. Hoch and Adi Shamir. Breaking the ICE - Finding Multicollisions in
Iterated Concatenated and Expanded (ICE) Hash Functions. In Matthew J. B. Rob-
shaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2006. (Cited on page 5.)

[23] Antoine Joux. Multicollisions in Iterated Hash Functions: Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 306–316. Springer, 2004. (Cited on pages 5
and 6.)

[24] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus
Attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 183–200. Springer, 2006. (Cited on page 5.)

[25] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 474–490. Springer, 2005. (Cited on page 5.)

[26] Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages
474–494. Springer, 2005. (Cited on pages 6 and 7.)

[27] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages
21–39. Springer, 2004. (Cited on page 5.)

[28] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
TCC, pages 21–39, 2004. (Cited on page 11.)

48



[29] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [12], pages 428–446.
(Cited on page 6.)

[30] Dustin Moody, Souradyuti Paul, and Daniel Smith-Tone. Improved Indifferentiability
Security Bound for the JH Mode. 3rd SHA-3 Candidate Conference, 2012. (Cited on
pages 6 and 7.)

[31] Mridul Nandi and Souradyuti Paul. Speeding up the wide-pipe: Secure and fast
hashing. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT, volume
6498 of Lecture Notes in Computer Science, pages 144–162. Springer, 2010. (Cited
on pages 6, 7 and 10.)

[32] Mridul Nandi and Douglas R. Stinson. Multicollision Attacks on Some Generalized
Sequential Hash Functions. IEEE Transactions on Information Theory, 53(2):759–
767, 2007. (Cited on page 5.)

[33] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composi-
tion: Limitations of the Indifferentiability Framework. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 487–506.
Springer, 2011. (Cited on pages 5 and 11.)

[34] Victor Shoup. OAEP Reconsidered. In Joe Kilian, editor, CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 239–259. Springer, 2001. (Cited on page 5.)

[35] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in
Computer Science. Springer, 2008. (Cited on pages 46 and 47.)

[36] Hongjun Wu. The JH Hash Function. The 1st SHA-3 Candidate Conference (2009).
(Cited on page 6.)

A Definitions
Definition A.1 (Random oracle) A random oracle is a function RO : X → Y chosen
uniformly at random from the set of all |Y ||X| functions that map X → Y . In other words,
a function RO : X → Y is a random oracle if and only if, for each x ∈ X, the value of
RO(x) is chosen uniformly at random from Y .

49



c

M1
l − n

n

nIV ′

IV
c

M2

c

M3
l − n l − n

c

Mk−1

c

Mk
l − n

n bit hash

(i)

c

M1

l

n

nIV ′

IV
c

M2

c

M3

l l

c

Mk−1

c

Mk

l − n
n bit hash

(ii)

l

l − n

Figure 11: (i) Wide Pipe and (ii) Fast Wide Pipe modes; both are using the identical
primitive C. Mi’s are message-blocks.

B WP and FWP

C Time costs of FullGraph and simulator S
Since there are i queries after i rounds, the maximum number of nodes in Ts after i round is
i2. Therefore, to construct Ts in the i-th round, the amount of time required by FullGraph
is O(i4). Now, if the adversary submits σ queries, then the time complexity of FullGraph is
O(σ5). Since the time of FullGraph dominates over the other costs such as MessageRecon,
the worst-case simulator time complexity of S is also O(σ5).

D Six Types of ro-query-response Pairs
Lemma D.1 (Sextuple Queries) Based on the known and unknown parts, there are at
most 6 types of a query-response stored in the table Dro – as shown in Figure 6(a)(i).

Proof. We observe from the (known and unknown parts of) l- and s-queries, and their
responses that there are three types of output for an ro-query: (1) the least significant n
bits are unknown (they are the outputs of the final ro-queries in l-queries); (2) all 2n bits
are unknown (they are the outputs of the intermediate ro-queries in l-queries); (3) all 2n
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bits are known (they are the outputs of the s-queries. Note that in case (1), the output
can be of three types of input (Q1, Q2 and Q5); any extra type of input for this output
will require at least four types of output in total, which is impossible. Case (2) output can
have two types of input (Q3 and Q4). Finally, for case (3), an output can have only one
type of input (Q6). Altogether, there are six types of query-response pairs. 2

E Proof of (8)
Let V 1

i and V 2
i denote the views of the systems G1, and G2 respectively, after i queries

have been processed. To prove (8), it suffices to show that given GOOD1σ, the views V 1
σ

and V 2
σ are identically distributed. We do this by induction on the number of queries σ.

Induction Hypothesis: Given GOOD1i, V 1
i and V 2

i are identically distributed.

Base: When i = 0, then no query has been made; therefore the hypothesis is true.

Induction Step: Now assume the induction hypothesis holds. We have to show that if
GOOD1i+1 occurred, then V 1

i+1 and V 2
i+1 are identically distributed.

Let (I1
i+1, O

1
i+1) and (I2

i+1, O
2
i+1) denote the input-output pairs for the systems G1 and G2

respectively in the i+ 1st round.
A little reflection shows that proving the induction step is equivalent to proving the

following proposition.

Proposition E.1 (Proof of Induction Step) Given GOOD1i+1 and V 1
i = V 2

i

1. the input-views I1
i+1 and I2

i+1 are identically distributed;

2. if I1
i+1 = I2

i+1 then the output-views O1
i+1 and O2

i+1 are identically distributed.

Proof.
1. This result is easy since V 1

i = V 2
i .

2. First, we establish the following lemma which is the main ingredient in our proof.

Lemma E.2 The reconstruction graphs Ts of the systems G1 and G2 are isomorphic after
i rounds, given GOODi and V 1

i = V 2
i .

Proof. For each fresh ro-query, the graph Tro of system G1 is augmented in two phases
(see Figure 5). In these two phases, all possible nodes are added to the graph Tro. An
analysis of the Type1-a,c,d and f events show that if these events do not occur then no
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nodes can be added beyond these two phases. In other words, if Type1-a,c,d and f events
do not occur in i rounds then the graph Tro contains all possible paths generated from
all elements stored in the table Dro in i rounds with root (IV, IV ′). Note that the graph
Ts is the maximally connected subgraph of Tro rooted at (IV, IV ′), generated only by the
s-queries and responses stored in Ds. This implies that the graph Ts of the system G1
contains all paths generated from all s-queries and responses with root (IV, IV ′).

We note that the graph Ts of G2 also contains all paths generated from all s-queries
and responses with root (IV, IV ′). As V 1

i = V 2
i , the graph Ts of G1 and G2 are isomorphic

after i rounds. 2

Let Ii+1 denote the shared query input Ii+1
1 = Ii+1

2 . We continue by considering all pos-
sible cases based on a set of conditions for the system G1 in the i + 1st round; cases 1
through 9 consider when Ii+1 is an s-query, while cases 10 through 15 consider when Ii+1
is part of an long query. Our decision tree produced the above 15 cases, which have been
derived from a sequence of questions (see Figure 12). The reader is invited to verify that
all cases are considered.

Case 1: s-query, Fresh, |M| = 0.
Implication. The condition directly implies that O1

i+1 = r follows the uniform distribution
U [0, 22n−1]. Since the graphs Ts are isomorphic in both systems G1 and G2 by Lemma E.2,
|M| = 0 for G2. This implies that O2

i+1 = r follows the uniform distribution U [0, 22n − 1].

Case 2: s-query, Old, Type Q3 or Q4, |M| = 0.
Implication. The event GOOD1i+1 implies that Type2 event did not occur for G1 in the
current i+ 1th round; therefore, since |M| = 0, O1

i+1 = r follows the uniform distribution
U [0, 22n− 1]. As the graphs Ts are isomorphic in both systems G1 and G2 by Lemma E.2,
|M| = 0 for G2. This implies that O2

i+1 = r follows the uniform distribution U [0, 22n − 1].

Case 3: s-query, Old, Type Q5-1, |M| = 0.
Implication. This case is impossible since |M| = 0.

Case 4: s-query, Old, Type Q1, Q2, or Q5-2, |M| = 0.
Implication. This case is impossible since GOOD1i+1 implies that Type2 event did not
occur for G1 in the current i+ 1st round.

Case 5: s-query, |M| > 1
Implication. |M| > 1 implies node-collision in Ts which is impossible since GOOD1i+1
ensures that Type1 event did not occur for G1 in the previous i rounds forbidding the
occurrence of node-collision in Ts.

Case 6: s-query, Fresh, |M| = 1
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Implication. Since Ii+1 is fresh, O1
i+1 = r follows the uniform distribution U [0, 22n − 1].

Now, for G1, M ∈ M implies that M /∈ Dom(Dl) in the first i rounds, since the current
s-query Ii+1 is fresh. Also note that V 1

i = V 2
i and the isomorphism of Ts’s together imply

that Dl in both systems are identical. Therefore, for G2 too, M /∈ Dom(Dl) in the first i
rounds. This implies that O2

i+1 = r follows the uniform distribution U [0, 22n − 1].

Case 7: s-query, Old, Type Q3 or Q4, |M| = 1.
Implication. The event GOOD1i+1 implies that Type2 event did not occur in the i + 1st
round of G1; therefore, O1

i+1 = r follows the uniform distribution U [0, 22n − 1]. Now, for
G1, M ∈ M implies that M /∈ Dom(Dl) in the first i rounds, since the current s-query
Ii+1 is one of type Q3 and type Q4; the final ro-query of any long query cannot be of type
Q3 or of type Q4. As in the previous case, V 1

i = V 2
i and the isomorphism of Ts’s together

imply that Dl in both systems are identical. Therefore, for G2 too, M /∈ Dom(Dl) in the
first i rounds. This implies that O2

i+1 = r follows the uniform distribution U [0, 22n − 1].

Case 8: s-query, Old, Type Q5-1, |M| = 1.
Implication. The event GOOD1i+1 implies that Type2 event did not occur in the i + 1st
round of G1; therefore, O1

i+1[0, n − 1] follows the uniform distribution U [0, 2n − 1], and
O1
i+1[n, 2n − 1] is a fixed value. Now, for G1, M ∈ M implies that M ∈ Dom(Dl)

after the first i rounds, since the current s-query Ii+1 is of type Q5-1; also note that
O1
i+1[n, 2n − 1] = Dl[M ]. As in the previous case, V 1

i = V 2
i and the isomorphism of Ts’s

together imply that Dl in both systems are identical. Therefore, O2
i+1[n, 2n− 1] = Dl[M ];

also note that O2
i+1[0, n − 1] follows the uniform distribution U [0, 2n − 1]. In conclusion,

O1
i+1 and O2

i+1 are identically distributed.

Case 9: s-query, Old, Type Q1, Q2, or Q5-2, |M| = 1.
Implication. This case is impossible since |M| = 1, and Ii+1 cannot be any of the types
Q1, Q2, and Q5-2.

Case 10: long query, Non-final Block.
Implication. Since V 1

i+1 = V 2
i+1, it is easy to verify that O1

i+1 = O2
i+1 = λ, where, λ is the

empty string.

Case 11: long query, Final Block, long query not in Tro.
Implication. Let M be the long query in question. Since the event GOOD1i+1 implies that
Type1 did not occur in the previous i rounds of G1, there are no node-collisions in the
graph Tro. Therefore, the final ro-query is fresh, implying O1

i+1 follows the uniform distri-
bution U [0, 2n − 1]. As before, the table Dl in both systems were identical when the long
query M was submitted; therefore, at that time of submission, M /∈ Dom(Dl) for both
the systems. This ensures that O2

i+1 = RO(M) follows the uniform distribution U [0, 2n−1].

53



Case 12: long query, Final Block, long query in Tro, long query in Ts.
Implication. Since the graph Ts in both systems are isomorphic by Lemma E.2, O1

i+1 =
O2
i+1.

Case 13, 14 and 15: long query, Final Block, long query in Tro, long query not
in Ts. Ii+1 is the final message-block of a long query (denoted by M) which forms a red
branch (see Section 9.4 and Figure 6(b)).

Case 13: Final ro-query is Type Q1, Q2 or Q5.
Implication. Note that this case implies a node collision in Tro. By definition, the ro-query
yk−1y

′
k−1mk is already the final ro-query of a previous long query since it is of type Q1, Q2

and Q5; now, yk−1y
′
k−1mk is also the final ro-query of the current long query M . Hence

the collision in Tro. This case is impossible since GOOD1i+1 implies that Type1 event did
not occur in the first i rounds; therefore Tro cannot have a node-collision.

Case 14: Final ro-query is Type Q3 or Q5.
Implication. Since the event Type3 did not occur in the i + 1st round, O1

i+1 follows the
uniform distribution U [0, 2n − 1]. Now, for G1, the long query M /∈ Dom(Dl) when M
was submitted since the final ro-query of any long query cannot be of type Q3 or Q4. As
the table Dl of both systems are identical, for G2, M /∈ Dom(Dl) when M was submitted.
Therefore, O2

i+1 = RO(M) follows the uniform distribution U [0, 2n − 1].

Case 15: Final ro-query is Type Q6, and an intermediate query is Type Q1, Q2, Q3, Q4
or Q5.
Implication. This case is impossible since Type3 in the i+ 1st round did not occur.

To conclude, in all 15 cases above we have shown that the outputs O1
i+1 and O2

i+1 are
identically distributed if the variable BAD is not set. This completes the proof. 2
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Figure 12: The decision tree for the proof of Proposition E.1(2). The square-box at the
root of the tree contains the initial conditions that are satisfied by Proposition E.1(1) and
Lemma E.2. The conditions for the system G1 are shown inside the diamonds. The text in
each leaf-node shows the implications of the conditions to the outputs of systems G1 and
G2, while the reasons for such implications were describe in brief inside the bracket.
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