
Algebraic Complexity Reduction and
Cryptanalysis of GOST

Nicolas T. Courtois

University College London, Gower Street, London, UK

Abstract. GOST 28147-89 is a well-known Russian government encryp-
tion standard. Its large key size of 256 bits at a particularly low imple-
mentation cost [83] make that it is widely implemented and used [70,
105, 66, 83, 88]. In 2010 GOST was submitted to ISO to become an inter-
national standard. GOST was analysed by Schneier, Biham, Biryukov,
Dunkelman, Wagner, various Australian, Japanese, and Russian scien-
tists, and all researchers seemed to agree that it looks quite secure.
Though the internal structure of GOST seems quite weak compared to
DES, and in particular the diffusion is not quite as good, it is always stip-
ulated that this should be compensated by a large number of 32 rounds
cf. [63, 101, 100, 8] and by the additional non-linearity and diffusion pro-
vided by modular additions [63, 84]. At Crypto 2008 the hash function
based on this cipher was broken. Yet as far as traditional encryption ap-
plications with keys generated at random are concerned, until 2011 no
cryptographically significant attack on GOST was found.
In this paper we present several new attacks on full 32-rounds GOST. Our
methodology is derived from the idea of conditional algebraic attacks on
block ciphers [25, 20] which can be defined as attacks in which the prob-
lem of key recovery is written as a problem of solving a large system
of algebraic equations, and where the attacker makes some “clever” as-
sumptions on the cipher which lead to an important simplification in the
algebraic description of the problem, which makes it solvable in practice
if the assumptions hold. Our methods work by black box reduction and
allow to literally break the cipher apart into smaller pieces and reduce
breaking GOST to a low data complexity software/algebraic/MITM at-
tack on 8 or less rounds. We obtain some 50 distinct attacks faster than
brute force on the full 32-round GOST and we provide five nearly prac-
tical attacks on two major 128-bit variants of GOST (cf. Table 6).
Recent updates: Our latest attacks combine all of [higher-order] trun-
cated differentials, complexity reduction, [approximate] fixed points, re-
flections, MITM and software/algebraic attacks. Single key attacks are
summarized in Table 3 p. 53 and Table 7 p. 153 and the fastest of these is
a differential attack in 2179 by Courtois [40, 39]. In the multiple random
key scenario the cost of recovering one full 256-bit GOST key decreases in
a spectacular way at the expense of further growing data requirements.
In Table 4 page 128 we summarize all our attacks in this space. Our
fastest attack achieves a nearly feasible T= 2101 (cf. Section 28.6 and
[34]).

Key Words: Block ciphers, Feistel schemes, GOST, ISO 18033, key scheduling,

self-similarity, differential cryptanalysis, advanced slide attacks, fixed points, reflection

attacks, black-box reductions, low-data complexity, MITM attacks, algebraic attacks,

SAT solvers, singel-key attacks, multiple-key attacks.



2 Nicolas T. Courtois, 2010-2013, last updated 27 March 2013

1 Publication Info and Development History

This paper describes a general methodology for block cipher cryptanalysis through
a reduction to a low-data complexity key recovery attack and some 50 different
attacks on GOST obtained with this methodology. Most of these attacks were
developed in 2010/2011 when an original 28-pages version of this paper with
five distinct attacks which break GOST faster than brute force was submitted
to Crypto 2011. Just a few days earlier Isobe have made public his first attack
on full GOST [74] with time complexity of 2225. Each single attack in our sub-
mission was already faster than this attack, and our fastest attack had time
complexity of 2216. It also contained several weak-key attacks and a practical
attack on one 128-bit key variant. With our complexity reduction methodology
we reduce the complexity of GOST to a number of well-defined cryptanalysis
questions with less rounds and less data, which can be studied separately. In May
2011 an abridged version of this paper was submitted to Asiacrypt 2011 and it
contained two distinct attacks with time complexity of 2216. An alternative final
step for one of these attacks was presented by Shamir et al at FSE 2012 with
complexity of about 2192, see [50]. In the meantime a better single-key attack
on GOST was found by Courtois with T = 2179, cf. [39, 40]. Principal single key
attacks on GOST are summarized in Table 3 page 53 and Table 7 page 153.

In 2012 there were many major updates of this paper which greatly reduced
the time or/and data complexity. We have also seen a major paradigm shift in
understanding the security of GOST. Ciphers are NOT used with single keys.
On the contrary. We have discovered that the multiple key scenario is stronger
more practical and much more versatile than the single key scenario. Many
of our earlier “weak” key attacks can now be transformed into “real” attacks
which are able to recover ordinary GOST encryption keys generated at random.
These attacks are very competitive and faster than any other known attack
from the pragmatic perspective of the total price paid per each 256-bit key
recovered. Our recent attacks combine all of differential, complexity reduction,
reflections, fixed points, MITM and software/algebraic approaches. In Section 26
we introduce a new concept of approximate fixed point biclique which is a higher-
order differential property and allows to propose new attacks with only about
2101 per key for breaking some keys in a population of 256-bit keys generated at
random, this at the expense of further growing data requirements (over many
keys). The data quantity per key is frequently just 232. All these are not single
key attacks yet many are vastly more realistic attacks on GOST than 2192 from
[50] and 2179 of [39, 40]. Our best attacks are summarized in Table 4 page 128.

This is our master paper which is here for reference, to establish priority,
and to show the big picture how all these attacks are related to each other. It
also demonstrates that there is no single reason why GOST is an insecure cipher
but rather that various self-similarity properties of GOST can be exploited in
a variety of distinct ways leading to some 50 distinct non-trivial attacks on full
GOST faster than brute force.



Algebraic Complexity Reduction and Cryptanalysis of GOST 3

2 Impact and Significance of This Research

This paper has some serious significance both scientific and historical.
It is very rare to see a cipher submitted to ISO being broken during its stan-

dardization process, while nobody in the scientific community have expressed a
slightest suspicion about its security. Over two decades less than 10 block ciphers
were judged “good enough” to become a serious candidate for ISO standardisa-
tion, as GOST has become in 2010, cf. [83]. The fact that GOST was believed to
be secure until 2011, and now can be broken in so many different ways including
several arguably nearly practical attacks is quite remarkable.

Similarly it is safe to say that nobody in the cryptographic community have
ever thought that there will ever be an attack following the broad idea of software
algebraic attacks [12, 19] which can break a real-life government/military/Internet
standard block cipher faster than by brute force. Likewise until recently no-
body would consider that low-data complexity attacks on reduced rounds of
block ciphers such as in [19, 15, 48] are very important. However our paradigm
of “Complexity Reduction” provides us with a large number of ways to reduce
the complexity of breaking a cipher precisely to a low-data complexity attack.
Some of these exploit already known fixed point, sliding, reflection and involution
properties, other are totally new and non-trivial self-similarity attacks. We called
it “Algebraic Complexity Reduction” because very few low-data complexity at-
tacks are known, and a software “algebraic attack” was the initial motivation to
find all these attacks, and remains one of the very few plausible last steps (can
also be a meet in the middle attack, see Section 15.1 and [50]). To summarize
our work brings powerful and disruptive new techniques in cryptanalysis lead-
ing to great many new attacks: new methods to achieve reduction to low-data
complexity attacks, and efficient methods to deal with these low-data attacks.

It is also very rare to be able to break a real government standard cipher, used
to protect classified and secret information, apparently without any limitations,
cf. [65], unlike United States DES which could only be used to protect unclassified
information. Though some of our attacks are becoming remotely feasible, it is
still too expensive in order to actually be able to decrypt GOST communications
in practice. It is however wrong to believe that this is only academic research. It
is believed that actual versions of GOST used in practice may have additional
properties which could make them much weaker than most versions studied in
this paper. Some weaker versions o GOST we can already break and the attacks
tend to be practical: for example for Family B of 128-bit GOST keys, given 235

chosen plaintexts, we can recover keys in time 281, see Fact 101 on page 145.
The most likely impact of this research (and also other recent works on GOST

[74, 50, 27, 36–38, 76]) is that Russia will have no other choice than to change
sooner or later its national encryption standard. This can potentially cost billions
of dollars in research, development, secure hardware and secure implementation
development, telecommunications equipment overhauls, and other upgrades in
financial systems and critical data storage infrastructure.



4 Nicolas T. Courtois, 2010-2013, last updated 27 March 2013

3 Dark Side of Research: Peer Review

A first version of this paper was submitted to Crypto 2011. It was already an
original 28-pages pages with five distinct single-key attacks which break GOST
faster than brute force and much more.

Being a referee in a scientific conference is a difficult and challenging task.
One referee of this paper have written: “The paper is decently written, and the
attack is easy to follow. However, there is a big, big, big problem : this attack,
which is the main contribution of the paper has already been published at FSE’11
(it was even the best paper), just a few days before the CRYPTO submission
deadline”.

There are two major problems with this statement.
First the referee claims that this attack is THE SAME as the Isobe attack

from FSE 2011. This is totally incorrect. Moreover the precise attack which
referee wrote about was very clearly presented as an example of “bad” attack,
something which is maybe not even an attack given its very large memory re-
quirements. Interestingly it is not obvious at all to see why an attack such as
Isobe attack is interesting and should be published cf. [74]. Arguably only im-
proved versions of Isobe attacks with less memory are really interesting, cf. [50].

In comparison our “bad” attack was just a much simpler and faster alter-
native in the same category, even though we never tried to promote it, as it is
clearly not excessively good compared to just any other of our attacks. Interest-
ingly absolutely all the attacks in our submission without exception (including
the “bad” attack) were actually both simpler and strictly faster (!) than the
Isobe attack published at FSE 2011. Our paper already contained in early 2011
several other non-trivial single-key attacks with various parameters, three weak-
key attacks the best of which had time complexity of 2120 and a practical attack
on one 128-bit key variant with complexity below 270. It has also introduced a
highly innovative and powerful methodology for block cipher cryptanalysis which
have later produced some 50 distinct attacks on GOST. How can all this be the
same as Isobe attack?

Moreover and secondly, how can the referee claim that “the main contri-
bution” of this paper is this attack? We are talking about a totally inessential
MITM attack in the paper, strictly the worst attack in the paper, which takes a
few lines to describe and which does not illustrate the methodology of the paper,
on the contrary. Our paper has specifically explained that this attack needs to
be discarded due to excessively large memory requirements. In the submitted
version we read: “Important: If we consider that [...] the cost of 2128 of memory
at some moment in the future may be as high as to be equivalent to 2256 in com-
puting power [...] it is possible to believe that we do not yet have a valid attack
on GOST. Happily, we are going now to present a more convincing attack, and
later also attacks which are strictly faster attacks and yet with very low storage
requirements” . To summarize the referee did not do very good work.

The best attack in this paper already had time complexity of 2216 which
is much faster than Isobe attack in spite of larger data complexity. In May
2011 an abridged version of this paper was submitted to Asiacrypt 2011 and



Algebraic Complexity Reduction and Cryptanalysis of GOST 5

now it contained two distinct attacks with time complexity of 2216 which again
were excessively good for the attacks known at this moment. In this submission
the “inessential” attack we moved to the appendix. It was again refereed with
extremely little care and one referee have again complained about why the ex-
planation of this same “bad” attack was moved Appendix. Moreover he claimed
that this attack (which was clearly an accessory result or not a result at all) was
“the core of this paper”.

The same referee at Asiacrypt 2011 wrote: “I think that the audiences of
Asiacrypt will not feel it is interesting”. This is the biggest insult to cryptogra-
phy research we have ever seen. The fact is that half of papers accepted at this
Asiacrypt are about things about which nobody ever heard about, not even pro-
fessional cryptologists (say JH42, Armadillo,theory, incremental research, etc. ),
not to say it would interest anybody in the industry or government circles.

In contrast, we can wonder how many times it ever happened at Asiacrypt
that a military-grade cipher, and an official government standard of a major
country, used by large banks, implemented in SSL, was broken, while being in
the process of being standardized by ISO to become a global industrial stan-
dard? This because – on the face value – it clearly appeared to be better and
more competitive than any “Western” cipher (on the development of which tens
millions of euros were spent?) Impacting potentially all of: national critical in-
frastructures, key financial systems and even ordinary computer software. Not
many times: it seems that an event as described has very rarely happened in
some 20 years of Asiacrypt. Interestingly AES got broken at the same Asiacrypt
by an academic attack only very slightly faster than brute force. However this
has happened after it was standardized by ISO. GOST was broken at the right
moment. It could be worth billions of dollars to fix problems due to GOST.

Moreover while most modern cryptography research is about fiction, GOST
has some serious historical significance. It is maybe THE ONLY cipher which
would be worth cryptanalysing. Maybe the only cipher on the cryptanalysis
of which billions of dollars could be and should be spent. One might suspect
that GOST has been used for decades by some if not all of the most dangerous
regimes on this planet (Soviet Union, Russia and regimes traditionally supplied
by Russia such as Iran, North Korea, Syria, etc). Arguably it would be in the
broad public interest to be able to uncover the content of such communications
even if this is possible 30 years after the facts.

Important subsets of this paper were also refereed at other major conferences
and have received some very useful feedback, especially at specialist conferences
such as FSE and Indocrypt, and we need to thank one referee to make us improve
the data complexity in several attacks in this paper, which also inspired us to
realize that one can better. As a consequence we have invented a dozen of more
advanced, better and faster attacks very recently. At occasions we have received
a few more really silly comments and remarks... Some of these are answered in
detail in Section 22.2.



6 Nicolas T. Courtois, 2010-2013, last updated 27 March 2013

4 Structure and Organization of This Paper

In Section 5 we describe what was known about GOST until now. In Section
6 we explain brute force attacks on a block cipher with small blocks such as
GOST. In later Section 20.3 we comment on the data complexity of the attacks.

In Section 7 we work basic low-level algebraic and logical optimizations in
view of developing software low-data complexity attacks.

In Section 8 we explain the concept of conditional algebraic attacks on ciphers
with guess-then-determine and amplification, and in Section 8.1 we introduce
the general concept of Algebraic Complexity Reduction which will be further
developed starting just before and in Section 14.

In Section 9 through Section 12 we study various Guess-Then-Algebraic/Software
attacks on up to 8 rounds of GOST. which are summarized in Table 1 on page
25. Additional variants are studied in Appendix J.

In Section 13 we go back to study of high-level properties of GOST and de-
scribe GOST cipher algebraically as a composition of permutations implied by
the key scheduling. At his moment we view GOST as a composition of black
boxed with for example 8 rounds each. We discuss the crucial Reflection and In-
volution properties inside GOST. In Sections 13.8 through Section 13.7 we relate
these properties to well-known historical results on composition of permutations
known since the 1930s. We emphasize the fact that these properties allow one
to deduce values inside a composition of permutations, which is one of the key
guiding principles in this paper. This is what allows black-box reductions where
the attacker can obtain a number of Plaintext/Ciphertext pairs for a reduced
round cipher. An early historical example of such a reduction from the 1930s is
shown in Section 13.8.

Approximate reflections will be later studied in Appendix F and approximate
fixed points in Section 26.

In Section 14 we study the concept of Black Box Algebraic Complexity Re-
ductions in detail and summarize all single key reductions and attacks in this
paper.

Most reduction results in this paper are reductions from 32 to 8 rounds of
GOST. However in Appendix D we study reductions for 32 to 16 rounds of
GOST, in Appendices C, G and H.2 we study self-similarity attacks focusing on
a subset of 16 consecutive rounds inside GOST, in Appendix E we study chosen-
data reductions, and in Section 30 we study reductions from 32 to 4 rounds for
128-bit GOST variants.

In Sections 15-16 we study single key attacks with 232 of data and in Sections
17-18 we study single key attacks with 264 of data. In Appendix A and B we
provide additional non-trivial single key attacks. In Section 19 we discuss what
makes GOST vulnerable against our attacks and explain what are the ingredients
for even more powerful attacks.

In Section 21 we study basic weak key attacks on GOST. In Section 22 we
study the conversion methodology of converting single key attacks into “real”
attacks with multiple keys generated at random. In Sections 23-24 we study



Algebraic Complexity Reduction and Cryptanalysis of GOST 7

further weak key attacks which are particularly efficient or where the weak keys
are somewhat “visible” to the attacker from the data. The attacker can detect
which keys are weak and break GOST efficiently.

In Section 25 we introduce attacks which mix complexity reduction and dif-
ferential cryptanalysis approaches. In Section 26 we introduce a major new con-
cept of an approximate fixed point biclique which is a multiple approximate
fixed point concept provoked by higher-order differential properties and in Sec-
tion 26.3 and in Appendix I we apply it to GOST. In Sections 27-28 we develop
a large number of new attacks. In Section 29 we summarize all our attacks on
GOST single key and multiple key attacks.

An alternative point of view on cryptanalysis of GOST which focuses on ob-
taining values inside the cipher and encompasses all of our self-similarity attacks
such as black-box reductions but also differential cryptanalysis and many other
attacks is discussed in Appendix K.

In Section 30 we provide nearly-practical attacks on two well-known 128-bit
variants of GOST which results are summarized in Table 6 page 147.

In Section 32 we look at ISO standardization of GOST. In Section 33 we
summarize our results and provide some concluding remarks. Single key attacks
are summarized in Table 3 page 53 and Table 7 page 153. Selected best attacks
with single and multiple keys are summarized in Table 4 page 128.

In Appendix L we study some simple self-similarity attacks on basic compo-
nents of the GOST hash function.



8 Nicolas T. Courtois, 2010-2013, last updated 27 March 2013

5 Background

GOST is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit
keys and 32 rounds. Each round contains a key addition modulo 232, a set of
8 bijective S-boxes on 4 bits, and a simple rotation by 11 positions. A particu-
larity of GOST is that its S-boxes can be secret. One set of S-boxes has been
published in 1994 as a part of the Russian standard hash function specification
GOST R 34.11-94 [67, 68, 101]. and according to Schneier [101] this set is used
by the Central Bank of the Russian Federation. They also appear in more recent
RFC4357 [69] as being part of the so called ”id-GostR3411-94-TestParamSet”.
A source code was included in [101] however this code specifies apparently a
wrong (reversed) ordering of the S-boxes compared to later code contained in
Crypto++ library [105] which is also faster and contains a set of test vectors.
This precise version of GOST 28147-89 block cipher is the most popular one, and
it is commonly called just “the GOST cipher” in the cryptographic literature.

Schneier reports that some Russian system manufacturers would use S-boxes
generated at random [101]. Variable S-boxes could however be more costly to
implement and also require more effort in key distribution and management.
Consequently in practice S-boxes are likely to be fixed. There exists a Russian
reference implementation of GOST which is a part of OpenSSL library and
contains eight sets of S-boxes [70] which can be used for encryption or for the
GOST hash function. Overall, it is because of the small size of the GOST S-
boxes (see [16, 19, 25, 12, 13]) that the cipher is vulnerable to “software algebraic
attacks” [12, 16, 19, 25, 97, 98, 20, 107, 109]. Therefore our attacks are expected to
work with a similar complexity for any choice of S-boxes, see also [42, 44]. In all
our attacks we assume however that the S-boxes are known. In 1998 Saarinen
proposed a method which allows to efficiently recover secret S-boxes from an
encryption chip through a chosen-key attack [99, 57].

It is widely known that the structure of GOST is in itself quite weak, an in
particular the diffusion is quite poor, however, this is expected to be compensated
by a large number of rounds [101]. Thus, so far there was no significant attack
on this algorithm from the point of view of communications confidentiality: an
attack which would allow decryption or key recovery in a realistic scenario where
GOST is used for encryption with various random keys. In contrast, there are
already many many papers on weak keys in GOST [75, 8], attacks for some well-
chosen number of rounds [75, 6, 100], attacks with modular additions removed
[8], related-key attacks [78, 56, 94], reverse engineering attacks on S-boxes [99,
57], and attacks on the hash function based on this cipher [72, 73, 47, 81]. GOST
is also, likely to be very badly broken by side channel attacks [80]. In all these
attacks the attacker has much more freedom than we will allow ourselves. In
this paper we limit ourselves to the questions which pertain to the security of
GOST used in encryption, with keys chosen at random and we look mostly at
high-level structural attacks on GOST when it is used in encryption.

Until 2011 no key recovery attack on full-round GOST was ever proposed.
Several basic attacks on GOST were developed roughly at the same time: [74]
and the most basic MITM attack of this paper of Fact 24, which is much simpler



Algebraic Complexity Reduction and Cryptanalysis of GOST 9

and slightly faster. According to Biryukov and Wagner, the structure of GOST,
and in particular the reversed order of keys in the last 8 rounds, makes it secure
against sliding attacks [58, 7, 8]. However the cipher still has a lot of self-similarity
and this exact inversion of keys allows other attacks in which fixed points are
combined with a so called “Reflection” property [73, 75]. The latter attack breaks
GOST only for certain keys, which are weak keys. For these keys it is possible
to break GOST with a complexity of 2192 and with 232 chosen plaintexts.

A basic assessment of the security of GOST against linear and differential
cryptanalysis has been conducted in 2000 by Gabidulin et al, see [62, 63]. The
results were quite impressive: at the prescribed security of level of 2256, 5 rounds
are sufficient to protect GOST against linear cryptanalysis. Moreover, even if the
S-boxes are replaced by identity, and the only non-linear operation in the cipher
is the addition modulo 232, the cipher is still secure against linear cryptanalysis
after 6 rounds out of 32. Differential cryptanalysis [10] of GOST seems compara-
tively easier and have attracted more attention. In [63] the authors also estimate
that, 7 rounds should be sufficient to protect GOST against differential crypt-
analysis and also that “breaking the GOST with five or more rounds is very
hard”. In addition, two Japanese researchers [100], explain that the straight-
forward classical differential attack with one single differential characteristic is
unlikely to work at all for a large number of rounds. In the same paper [100],
more advanced differential attacks on GOST are described. They exploit sets
of differentials which follow certain patterns, for example certain S-boxes have
zero differentials, other bits have non-zero differentials. These are essentially dis-
tinguisher attacks on the weak diffusion of GOST and they differ considerably
from the classical differential cryptanalysis [10]: sets of differentials occur nat-
urally with higher probability, and when they occur they give significantly less
exploitable information about the secret keys. First advanced multiple differen-
tial attack was proposed in [100] allows to break about 13 rounds of GOST.
Numerous recent works have tried to understand, evaluate and improve the re-
sistance of GOST against differential and linear cryptanalysis, in view of the
standardization of GOST [59–61, 95]. At the same time, in 2011-2012 many im-
proved differential attacks on GOST have been found, allowing finally to break
full 32 round GOST faster than by brute force, see [36–40]. In this paper we also
exploit these properties and they are essential in our 3 fastest attacks on GOST,
though many similar but slower attacks in this paper do not use any of these
properties.



10 Nicolas T. Courtois, 2010-2013, last updated 27 March 2013

6 Preliminary Remarks on GOST

In this paper we call a P/C pair a pair of known Plaintext and Ciphertext for
full GOST, or for a reduced-round version of GOST.

GOST has 64-bit block size and the key size of 256-bit keys. Accordingly:

Fact 1. 4 P/C pairs are necessary to determine the GOST key. With 4 P/C
pairs we expect to get on average about one key. We get the correct key together
with a list of, sometimes a few, but on average less than 1 wrong keys.

With 5 P/C pairs we are able to discard all these wrong keys in practice: the
probability that just one more key works for this extra P/C pair is 2−64. This
is unlikely to ever happen in a single key recovery attack.

Fact 2. A brute force attack on GOST takes 2255 GOST encryptions on average.

Justification: We proceed as follows: we use one P/C pair and check all the
possible keys. On average half way through the right key will be found. Only for
an expected number of 2191 keys which are confirmed with the first pair, we do
further comparisons. Most of these 2191 are false positives. This notion plays
an important role in this paper. Here, and elsewhere, the key remark is that the
total number of these false positives is small and the complexity of rejecting all
the incorrect keys with additional P/C pairs is actually negligible. Indeed we
have at most 2192 cases to be checked with another P/C pair. Then at most 2128

keys remain to be checked against the third P/C pair etc. Overall we need to do
about 2255 + 2191 + 2127 + 263 + 1 GOST encryptions on average. This number
is very close to 2255 GOST encryptions.

Important Remark. A recent paper shows that there exists a “generic
MITM” attack on full GOST with time complexity 2254.8, see [76] with 2256 of
memory. This is a very important general attack. However the difference is only
20.2 and moreover traditional brute force does not require any memory. Therefore
it remains still valid to compare all our attacks on GOST to approximately 2255

GOST encryptions.



Part I

Low-Level Study Of
Individual Components,
Local Optimization and

Early Software/Algebraic
Attacks





13

7 Algebraic Cryptanalysis and Low Data Complexity
Attacks on Reduced-Round Block Ciphers

Algebraic attacks, on block and stream ciphers, can be defined as attacks in
which the problem of key recovery is written as a problem of solving a large
system of Boolean algebraic equations which follows the geometry and struc-
ture of a particular cryptographic circuit [12, 13, 16, 19, 107, 109]. The main idea
was explicitly proposed by Shannon in 1949, see [102]. For DES the idea was
articulated as a method of Formal Coding [71]. The best currently known at-
tack on DES can be found in [19]: it allows to break only 6 rounds of DES
given only 1 known plaintext. The most efficient attacks nowadays are based on
writing ciphers as systems of multivariate polynomial equations and manipulat-
ing these equations using either algebraic tools (elimination algorithms such as
XL, Gröbner Bases [53] and ElimLin cf. [25, 26]) or constraint satisfaction soft-
ware such as SAT solvers which solve algebraic problems after conversion [17].
Many other methods have been proposed recently [97, 98, 106, 107, 109] and for
one problem instance many different attack techniques do usually work to some
extent, see [19] and though SAT solvers do frequently solve many practical prob-
lems where Gröbner bases run out of memory, see [17], it was also shown in [17]
that in a few cases where both methods worked, Gröbner bases methods were
actually faster. We summarize all these methods which use “solver software”
to determine unknown variables inside a complex circuit of Boolean equations
under the general term of Algebraic Cryptanalysis (AC). This is just a name:
not all these attacks are very algebraic (however they have been invented as a
result of attempts to break GOST by an algebraic attack and they use algebraic
equations in the form of sparse multivariate polynomial equations over small
finite fields.)

7.1 Application to GOST

GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fki

(X) with a 32-bit sub-key ki. Each round function contains a key addition
modulo 232, a set of 8 bijective S-boxes on 4 bits, and a simple rotation by 11
positions. We need to to find a way to represent the cipher as an algebraic system
of equations in such a way that it can efficiently be solved. It can be seen as
encoding the problem of key recovery as an instance of an NP-hard problem.
Both methods for encoding ciphers as such problems, and advanced heuristic
algorithms for solving such problems are in constant evolution and are constantly
improved. We have developed several efficient methods for formal encoding of
GOST block cipher in the spirit of [19] and a lot of complex encoding, conversion
and solver software for algebraic cryptanalysis.

Fact 3 (Key Recovery for 4 Rounds and 2 KP). Given 2 P/C pairs for
4 rounds of GOST the 128-bit key can be recovered in time equivalent to 224

GOST encryptions on the same software platform (it takes a few seconds). The
memory requirements are very small. The attack works with a similar complexity
for any choice of GOST S-boxes.



14

Justification: The method is in spirit very similar to the attacks on DES de-
scribed in [19]. On method studied in [19] is to encode the S-boxes as an algebraic
system of I/O relations (equations which relate Inputs and Outputs of these S-
boxes). However, already for DES, the fastest attacks of this type described in
[19] use a different method, with some 20 additional variables per S-box, which
allow equations to be more compact and more sparse. For GOST S-boxes, im-
portant specific optimizations based on the idea of reducing their multiplicative
complexity and are described in [46, 81]. In order to encode the addition modulo
232 we follow the first method described in [25]. The concatenation of all these
equations describing the whole cipher or a large chunk of it can solved by various
conversion and solver software [53, 17, 103, 104].

Remark. As recently as in July 2012, Russian researchers have written that
this attack cannot work and is a fiction. This was presented at a major Russian
cryptography conference [95] held in English with post-proceedings in prepara-
tion. This is a very curious statement. Some or our attacks are highly technical
and it is not obvious that they will work. However the attack of Fact 3 above is
particularly easy, we have only 4 rounds!

Everybody in cryptography knows that every cipher which is “not too com-
plex” will be broken by a software algebraic attack, see for example [19, 20, 15, 1,
109]. In fact we have never yet met a researcher in cryptography who wouldn’t be
aware of these. We have early XSL-like methods [12], Gröbner bases algorithms
[53], basic linear algebra methods such as ElimLin [25, 26], Semaev methods [97],
SAT solvers [103, 104] and dedicated conversion methods [17], and other logical
methods [106, 107]. Now with 4 rounds we would expect not only that some so-
phisticated attacks would work. We would rather expect more or less all these
methods to work. Even though our methods contain some highly non-trivial op-
timizations cf. [46, 35, 32, 81] and some additional non-trivial tricks, the impact
of optimizations in this sort of pathologically weak case for 4 rounds is small.
We can hope only for a small constant factor improvement. We are confident
that any computer science student at any university could write his own formal
encoding of GOST, download and run the CryptoMiniSat software [104] or some
other similar software, and obtain results not much worse than our Fact 3 in few
hours of work. In contrast the authors of [95] call this “Fiction 3”.



15

7.2 Attacks on 6 Rounds of GOST

In the similar way, we obtain the following result for 6 rounds which is not needed
in our later work but may give the reader an idea of what kind of complexity
one may expect for 8 rounds, which will our main concern in Section 9 through
Section 11 and at other places.

Fact 4 (Key Recovery for 6 Rounds). Given 3 P/C pairs for 6 rounds
of GOST the 192-bit key can be recovered in time equivalent to 256 GOST
encryptions on the same software platform.
This attack also works for arbitrary GOST S-boxes.

Justification: This is another experimental attack with guessing of a few bits
and the timing is obtained by a computer simulations.

Initially we have just used software solvers to solve these problems. This
naive methodology is however is not enough to obtain really very good attacks
on GOST. With time we have realized that the crucial question in this type
of attacks is a combinatorial optimization question which is also an essential
structural cryptographic question. It is about which bits can be guessed and
which bits should be determined, or in other words what is the optimal guess-
then-determine strategy, and how to implement such a strategy. This topic will
be studied in further sections.



16



Part II

Conditional Algebraic
Attacks And Amplification





19

8 On Conditional Algebraic Attacks on Ciphers

Algebraic attacks allow to break many stream ciphers [16, 13, 14] but for block
ciphers they only work for a limited number of rounds [16, 12, 19, 20]. Additional
tricks are needed to reduce the complexity of an algebraic attack.

Conditional algebraic attacks, which could also be called Guess-Then-Algebraic
attacks, make some, more or less clever assumptions on the internal variables of
the cipher of key bits, and determine all the other variables. The goal is to sim-
plify the system of equations in such a way that it becomes solvable in practice.
There are many methods to achieve that, some work locally, some with larger
pieces of the cipher computation circuit, see [25, 20] for some examples.

In many cases, for example for DES [19], it turns out that the best way is
to just fix say the first 20 key variables, and determine the other. This is due to
the fact that in DES key variables repeat quite uniformly at random inside the
algorithm. They repeat many times, and guessing a number of these variables
leads to very important simplifications. In contrast other variables do not repeat.
in the algebraic description, and in absence of additional properties which could
be exploited, there is no particularly clever method to choose variables which
would work even comparably as well as guessing these key variables.

In other ciphers, there are other highly non-trivial ways of making assump-
tions. In [25] the authors study the concept of (Probabilistic) Conditional De-
scribing Degree of addition modulo 2n. The main idea is that certain linear
equations can be added as assumptions about the internal state of the cryp-
tosystem, and they may produce a larger number of additional linear equations
simultaneously true with high probability. The key question is the question
of “gain” or amplification. Which set of k linear equations can be added to a
system of equations in order to generate a extra αk linear equations by some
given algebraic elimination algorithm such as ElimLin [25, 26] or a Gröbner bases
algorithm [53] at a given degree. The question is highly non-trivial and extends
to larger subcomponents of the cipher. For example in [25], the authors show
a clever method for achieving as much 4n linear equations from n well-chosen
linear assumptions done on the internal state variables for 9 consecutive steps of
Snow 2.0. which gives α = 4. This results in an algebraic attack on the keystream
generation component of Snow 2.0. and the value of α = 4 seems very hard to
improve.

In this paper we want to achieve this type of simplification, and related
amplification, at a higher level. We are going to exploit self-similarity of the
cipher and individual components of it. Many ciphers have important high-level
self-similarity properties. This is exploited in slide attacks and in an increasing
number of more sophisticated self-similarity attacks [6, 8, 57, 20] some of which
exploit fixed points and have nothing to do with slide attacks. In many of these
attacks the last step can be an Algebraic Cryptanalysis (AC) step. For example
in one Slide-Algebraic Attack 1 on the KeeLoq block cipher [20], the attacker
guesses 16 bits of the key and one pair of the plaintexts to be a so called “slid
pair”, where the two encryptions coincide with a shift by 64 rounds. This leads
to an algebraic problem of a much smaller size and allows to break the cipher.



20

The attacks we present in this paper inherit the ideas of all the attacks we
mention above: they take a quite non-trivial method for algebraic description of
S-boxes [19], a particular method for algebraic description of addition modulo
2n [25], and some clever tricks at the high-level description of the cipher as
in [58, 7, 8, 6, 57, 20]. Our attacks on GOST bear some resemblance to certain
known attacks on KeeLoq: both GOST and KeeLoq are ciphers relatively small
block size compared to key size, imperfect periodicity (cf. [7, 8, 6, 20]) and weak
internal structure which is expected to be compensated by a larger number of
rounds. But it isn’t and we are able to break GOST a lot faster than brute force.

8.1 Reductions and Black-Box Reductions

The main idea is as follows. In order to reduce the attack complexity, we exploit
the self-similarity of the cipher (due for example to a weak key schedule) and
add some well-chosen assumptions which produce interesting and sometimes
quite non-trivial consequences due to the high-level structural properties of the
cipher, which makes cryptanalysis problems smaller, simpler and easier to solve.
In this process we need to minimise the costs (in terms of probability that our
assumptions hold) and to maximise the benefits (in terms of the number and
the complexity of interesting relations which hold under these assumptions).

This process is called Algebraic Complexity Reduction. In most cases
what we get is to compute (guess or determine) many internal values inside one
or several decryptions, and literally break the cipher apart into smaller pieces.
The notion of Algebraic Complexity Reduction creates new important optimi-
sation problems in symmetric cryptanalysis: which deals with the fundamental
question of how we can reduce the complexity of a cipher in cryptanalysis to a
simpler problem, with a limited quantity of data, and with greatly reduced com-
plexity, and this in the best possible (optimal) way while many interesting and
non-trivial solutions will exist.

One example of a Black-Box Algebraic Complexity Reduction from 264 KP
for 32 rounds of GOST, to 4 KP for 8 rounds of GOST, can be found in [27]
and a lot more such examples are found in the present paper. An early historical
example of an attack from the 1930s which falls exactly within this Black-Box
Algebraic Complexity Reduction methodology is discussed in Section 13.8.

8.2 Optimizing The Reductions: Amplification

Reductions can be compared in terms of the number of pairs obtained, the
resulting reduced number of rounds, success probability, and in terms of plaintext
complexity, see for example Table 3.

A key property of these reductions is the process of so called Amplification
which is inspired by earlier work such as Section 6.3 of [25].

Definition 8.2.1 (Amplification, Informal). The goal of the attacker is to
find a reduction where he makes some assumptions at a certain initial cost, for
example they are true with probability 2−X or work for certain proportion 2−Z



21

of keys. Then the attacker can in constant time determine many other internal
bits inside the cipher to the total of Y bits.

We are only interested in cases in which the values X and Z are judged
realistic for a given attack, for example Z < 32 and X < 128.

We call amplification the ratio A = Y/X.

The amplification is an important question in algebraic cryptanalysis which
was previously discussed in [25]. We should note that there are some difficulties
in defining this ratio formally:

1. We claim that we need specific definitions for each individual cipher and
for each specific attack method. For example Y can be the total number of
linear equations obtained with the ElimLin algorithm [25, 19, 26] after adding
a well-chosen set of X linear equations on the internal bits inside the cipher.

2. Intuitively, the higher, this amplification coefficient A is, while X and Z
remain below a certain threshold, the stronger and more surprising is the
attack obtained.

3. With higher values of X, the amplification can also be higher, however the
attacker must limit the size of X for the whole the attack to remain fast
enough overall.

4. It is very difficult to know if an attack with given parameters may exist.

In Section 13 we are going to start our study of high-level amplification: how
some relations on larger blocks of GOST can induce some other very interesting
relations. Before that, on Section 11.1 and in [35, 32] we study how the best
possible amplification attacks can be achieved at the low and medium-level
level, for up to 8 rounds of GOST. Other attacks of this type which are not in
this paper can be found in [35].



22



Part III

Low-Level Attacks On Up
To 8 rounds Of GOST With
Well-Chosen Subsets of Key

Bits, Guessing And SAT
Solvers





25

9 Best Known Key Recovery Attacks on 8 Rounds of
GOST with I/O Pairs

The key question in this section is given a very small number of I/O pairs for
he 8 rounds of GOST, what is the best attack? We (and other researchers) have
developed a number of such attacks with 2,3,4,6 and more pairs. We start by
describing basic key results which are useful in this paper and only later and in
Appendix J we will describe many other attacks of this type with variants and
necessary background facts and methodology.

9.1 Key Results on 8 Rounds

In this Section and in Table 1 below we summarize the most important known
low-data complexity attacks on 8 rounds of GOST.

Rounds 4 8 8 8 8 8

Key size 128 256

Data 2 KP 2 KP 3 KP 4 KP 6 KP ≈ 600 KP

See Fact 3 [50] Fact 5 [35] Fact 6 [35] Fact 7 Fact 127 Fact 10

cf. page 13 Fact 15 page 40 page 26 page 26 page 205 page 35

cf. also [95] Fact 16 Fact 13

Memory bytes small 243 246 268 small 269 small small

Time 224 2128 2127 2107 2110 294 294 283 250

Table 1. Principal attacks on 8 rounds of GOST with 2,3,4 and more KP

We start with 2 pairs.

Fact 5 (Key Recovery for 8 Rounds and 2 KP). Given 2 P/C pairs for
8 rounds of GOST we can enumerate 2128 candidates for the full 256-bit key in
total time equivalent to 2127 GOST encryptions on the same software platform
and about 246 bytes of memory.

Justification: Our initial result in 2011 was 2152. Must better result was then ob-
tained by Dinur Dunkelman and Shamir through a multi-dimensional advanced
MITM attack, which however gets very complicated and technical in order to
reduce the memory requirements, see [50] for details. In Section 12.4 we sketch a
simpler (?) attack of similar type with a SAT solver and achieve a slightly faster
attack than in [50] at the expense of slightly more memory.



26

With a similar methodology we will also obtain in Section 12.5 some very
good results for 3 KP which case is very important in this paper. We have:

Fact 6 (Key Recovery for 8 Rounds and 3 KP). Given 3 P/C pairs for
8 rounds of GOST we can produce 264 candidates for the 256-bit key in time
equivalent to 2110 GOST encryptions. The storage requirements are negligible
and all the 264 candidates can be produced in an uniform way, each of them is
produced in time of 246 GOST encryptions on average.

Justification: This is obtained by another MITM-Inversion attack, described in
Section 12.1. Another attack with 2107 GOST encryptions but at the expense of
MUCH larger memory of 268 bytes is given in [35]. Finally, we also established
that:

Fact 7 (Key Recovery for 8 Rounds and 4 KP). Given 4 P/C pairs for
8 rounds of GOST we can recover the full 256-bit key in time equivalent to 294

GOST encryptions with negligible memory.

Justification: In [35] we describe two attacks with complexity of 294 for 4 KP.
One is an excessively technical MITM attack with large memory, another is
a super simple software attack with same running time and negligible memory.
This attack and additional useful variants of this attack are subsequently studied
in Section 12.1 and in Appendix J.

Important Remark: The main object of this paper is NOT how to achieve
and further improve various software/algebraic/MITM attacks with low data
complexity and low number of GOST rounds [16, 19, 35, 32, 50] but how can the
complexity of GOST be reduced in the “black box” way, so that we can
ever hope to be able to apply results such as Fact 7. However in Section 12 and
in [35, 50] the best known attacks on 2,3, 4 and 6 KP are fully described. We
summarize key results in Table 1, however many more attacks exist, and several
additional attacks not in this table is given in Section 12 in Appendix J and in
[35, 50].



27

10 Low-Level Structural Properties of GOST

In order to study guess-then-determine attacks, we need to analyse the low-
level structural properties of GOST such as how S-boxes in one round influence
the S-boxes in another round, and how to predict bits inside the cipher with
incomplete information about the key.

10.1 Connections Inside One Round Of GOST

GOST has 32 identical rounds such as the one described in Fig. 1 below. They
differ only by the subsets of 32 key bits which they use. GOST is somewhat a
structurally weak cipher: only 32 bits, a fairly small proportion, are used in each
round.

We number the inputs of the S-box Si for i = 1, 2, . . . , 8 by integers from
4i + 1 to 4i + 4 out of 1..32 and its outputs are numbered according to their
final positions after the rotation by 11 positions: for example the inputs of S6
are 20, 21, 22, 23 and the outputs are 32, 1, 2, 3.

Fig. 1. One Round of GOST And Connections in The Following Round

On our picture Fig. 1 the � denotes the addition modulo 232. At the left
margin in Fig. 1 we also show S-box numbers in the next round, which is very
helpful, to see which bits are successfully determined in our attacks on GOST.
In a great simplification, in most cases, one S-box in one round affects essen-
tially only two consecutive S-boxes in the next round. Additional propagation is
obtained due to the Feistel structure and due to carries in the modular addition.



28

10.2 Predicting Carry Bits in GOST

In this subsection we show certain basic facts studied in more details in [40]
concerning the prediction of carry bits inside GOST which we need in this paper.

The key remark is that in many cases the carry bits and output bits in
subsequent rounds of GOST can be computed with incomplete knowledge of all
the key bits and data bits, on which this bit depends, in this and previous round.
In other cases we will simply consider both the case when the carry bit is 0 and
when the carry bit is 1.

We have the following basic fact:

Fact 8 (Following [40]). The input a on 4 bits of any particular S-box in
GOST (for example the input of S6 in Fig. 2 below) can be computed as: a =
x+ k+ c mod 16 where k are the 4 key bits at this S-box, c is a single carry bit
with c = 1 ⇔ x′ + k′ + c′ ≥ 16 where x′ and k′ are the data and the key at the
previous S-box, and c′ is the previous carry bit.

Assume that the attacker knows only the outputs of only the two appropriate
S-boxes at the previous round r, and x′ (4 bits of the state 2 rounds earlier are
also needed to obtain x′). Let d, e be respectively the most significant bits of k′

and x′. Then we have:
If d = e = 1, we have c = 1 with probability 1 and we can compute a.
If d = e = 0, we have c = 0 with probability 1 and we can compute a.
If d+ e = 1, we have c = 0 or c = 1 and we get two possibilities for a.
On average we obtain 2 × 1/4 × 1 + 1/2 × 2 = 1.5 = 20.6 possibilities for

a. These possibilities for a are computed using only 5 bits of the key, the state
of only 2 S-boxes in the previous round, and only 5 bits coming from 2 rounds
earlier. Similarly, if we know the whole x′ there are only 1.25 = 20.3 possibilities.



29

Fig. 2. Computation of the Input Of One S-box With A Carry Bit



30

11 Guess-Then-Determine And Software Attacks With
SAT Solvers

Initially we have just used various algebraic and logical software solvers to find
low data complexity attacks we needed in order to break full 32-round GOST.
However very quickly we realized that the crucial question in this type of at-
tacks is a combinatorial optimization question which is also an essential struc-
tural cryptographic question. It is about which bits can be guessed and which
bits should be determined, or in other words what is the optimal guess-then-
determine strategy, and how to implement such a strategy. Our key results are
summarized in Table 1 on page 25 and many other results are found in the
following sections, in Appendix J and in [35].

11.1 Amplification At The Low Level

Amplification is a key concept in cryptanalysis. The amplification is maybe easier
to define when as in many initial steps in many of the attacks on GOST in this
paper, we deal with black boxes, cf. Definition 8.2.1 page 20 and we obtain
I/O relations for 8 rounds of GOST. In this section we work at the low level,
when we look at a complete functional description of a cipher. The concept of
amplification is equally important at this scale, though it seems actually trickier
to define formally as we will see in this section.

The question is what is the best possible software attack with tools such as
the ElimLin algorithm [25, 19, 26] SAT solvers [46, 17], Gröbner bases [53] and
other [97]. In all these algorithms we observe the phenomenon of Amplification in
various forms. For example we can study and count linearly independent linear
equations and try to amplify their number by the ElimLin algorithm, see [25,
19, 26]. When the ElimLin algorithm is itself the last step of the attack, or if
the SAT solver is the last step of the attack, this amplification phenomenon
becomes very important. We observe an avalanche-like phenomenon where more
and more new linear equations are generated in the ElimLin algorithm, until the
system is solved. Similarly, with SAT solver there is a point of phase transition
where the problem becomes really easy to solve.

If we want to understand algebraic cryptanalysis we need precisely to work on
this face transition phenomenon itself. What happens after this threshold when
the problem is just very easy to solve is less important. In this paper we focus
more specifically on cryptographic attacks with SAT solvers, and on GOST,
which is a nice example of a weak government standard cipher with relatively
poor diffusion.



31

11.2 SAT Solvers in Cryptanalysis

There are two main approaches in SAT cryptanalysis or two main algorithms to
break a cipher with a SAT solver:

1. The SAT Method: Guess X bits and run a SAT solver which, if the as-
sumption on X bits is correct takes time T . Abort all the other computations
at time T . The total time complexity is about 2X · T .

2. The UNSAT Method: Guess X bits and run a SAT solver which, if the
assumption on X bits is incorrect finds a contradiction in time T with large
probability 1− P say 99 %.
With a small probability of P > 0, we can guess more key bits and either
find additional contradictions or find the solution.
The idea is that if P is small enough the complexity of these additional steps
can be less then the 2X · T spent in the initial UNSAT step.

3. A Mixed UNSAT/SAT Attack: In practice maybe P is not as small as
we wish, and therefore we may have a mix of SAT and UNSAT method:
where the final complexity will be a sum of two terms none of which can be
neglected. We will see a very nice example how a combined attack can be
better than any of SAT and UNSAT methods in isolation in Section 12.1
and in [35].



32

11.3 Contradiction Immunity and SAT Immunity

If we want to qualify the resistance of a cipher against the two attacks described
above, it is natural to define the two following quantities which are introduced
in [32]:

Definition 11.3.1 (Contradiction Immunity or UNSAT Immunity cf.
[32]). We define the Contradiction Immunity of a given cipher and for M = 1
plaintext/ciphertext pairs of the cipher as being the smallest possible number of
key bits which can be fixed so that givenM = 1 KP we can obtain a contradiction
with probability at least 50 % by just examining the logical consequences of these
key bits. We require this contradiction to be found in a very short time, less than
1 second for the best SAT solver available.

Similarly we define:

Definition 11.3.2 (SAT Immunity or Satisfaction Immunity, cf. [32]).
We define the SAT Immunity of a given cipher and for M plaintext/ciphertext
pairs of the cipher as being the smallest possible number of key bits which can
be fixed so that given M KP we can compute the secret key by the best available
SAT solver in a relatively short time, say less than 1000 seconds.

Discussion: These notions are as precise as they can be. They depend on
software used, but not excessively. Because we can only hope to provide upper
bounds for this quantity by concrete “attacks” with concrete software, it makes
sense to use (each time) the best available software, and improve these bounds
slightly as the software improves. Importantly, we should consider that the first
notion is much more robust and more fundamental: it expected to depend only on
the connections between the components with the “optimal” subset of key bits,
we do not expect that the contradiction will be found be examining too many
other bits, but just by simple step-by-step local analysis. We also expect that
the time to finding a contradiction will be essentially zero and will not depend
too much on the software used. In contrast, the SAT Immunity can only be
determined by somewhat “solving” the whole cipher, with the avalanche effect.
Unless we are able to determine all the bits in the whole cipher, we do NOT know
if the cipher is really solvable. It is safe to say that nobody really understands
the complexity of SAT solvers in practice. Our experience shows that the results
for the second notion will depend a lot on the SAT solver software used and
where some software works well, some other does not seem to work at all(!).

A small technicality is that in order to determine the key uniquely in many
ciphers with key size bigger than block size, it is necessary to use some M > 1
while for the first notion, for finding contradictions, we can frequently limit to
considering the case where M = 1.



33

11.4 Main Applications of UNSAT/SAT Immunities

Applications in Cryptanalysis. The main idea is that these two numbers
will allow to evaluate the security of the cipher against cryptanalytic attacks
with a SAT solver. Upper bounds we obtain do translate, more or less, as we
will see, into concrete attacks with complexity of about 2X . The two figures will
also indicate which of the three strategies: SAT/UNSAT/Mixed is more likely
to work.

For a particularly simple and elegant example of simultaneous application of
SAT and UNSAT Immunities in cryptanalysis we refer to Section 11.3.

Applications to Design of Block Ciphers. It is easy to see that the
designer of a cipher can very effectively lower-bound these quantities. This will
be achieved by making sure that each S-box in each round influences as many
S-boxes as possible in the next round. This is not all very different than design-
ing a cipher which is provably resistant to linear and differential cryptanalysis.
Interestingly, Schneier once claimed that “Against differential and linear crypt-
analysis, GOST is probably stronger than DES” [101]. Therefore we should also
expect that Contradiction Immunity of DES and GOST are comparable. Hap-
pily, similar attacks with SAT solvers have been developed for both DES [19]
and GOST [46]. In fact, it is obvious that the diffusion in DES is much better
than in GOST and so is the Contradiction Immunity in DES. However we need
to be careful about drawing any conclusions and direct comparisons do not mean
much. If the contradiction immunity is 78 for 8 out of 32 rounds of GOST with
3 KP and 256-bit keys, is it better or less good, than contradiction immunity
being 20 for 6 rounds out of 16 of DES with 1 KP and 56-bit keys? It is very
hard to say.

11.5 Application to DES

In [32], some basic results for DES obtained by the methods of [19] are given.
Currently there is no attack on 8 rounds of DES and 1 KP which would

be faster than brute force. For ultra low-data complexity attacks, 8 rounds of
DES seem already secure or secure enough. It will be different for GOST, mostly
because GOST has a much longer key and therefore many attacks are compar-
atively easier.



34

11.6 Application to GOST

Some basic results on the Contradiction Immunity and SAT Immunity of GOST
are given in [32]. These results are constructive upper bounds. We reproduce the
basic facts here and include additional facts and analysis.

For a long time we thought that the Contradiction Immunity of 8 rounds
of GOST was about 128. The reason for that can be found in Fig. 4 in [40]:
it is possible to see that GOST splits very neatly into two nearly independent
ciphers with 128-bit key each, which are only loosely connected. With this idea
it is easy to understand why a software/algebraic attack on 8 rounds of GOST
with complexity of 2120 seems plausible and natural. However recently we found
that it is much lower than 128, much closer to 64, see [32].

The goal of the attack is to find a set of bits such that if these bits are know,
and given 1 pair for 8 rounds of GOST, it is possible to find a contradiction on
this set of bits.

Notation, cf. Fig. 3 and Fig. 4 below: We denote by S13 just 1 higher
ranking bit at S-box 1 in a given round. Similarly we denote by S33 the 3 lower
ranking bits of S3.

Fig. 3. A set of 56 bits which can potentially lead to a contradiction



35

With this set we see that there are many incertitudes in computing the middle
4 bits, in many rounds we have at least 1 bit missing to determine the result.
Therefore frequently we do not obtain a contradiction. However we are close and
we obtain that:

Fact 9. For the set of 56 bits depicted in Fig. 3 a contradiction with 1 KP can
be found with probability about 2−4.1 over GOST keys chosen at random.

Justification: This was obtained experimentally with CryptoMiniSat. We can
also observe that in many cases the contradictions are obtained for specific
weaker keys, those which contain some bits at zeros or some bit at one which
make the carries generated in modular additions easier to predict and decrease
the number of cases in the middle. It is not correct to believe that for any key,
by looking at many different encryptions we are bound to find a contradiction
with certainty. This would lead to a single key attack on 8 round of GOST with
time of essentially 256, as every wrong key could be rejected. Unhappily it is not
as simple as that. We can however claim that:

Fact 10. For a proportion of at least about 2−4.0 GOST keys chosen at random
given about 600 KP for 8 rounds of GOST the full 256-bit key can be determined
in time of very roughly about 250 GOST encryptions.

Justification: We sketch the attack. The data complexity is obtain by a calcula-
tion of type (1− 2−4.1)600 ≈ 2−51. Thus we can eliminate most keys on 56 bits
in the first step of the attack. Then we need to work with larger sets, and there
is little doubt that with such a large quantity of data, most extensions of keys
on 56 bits can also be eliminated. This attack requires further research.

We see that even if the contradictions occur with fairly small probability,
if we have a sufficient quantity of data, the cipher will be broken in time of
essentially 2X . Unhappily this does not mean that if we dispose of 2,3,4 KP the
cipher can be broken. In this case we really need to look at the Contradiction
Immunity, with probability of obtaining UNSAT being around 50 %. For this we
need to construct a better set with leads to less incertitude about the middle 4
bits and therefore contradictions are more likely to occur, for all keys, and not
only for weaker keys.



36

11.7 Contradiction Immunity of GOST

We obtain the following result which also appears in [32]:

Fig. 4. Our best set of 78 bits for UNSAT

Fact 11 (Following [32]). The Contradiction Immunity for 8 rounds of GOST
is at most 78.

Justification: We have constructed and tried many different sets aiming at a
contradiction in the middle. Our best set is as follows (cf. Fig. 4): 0-15,47-58,64-
70,111-114,128-130,175-182,192-202,239-255. The contradictions can be found in
time of 0.06 s with CryptoMiniSat 2.92 software [104] with probability of about
50 %. It is easy to see that they could be obtained in essentially constant time
by a dedicated algorithm with some small precomputed tables.

Remark. In fact we come remarkably close to 68 bits. If we consider the set
of 68 bits later shown in Fig 5 and also used in [35], we we achieve about 39 %
UNSAT with CryptoMiniSat 2.92. It is remarkably close but it does not achieve
50 % required. This may seem strange, but in order to achieve 50 %, many more
key bits are needed, cf. Fact 11 above. This is because in GOST it makes a lot
of sense to guess key bits for full S-boxes, and S-boxes active in one round call
for other S-boxes being also active.



37

11.8 SAT Immunity of GOST

Unhappily, it turns out that a set which is good for UNSAT is typically NOT
good at SAT. No SAT solver software we dispose of is able to find the missing
bits if the 78 bits of Fig. 4 are fixed. Happily we have found sets which are very
good at SAT and they are in fact smaller than 78. Our best result is as follows:

Fact 12 (Following [32]). The SAT Immunity for 8 rounds of GOST and 4
KP is at most 68.

Justification: We use the following set of bits depicted in Fig 5 0-15,51-55,64-
66,128-130,179-183,192-207,224-231,244-255 which is also used in [35]. All the
remaining 256-68 bits can be determined in time of about 400 seconds using
GOST encodings described in [46] and with CryptoMiniSat 2.92 [104].

Fig. 5. Our best set of 68 bits for SAT



38

12 New Low-Level MITM-Inversion Attacks on 8 Rounds
In this paper we use many low-data complexity key recovery results for 8 rounds
of GOST such as Fact 5. Without such attacks it is not clear at all if GOST
can be broken faster than brute force and an overwhelming majority of attacks
on GOST relies on these attacks. Interestingly even today some researchers still
claim that they do not exist, see [95].

Early attacks we have discovered were pure software attacks, and then Dinur
Dunkelman and Shamir have proposed an advanced MITM attack at FSE 2012,
for the case of 2 KP and 8 rounds [50]. Subsequently we have developed many
attacks of this type with 2,3,4 and more KP and for 4,6,8 rounds including some
faster alternatives to Dinur-Dunkelman-Shamir attack [50]. Three attacks for
3 and 4 KP are described in [35]. In this paper we describe many more such
attacks. Many of these results rely on experimental results with software and
best results have been obtained with SAT solver software used at several places
inside the attack.

Some of these attacks are quite complex and technical and they mix the
idea of [multi-dimensional] Meet-In-The-Middle and software algebraic inversion
attacks. Some are particularly simple and easy to understand. In Section 12.1 we
are going to present one such result on 4 KP to start with, which illustrates the
methodology perfectly take only a few lines to describe, is easy to understand,
and can also be seen as a very nice example of application of the notion of SAT
and UNSAT Immunities of Section 11.3.

Unhappily all known very efficient attacks on 2 and 3 KP are much more
technical. They will be described below. Key results are shown in Table 1, and
many additional results are given this section and in Appendix J.

12.1 A Mixed MITM-Algebraic Inversion Attack For 4 KP

For 4 KP our best attack is MUCH simpler and it was already published in [35].
Later in Section J.2 we are going to develop additional important variants of
this attack.

12.2 A Mixed Attack with 4 KP from [35]

Fact 13. Given 4 KP for 8 rounds of GOST the full 256-bit key can be found
in time of about 294 GOST computations and negligible memory.

Justification: As in [35] we proceed as follows.

1. We use our set of 68 bits as in Fig 5.
2. We run the software 268 times for all possible assignments of the 68 bits.
3. Computer simulations with the timeout of 7 seconds, a proportion of 1−2−5

of cases on 68 bits terminates with UNSAT within 2 s on average.
4. Overall, we only need to run a proportion of 2−5 of all the 268 cases for

as many as 400 seconds, in other cases it simply terminates automatically
within 2 s which is 223 GOST encryptions on the same CPU.

5. Assuming that all the other cases run for 400 s (some still terminate earlier)
our conservative estimate of the attack time is 268+23+268+31−5 ≈ 294 GOST
computations.



39

12.3 Mixed MITM-Algebraic Inversion Attacks - Basic Fact

These attack was inspired by our previous more or less successful attempts to
design an ”algebraic” key recovery attack on 8 rounds of GOST [27, 46] which
is needed as a last step for some 40 attacks described in this paper, and by
other attacks on GOST in particular various MITM attacks [35, 32, 50]. In [32,
35, 50] we see that there exist interesting sets of bits which allow one to design a
”good” attack of type guess-then-determine: guess certain bits and determine the
remaining bits by software. We would like to be able to do something different
that a classical MITM attack. We would still guess some bits in the middle, but
then instead of using the classical approach with large memory, use a SAT solver
to determine the same key bits with negligible memory. What we will show here
is in fact a very general approach which can be used to transform many MITM
attacks into low-memory versions with a software solver. It is a mixed MITM-
Algebraic/Inversion attack in which we will guess data bits and determine key
bits, and not vice-versa, like it was in traditional MITM attacks.

First we establish again a basic preliminary fact about the middle bits. We
assume that we know the 71/87/103 key bits in the first 4 rounds (or in the last
4 rounds) as shown in one of the three cases depicted in Fig. 6. We want to be
able to compute these 24/32/40 bits or produce a short list of possible values on
24/32/40 bits. Then it is easy to see that:

Fact 14. Given the 71/87/103 key bits in one half of and in any of the three
cases depicted in Fig. 6 and the plaintext or ciphertext for one sigle encryption,
there are on average about 23.6 possibilities to determine the 24/32/40 bitsmiddle
bits U, V , except for the last lower 103 bits where we obtain only 22.3 possibilities.

Justification: The justification is nearly exactly the same in all the six cases. In
roder to understand this attack better we may to look at Fig. 1 on page 27. We
will first look at the first case with 71 bits in the upper 4 rounds.

1. In R2 we know all data bits 13-3 but not the bit 4 for S1. Following Fact 8
we will have about 21.3 possibilities for the joint state of S56781 in R2.

2. In R3 we know 15 out of 16 bits for S1234 and there is no carry entering.
This gives only 21 possibilities for state of S1234 in R3.

3. In R4 we know the lower 15 out of 16 input bits of S4567 with the higher
bit of S7 missing, and want only to determine the state of S567 not of S4,
and we know one data bit 12 at S4. We have 21.3 possibilities.

4. Similarly in the backwards direction and knowing 71 key bits in the lower 4
rounds we get 20.3+1+1.3+1 possibilities for the same middle U, V .

5. By extending our argument by exactly 1 S-box in each round we obtain the
same result for 87 bits.

6. We obtain the same result for 103 bits in the upper half.

7. One case is different: 103 bits in the lower half. Here we have only 21.3+1

possibilities.



40

12.4 A Mixed MITM-Algebraic Inversion Attack For 2 KP

Now we present a hybrid MITM-Algebraic attack which can be applied poten-
tially to 8 rounds of GOST and 2,3,4 and more KP. However for 4 and 5 KP
our preliminary results show it is not as good as other attacks known to us.
Therefore we will just apply it to 2 and 3 KP. We proceed as follows.

Fact 15. Given 2 KP for 8 rounds of GOST we can enumerate 2128 possible
keys on 256 bits in total time of about 2124 GOST computations and with 246

bytes of memory.
In order to check these 2128 possible solutions with some data for 32 rounds,

and assuming that only one key is correct, we need 2127 full GOST encryptions
on average.

Fig. 6. Mixed MITM-Algebraic Attacks On 8 Rounds of GOST

Justification:
We proceed as follows:

1. We work with the right pane of Fig. 6 with 103+103 key bits.
2. We have 2 · 40 = 80 middle bits.

All the steps which follow are executed 280 times which will be taken into
account directly in all the figures below.

3. Following Fact 14, given a fixed set of 80 middle bits there are 2103+2·3.6−80 =
230.2 possibilities for the 103 key bits in the upper 4 rounds.

4. By using the special case in Fact 14 we see that for the same 80 middle bits,
there are 2103+2·2.3−80 = 227.6 possibilities for the lower 103 key bits.



41

5. Now we present a method to recover these key bits without enumerating all
the 2103 cases, saving both running time and memory. Each half separately.
We use the same encoding of GOST as in [46] and a SAT solver [103, 104].

6. We consider fixing 24 key bits out of 103 which are used in the first two
rounds (cf. right pane of Fig. 6). We use only 16 key bits 0-15 in round 1
and 8 key bits 47-54 in round 2. Then we run a SAT solver to determine
the missing 103-24 bits with a time-out of 27 seconds. There may be one, or
several solutions (see later), or a contradiction.
This takes 0.05 s on average with CryptoMiniSat 2.92 [104]. This is about
218 GOST encryptions on the same CPU.

7. If the system is UNSAT, it means that the 24 bits can be rejected.
8. It may seems strange that we enumerate 230.2 solutions by examining 224

cases. The explanation is that solutions are NOT random but correlated,
they are organized in clusters with several solutions sharing identical 24 bits,
and due to limited diffusion and that Fact 8 deal with averages however
in practice we have 0, 1 or several cases. For the first 4 rounds of GOST
fixing the 80 middle bits for two GOST encryptions will already lead to
frequent contradictions on 24 key bits. This happens also at a later stages of
this attack: larger subsets of key bits for GOST will be excluded, while the
cases which are not excluded will lead to several solutions which need to be
enumerated.

9. With 24 bits fixed, our system of equations is SAT with probability exper-
imentally only about 2−2.35, which is much lower than expected due to the
clustering of solutions highlighted above. If it is SAT we will complete these
24 bits by successively 2, 4, 6, 8, 10, 12, 14 and 16 more bits and run the
SAT solver again and output one solution. This is needed to make sure to
fragment the space sufficiently and to output all multiple solutions, because
our current SAT solver software outputs only one solution.
The time to do this additional enumeration of solutions can be neglected
compared to the current step because only with frequency of 2−2.35 we have
SAT and expect on average not 1 but 330.2−24 ≈ 26.2 solutions. Then we
guess additional 2,4,6 and more bits if it is SAT, which will fragment the
space of solutions already. Solutions will be still be clustered and most choices
examined will be shown contradictory in time in 0.2 s. The average propor-
tion of choices which still survive is decreasing quickly. Other choices which
give SAT again, will require further fragmentation of the space,
We stop at an arbitrary threshold of 24+16 even if it is SAT. At this stage
the probability that a given solution obtained with a SAT solver is still not
unique is going to be very small, at most 2−10, and we can afford to ignore
some solutions (with probability 1−2−10 the whole attack might fail because
of cases which were ignored and lost in this enumeration). , which loss can
be afforded).
Thus we can enumerate all the 230.2 solutions in total time spent being
roughly about 280+24+18 = 2122 GOST encryptions.

10. At this stage we enumerate 280+30.2 = 2110.2 cases with 103 key bits + 80
data bits for the upper half.



42

11. We can further extend each of these cases by further 12 key bits in rounds
234, by extending the set by 1 S-box in each round except in the first round
which is completely known now.
Then given 103+12 key bits it is very fast to compute the resulting 16=2 · 8
new middle bits, and we estimate it requires only about 1/32 = 2−5 GOST
encryptions and doing it 212 times requires about 2110.2+12−5 ≈ 2117 GOST
encryptions.

12. At this stage we enumerate 2110.2+12 = 2122.2 cases with 103+12 key bits in
the upper half and 80+16 data bits.

13. In the same way, for the same 80 middle bits, we can enumerate all the 227.6

possibilities for the 103 key bits in the lower 4 rounds which is expected to
be even slightly easier, and take less than 2122 GOST encryptions.

14. At this stage we enumerate 280+27.6 = 2107.6 cases with 103 key bits + 80
data bits for the lower half.

15. Again we can also further extend each of these cases by further 12 key bits
in rounds 567 and efficiently compute the same 16 additional middle bits,
which requires slightly less than 2117 GOST encryptions obtained above.

16. At this stage we enumerate 2107.6+12 = 2119.6 cases with 103+12 key bits in
the lower half and same 80+16 data bits.

17. These two enumerations require only about 246 bytes of memory to store.
In all these cases, 80 middle bits are fixed, and 16 additional data bits are
variable. We can assume that the data are sorted or hashed according to the
16 new middle bits.

18. Now for each current set of 80 middle bits, and the sets stored in memory
with keys on 115 bits and 16 more middle bits, we are going to fix the 16
middle bits.
This is done 296 times and then due to sorting of our data by the new 16
middle bits, we read the section of 230.6−16 = 214.6 cases with keys on 115
bits from the upper list, and a section with 227.6−16 = 211.6 cases with keys
on 115 bits from the lower list.
Thus we can now enumerate 280+16+14.6+11.6 = 2122.2 possible cases with
keys on 230 bits and 96 middle data bits.

19. It remains to be seen how can we efficiently extend these to 2128 solutions
to 256 bits. This should be very easy because very few bits are missing. We
expect that on average there will be 2128−122.2 = 25.8 ways of extending each
solution with 26 additional bits.
In order to see that this is going to be very easy we observe that the unknown
26 key bits are in the middle 4 rounds and only 10 are in rounds 3 and 6,
and further 16 are in rounds 4,5. All the other bits inside GOST are known
from 230 key bits known in each case. This is like breaking a 26-bit cipher
with 3 rounds and can be implemented with precomputed optimizations.
Overall we expect that this enumeration requires only about 25.8 ·2/32 GOST
computations. It needs to be done 2122.2 times with an overall cost of about
2122.2+5.8−4 = 2124 GOST computations.

Related Research and Discussion: Our total is about 2124 GOST en-
cryptions. However if we need to check the 2128 possible solutions with some



43

data for 32 rounds, and assuming that only one key is correct we will really need
about 2127 full GOST encryptions on average, and we will be able to output the
correct key half way on average.

A similar result with 24 times higher running time and 25 times less memory
is obtained in [50]. In fact our result can very easily be transformed into a slower
attack with less memory. For example just be fixing 4 key bits in the first 4
rounds all the way through we can reduce the size of the upper list 24 times and
make some stages of the attack 24 times slower. Therefore we can also achieve a
result very close to the result in [50] as well as many other variants.

12.5 A Mixed MITM-Algebraic Inversion Attack For 3 KP

Now for 3 KP we have the following attack:

Fact 16. Given 3 KP for 8 rounds of GOST we can enumerate 264 possible keys
on 256-bit in total time of about 2110 GOST computations and small memory.

Justification:
We proceed as follows:

1. We work with the left pane in Fig. 6 with 71+71 key bits.
2. We have 3 · 24 = 72 middle bits.
3. Following Fact 14, given a fixed set of 72 middle bits we expect to get

271+3·3.6−72 = 29.8 possibilities for 71 bits of the key in the upper 4 rounds.
4. In the same way, for the same 72 middle bits, there is 29.8 possibilities for

the 71 key bits in the lower 4 rounds.
5. We fix 16 key bits out of 71: first 16 bits in the first round. Then we run a

SAT solver to determine the missing 71-16 bits. This takes 0.5 s on average
with CryptoMiniSat 2.92 [104]. This is about 220 GOST encryptions on the
same CPU.

6. If the system is UNSAT, it means that the 16 bits can be rejected.
7. Total time spent in this step is about 272+16+20 = 2108 GOST encryptions.
8. If the system is SAT which happens with probability experimentally about

2−5 we extend these 16 bits by up to 12 more bits, one bit at a time, checking
for UNSAT, which also takes less 0.5 s in each case, is done for one more bits
only for 2−6 of cases, for two more bits only for 2−7 of cases, etc... Overall
we expect that the number of cases is divided by two each time and all
this enumerates all the solutions for these 16 bits (on average less than one
but sometimes a few) in total time of about 272+16−5+20+1 = 2104 GOST
encryptions which overall is smaller than the initial step above.

9. In the same way, for the same 72 middle bits, we enumerate all the 29.8

possibilities for the 71 key bits in the lower 4 rounds in the same total time
spent of another 2108 GOST encryptions.

10. We need a negligible quantity of memory to store these two sets of 29.8

half-keys on 71 bits.
11. In each case, given the 71+71 bits we run a SAT solver to determine the

remaining 256-142 bits. This is done 272+9.8+9.8 = 291.6 times.



44

12. The solution is expected to be unique, this is because there are only 264

solutions on 142 bits.
13. If the set of 72 middle bits + 142 key bits is correct, this takes 17 seconds

or 226 GOST encryptions with CryptoMiniSat 2.92 [104].
14. If we run this in each case, the total time spent in this last step would be

about 272+9.8+9.8+25 = 2117 GOST encryptions. However we do NOT need
to do it.

15. There are at least 72 middle bits which are fully random inputs, plus the 9.8
bits of entropy in the choice of the other bits in the above procedure.
Therefore we estimate that a correct choice of 72+142 bits for which we have
to recover the key in 17 seconds as above happens only with probability about
264−72−9.8 ≈ 2−18. Most of the time we expect that the same SAT solver
execution as above, will in fact terminate much earlier, within about 0.1 s
with UNSAT, which will be an early abort in all but 2−18 of cases.

16. Thus the time spent in the last step of our attack is only about 272+9.8+9.8+18+
272+9.8+9.8+25−18 = 2110 GOST encryptions which dominates the whole at-
tack. The storage required is negligible.

Related Research: Another faster attack with only 2107 GOST encryptions
BUT at the expense of MUCH larger memory of 268 bytes is given in [35].

Research Challenges: One might think that the result could be less than
2110. For example consider the following well chosen set of just 39+39 bits which
is obtained using the same pattern as in Fig. 6. The exact bits used are: 0-15,47-
58,64-70,111-114,128-130,175-182,192-202,239-255. We can run a SAT solver 278

times for all possible assignments of the 78 bits.
Even for 78 bits, a very substantial proportion of 1 − 2−3.5 of cases on 78

bits already terminates with UNSAT within 0.3 s on average. Time spent in this
step is ONLY about 278+19 ≈ 297 GOST computations. Then we can fix more
bits, a superset of 78 bits, one new bit at a time and continue only if the result
is not already shown UNSAT which is expected to happen with a non-negligible
probability. At the end we will obtain a system which will be solved with a SAT
solver which however will need to run only for a very small proportion of cases
not yet filtered out. The only question is purely combinatorial one: what is the
best trajectory extending the 78 bits with further bits? We leave it for future
research. It is an optimisation problem for our already known attack in 2110

GOST encryptions which could potentially be improved down to maybe even
298 GOST encryptions.

This would be very good and would also mean that the current best attack
for 4 KP which is 294 according to [35], can also be further improved. With more
data even faster attacks exist and in Section J.4 we are now going to show that
with 6 KP one can go down to about 283.



Part IV

High-Level Complexity
Reduction And Single Key

Attacks on GOST





47

13 High-level Description of GOST and Key Observations

GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fk(X) with a 32-bit key which uses a 32-bit segment of the original 256-bit key
which is divided into eight 32-bit sub-keys k = (k0, k1, k2, k3, k4, k5, k6, k7).

One 32-bit sub-key is used in each round, and their exact order is as follows:

rounds 1 8 9 16 17 24 25 32

keys k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7 k7k6k5k4k3k2k1k0

Table 2. Key schedule in GOST

We write GOST as the following functional decomposition (to be read from
right to left) which is the same as used at Indocrypt 2008 [75]:

Enck = D ◦ S ◦ E ◦ E ◦ E (1)
Where E is exactly the first 8 rounds which exploits the whole 256-bit key,

S is a swap function which exchanges the left and right hand sides and does
not depend on the key, and D is the corresponding decryption function with
E ◦ D = D ◦ E = Id.

Notation. We call X the value S(X) where both 32-bit halves are swapped.

13.1 The Internal Reflection Property of GOST
We start with the following observation which is also used in weak attacks on
GOST from [75] and to cryptanalyse the GOST hash function at Crypto 2008
[73]. Both attacks also exploit fixed points, and can only work for some special
(weak) keys. This property is exploited in many (but not all) of our attacks, and
in a more fundamental way: without fixed points and for arbitrary keys.
Fact 17 (Internal Reflection Property). Consider the last 16 rounds of
GOST D◦S ◦E for one fixed GOST key. This function has an exceptionally large
number of fixed points: applied to X gives the same value X with probability
2−32 over the choice of X, instead of 2−64 for a random permutation.
Justification: Our permutation D ◦ S ◦ E has a well-known “conjugated” struc-
ture of type Q−1 ◦P ◦Q cf. [55, 82]. Consequently it has the same cycle structure
as the swap function S and exactly 232 fixed points. The state of the cipher after
the first 8 rounds E is symmetric with probability 2−32, and D ◦ E = Id.

Remark: A number of 232 fixed points is a quite large number which fact
plays an important role in cryptanalysis, see Section 13.3 below. For example
with 232 fixed points, one can expect that one of them will be symmetric, which
fact is also exploited in several of our attacks see for example Fact 28.

13.2 The Involution Property in GOST
In addition we also have a strictly stronger and more powerful property:
Fact 18 (Involution Property). The last 16 rounds of GOST D ◦ S ◦ E are
an involution.

In general, this may appear as very surprising, the Involution Property im-
plies the Internal Reflection Property, see Section 13.4 below and [51, 54].

Applications. For examples of cryptanalytic applications of this Involution
Property of Fact 18 we refer to Section G, Appendix A and [27], Appendix C,
and Appendix H.3.



48

13.3 Discussion: Attacks With Large Number of Fixed Points

Having many fixed points is like having a semi-transparent cylinder. Some-
times, with high probability we are able to see through a whole large number of
rounds of a block cipher.

This really is a crucial and powerful property in cryptanalysis. This is basi-
cally what allows to reduce the number of rounds in various attacks. It is of the
ways to achieve “Complexity Reduction” through the reduction in the number
of rounds in this paper and we use it countless times in this paper. Therefore
in a certain way the most significant single basic remarkable property which we
exploit countless times in this paper is Fact 17 above which is also known as
Reflection Property by Kara [75].

13.4 Reflection Property and Involutions

Fact 17 basically says that the last 16 rounds of GOST D ◦ S ◦ E have ”an
exceptionally large number of fixed points”. Now we also have Fact 18
above which basically says that the last 16 rounds of GOST are an involution.
Is there a relation between these two facts?

Yes, there is. Actually the second property implies the first property. In a
very recent paper [51] from October 2014, Dinur, Dunkelman, Keller and Shamir
recall a known result in combinatorics which can be found on page 596 of [54]
and remark that the property of having a very large number of fixed points
holds for more or less any involution chosen uniformly at random. Therefore
it should hold for most involutions, not only for those in which we have been
able to count the number of fixed points exactly as we do in Fact 17. This is
exploited to develop some new attacks in [51], for example an improved attack
on 18 rounds of GOST.

13.5 Some Earlier Work on Block Ciphers - Large Number of Fixed
Points

Cryptanalytic attacks which exploit the fact that some permutations have a very
large fixed points in modern block ciphers are not new either. For example in
Biryukov and Wagner [8] Section 6 page 605 we read:

”For a DES weak key, all round subkeys are constant, and so encryption
is self-inverse and fixed points are relatively common: there are precisely
232 fixed points. Note that this property will also be found in any Feistel
cipher with palindromic round key sequences, so the slide attack is not
the only weakness of ciphers with self-similar round subkey sequences”.

13.6 Some Even Earlier Historical Work - Conjugated Permutations

Both our Reflection Property of Fact 17 and Involution Property of Fact 18
above, can be derived by an application of the well-known theorem which says
that P and Q−1 ◦ P ◦ Q have the same cycle structure. This theorem is due
to Rejewski and has played a very important role in the historical government
and military cryptography. This result is sometimes called “The Theorem Which
Won World War 2”, see [55, 82, 89–91, 18].



49

13.7 Further Research - Composition of Involutions

There is further ample cryptographic literature which exploits the cycle structure
not only for involutions but also for compostions of two involutions which was
also already studied and exploited by Rejewski in the cryptanalysis of Enigma
as early as in the 1930s, and which still has many applications in recent research,
see for example [90, 91, 9, 51, 49, 82].

The key theorem used in these works is as follows:

Fact 19 (Rejewski Theorem). Let Q◦P be a composition of two involutions
without fixed points. The number of cycles of each length k for Q◦P is an even
number.

Moreover these cycles are in a one-to-one correspondence induced by P, the
inverse of which is a one-to-one correspondence induced by Q.

Justification: This theorem is due to Rejewski and appears in [93, 90–92]. This
theorem was used in the 1930s in the cryptanalysis of Enigma1. It is also used
and cited in a number of more recent papers including [9] and [49]. One proof by
induction due to Rejewski himself was given on page 140 of [92]. Here is another
simple proof. Let X be a point which lies on a cycle of length k, and does not lie
on a shorter cycle. Then X is a fixed point of (Q ◦ P)

k
. However because both

are involutions, the same X is also a fixed point for it’s inverse permutation
which is simply (P ◦ Q)

k
. Then Q(X) is also a fixed point for (Q ◦ P)

k
.

We see that each time X lies on a cycle of lengthly exactly k and not on a
shorter one, also Q(X) lies on a cycle of the same exact length, which cannot
be shorter because this property holds for every point on this cycle and Q is
bijective. Now can X and Q(X) ever lie on the same cycle (and the two cycles
would merge)? This means that either we have X = Q(X) which is excluded

because we assumed that Q had no fixed points, or that X = (Q ◦ P)
k

(X), for
some smaller k, however we assumed there was no shorter cycle for X. Therefore
the bijection X 7→ Q(X) maps whole cycles to whole cycles which are distinct
from the original cycle. Now this bijection Q, since Q is an involution, is clearly
one-to-one when acting on cycles and no cycle is transformed onto itself. Thus we
get an even number of cycles of each length k. We also remark that the inverse
mapping acting on whole cycles will be the one be induced by P.

Applications. Composition of two involutions occurs frequently in crypt-
analysis. The condition of having no fixed points can be typically relaxed, at the
price of having results which are not always true but which are true with some
probability, typically quite large, which is sufficient in key recovery attacks, we
restart the whole attack several times.

One type of situation is that each time when we have a composition of two
involutions, they are likely to have 232 fixed points each [cf. Section 13.4 above]
and we expect that both are likely to have a shared fixed point. This allows the

1 If two Enigma messages (or message keys) have been encrypted with the same initial
setting had the same letter in the plaintext at two positions say 1 and 4, then the
relationship between the two encrypted letters was a product of two involutions
which correspond to the two full encryptions at these moments, for example A1 ·A4.



50

attacker to infer values inside some block of encryption rounds and this fact is
used many times in this paper (cf. also Appendix K.4).

In general a decomposition of a permutation as a product of two involutions
is not very easy to obtain for the full 32-round GOST. Instead, in this paper
the attacker needs to work harder. He can typically only infer a fairly small
number of relations on concrete points, and he does get oracle access to anything
which would be a composition of two involutions. Nevertheless fixed points in
a composition of two involutions do occur many times in our attacks. Most
applications of Fact 19 in our work are very specific degenerated special cases
and we do not explicitly cite Fact 19, we work on these special cases directly. For
example each time we are composing some involution P with S we get a shared
fixed point with high probability. This is however a degenerated special case,
and it is really and simply equivalent to looking for fixed points for P which
are symmetric. Such situations happen many many times in this paper, cf. for
example in Fig. 9 page 62 and also in other papers on GOST, e.g. [75, 77].

A composition of two involutions also occurs more easily for some special
classes of GOST keys, cf. for example in Section 31. One application of Fact 19
will be later obtained as sub-point 16 in Fact 93 on page 136.

13.8 Factoring Permutations Which Involve Involutions

The Fact 19 above can be used to factor permutations. We have the following
result, which is a modern version of a classical 1930s method adapted to the
context of block ciphers.

Fact 20 (Rejewski Permutation Factoring Method). Let Q◦P be a com-
position of two involutions, and let P have p rounds and let Q have q rounds
with p ≤ q. We assume that the attacker has oracle access to Q◦P. We assume
that there is a key recovery attack on P given the fact that it has only p rounds,
and that this attack requires only a limited number of P/C pairs. Then attacker
can factor Q ◦ P and recover the key of P.
Justification: We apply Fact 19 above and consider the smallest value k such that
Q ◦ P has exactly 2 cycles of length k, which following Fact 19 must be related
and one cycle is X,Q(P(X)), . . . the other is P(X),P(Q(P(X))), . . . possibly
starting at some location inside the other cycle. We just need to guess which
cycle is which, pick a random point on once cycle, and guess which point on the
second cycle is the corresponding points. Overall with probability 1

2k we obtain
as many as k correct P/C pairs for P which should be sufficient for key recovery.

Furthermore we have the following practical variant which is written in the
sprit of the present paper which emphasizes black box reductions (cf. Section
14 below) from an attacker disposing of a number of P/C pairs for a larger
number of rounds of a cipher to an attacker disposing of a number of P/C pairs
for a smaller number of rounds.

Fact 21 (Rejewski Black Box Reduction Method). Let Q ◦ P be a com-
position of two involutions, and let P have p rounds and let Q have q rounds
with p ≤ q. We assume that the attacker disposes of two short cycles of length k
for Q◦P. Then the attacker can generate k pairs for p rounds which are correct
with a large probability.



51

Justification: It is exactly the same as in previous result, except that we do no
longer assume that there exists no other cycles of the same length. Yet with a
large probability two cycles of the same length are mapped onto each other by
P. In a key recovery attack, we simply start again if our assumptions are wrong,
and repeat until they are right and we recover the correct key.

Unhappily except in highly degenerated case, it is not easy to apply this
result to full GOST.

We also have the following result:

Fact 22 (Generalized Rejewski Black Box Reduction Method). The
same result applies if the attacker has access to a certain number of cycles not
for Q ◦ P but for some fixed power (Q ◦ P)

n
.

Justification: Here we can observe that (Q ◦ P)
n

can be decomposed itself a

product of 2 involutions for example it can be seen as Q◦P−1 ◦ (Q ◦ P)
n−1

and
we can apply Fact 21 directly.

Remark. This sort of decompositions appear in Fact 93 on page 136.



52

14 Our Reductions: Methodology and Key Steps

All the attacks described in this paper follow the following quite precise frame-
work for conditional algebraic attacks, which deals with the fundamental ques-
tion of how we can reduce the complexity of a cipher in cryptanalysis to essen-
tially the problem of breaking the same cipher, with less rounds and less data,
at the cost of some “clever” assumptions. We obtain real “black box” reductions
and call this process Black Box Algebraic Complexity Reduction.

First a certain number of assumptions on internal variables of the cipher, for
one or several encryptions, are made. The probability that these assumptions
hold for a random GOST key, needs to be evaluated. Then the probabilities
that, when our assumptions hold, certain well chosen variables in the encryption
circuit(s) can be guessed by the attacker, will be estimated. Finally the com-
bination of the assumptions and the guessed values will allow the attacker to
obtain a small number of 2,3, 4 or 6 P/C pairs for 8 rounds of the cipher.

In this reduction phase we typically have only one or two P/C pairs for the
full 32-bit GOST. Then whatever is the number of P/C pairs obtained for 8
rounds the initial 1 or 2 pairs are insufficient to uniquely determine the key.
Thus in all our attacks we have a number of false positives: a certain number of
full 256-bit keys which will be considered and checked by the attacker, using a
number of additional P/C pairs encrypted with the same key, but for the full 32
rounds. In all our algebraic attacks the total number of false positives (the line
before the last in Table 3) can be neglected compared to the overall complexity.
This number provides a strong and information-theoretic limitation to our
attacks. It shows that even if we improved our algebraic key recovery software,
an attack on 256-bit GOST faster than 2128 is very unlikely.

14.1 Synthetic Summary of Our Reductions For Our Principal
Single Key Attacks on GOST

The following Table 3 on page 53 gives a summary of all key steps in the main
single key attacks described in this paper, some other single key attacks are
summarized in Table 7 page 153. Attack with multiple keys and weak keys are
summarized in Table 4 page 128.

Notations: We call Xi, Yi a certain number of P/C pairs for full 32-round
GOST, encrypted with 1 single key (in most of our attacks this could be relaxed
and they would also work if pairs come in small clusters encrypted with a single
key). We call Z,A,B,C,D etc. certain state values on 64 bits.



53

Reduction Summary

Reduction cf. Red. 1 §15.1 Red. 2 §16 Red. 3 §17 Red. 4 §17.1 Red 5 §18
Type 1x Internal Reflection 2x Reflection Fixed Point

From (data 32 R) 232 KP 264 KP
Obtained (for 8R) 2 KP 3 KP 3 KP 4 KP 2 KP

Valid w. prob. 2−96 2−128 2−96 2−128 2−64

Reduction Steps

0. Assumptions E2(Xi) symmetric E(Xi) = Xi

on i E3(Xi) is symmetric E3(Xi) symmetric
Notation Let A = Xi

for this i C = E2(A) E = Enck(A)
Observations C = Enck(Xi) because E3(Xi) is symmetric E(E) = S(A)

Expected ] of i one such i one i on average one i
expected for 232 KP expected for 264 KP ∈ 264 KP

1. Guess value i C symmetric i
Determine A,C i,A A,E

Correct 2−32 2−32 2−64

2. Guess value B = E(A)
Observations C symmetric cf. Fig. 9
Determine Z = Deck(B)

Correct 2−64

3. Guess value D = E3(A) D = E3(A)
Correct 2−32 2−32

Final Key Recovery

] Pairs 8R 2 3 3 4 2
Pairs obtained Z 7→ A Z 7→ A

A 7→ B A 7→ B A 7→ B A 7→ B A 7→ A
B 7→ C B 7→ C B 7→ C B 7→ C

C 7→ D C 7→ D E 7→ S(A)
Valid w. prob 2−96 2−128 2−96 2−128 2−64

Last step MITM Guess+ Det. Hybrid MITM-Software/Algebraic

Cases ∈ Inside 2128 2128 264 264 2128

Then Fact cf. Fact 24 Fact 5 Fact 6 Fact 7 Fact 5
Time to break 8R 2128 2127/2128 2110 294 2127/2128

Storage bytes 2132 239/246 - 267 239/246

] false positives 2224 2192 2128 2192

Attack time 32 R 2224 2223/2224 2238 2206 2222 2191/2192

Table 3. Summary of our single-key attacks with a black box reduction from full
32-round GOST to a low-data key recovery attack on 8 rounds of GOST. In practice
ciphers are NOT used with single keys but with multiple keys, and there is a continuous
space of further attacks with growing data requirements, see Table 4 page 128.



54

15 Attacks On GOST Using 232 Known Plaintexts

Let Xi, Yi be the set of known plaintexts with i = 1, 2, 3, . . . ,M , where M ≈ 232.
Most attacks in this paper require that the Internal Reflection Property (Fact
17) holds for (at least) one i. This requires at least 232 known plaintexts on
average, which means that for some keys we may need a bit less, and for some
keys a bit more with M > 232, but rarely much more.

Our first attack will require a lot of memory. The second version significantly
less.

15.1 Self-Similarity Attacks on GOST With One Single Reflection

We have:

Reduction 1. [From 232 KP for 32 Rounds to 2KP for 8 Rounds]
Given 232 random known plaintexts for GOST on average, it is possible to obtain
two P/C pairs for 8 rounds of GOST (having full 256-bit key) and our two pairs
will be correct with probability 2−96.

rounds values key size

A
8 ↓ E 256

B
8 ↓ E 256

C
8 ↓ E 256

D ./ D
8 ↑ D 256

C

bits 64

Fig. 7. The simple reflection attack with 2 or 3 KP for 8 R obtained

Justification: This is done as follows:

1. Let Xi, Yi be the set of known plaintexts with 1 ≤ i ≤M and M ≈ 232.
2. On average there exists one index i ≤ 232 such that E3(Xi) is symmetric.
3. We call A be this 64-bit value Xi. So far we don’t know i but it can be

guessed and A will be immediately determined as A = Xi. Thus i, A can be
guessed and the guess will be correct with probability about 2−32.

4. Let C be the encryption of A, C = Enck(A). Then, since E3(A) is symmetric:

C = Enck(A) = D(S(E3(A))) = D(E3(A)) = E2(A). (2)

Thus we obtain one P/C pair of known texts for 16 rounds of GOST.
5. Furthermore we guess also B = E(A) on 64 bits.
6. We do not seek to guess nor to determine D, this will be done later in

Reduction 2.
7. Overall with probability 2−96 our guess i, B is correct and allows to deter-

mine the four correct values i, A,B,C. This gives two P/C pairs for 8 rounds
with 256-bit key each, which was our goal: B = E(A) and C = E(B).



55

Related Research. This method described in Reduction 1 and shown in
Fig. 7 is an application of the Reflection Property initially proposed by Kara [75]
and used in a weak key attack. In October 2010 we have been able to find this
reduction and an appropriate second step in order to break GOST encryption
faster than brute force for arbitrary GOST keys. In 2012 the same property was
reused in [50] and combined with an improved final step which we revisit in
this paper and propose several additional variants, see Fact 15. Actually both
reductions from 32 to 8 rounds described in [50] have been initially described in
earlier versions of this paper: these are Reduction 1 of Fig. 7 and Reduction 5 of
Fig. 10. Consequently both attacks from [50] can be seen as improvements of two
last step of two attacks of the present paper, which initially very substantially
improved our timings. However later we have been able to catch up, and currently
in this paper we achieve the same and even slightly lower complexities for all
the attacks described in [50].

Special Cases. Unlike the great majority of attacks on GOST which work
only for some keys, this method is of the very few known which leads to at-
tacks which work for all GOST keys, On the contrary. this is also the only
method known which still leaves the attacker a considerable degree or freedom:
the attacks based on this method work for more or less arbitrary set of 232 plain-
text/ciphertext pairs out of 264. This suggests that there will be many interesting
special cases of this attack. For example such that A and C are somewhat re-
lated in order the make it easier for the attacker to determine A,C with faster
running times at the expense of a higher data complexity. Unhappily this is not
easy because if A,C are related then for the two pairs obtained in the attack
there could be more than 2128 solutions making the attack slower. Therefore the
starting point needs to be rather the extended attack with 3KP in Section 16 in
which we also guess D which is then extended in Section 25.2.

Applications of Reduction 1. Below we will present two basic methods to
recover the key using this Reduction 1. We start with a very simple attack with
a lot of memory which is our first and least efficient attack on GOST, which
will be later compared to Isobe attack from 2011 [74]. These two attacks have
as far as we know been found roughly at the same time with a precision of a
few months and our attack is simpler, faster and overall better than the Isobe
attack of [74] which seems to require a lot of unnecessary work.



56

15.2 A Reflection-Meet-In-The-Middle Attack with Memory

Fact 23. Given 2 P/C pairs for 8 rounds of GOST, and a few more additional
P/C pairs for full 32-rounds of GOST for verification, the correct full GOST key
on 256 bits can be determined in time of 1.25 ·2128 GOST encryptions, and with
2132 bytes of memory.
Justification: This is obtained trough a variant of a Meet-in-the-Middle attack
with confirmation with additional pairs.

rounds values key size

A B
4 ↓ ↓ 128
P Q

4 ↓ ↓ 128
B C

bits 64 64

Fig. 8. Simple 2-dimensional Meet-In-The-Middle attack on 4+4 rounds of GOST

First for the first 4 rounds and 128-bit key, in time of 4/32 · 2128 GOST
computations we compute 4 rounds forward for both plaintexts (which are A,B
in our attack) and store 2128 values on 2 · 64 bits in a hash table. Then for each
second half of the key on 128 bits and in total time of another 4/32 · 2128 GOST
computations we compute 4 rounds backwards and for each of these keys, we
expect to get on average 1 corresponding first half of the key from the hash
table. Thus we get 2128 full 256-bit keys which are checked in the real time with
a few extra P/C pairs for the full 32 rounds. Most of the time only one of these
is needed to reject them and it takes time of 1 GOST encryption to check. All
keys are checked in total time of about (1+8/32) ·2128 GOST computations and
with about 2132 bytes of memory.

Now we combine this MITM attack with our Reduction 1 as shown in Fig. 7
and we get immediately an attack faster than brute force:

Fact 24. Given an average number of 232 random known plaintexts for the
full 256-bit GOST cipher, it is possible to determine the secret key in time
1.25 ·296+128 GOST encryptions, which is 230.7 times faster than brute force and
with about 2132 bytes of memory.

Justification: This is straightforward. We summarize the whole attack.

1. Let Xi, Yi be the set of 232 known plaintexts.
2. As in Reduction 1, on average there is one index i such that E3(Xi) is

symmetric. Then a 4-tuple i, A,B,C with A = Xi, B = E(A) and C = E(B)
can be guessed and the guess will be correct with probability 2−96.

3. In each of 296 cases we apply our MITM attack from Fact 23. Thus we check
296+128 cases and need to perform an equivalent of 1 + 8/32 full encryptions
per case, where the cost of each pre-computation of 2128 cases is amortized
over each interval containing 2128 cases. In each of 296 cases i, B we we
obtain exactly one key, which is checked with on average one and at most a
few additional P/C pairs Xi, Yi. Overall only one correct key is obtained in
this attack.



57

Summary and Discussion. This attack requires 232 known plaintexts,
and the running time is 1.25 · 296+128 GOST encryptions, which is 230.7 times
faster than brute force. The storage requirements are however very important:
about 2132 bytes of fast memory, which need basically to work at the speed of
encryption with only 4 rounds of the cipher.

Important: If we consider that today the memory of 230 has a cost com-
parable to 260 computations, it is possible to believe that the cost of 2128 of
memory at some moment in the future may be as high as to be equivalent to
2256 in computing power. In this case, it is possible to believe that we do not
yet have a valid attack on GOST. Happily, we are going now to present a more
convincing attack, and later also attacks which are strictly faster attacks and
yet with very low storage requirements.

Related work: Takanori Isobe from Japan have discovered another MITM
attack on GOST in 2011 [74]. However both attacks are not the same but
different. Our attack is much simpler and slightly faster. In their attack they
guess values after 4 and 12 rounds and do a MITM attack on 4+4 rounds, and
use an equivalent key technique. In our attack is much simpler we guess one
value after 8 rounds and do a MITM attack on 8+8 double rounds in parallel. It
is also true that this and other of our attacks have been found even before their
attack was submitted to FSE 2011 in November 2010 (at the time we decided
not to submit our paper to FSE).

More recently, there is much more work on MITM attacks on various number
of GOST rounds of GOST [35, 32] and on reducing the memory requirements
of these attacks [50, 35]. Some important results which combine the MITM and
software/inversion approaches are now included in Appendix 12, earlier such
results can be found in [35, 32].



58

15.3 A Reflection-MITM-Algebraic Attack

This attack is very similar and only the last step changes.

Fact 25. Given an average number of 232 random known plaintexts for the
full 256-bit GOST cipher, it is possible to determine the secret key in time
296+128 = 2223 GOST encryptions, which is 232 times faster than brute force.
The memory required is about 246 bytes.

Justification: This is again straightforward:

1. Again given 232 KP Xi, Yi, we use the Reduction 1, as shown in Fig. 7. On
average there is one index i such that E3(Xi) is symmetric. Then a 4-tuple
i, A,B,C with A = Xi, B = E(A) and C = E(B) can be guessed and the
guess will be correct with probability 2−96.

2. In each of 296 cases we apply Fact 5 which allows to enumerate 2128 keys in
total expected time of 2127 GOST computations each. The total time spent
in this step is 296+127 = 2223 GOST computations.

3. Overall in this attack we will check 296+128 full keys on 256-bits, most of
them being false positives. Each is checked with on average one and at most
a few additional P/C pairs Xi, Yi. The total time spent in this step can be
neglected.

Summary. Our initial attack was slower and was greatly improved due to
the work of [50]. Our current version is event slightly faster though it requires
slightly more memory. It requires 232 known plaintexts, and the running time
is 2223 GOST encryptions. The storage requirements are about 246 bytes which
point requires a lot of effort in [50]. It is also clear in Fact 15 and in [50] that
there are many variants of this attack which will use less memory at the expense
of slightly slower running time.

In what follows we are going to describe better attacks, with lower complexity
or lower storage, or both.



59

16 Extended Single Reflection Attack With 232 KP

In this attack the security of GOST will be reduced to the problem of breaking
8 rounds of GOST with 3 known plaintexts (instead of 2 in earlier attacks, see
Table 3). It does no longer use the meet-in-the-middle approach.

Reduction 2. [From 232 KP for 32 Rounds to 3KP for 8 Rounds]
Given 232 random known plaintexts for GOST on average, it is possible to ob-
tain three P/C pairs for 8 rounds of GOST and our guess will be correct with
probability 2−128.

Justification: Again let Xi, Yi be our set of approx. 232 known plaintexts. Then:

1. As in Reduction 1, as shown in Fig. 7, on average there is one index i such
that E3(Xi) is symmetric. Then a 4-tuple i, A,B,C with A = Xi, B = E(A)
and C = E(B) can be guessed and the guess will be correct with probability
2−96.

2. We call D = E3(A) the value which is symmetric by definition of A, (cf. the
same Fig. 7). Unlike in our previous attack we also guess D. Overall we get
i, A,B,C,D and our guess will be correct with probability 2−128. We have:

B = E(A) (3)

C = E2(A) (4)

D = E3(A) (5)

D = S(E3(A)) (6)

C = D(D) = Enck(A) (7)

Now we will describe a full attack with complete key recovery.

Fact 26. Given an average number of 232 random knowns plaintexts for the full
256-bit GOST cipher, it is possible to determine the secret key in time 2128+110

GOST encryptions, which is 216 times faster than brute force. The memory
required is negligible.

1. We use the Reduction 2 and given 232 KP we obtain a 5-tuple i, A,B,C,D
and correct with probability 2−128 and 3 P/C pairs for 8 rounds of GOST:
B = E(A) from (3), C = E(B) from (4), and D = E(C) from (5). These
8 rounds of GOST depend however on the full 256-bit key. And these 3
P/C pairs do not uniquely determine the key. Moreover, only 64 bits of
information about the key are available from one single value i and the
information contained in the 3 P/C pairs for 8 rounds of GOST above is
largely based on attacker’s guesses, and will only be confirmed after a large
number of candidates for the full 256-bit GOST key will be generated, and
checked against some 4 additional P/C pairs Xj , Yj for j 6= i, see Fact 1.

2. Following Fact 6 (cf. page 26) in each of 2128 cases tried and on average, and
in total time equivalent to 2110 GOST encryptions we obtain 264 candidates
for the GOST key k.



60

3. For each of the 2128 cases i, A,B,C,D we get from the program of Fact 6
a uniform enumeration of 264 keys. We get an enumeration of 2192 6-tuples
i, A,B,C,D, k. Where k is a candidate for the full 256-bit key. These 6-tuples
contain about 2192 different candidates for the GOST key k. Each 6-tuple is
generated in time of 256 GOST encryptions on average (cf. Fact 6).
These 6-tuples are checked with 4 extra additional P/C pairs, for example
the previous ones Xi−1, Yi−1 etc. With 5 P/C pairs total, only the right key
will be accepted, and the probability that a wrong key is accepted in our
attack is 2−64, see Fact 1.

4. Thus we reject all the 2192 6-tuples i, A,B,C,D, k except the correct one
which contains the full 256-bit key of the cipher.

Summary. Overall our attack requires 232 known plaintexts, time is 217

times faster than brute force which requires 2255 GOST encryptions on average.
It requires negligible storage, except for the 232 known P/C pairs.

Special Cases. Again this method is of the very few known which still
leaves the attacker a considerable degree or freedom: we expect that there will
be many interesting special cases of this attack. For example such that A and C
are somewhat related in order the make it easier for the attacker to determine
A,C with faster running times at the expense of a higher data complexity. In
Section 25.2 we give an example of such attack and we expect there is many
more such special cases.



61

17 Attacks On GOST Using 264 Known Plaintexts

Now we are going now to describe a better attack where we are still going to
reduce the security of GOST to the problem of breaking 8 rounds of GOST
with 3 known P/C pairs where our guess will be valid with a higher probability.
This however will be obtained at a price of 264 known plaintexts (instead of
232 KP). This larger quantity of data is required if order to find cases where the
internal reflection (cf. Fact 17) occurs twice, in order to be able to analyse several
encryptions at the same time, which will reduce the number of false positives.

First we consider special plaintexts which are likely to occur in practice:

Assumption 1. Let A be such that both E2(A) and E3(A) are symmetric.

Alternative Formulation. An alternative way of viewing this assumption
is as follows: there is a symmetric fixed point for the last 16 rounds of GOST.
This equivalent to saying that both E2(A) and E3(A) are symmetric. It happens
that symmetric fixed points for the last 16 rounds of GOST happen with very
high probability, because the last 16 has many fixed points in the first place, see
Section 31.2, while for other permutations the whole GOST it is very rare to
have symmetric fixed points, see Section 21.

Fact 27 (Key Property). There is on average one value A which satisfies
Assumption 1 above. For 63% of all GOST keys at least one such A exists.

Justification: We have 264 possibilities, each time the probability is 2−64. Such
a value A exists for 1− (1− 1/N)

N ≈ 63% of all GOST keys where N = 264.
Remark: For 37 % of keys this attack fails but our earlier attacks requiring only
232 KP still work.

Reduction 3. [From 264 KP for 32 Rounds to 3KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain three P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−96.

Justification: will be provided below.

1. Let Xi, Yi be the set of all the 264 known plaintexts.
2. On average there exists one index such that both C = E2(Xi) D = E3(Xi)

are symmetric values on 64 bits. Then since D = E3(A) is symmetric we
have

Enck(A) = C = E2(A) (8)

So far we don’t know neither i nor A,C,D. However since from our Key
Assumption on i the value of C = E2(Xi) must be a symmetric value on
64-bits, we can limit ourselves to select C among all symmetric ciphertexts,
guess C = Yi and our guess is true with probability 2−32. Let A = Xi be
the corresponding plaintext. We have a triple i, A,C which is correct with
probability 2−32.

3. Then we guess B and get a 4-tuple i, A,B,C with A = Xi, B = E(A) and
C = E(B) and our guess will be correct with probability 2−96.
As in our first two attacks we don’t try to guess D.

4. This gives exactly 2 P/C pairs for 8 rounds B = E(A) and C = E(B).



62

5. One extra pair will be obtained by decrypting B as follows. We define Z as
Z = Deck(B) = E−3(S(E(B))). We have

Z = Deck(B) = E−3(S(C)) = E−3(C) = E−2(B) = E−1(A) = D(A).

Where we used our assumption that C = E2(A) is symmetric, and we get
that Z = Deck(B) = D(A). Thus we get our 3-rd pair A = E(Z). This
decryption is done in constant time if we assume that all the pairs Xi, Yi are
stored using a hash table.

6. Thus we determine i, Z,A,B,C and we get 3 known P/C pairs for 8 rounds
of GOST, and our guess is valid with probability 2−96.

rounds values key size

Z
8 E ↓ 256

A A
8 ↓ E ↓ 256

B B
8 ↓ E ↓ 256

C C ./ C
8 ↓ E D ↑ 256
D ./ D B

8 ↑ D 256
C

bits 64 64

Fig. 9. An attack on GOST with double reflection

Thus we obtain the following result:

Fact 28. Given 264 known plaintexts, it is possible to determine the full 256-bit
key of GOST cipher in time of 2206 GOST encryptions. The storage required is
264 times 8 bytes.

Justification: As above we get 3 known P/C pairs for 8 rounds of GOST, and
our guess is valid with probability 2−96. For each of the 296 cases i, A,B,C we
get from the program of Fact 6 a uniform enumeration of 264 keys. Thus we get
an enumeration of 2160 5-tuples i, A,B,C, k. Where k is a candidate for the full
256-bit key. These 5-tuples contain about 2160 different candidates for the GOST
key k. Each 5-tuple i, A,B,C, k is generated in time of 246 GOST encryptions
on average (cf. Fact 6). These 4-tuples are checked with 4 extra additional P/C
pairs. We reject all the 2160 4-tuples i,D,B, k except the correct one. Total cost
is about 2160+46 = 2206 GOST encryptions.

17.1 Alternative Attacks with Reduction to 4 Pairs

If we look at Reduction 3 it is possible to see that by guessing D we are able to
obtain 4 pairs with a degraded probability as follows:



63

Reduction 4. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−128.

If we compare Fact 7 to 6 we gain a factor of about 216 however we lose a
factor of 2−32 to obtain 4 pairs instead of 3. This attack is summarized in the
next to next to last column in Table 3 and we obtain 2222 GOST encryptions
overall. In Appendix we present three other and different methods to obtain 4
pairs given 264 KP with the same and even slightly better success probability.

17.2 An Important Variant In The Multiple Key Scenario

Total cost of our attack of Fact 28 is about 2206 GOST encryptions and it requires
264 KP. We have designed a much faster and more powerful version of this attack
in the multiple key scenario. All we need to do is to assume that Z = D which
leads to the situation depicted in Fig. 31 which makes that the attack requires
only 232of data and occurs only for some proportion of d = 2−64 of GOST keys.
So far we have black box reduction attack which ignores the internal structure
of GOST. Unexpected help comes from additional strong vulnerability of GOST
w.r.t. advanced truncated differential attacks such as described in [36–40], which
are no longer simple black-box attacks. It is possible to show that, within these
2−64 keys they exist keys with much stronger properties. We obtain an attack
with complexity of 2117 total to find some but not all full 256-bit keys generated
at random see Fact 69 page 114 or even an attack with about 2110 total see Fact
81.

18 A Simple Fixed Point Attack With 264 KP

So far all single-key attacks on GOST ever found exploited the internal reflections
[74] and in our best single-key attack on GOST we use this reflection property
twice. However there is another very simple attack on GOST which does not use
any reflection and where no symmetric 64-bit values appear. This shows that
GOST is broken independently of reflection attacks [74–76].

Reduction 5. [From 264 KP for 32 Rounds to 2KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain two P/C pairs for
8 rounds of GOST and our guess will be correct with probability 2−64.

Justification: This can be seen in Fig. 10 and is also summarized in the last
column of Table 3.

Let A be a fixed point of E . One on average such value exists. Then let
E = Enck(A), and since A is a fixed point for 8 rounds, and Enck = D ◦ S ◦ E3
after 24 rounds we still have A, and we obtain an additional pair for 8 rounds
E(E) = S(A) = A. Both these pairs are jointly valid with probability 2−64, when
A is correct.

This can be used to break GOST directly.

Fact 29. Given 264 known plaintexts, it is possible to determine the full 256-bit
key of GOST cipher in time of 2191 GOST encryptions. The storage required is
264 times 8 bytes.



64

rounds values key size

A
8 ↓ E 256

A
8 ↓ E 256

A
8 ↓ E 256

A ./ A
8 ↑ D 256

E

bits 64

Fig. 10. The fixed point reduction with 2 KP 8 R and P = 2−64

Justification: We combine Reduction 5 and Fact 5. The time to check all the
false positive keys is included in the 2191 GOST encryptions (see Fact 15 or [50]
for more details). The overall attack is summarized in the last column of Table
3.

Important Remark. This attack will work for about 63 % of all GOST
keys for which E has a fixed point. For the remaining 37 % of Family B keys this
attack fails, but the attack described in Section 17 will still work with roughly
the same complexity, this for 63 % of these 37 % of keys.

This paper provides strong motivation for doing more research on this type
solver technology, which is known to be able to break more or less any cipher
with a limited number of rounds, see [19], and the main contribution here is to
be able to reduce the security of a cipher with 32 rounds to the security of the
cipher with 8 rounds.

18.1 Related Research and History

In an the older version of this paper submitted to Asiacrypt 2011 the complexity
of this attack was 2216. A major breakthrough was an improved alternative final
step for this attack which was first proposed in [50] and reduces the overall
running time to about 2192. For an independent method to achieve the same
result, including variants with even slightly less time and slightly more memory,
see Fact 15 in Section 12.4.

An analogous attack but with two fixed points for 8 rounds is the Family 5.2.
attack given in Section 25.4. In Section 25.4 and I.4 we are going to re-visit fixed
point attacks on GOST: we will discover the existence of double and multiple
fixed points with special properties which do not exist for random permutations
but do exist for 8 rounds of GOST and occur with surprisingly high probabil-
ities. These and similar events lead to some of the best attacks on GOST ever
found and many such attacks are described in this paper. They allow to decrease
the total cost of recovering certain GOST keys generated at random in a truly
spectacular way, down to 2130, 2110, and even 2101, see Table 4 page 128. These
attacks work in the most realistic scenario with a population of distinct random
GOST keys. It works for some of these keys, while the keys for which the attack
does not work can be discarded at a surprisingly low cost.



65

19 Discussion and Towards Better Attacks

19.1 Strong Self-Similarity, Low Complexity and Low Diffusion

We obtained several attacks which break the full 32-round GOST faster than by
brute force and require small storage. Crucial ingredients in these attacks are:

A) A self-similarity property of the full 32-rounds GOST which allows to reduce
the problem of breaking a 32 rounds cipher to a problem of breaking a
cipher reduced to 4 or 8 rounds. Most our attacks use the Internal Reflection
Property (cf. Fact 17) and an overall small number of iterations of the 8-
round block E . We heavily rely on the fact that the same large encryption
block with the same key is repeated, we call it “strong self-similarity”.
The attack described in Section 16 is a very innovative new type of attack
on block ciphers based on strong self-similarity and reflection, yet it is not
a slide attack [58, 7, 8, 6] neither it exploits fixed points like in [20, 75]. In
addition in Appendix A and Appendix B.1 we show two attacks on GOST
which are faster than brute force, and don’t use any reflection.

B) The second necessary ingredient is the existence of efficient and low data
complexity [19, 48] key recovery attacks on reduced-rounds of GOST. For
example 8 rounds of GOST with 256-bit key can be broken in time of 2110

GOST encryptions and only 3 KP, cf. Fact 6. This is possible due to several
factors. First, the diffusion in the cipher is poor, which is known to play an
important role in this type of algebraic attack. Secondly, both the GOST
S-boxes (mainly due to their size, see [16, 19, 25, 12, 13], significantly less due
to any particular choice of S-boxes), and the addition modulo 232 contribute
to a circuit of GOST which is overall not too complex compared to any other
comparable cipher, see [83, 46], and this also makes it vulnerable to Alge-
braic Cryptanalysis [12, 16, 25, 97, 98, 20, 46] and also to Meet-In-the Middle
attacks [50], as well as to various combinations of the two, see Appendix 12.

It is worth noticing that until now we do not exploit any other property
or weakness of GOST other than A) and B) above, and using only these two
properties we are already able to construct some 50 very diverse and rather
non-trivial attacks on GOST faster than brute force.

Remark. The power of the attacker will be substantially enhanced by con-
sidering multiple keys cf. Section 20.1 and internal self-similarities, the third
interesting ingredient C) which will be introduced in Section 20.2 below.

19.2 Algebraic Complexity Reduction vs. Black Box Reductions

All except one algebraic complexity reductions in this paper are black box reduc-
tions. However the concept of an algebraic complexity reduction is more general
and reductions do not have to be black box. Another example of attack with
algebraic complexity reduction which is not a black box reduction is the Slide-
Algebraic Attack 2 in [20], here the attacker ends up with two instances of a
slightly different cipher with a shared key.



66

19.3 Beyond GOST

This paper is motivated by the idea of software/algebraic cryptanalysis (AC)
and of self-similarity attacks which are disruptive techniques in cryptanalysis
leading to great many new attacks. In theory algebraic attacks allow to break
more or less any cipher, provided it is “not too complex”, however it turns out
that it can break only a few rounds, up to about 6, 7 or 8, of modern ciphers such
as DES [19] or GOST (this paper). Then, if the cipher has special properties at
the high level, like in KeeLoq [20] or in GOST (this paper), one can do indeed
much more.

In particular self-similarity properties are very powerful because they allow
a dramatic reduction in the overall complexity of the algebraic description of
the problem. In what we call strong self-similarity whole very large blocks of
the cipher are eliminated in one step by assuming that all the bits inside are
identical to the whole internal state of another large block. We can also note
that if we had approximate self-similarity, cf. Section 26, this type of attack
could also work well with an additional factor in time complexity.

Many block ciphers have various self-similarity properties and a relatively
simple key schedule. In the past these have been overlooked or used only in
very special attacks such as attacks which exhibit weak keys or attacks which
use several related keys. If keys are generated at random, these attacks have a
negligible impact on the real life applications of ciphers as far as confidentiality
is concerned. In this paper however, in a similar way as for example in various
attacks on KeeLoq [20] and elsewhere [58, 7, 8, 6], we show that these quite strong
properties are dangerous and really allow to break ciphers. This is by a black
box reduction to a software algebraic attack on a reduced-round sub-component
of a bigger cipher. This will work but only if the key schedule is indeed “not
too complex”, and allows large blocks of the circuit to be identical with high
probability, and if there exists a final step for such an attack which is powerful
enough to work below a certain threshold. We contend that the situation created
by many self-similarity attacks with complexity reduction is quite unique. In the
most basic form of slide attacks [58, 7, 8] (which is maybe the simplest form of
self-similarity attacks) the attacker reduces the security of a cipher for a large
number of rounds to a security of essentially the same cipher with significantly
less rounds, and he is able to generate a large (or unlimited) quantity of known
P/C pairs for a simpler component. Thus many different attacks are applied in
the literature as the last step of a slide attack, and not surprisingly there are so
many different attacks on KeeLoq, see [20]. However in advanced self-similarity
attacks like in this paper and in [20], one can generate only a very limited number
quantity of P/C pairs for the smaller component. For example we can have 3,
and with a lot more effort we can have 4, cf. Section 17.1, but probably by no
means we could have 5, which would already require a number of assumptions
which cannot be afforded by the attacker. In weak key attacks we can with a lot
more effort obtain maybe 6 pairs cf. Section 27.3 but again not more.

Very few cryptographic attacks are able to deal with such small quantities of
encrypted data: brute force attacks, guess then determine attacks, meet-in-the



67

middle attacks and notably various forms of software algebraic attacks (cf. also
[48] for other low-data attacks). Then if the components of the cipher have low
complexity, low diffusion and additional properties a software algebraic attack,
could potentially become the best attack known on the given cipher. Recent
tendency however is that such attacks may be improved or/and combined with
MITM (Meet-In-The-Middle) attacks cf. Appendix 12, or/and conditioned by
some differential properties of GOST cf. Section 25.

20 New Directions and New Methods

We could stop our paper here with a single key attack on GOST with complexity
2191 which is 264 times faster than brute force. However we can achieve much
more than this. We need to prepare to a major paradigm shift in understanding
the security of ciphers such as GOST with low circuit complexity and a lot of self-
similarity properties. Ciphers are NOT used with single keys. On the contrary.
Almost every cipher is used with many different keys generated at random.

20.1 The Multiple Key Scenario

In the following sections we intend to demonstrate that this multiple key scenario
is stronger more practical and much more versatile than the single key scenario.
We will initially study several weak key classes. However we do not care about
weak key attacks unless they can be transformed into “real” attacks which are
able to recover ordinary GOST encryption keys generated at random.

20.2 New Dimension In Self Similarity Attacks

We also would like to produce families of weak key attacks which give the attacker
an additional degree of freedom, so that we can in the future find many more
such families which eventually could cover a much higher proportion of the key
space than currently expected in this paper. This will be achieved in Section 25
and Section 26 where we will combine all of differential, complexity reduction,
reflection, fixed point, MITM and software/algebraic approaches to GOST to
find many new very efficient attacks with 256-bit keys generated at random.
The third crucial ingredient in our work is:

C) the possibility of approximate self-similarity of several encryptions achieved
through advanced [truncated] Differential Cryptanalysis (DC) attacks.
In fact DC is also an approximate self-similarity attack in which we
have identical state for most but not all bits inside different encryptions. In
Section 26 we will study such properties also for multiple encryptions which
quite surprisingly can happen for real-life GOST keys and leads to many
interesting attacks.

These new attacks however require much more work. They require a modified
and dedicated final step for each class of differential properties, see Section J.2
for an example of such dedicated attack. Moreover many of these attacks have
been only optimized for one specific set of GOST S-boxes. We refer to [42, 44, 81]
for a discussion of alternative S-boxes, while more than half of attacks described



68

in this paper are expected to work more or less equally well for arbitrary S-boxes,
it is much less trivial for differential attacks, see [39, 40, 95, 42, 44, 81]. On the
other side, it is possible to see that these attacks allow the attacker considerable
freedom in the choice of sets of active bits in advanced truncated differential
properties. We can potentially have an exponential number of such differential
sets, see Section for one simple example 25.6, leading possibly to even better
attacks or to more complex attacks which combine many such properties.

20.3 Is It Interesting to Break GOST With The Full Code-Book?

A common misconception is to believe that attacks on a block cipher can only use
less than 2n of data, where n is the block size. Many people criticize attacks with
2n of data as being very academic and not very practical. In fact such attacks
are as realistic and important as many other cryptographic attacks. They are
relevant in many realistic scenarios. The knowledge of the whole code-book does
NOT replace the knowledge of the key. Some of the reasons for that are:

1. The key may be used to recover a master key.
2. In many cryptographic attacks, the exact spec of the cipher which is being

broken or the S-boxes are not exactly known to the attacker.
3. To recover the key could be the only way to “prove” the authenticity of

decryptions to a third party. An electronic proof of authenticity can be used
to sell such data for a higher price.

4. A code book may be fake, contain errors or maliciously altered.
5. If just a few entries are missing, it will not affect our attacks. However these

few entries may be much more valuable than the majority of entries.
6. In many cases where symmetric keys are used in the real life, they are used

in order to somewhat to avoid having a large database (large code-book)
to store or transmit. An interesting example are the scratch cards used by
hundreds on millions of people every day. For any cipher with short blocks,
plaintext / ciphertext pairs can be used as a form of electronic currency. Even
if the attacker obtains nearly all the pairs already spent, only new “fresh”
cryptograms can still be spent, and these can only be obtained through key
recovery.

7. In Pay TV all pairs already sent to all the decoders can be considered as
being public, only key recovery can allow to decrypt future content.

8. The paper [21] enumerates many more interesting scenarios where recovering
the key given [nearly] the whole codebook is very valuable.

20.4 Data Complexity In Realistic Scenarios With Multiple Keys

In fact many attacks on GOST require more than 264 of data obtained from
encryptions with multiple keys. Such attacks are typically stronger more prac-
tical and much more versatile than the attacks with a single key, see numerous
examples in Section 22.1, 23.2, 24.1, 24.6 and many more in Section 25 and
30.1. In these attacks the goal of the attacker is to recover some cryptographic
keys given some limited computing power which is much higher than 264 and



69

therefore attacks with much more than 264 of data make sense. The question of
what is the best possible attack with 21.5n = 296 of data makes as much sense
as looking for the best attack with 20.5n = 232 KP cf. Table 4 page 128.

In general for any cipher the security level decreases when the data complex-
ity grows, and attacks with D = 2a of data which work for a proportion d = 2−b

of keys and T = 2b computing power are hard to compare for different values of
D, d, T . However there is one possible unified comparison metric.

A simple method to compare all such attacks is to consider the total overall
computational cost defined as the total effort per one key recovered, even if
we have to examine data from multiple encryptions which includes checking all
the keys and breaking one of the weaker keys. The time complexity for one key
recovered in the multiple random key scenario is a simple and yet very realistic
method to compare all these attacks one a simple linear scale, and our key results
are compared in Table 4 page 128.

Interestingly, even though the total quantity of data available in such attacks
will be typically higher than 264, at the same time the data per device (for one
distinct key) can be very low, frequently it is just 232. We are in the most general
distributed attack scenario.



70



Part V

Security of GOST in the
Multiple Random Key

Scenario





73

21 Some Interesting Weak Key Attacks on GOST

In this paper we do NOT study weak keys in the sense in which a majority
of papers in cryptography do. This would arguably be a waste of time. We
study weak keys as a prelude to developing “regular” attacks in which keys
are generated at random and weak keys can only appear with their natural
probability. We are interested exclusively in the most realistic attacks scenario
with multiple random keys, which is how encryption algorithms are used in
practice.

21.1 Introduction To Weak Key Attacks on GOST

Weak keys offer a considerable degree of extra freedom to the attacker. One
basic attack of this type has been published [75]. This attack breaks GOST for
weak keys which occur with probability 2−32. For these keys the attack allows
to break GOST with a time complexity of 2192 and given 232 chosen plaintexts.

Let d denote the density of keys for which a given attack works, defined as
the probability that the attack will work for a key chosen uniformly at random.
Up till now we didn’t deal with weak keys, and had very large values of d ≥ 0.63.
We should note however that the probability of d = 2−32 is still quite large and
should be considered as quite realistic. Given that the population of our planet
is about 233, and one person can use during their life many cryptographic keys,
an attack with d = 2−32 should be considered as semi-realistic: it is plausible to
assume that at some moment in the future 232 different GOST keys will be used
worldwide, making one of these keys vulnerable to the attack from [75]. This
type of weak-keys which are frequent enough to occur in the real life are worth
studying. We can also add all weak key are worth studying if they allow us to
decrease a total cost of finding one key, see Section 22.2.

Given the fact that even without weak keys, we have been able to find a dozen
of different attacks on GOST faster than brute force, the reader can imagine that
there exists a plethora of interesting weak keys attacks on GOST. We start by
recalling the method of [75].

21.2 Weak Key Family 0

Fact 30 (Weak Keys Family 0, d = 2−32, Reduction to 1 KP for 8R).
We define the Weak Keys Family 0 by keys such that E has a fixed point A
which is symmetric, i.e. A = A. This occurs with density d = 2−32.

For every key in Weak Keys Family 0, given 232 chosen plaintexts for GOST,
we can compute A and obtain 1 P/C pair for 8 rounds of GOST correct with
very high probability of about 2−1.

Justification: If A is a symmetric value such that E(A) = A then Enck(A) = A.
However there are also, on average, about one values for which Enck(A) = A, as
every permutation of 64 bits has about one fixed point which occurs by accident,
not due to the internal structure. Such additional fixed points are unlikely to be
symmetric. Thus we obtain 1 P/C pair for 8 rounds of GOST E(A) = A, which
is correct with very high probability (we expect about 1− 2−32).



74

21.3 Key Recovery With Family 0

Now in [75], this method of Fact 30 is used to recover keys with time complexity
of 2192 and negligible memory. This is very hard to improve because the attack
uses only 1 KP for 32 rounds, and there are 2192 keys for which this pair is
correct, and all these keys must be checked against additional P/C pairs for
the full 32-rounds. (for 128-bit keys, see Section 30). In the next section we will
introduce another family of weak keys, where we will be able at last to improve
the time complexity of the attack.

21.4 Weak Key Family 1 (Different Than Earlier Family 1)

Previous Versions: we thank the anonymous referee for pointing out that our
initial Family 1 attack did not work as claimed.

Now we are going to exhibit another family of weak keys, with the same
density but with a possibility to obtain more P/C pairs and improve the time
complexity of the attack. We will also require 264 KP instead of 232 CP.

Fact 31 (Weak Keys Family 1, d = 2−32, Reduction to 1,2,3,4 KP for
8R). We define the Weak Keys Family 1 by keys such that A is a fixed point of
Enck for the full 32 rounds, A is not symmetric (cf. Family 0) and F = E4(A)
is symmetric. This occurs with density of about d = 2−32 over the keys.

For every key in Weak Keys Family 1, given 264 KP for GOST, we can com-
pute A,B and obtain 1 P/C pairs for 8 rounds of GOST correct with probability
of about 2−2.

Furthermore we can guess the symmetric value F and get 2 P/C pairs for 8
rounds correct with probability of about 2−34.

We can also can guess C and with A,B,C we get 3 P/C pairs for 8 rounds
correct with probability of about 2−66.

Finally if we guess both B and F we get 4 P/C pairs for 8 rounds correct
with probability of about 2−98.

Justification: On average we have one fixed point for the whole cipher, and the
probability that is F = E4(A) is symmetric is d = 2−32 taken over all possible
GOST keys. For these keys we proceed as follows:

1. First we observe that since A is a fixed point and very few other fixed points
exist for the permutation Enck, we can obtain A in time 264 and our guess
will be correct with very high probability of about 2−1.

2. Then we observe that if B is defined as B = E(A) then we have:

B = E(A) = E(Enck(A)) = E(D(S(E3(A)))) = S(E3(A)) = S(E2(B))

therefore we have

E2(B) = B.

3. Let C be defined as C = E2(A). We have E(C) = E2(B) = B.



75

rounds values key size

A
8 E ↓ 256

B B
8 ↓ E ↓ 256

C C
8 ↓ E ↓ 256

B B ./ B
8 ↓ E D ↑ 256
F ./ F A

8 ↑ D 256

B

bits 64 64

Fig. 11. Our Family 1 of Weak Keys

4. Additionally E(B) = F which is assumed to be symmetric. Then we can use
an internal reflection and we get that

Enck(B) = D(S(E3(B))) = D(S(E(B))) = D(F ) = B.

This means that we do not have to guess B because it satisfies Enck(B) = B
and can be determined with probability about 2−1 with 264 KP.

5. We get 1 pair for 8 rounds: B = E(A) correct with probability about 2−2.
6. We can then also guess F , which is not very hard because it is a symmetric

value, and get 2 P/C pairs for 8 rounds B = E(A), E(B) = F correct with
probability of about 2−34.

7. Going one step back, if we guess not F but C, we get 3 pairs B = E(A),
C = E(B), B = E(C) correct with higher probability about 2−66.

8. We can also guess both C and the symmetric value F , which leads to 4KP
for the price of being correct with probability of about 2−98.

Now we need to examine the consequences of this reduction with 1,2,3,4 P/C
pairs obtained. First we present one attack with 3 KP and then another with 2
KP which is better.

Fact 32 (One Key Recovery for Weak Keys Family 1, d = 2−32).
One can recover the keys for the Weak Keys Family 1 with 264 KP, running

time of 2176 GOST encryptions and with negligible memory.

Justification: We use Fact 6 with the 3 P/C pairs obtained, and in total time
equivalent to 2110 GOST encryptions we obtain 264 candidates for the GOST
key k. This needs to be multiplied by 266 attempts to guess A,B,C.

The number of false positives is 2128 because we mount this attack with two
pairs obtained from Enck(): one such that Enck(A) = A and another such that
Enck(B) = B. The time to reject all the false positive keys with additional P/C
pairs for the full 32-round GOST can be neglected in comparison to our 2176

GOST encryptions, which is the overall total time for this attack.



76

Discussion: 2192 per weak key, vs 2192 per randomly generated key.
This attack has a complexity of less than 2192 for cracking one weak key. However
it is very important to examine what happens if some keys are weak and some
are strong. For keys which are not weak, we need to run the attack and see that
it fails most of the time. Overall for arbitrary 256-bit keys generated at random
we would obtain one key in total time of about 2176+32 GOST encryptions per
key effectively found. In order to obtain an arguably better attack than [50] we
would need to obtain an attack which achieves really less than 2192 per key,
including the time to examine all the keys (great majority being immune to this
attack). Surprisingly, this is possible and in what follows we are going to exhibit
several such attacks (cf. later Table 4).

Now we describe a faster attack, with reduction to 2 KP.

Fact 33 (Key Recovery for Weak Keys Family 1, d = 2−32).
One can recover the keys for the Weak Keys Family 1 with 264 KP, running

time of 2161 GOST encryptions and with negligible memory.

Justification: Following Fact 31 we need about only 234 attempts to guess A,F
correctly and obtain 2 pairs for 8 rounds. We use Fact 5 with the 2 P/C pairs
obtained, and in total time equivalent to 2127+34 GOST encryptions due to [50],
we enumerate 2127+34 candidates for the full GOST key to be checked with
additional pairs.

Now we can again look at a population of randomly generated keys. We have
the following fact, anticipating what we later call ”conversion” of a weak key
attack into a ”regular” attack.

Fact 34 (Key Recovery for A Diverse Population of Keys, d = 2−32).
If we have a diverse population of at least 232 different keys, with access to 264

KP per key, one can recover one of these 256-bit keys in total overall time of
about 2193 GOST encryptions.

Justification: We apply the Fact 33 to 232 random devices. For each device if the
key is weak, we run the attack which takes 2161 GOST encryptions. Otherwise
we still run it but it is going to fail. In one case on average, the attack will
work and output a valid key which can be checked with additional pairs for that
device. The total time is about 2161+32 GOST encryptions.

21.5 Weak Key Family 2.1

Recent changes 09/2012: We thank anonymous referee for pointing out that none

of our Family 2 attacks requires 264 of data, they all require only 232 of data now.

In this section we exhibit another family of weak keys, with the same density
d = 2−32 but with more extensive possibilities. This attack can be seen as an
extension of our two attacks of Section 17, and Section 17.1, both based on
Reduction 3, where by requiring that B is also symmetric, (which happens only
for weak keys but the probability of these keys is quite large of 2−32) we will
be able to simultaneously improve the probability of our guess being true, from
2−128 to 2−64 to obtain 4 P/C pairs for 8 rounds, and reduce the data complexity



77

back to 232 chosen ciphertexts, and we will also be able to obtain, for the first
time ever, (up to) 5 pairs for 8 rounds.

Fact 35 (Weak Keys Family 2.1, d = 2−32, Getting 3,4 and 5 KP for
8R). We define the Weak Keys Family 2.1 by keys such there exists A such that
all the three values E(A), E2(A) and E3(A) are symmetric. This occurs with
density d = 2−32. For every key in Family 2.1, we have the following reductions:
-with 232 CC we obtain 3 P/C pairs for 8 rounds of GOST correct with P = 2−64,
(where CC means Chosen Ciphertexts)
-with 232 ACC (Adaptive Chosen Ciphertexts) we obtain 4 P/C pairs for 8
rounds of GOST correct with P = 2−64,
-with 232 CC we obtain 4 P/C pairs for 8 rounds of GOST correct with P = 2−96,
-in fact in a sense we get also 4.5 pairs, we have one additional pair where one
value is not known but it is symmetric, also correct with P = 2−96 and with 232

CC,
-with 232 ACC (Adaptive Chosen Ciphertexts) we obtain 5 P/C pairs for 8
rounds of GOST correct with P = 2−96.

rounds values key size

Y
8 E ↓ 256

Z Z
8 E ↓ E ↓ 256

A A A
8 ↓ E ↓ E ↓ 256

B B B ./ B
8 ↓ E ↓ E D ↑ 256

C C ./ C A
8 ↓ E D ↑ 256
D ./ D B

8 ↑ D 256
C

bits 64 64 64

Fig. 12. Family 2.1: a triple reflection attack with up to 5 pairs for 8 rounds

Justification: It is easy to see that the event E(A) AND E2(A) AND E3(A) being
symmetric leads to key density d = 264−32−32−32 = 2−32. The attack is shown in
Fig. 12 where ./ denotes S (swapping the two 32-bit halves). This can be seen
as an extension of Fig. 9.

We have three encryptions with internal reflection C = Enck(A), also B =
Enck(Z), and A = Enck(Y ) where due to the internal reflection we have C =
E2(A), B = E2(Z), and A = E2(Y ).

There are two interesting attack scenarios. In all cases we start by guessing
C and B which are symmetric and therefore, to decrypt these and obtain re-
spectively A and Z we need only 232 CC. However if we also want to decrypt A
to obtain Y , we will need 232 ACC: ciphertexts need to be adaptively decrypted.
We do not need 264 KP as claimed in earlier versions of this paper.



78

We proceed as follows:

1. We guess two symmetric values B,C. They are both correct with P = 2−64.
2. We determine A,Z by decrypting B and C which are both symmetric.
3. We get 3 pairs E(Z) = A, E(A) = B, E(B) = C and our guess is correct

with probability 2−64. So far need 232 Chosen Ciphertext (CC).
4. Furthermore, if we also decrypt A we get also one additional pair E(Y ) = Z,

at the price of 232 ACC (Adaptive Chosen Ciphertexts). Here though A
is not symmetric we do NOT need 264 KP. We can decrypt all possible A
obtained from decryption of all possible symmetric values C. This requires
232 ACC.

5. Going one step backwards, we don’t decrypt A but also guess D which is
symmetric, We get also 4 pairs E(Z) = A, E(A) = B, E(B) = C, E(C) = D
and our guess is correct with a degraded probability 2−96 however we need
only 232 CC.

6. Now if we combine guessing D and decrypting A, we get 5 pairs given 264 KP
and our guess is correct with probability 2−96. We need 232 ACC (Adaptive
Chosen Ciphertexts).

Out of four possibilities given in Fact 35, we will use two in order to obtain
two new weak key attacks:

Fact 36 (Key Recovery for Family 2.1, 232 CC, d = 2−32).
One can recover the keys for the Weak Keys Family 2.1 with 232 CC, running

time of 2174 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the first reduction of Fact 35
and of Fact 6 which allows to enumerate a set of solutions and the time is 264+110

GOST encryptions. The total number of full 256-bits keys which are false posi-
tives which need to be checked against additional P/C pairs for the full 32 rounds
of the cipher is comparatively smaller, about 2128, which is unlikely to influence
the overall complexity of the attack which will be 2174 GOST encryptions.

Similarly, with just one more pair E(Y ) = Z, which is obtained with the
same key density and the same success probability, but in the ACC scenario, we
obtain:

Fact 37 (Faster Key Recovery for Family 2.1, 232 ACC, d = 2−32).
One can recover the keys for the Weak Keys Family 2.1 with 232 ACC, running

time of 2158 GOST encryptions and with negligible memory.

Justification: Here we replace 3 KP by 4 KP and Fact 6 with 2110 by Fact 7 with
294. We need a total time of 264+94 = 2158 GOST encryptions.



79

22 Conversion of Weak Key Attacks Into Regular
Attacks on Random 256-bit Keys

If we are dealing with the problem of key recovery of a single fixed 256-bit GOST
key, then our best attack in Table 3 on page 53. requires 264 known plaintexts
has the time complexity of 2191 This can be further reduced to 2179 by a very
different attack, see [39, 40].

However, in this paper we have many arguably much better attacks than
(2191 time, 264 data). In particular attacks with 232 of data. This can be seen
in our later Table 4 on page 128 which summarizes all our weak key and some
other attacks. For many attacks we have that the ratio Time / d is less than
2191. This actually does mean that GOST key can be recovered in overall total
time of less than 2191. which is substantially less than our best attack 2191 of
Table 3 which can be achieved either by the method of [50] or using Fact 15.

One of these current attacks in less than 2190 will even be better than 2179

from [39, 40] on cost per key, another will require significantly less data, only 232

instead of 264 of data required in 2192 of [50] and 2179 from [39, 40]. Here is how
this can be done, first we will look at Family 2.1 and obtain an attack in 2190.
Later in Section 23.2 we will re-examine Family 3 and get an attack in 2159.

22.1 Conversion of Family 2.1 Into A ”Regular” Attack In The
Multiple Key Scenario

The following attack scenario is quite realistic: even today we can imagine 232

devices with different GOST keys. We are going to convert the Weak Key Family
2.1 attack into a ”regular” attack on multiple random 256-bit keys in the multiple
key scenario.

Fact 38 (Conversion of Family 2.1 For Multiple Keys, d = 2−32).
If we have a diverse population of at least 232 different keys, with access to 232

ACC per key, one can recover one of these 256-bit keys in total overall time of
about 2190 GOST encryptions.

Justification: We apply Fact 37 to each of the 232 devices with random keys. We
recover one key out of 232 in total time of 232+158 including the time to check
all the other devices. In one case on average, the attack will work and output
a valid key which can be checked with additional pairs for that device. For the
other devices the attack fails and we abort it after some 2158 GOST encryptions.

Quite remarkably the data complexity is only 232 per device.
Remark 1: In this ”conversion” process, the cost of one key is equal to the

attack time divided by density, and this is the total complexity of a realistic
attack which breaks one key out of many. It can be seen as a fair method of
comparing various attacks on ciphers which are used by many different devices,
with random diversified cryptographic keys.

Single Key Attacks: Though the attack above is not a single attack it
is more realistic than the best known single key attacks on GOST [50, 39, 40],
because it will actually recover one full 256-bit key with a total cost of 2190

GOST encryptions. Single key attacks are NOT at all realistic attacks on ciphers.



80

It almost never happens that a cipher is used with just one single key, there is
usually some diversity. Our attack scenario is quite realistic: even today we can
imagine 232 devices with different GOST keys. Here we have weak keys which
ARE frequent enough to occur in the real life and the are also individually
CHEAP enough to break to worry about this attack overall, which is reflected
by the total cost per key being 2190 GOST encryptions.

Related work on GOST with 232 of data per device: Until now ALL
known attacks on GOST with 232 of data had always a cost of 2224 per key found,
see Section 15.2 and [74] and [50]. In this paper for the first time ever we achieve
2190 GOST encryptions per key recovered, in a scenario with a realistic number of
devices with different random 256-bit keys and with reasonable memory, better
than any other known result.

In what follows we are going to develop numerous additional attacks with
conversion. For example in Section 23.2 we will convert the Weak Key Family
3 and get the same sort of attack in total time of 2159 per key (!) for multiple
regular keys generated at random.

22.2 Conversion of Weak Key Attacks Into Regular Attacks - FAQ

All this is quite interesting and requires some discussion which takes the form
of Frequently Asked Questions.

1. It is obvious that all short-cut attacks on weak keys can be transformed into
a “regular” attack (i.e. with typical random keys). – Correct.
This is achieved by running the attack for all keys, weak and regular ones,
and assuming that for regular keys the attack somewhat fails to recover the
key, and if it doesn’t, we simply time out at roughly the same cost.
This is correct BUT most of the time this is a terribly bad attack with
higher cost per key than other competing attacks. In this paper we see the
opposite. It is a rare thing to see a weak key attack being strictly THE
BEST known attack on the cipher in question simultaneously in two data
complexity categories. This happens for example in Section 22.1 and 23.2
and at many other places.

2. Let k be the key size. In my understanding, the brute force attack for weak
keys with density 2−d is 2k−d.
No, this is wrong, or this may be wrong, for a typical cipher and for
some family of weak keys, the brute force can still be still 2k. The error of
the reviewer is to consider that if we have 2k−d keys in the given weak key
class, than we can sample 2k−d keys and check them. Unhappily weak keys
are frequently defined by properties such that this space cannot be sampled
efficiently.
For example in our Family 2.1, cf. Fact 35, it is not easy to see if one can
enumerate these 2256−32 keys in time of 2256−32. This is probably impossible.
Therefore by default, for individual weak keys, the brute force is still 2k.
Moreover to enumerate them all of them correctly (and be sure to distinguish
the weak keys from those which are not weak) it could probably be even
slower than 2k.



81

This unless there exists a special shortcut attack in time T . This complexity
T can be bigger or equal to 2k−d, or smaller than 2k−d:

(a) In the first case, transforming this key attack into a “regular” attack is
slower than brute force. Still the attack is not uninteresting.
If the attacker does not know that a key used by somebody is a weak
key, the attack is not very interesting because 2dT ≥ 2k.
However if the attacker knows from some source that this key is weak,
then he will have an attack faster than brute force with time T < 2k.

(b) In the second case T < 2k−d we obtain an undeniable advantage compare
to brute force without any extra assumption or condition. Again we
transform our attack into a “regular” attack: we run it also for stronger
keys and abort at 2k−d steps if needed. Overall total time is 2dT < 2k.

3. Can a multiple key attack in 2159 be still slower than a single key attack in
2179? Yes if key diversity is limited. Here is one example.
If we want just to recover one key with many different devices around, the
attacks described in this paper have no match. However let’s assume that
we have the means to do 2188 computations. For this price we can recover
229 keys just by the method of Section 23.2 or 210 keys by the method of
[39, 40]. However in the first case I need more devices, about 229+32 devices
with different random keys, while in the second case I need only 210 devices
to break. Therefore if the population of devices is limited and IF we want
to recover many keys, a slower single key attack can be better than a faster
multiple-key attack.



82

23 More Weak Key Attacks: Below 2128 Per Key

In this section we explore if better attacks exist, and in particular attacks with
complexity less than 2128, at the price of further decreasing the density of weak
keys to 2−64.

23.1 Weak Key Family 3

The following attack is very interesting because even though the weak key as-
sumption is quite costly, it allows to obtain a lot of data inside the cipher at a
very low price, essentially for free. This sort of event is quite unprecedented.

Fact 39 (Weak Keys Family 3, d = 2−64, Getting 4 KP for 8R). We
define the Weak Keys Family 3 by keys such there exists A such that E(A) = A,
E2(A) = A. This occurs with density d = 2−64. For every key in Family 3, we
have the following: with 264 KP we obtain 4 P/C pairs for 8 rounds of GOST,
correct with probability of roughly about P = 2−1.

Justification: We proceed as follows:

1. First we observe that A is a fixed point for Enck(·). Indeed

Enck(A) = D(S(E3(A))) = D(S(E2(A))) = D(S(A)) = D(A) = A.

Therefore given 264 KP we can identify A. Due to other possible fixed points,
our guess will be correct with probability roughly about P = 2−1.

2. Moreover if we define B = E(A) we have A = E(B) and

Enck(A) = D(S(E3(A))) = D(S(E(A))) = D(S(A)) = D(A) = B.

Therefore we can determine B from A.

rounds values key size

A
8 E ↓ 256

B B
8 E ↓ E ↓ 256

A A A
8 ↓ E ↓ E ↓ 256

A A A ./ A
8 ↓ E ↓ E D ↑ 256

B B ./ B B
8 ↓ E D ↑ 256

A ./ A C
8 ↑ D 256

A

bits 64 64 64

Fig. 13. Weak Key Family 3 which gives 4 pairs for 8 rounds



83

3. Moreover, if we encrypt B we obtain another interesting value C defined as:

Enck(B) = D(S(E3(B))) = D(S(E2(A))) = D(S(E(A))) = D(S(B)) = D(B) = C.

with the property that E(C) = B.
4. Overall our triple A,B,C will be correct with probability about P = 2−1.

We get 4 P/C pairs for 8 round which are E(A) = A, E(A) = B, E(B) = A
E(C) = B and these are correct with probability 2−1.

Fact 40 (Key Recovery for Weak Keys Family 3, d = 2−64).
One can recover the keys for the Weak Keys Family 3 with 264 KP, running

time of 295 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact
39 and Fact 7 for 4 KP. This reduction manages to exploit the information
obtained from as many as three different encryptions for Enck() for A,A and
B. It is therefore possible to see that in this attack, the total number of false
positives which need to be checked against additional P/C pairs for the full 32
rounds is only 264.

23.2 Conversion of Family 3 Into A ”Regular” Attack with Random
Multiple Keys With Cost of 2159 Per Key Found

Again we have the following conversion:

Fact 41 (Key Recovery For A Diverse Population of Keys, d = 2−64).
If we have a diverse population of at least 264 different keys, with access to 264

KP per key, one can recover one of these 256-bit keys in total overall time of
about 2159 GOST encryptions.

Justification: We apply the Fact 40 to 264 random devices. For each device with
probability about half, if the key is weak, and Following Fact 39, we obtain 4
P/C pairs for 8 rounds of GOST. If the key is not weak we still obtain 4 pairs
but they are wrong. Then in each case we run the attack which takes 295 GOST
encryptions. In one case on average, the attack will work and output a valid key
which can be checked with additional pairs for that device.

Remark: Though it is not a single attack it is more realistic than the best
single key attacks on GOST [50, 39, 40], because it will actually recover one full
256-bit key with a total cost of 2159 per key.



84

24 Attacks With Symmetric Fixed Points

In 2012 another weak key attack was proposed by Kara and Karakoç, cf. [77].
This attack is quite interesting because it requires only 232 CP which relatively
few attacks achieve. It is even more remarkable when converted to a multiple key
scenario. It is possible to see that the conversion can be done in a particularly
efficient way leading to an attack with expected full cost of recovering one 256-bit
key generated at random being as low as about 2130 [77]. In this paper we revisit
this attack from [77], show that in some cases it does NOT work as predicted,
and propose new variants of it.

24.1 New Weak Key Attacks with 232 of Data: Family 4.1 and 4.2

These new attacks are based on the assumption that there are two symmetric
fixed points in the first 16 rounds of GOST. Fixed points for the first 16 rounds
are studied in Reduction 13 but here we assume in addition that both fixed
points are symmetric.

Such symmetric fixed points happen only for weak keys and can happen for
two distinct reasons. It is possible to see that the attack from [77] can be split
into two independent weak key attacks which we will call Family 4.1 and Family
4.2 (the authors describe it as one single attack with a distinction of two distinct
events Event1 and Event2, see [77]).

Fact 42 (Weak Keys Family 4.1 and 4.2 from [77] with d ≥ 2−64). We
define the Weak Keys Family 4.1 by keys such that there exists two symmetric
A 6= B such that E(A) = B and E(B) = A. This occurs with probability at least
d ≥ 2−65 over the GOST keys.

Likewise we define Family 4.2 by keys such that there exists two symmetric
fixed points A 6= B such that E(A) = A and E(B) = B. This occurs also with
key density of at least d ≥ 2−65.

Important Note: Very surprisingly it is possible to see that for 8 rounds of
GOST and at least for the default set of GOST S-boxes (otherwise cf. [42]) both
Family 4.1 and 4.2 events occur for a substantially larger proportion of keys (!).
These additional events which are due to the internal structure of GOST and
were not anticipated by the authors, the present attack of [77] fails. In order to
clarify the situation we are going to introduce an additional assumption which
will allow us to fix the attack of [77] and clarify the sitation. For this purpose
we define the following notion:

Definition 24.1.1 (Unrelated Texts). We say that two points A,B on 64 bits
are unrelated plaintexts for GOST if they lead to distinct values for all the eight
S-boxes in the first round. Random pairs are unrelated with high probability.

Now we describe and revisit the attack of [77] which in this paper is divided
in two distinct attacks each working for a different proportion of d = 2−65 keys.



85

Fact 43 (Attack on Family 4.1 d = 2−65, 2 CP for 8R). For every key in
Family 4, and given 232 CP we obtain 2 P/C pairs for 8 rounds of GOST correct
with probability close to 1.

Then if the texts A,B in these pairs are unrelated with Fact 5 given 232 CP for
the full GOST we can break these weak keys in time of 2127.

rounds values key size

A
8 E ↓ 256

B B
8 ↓ E ↓ 256

A A
8 ↓ E ↓ 256

B B ./ B
8 ↓ E D ↑ 256
A ./ A A

8 ↑ D 256
B

bits 64 64

Fig. 14. Family 4.1 of Weak Keys by Kara and Karakoç, d = 2−65 [77].

Justification: We have E3(A) = B and E3(B) = A. Both values are symmetric
therefore Enck(A) = E2(A) = A and the same for B. We have two distinct
symmetric fixed points of Enck(). Other symmetric fixed points of Enck() are
not very likely to exist. The attacker only needs encryptions of all symmetric
plaintexts which gives 232 CP. We obtain 2 KP for 8 rounds which are E(A) = B
and E(B) = A. If the texts A,B in these pairs are unrelated we apply Fact 5
which gives the time complexity of 2127.

Important Note: Unhappily it is possible to show that this attack of [77]
can NOT work when A,B share many bits (they are related). This at least for
the default set of GOST S-boxes (otherwise cf. [42]). This is due to the fact that
the last step in this attack must either be the attack of [50] or our alternative to
it: Fact 5 based on Fact 15 page 40. It is easy to see that in both cases when A,B
share many bits the number of solutions to our system with 2 KP for 8 R which
need to be checked with additional data for the full 32-round GOST, is going
to increase substantially, making it impossible to enumerate these solutions in
time 2128 GOST computations as it is necessary to do in [77].

There are two ways to solve this problem. First we will restrict to cases with
unrelated A,B. Later in Section 27.1 we will design a different attack which will
benefit from the fact that these pairs tend to be related.



86

24.2 Second Attack Variant From [77]

Let us see the second method from [77] which is even simpler and it is about the
event studied the earlier Kara attack from [75] (a.k.a. Family 0 in this paper)
occurring twice leading to 2 pairs for 8 R instead of 1.

rounds values key size

B
8 E ↓ 256

A B
8 ↓ E ↓ 256

A B
8 ↓ E ↓ 256

A B ./ B
8 ↓ E D ↑ 256

A ./ A B
8 ↑ D 256

A

bits 64 64

Fig. 15. Family 4.2 of Weak Keys = Family 0 Happens Twice

Fact 44 (Attack on Family 4.2 d = 2−65, 2 CP for 8R). For every key
in Family 4.2, and given 232 CP we obtain 2 P/C pairs for 8 rounds of GOST
correct with probability close to 1.
Then again only if the texts A,B in these pairs are unrelated with Fact 5 given
232 CP for the full GOST we can break these weak keys in time of 2127.

Justification: Again we have E3(A) = A and E3(B) = A and the symmetric fixed
points also work for the whole Enck(). Other symmetric fixed points of Enck()
are not very likely to exist. The attacker only needs encryptions of all symmetric
plaintexts which gives 232 CP. We obtain 2 KP for 8 rounds which are E(A) = A
and E(B) = B. Again if A,B unrelated we can apply Fact 5 and we obtain 2127

GOST encryptions.

Further work on this attack is not possible before we clarify the probability
that events such as defining Family 4.1 and 4.2 occur for the real life GOST
cipher.

24.3 On Frequency of Symmetric Fixed Points in GOST

Fact 45 (Symmetric Fixed Points in GOST). For 8 rounds of GOST and
a random key, the probability that there is a symmetric fixed point is about 2−33

and is expected to be the same for a random permutation.
However for the default set of GOST S-boxes the probability that there are two
symmetric fixed points sharing as many as 50 bits which will be the inactive bits



87

in mask 0x8070070080700700 as illustrated on later Fig 20 page 98, is at least
2−60 instead of about 2−2−64−50 for a random permutation.

Fact 46 (Frequency of Weak Keys Family 4.1 and 4.2). Consequently at
least for the default set of GOST S-boxes, weak keys in Family 4.2 occur with
key density of at least d ≥ 2−60 over GOST keys. Likewise weak keys in Family
4.1 occur for these S-boxes with key density of at least d ≥ 2−60 over GOST
keys.

Justification: Let A′ = E(A) and B′ = E(B). Following [38] 8 rounds of GOST
there are 277 pairs with the input difference of type 0x8070070080700700, and
for a proportion of 2−25 of them, which is 252 pairs A,B on average, the output
difference is also in 0x8070070080700700. This for the default set of GOST S-
boxes. Now our simulations show that when the propagation occurs the entropy
of A⊕B is low and the probability that A⊕B = A′⊕B′ is only about 2−9. Fur-
thermore A = A′ with probability 2−64 which also implies B = B′. Furthermore
A is symmetric with probability 2−32. Then since their difference lies within
0x8070070080700700 which is symmetric, B is symmetric with probability at
most 2−7. Overall for a proportion of d = 252−9−64−32−7 = 2−60 of GOST keys
we have two symmetric fixed points A,B sharing the same 50 bits. For Family
4.1, in the middle of our argument instead of assuming that A = A′ which holds
with probability 2−64 and also implies B = B′, we need to assume A = B′ which
holds with the same probability and implies A′ = B.

Remark 1. This is higher than what we would get for having just two sym-
metric fixed points without any extra condition which is roughly about 2−2−64

for a random permutation.
Remark 2. So far this reduction in probability was only demonstrated

for the default set of GOST S-boxes. However, this is a conservative estimate
with just one mask 0x8070070080700700. These probabilities need to be added
for different masks and in the real life this probability should be even higher.
We also expect similar results for other sets of S-boxes. We refer to [42, 44] for
more research on alternative S-boxes. It is not correct to claim that this sort of
property will not exist for other S-boxes [95], see [42, 44]. It may be weaker for
other S-boxes.

Again symmetric fixed points for 8 rounds are also symmetric fixed points
for 32 rounds and we obtain a distinguisher attack on full GOST:

24.4 Distinguisher Attacks on Full GOST

Fact 47 (Two Distinguisher Attacks on Full GOST). This distinguisher
improves on the result of [77] and works is we have access to many instances of
GOST with different keys. For the default set of GOST S-boxes the probability
that there are two symmetric fixed points is at least 2−60 instead of about
2−65 for a random permutation. Moreover the probability that there are two
symmetric fixed points sharing as many as 50 bits in 0x8070070080700700 is at
least 2−60 instead of about 2−65−50 for a random permutation.



88

24.5 Family 4.1 and 4.2 in the Multiple Key Scenario

As in Section 22.1 and elsewhere, we extend these two attacks to the multiple
key scenario.

Fact 48 (Family 4.1 and 4.2 in the Multiple Key Scenario). If we have
a diverse population of at least 264 different 256-bit GOST keys generated at
random, with access to 232 CP per key, one can recover one of these 256-bit
keys in total overall time of at least 2133 GOST encryptions for the default set
of GOST S-boxes. For other S-boxes the complexity is expected to be also about
2129 GOST encryptions.

Justification: This attack requires that some 264 devices with random keys exist.
It is possible to see that for a proportion of about 2−65 keys, A,B are expected to
be unrelated and our Family 4.1 attack works in time 2127. For another proportion
of about 2−65 keys, A,B are also unrelated and our Family 4.2 attack works in
time 2127. Overall for a proportion of about 2−64 keys, one of these attacks will
work. In each case we need to try both the attack of Fact 43 and the attack of
Fact 44 with 2127 + 2127 = 2128 GOST computations total.

As in many other attacks such as Fact 48 a remarkable thing happens with
keys which are not weak. They can be rejected at a low cost and we do not have
to run the whole attack for a majority of the keys. This is true because for a
random permutation, the probability that Enck() has two symmetric fixed points
A,B is low, however it is NOT as low as we initially thought. There is no need
to run the attack 264 times. However we need to run the attack at least 264−59

times because Family 4.1 or 4.2 implies that the whole 32-round GOST has two
symmetric fixed points and this happens with probability about 2−60 + 2−60

following Fact 46. This at least for the default set of GOST S-boxes. Therefore
we need to run the whole attack at least 264−59 times, and potentially more.

For all except a proportion of about 264−59 GOST keys, we can reject them
right away. We have 264 different keys and we check them for two symmetric
fixed points in time of about 232 each, which will be very small compared to
the dominant term in the attack. With 264 different keys, two symmetric fixed
points will occur only a few times and it is possible to see that, Overall the
complexity of this attack is at least 2128+64−59 = 2133 GOST computations to
recover one key, and possibly more, this is if the probabilities in Fact ?? are
higher. In Section 27.1 we are going to show how to benefit from the fact that
GOST has more symmetric fixed points than expected, which is a problem in
this attack.

For other sets than the default set of GOST S-boxes we are not aware of
a similar reduction in probability of having two symmetric fixed points, it is
expected to be the same as for a random permutation. It is in general not correct
to claim that this fails for other S-boxes [95], see [42, 44, 81].

If this works as claimed for a given set of S-boxes, then the analysis of [77]
applies. We expect that Enck() has two symmetric fixed points with frequency
of about 5/2 the frequency that either Family 4.1 or Family 4.2 event occurs.
We expect to run our attack maybe twice and get the complexity of at least
2128+1 = 2129 GOST computations.



89

24.6 Another Weak Key Attack With More Data

Let us see yet another reduction with fixed points in the first 16 rounds. In Family
4.1 and 4.2 we have two different reasons why the first 16 rounds of GOST are
going to have two fixed points and these points are symmetric. An anonymous
reviewer has once suggested yet another method to obtain two fixed points for
the first 16 rounds as follows. In this method fixed points are not symmetric but
they are related to each other and their difference is still symmetric. Attacks
based on this method require more data than attacks based on Family 4.1/4.2
keys but will work for keys for which other attacks fail.

Fact 49 (Weak Keys Family 4.3, d = 2−64, 2 KP for 8R).
We define the Weak Keys Family 4.3 by keys such that there exists a point

A such that E(A) = A and E(A) = A. This occurs with density d = 2−64.
For every key in Family 4.3, and given 264 CP we obtain 2 P/C pairs for 8

rounds of GOST correct with probability close to 1.
Thus given 232 CP for the full GOST we recover A and A for free (because

they satisfy both Enck(A) = A and Enck(A) = A which is unlikely to happen
by accident, cf. also Family 4.4. described later).

Then we can produce 2128 candidates for a weak key in Family 4.3 in time
of about 2127 GOST encryptions with Fact 5. These keys are checked with ad-
ditional data for full GOST and we find the right key in time of roughly about
2127 GOST encryptions overall.

rounds values key size

A
8 E ↓ 256

A A
8 ↓ E ↓ 256

A A
8 ↓ E ↓ 256

A A ./ A
8 ↓ E D ↑ 256

A ./ A A
8 ↑ D 256

A

bits 64 64

Fig. 16. Family 4.3 of Weak Keys

Now we are going to extend the Family 4.3 attacks to the multiple key sce-
nario.

Fact 50 (Family 4.3 in the Multiple Key Scenario). Given a population
of 264 different random keys, with access to 264 KP per key, we one can recover
one of these 256-bit keys in total overall time of about 2129 GOST encryptions.



90

Justification: With Fact 49 above, we can break weak keys of Family 4.3 in time of
2127 for each key. As in many other attacks such as Fact 48 it is easy to reject keys
which are not weak. This is because for a random permutation, the probability
that Enck() has a point A such that Enck(A) = A and Enck(A) = A is about
2−64. For all except a proportion of about 2−64 GOST keys, we can reject them
right away in time of 264 each. For the remaining 2−64 for roughly a proportion
of 2−2 of them they come from Family 4.3 which is a conservative estimate (other
such cases which are not like in Fig. 16 for example a later Family 4.4 can occur
by accident with probability of about 2−64).

Thus we only need to run our attack maybe twice in order to recover a correct
key in one case. Overall we expect to recover the key in time of about 2129 GOST
encryptions though it might still be a slightly optimistic estimation.

Discussion: In this case, do we do NOT expect problems which make the
complexity in Fact 46 a bit higher than initially expected, some 2133 instead of
2129, but we might be wrong.

24.7 Yet Another Similar Key Attack With More Data
Let us see yet another different yet similar reduction with fixed points in the
first 16 rounds which points are going to be related.

rounds values key size

A
8 E ↓ 256

A A
8 ↓ E ↓ 256

A A
8 ↓ E ↓ 256

A A ./ A
8 ↓ E D ↑ 256

A ./ A A
8 ↑ D 256

A

bits 64 64

Fig. 17. Family 4.4 of Weak Keys

Fact 51 (Weak Keys Family 4.4, d = 2−64, 2 KP for 8R).
We define the Weak Keys Family 4.4 by keys such that there exists a point

A such that E(A) = A and E(A) = A. This occurs with density d = 2−64.
For every key in Family 4.4, and given 264 CP we obtain 2 P/C pairs for 8

rounds of GOST correct with probability close to 1.
Thus given 232 CP for the full GOST we recover A and A for free because

they satisfy both Enck(A) = A and Enck(A) = A. This is unlikely to happen
by accident, though it could also come from earlier Family 4.3.



91

Then we can produce 2128 candidates for a weak key in Family 4.4 in time
of about 2127 GOST encryptions with Fact 5. These keys are checked with ad-
ditional data for full GOST and we find the right key in time of roughly about
2127 GOST encryptions overall.

Now we are going to extend the Family 4.4 attacks to the multiple key sce-
nario.

Fact 52 (Family 4.4 in the Multiple Key Scenario). Given a population
of 264 different random keys, with access to 264 KP per key, we one can recover
one of these 256-bit keys in total overall time of about 2129 GOST encryptions.

Justification: With Fact 51 above, we can break weak keys of Family 4.4 in time
of 2127 for each key. Again as in many other attacks such as in Family 4.3 and
earlier it is easy to reject keys which are not weak. This is because for a random
permutation, the probability that Enck() has a point A such that Enck(A) = A
and Enck(A) = A is about 2−64. For all except a proportion of about 2−64 GOST
keys, we can reject them right away in time of 264 each. For the remaining 2−64

for roughly a proportion of 2−2 of them they come from Family 4.4. Other such
cases which are not like in Fig. 17 for example coming from earlier Family 4.3
can occur by accident with probability of about 2−64).

Thus we only need to run our attack maybe twice in order to recover a correct
key in one case. Overall we expect to recover the key in time of about 2129 GOST
encryptions though it might still be a slightly optimistic estimation.



92



Part VI

Advanced Combined
Attacks





95

25 Complexity Reduction And Differential Cryptanalysis

Most of the work in this paper and all the work until now are about black box
reductions: for a long time we ignore what is inside 8 round of the GOST cipher
and develop a variety of attacks based on high-level self-similarity of GOST. In
this section and in many other attacks which follow, we will exploit the low-level
self-similarity of GOST in the form of sets of differentials such as studied in
[100, 36–39]. This will be done with the same key objective which is the core
of this paper: find interesting ways to obtain 2,3,4 pairs for 8 rounds of GOST
with various parameters. Differential properties will be used NOT for solving of
systems of equations which represent 8 rounds of GOST: not yet and not here
(even though they do very seriously affect the solving process, see for example
later Appendix J.1). Instead they will be used for our black-box reductions:
they are going to modify in a very substantial way the probabilities that certain
configurations can happen, and the probabilities that certain quantities can be
guessed by the attacker.

We will be using massively the fact that 8 rounds of GOST are NOT a
random permutation yet for a long time we will still be considering it as a block
box and work at the high level, on complex I/O relations with inputs and outputs
of several (related) instances of 8 rounds of GOST with the same key, and on
how these blocks can be connected together to form interesting relations on full
32-round GOST leading to efficient attacks.

First we are going te establish some useful properties of GOST and in par-
ticular differential properties with well chosen additional constraints.

25.1 One Basic Differential Property For 8 Rounds of GOST

We consider the following standard situation which has been introduced [36] and
further studied in [36–40]. Let ∆ = 0x80700700 which mask has 7 active bits
out of 32. We denote by (∆,∆) a set of 214 − 1 non-zero differences on 64 bits
with up to 14 active bits.

Fact 53. For 8 rounds of GOST we have about 251 pairs which satisfy the
differences (∆,∆) at both ends AND in the middle (cf. Fig 18).

For a random permutation, there are 277 pairs with the input difference
(∆,∆), and for a proportion of 2−50 or 227 pairs on average, the output difference
is also in (∆,∆).

0x80700700 0x80700700

(4 Rounds)

0x80700700 0x80700700

(4 Rounds)

0x80700700 0x80700700

Fig. 18. Basic Event With 3x14 active Bits For 8 Rounds

Justification: We do computer simulations similar as in [38, 40]. For the mid-
dle pairs with difference (∆,∆) there are still 277 possible pairs. Following [38]



96

this propagates backwards for 4 rounds and gives the input difference (∆,∆)
with probability 2−13.6 and forwards with another 2−13.6. Overall we predict
277−13.6−13.6 = 249.8 pairs which survive if the 2 propagations are independent.
We have also tested this propagation for 8 rounds and our simulations show that
the 2 propagations are NOT independent and this is in fact in our advantage:
there are not 277−27.2 = 249.8 but 277−26 = 251 pairs on average over the key,
which satisfy ALL the differences in Fig 18.

25.2 First Example: Simple Attack With Single Reflection d = 2−43

This attack is the straightforward and the simplest possible extension of the basic
attack with single reflection of Section 15.1 which also studied in [75, 50]. This
attack is not very good but it is one of the simplest attacks which illustrates very
well how almost any of our attacks can be combined with additional assumptions
about the data inside these attacks, and the difficulties which we may have
in order to design such attacks: the necessity to be able to compute various
probabilities exactly. It also shows the fact that some of these probabilities are
going to be surprisingly low.

This example can be skipped by the reader and one can read directly the
next attack which is designed from scratch.

rounds values key size

A
8 ↓ E 256

B
8 ↓ E 256

C
8 ↓ E 256

D ./ D
8 ↑ D 256

C

bits 64

Fig. 19. Family 5.1 - a simple reflection attack with 2 or 3 KP for 8 R obtained and
with shared 50 bits for each pair.

Fact 54 (Weak Keys Family 5.1, d = 2−43). We define the Weak Keys
Family 5.1 by keys such that there exists two points A,B such that E(A) = B,
E(B) = C and all these 3 points lie in the same space with 50 shared bits,
with A ⊕ B ∈ 0x8070070080700700 AND with A ⊕ C ∈ 0x8070070080700700
AND such that D = E(C) is symmetric. cf. Fig 19. This occurs with probability
d = 2−43 over the key.

Justification: Given A, the points B,C,D are determined uniquely. The prob-
ability that A and B have the same 50 bits, i.e. A ⊕ B ∈ 0x8070070080700700
is 2−50 and 214 points A survive. Then the probability that after 8 rounds we
have also B ⊕ C ∈ 0x8070070080700700 is probably roughly about 2−25 follow-
ing again [36–39] though it might be different due to the additional constraints.



97

Thus 214−25 = 2−11 points A survive. Finally the probability that D is sym-
metric is 2−32. Overall 2−11−32 = 2−43 points A survive on average for each
key. These probability estimations are very rough and might be different due to
various dependencies.

Now we are going to explain how to recover such keys in Family 5.1.

Fact 55 (Key Recovery For Family 5.1). Given 264 KP we can obtain 3
KP for 8 rounds which are correct with probability 2−48 and accordingly we can
recover a weak key in Family 5.1 in time of 2158 GOST encryptions and with
small memory.

Justification: We guessA and check C for the conditionA⊕B ∈ 0x8070070080700700.
Only 214 pairs are consistent. Thus the pair A,C can be guessed with proba-
bility 2−14. We claim that B has very low entropy, maybe it can be guessed
with probability 2−2. This is because both values A and C are known, and both
differences A ⊕ B ∈ 0x8070070080700700 and B ⊕ C ∈ 0x8070070080700700
give low entropy for B, about 8 bits as shown by computer simulations, and B
must lie in the intersection of these two highly biased distributions. This special
distribution needs to be studied in more details.

Finally we guess D which is symmetric. Thus the quadruples A,B,C,D can
be guessed with low probability maybe about 2−14−2−32 = 2−48. We have ob-
tained 3 pairs for 8 rounds of GOST which are A 7→ B, B 7→ C, C 7→ D. Then
we need to apply a dedicated version of our attack of Fact 6 but with additional
differences. We conjecture that it should take time of 2110 GOST encryptions
in the same way as in Fact 6. This has not been demonstrated at this moment
however in Fact 124 described in Appendix J.1 we present a different version of it
in which we also obtain 2110. Overall we need 248+110 = 2158 GOST encryptions
to break keys of Family 5.1.

Fact 56 (Family 5.1 in the Multiple Key Scenario). Given a population
of 248 different random keys, with access to 264 KP per key, one can recover one
of these 256-bit keys in total overall time of about 2201 GOST encryptions.

Justification: With Fact 55 above, we can break weak keys of Family 5.1 in time
of 2158 for each key and 264 KP per key. We need to repeat this attack 248 times,
for both weak and strong keys.

25.3 Double, Related And Approximate Fixed Points

We are also interested in some more peculiar differential sets which are designed
for specific attacks described in this paper and have never been studied before.

The interesting question is can we exploit the periodicity of GOST key sched-
ule in such a way that differential propagation will be achieved not through
differentials but through periodicity. The question is if a pair A,B propagates
as in Fig. 18, what is the probability that A′, B′ lie in the same affine space
of dimension 50 as A,B. This opens interesting questions such as whether we
could have (A′, B′) = (A,B) or (A′, B′) = (B,A) or similar and what is the
probability these occur. One of these possibilities is illustrated in Fig. 20.



98

Fig. 20. Two related fixed points for 8 rounds

In general we do NOT always want to have fixed points, but only some
relations between A,B and their encryptions after 8 rounds A′, B′. Our basic
differential propagation result of Fact 53 involves 2 points and with some addi-
tional effort the affine space at the input may be the same as at the output. We
get a situation as in Fig. 21.

This is closely related and can be seen as a special nearly degenerated case
of an interesting general cryptanalytic concept of a “approximate fixed point bi-
clique” configuration which we will introduce later in all generality, see Definition
26.0.1 page 104.

Fig. 21. An approximate fixed point biclique with k = 2, cf. Definition 26.0.1 page
104.

Here we have only 2 encryptions. Each pair on the picture shares the same 50
identical bits and all the 4 points lie in the same affine space with 250 elements.
We have “approximate” fixed points which differ by only up to 14 bits.

One of the very interesting properties of such configurations is the low entropy
of A,B,A′ etc. and even lower entropy for some other quantities such as A⊕B
or for conditional entropies.

Fact 57 (Double Fixed Points and Swaps for 8 Rounds). For the default
set of GOST S-boxes the probability that there exists two fixed points A,B for
8 rounds is about (1− 2/e) ≈ 0.26 and is expected to be the same for a random
permutation.

However the probability that there exists two fixed points A,B sharing 50
bits in the precise sense of A⊕ B ∈ 0x8070070080700700 is about 2−20 instead
of about 2−52 for a random permutation.



99

Moreover the probability that there exists two points A,B sharing 50 bits ac
above which are either fixed two fixed points or a swap, i.e. B = E(A), A = E(B)
OR A = E(A), B = E(B), is at least d = 2−19 over the key.

Justification: We have 277 with suitable input differences and they propagate
with probability 2−25.0, cf. [37, 38]. this gives 252 pairs which survive. Further-
more the probability that A′ = A OR B′ = A is 2−63. Furthermore we have
A⊕B = A′⊕B′ with probability 2−9 due to low entropy of the differences when
the propagation occurs. Overall we obtain 252−63−9 = 2−20.

25.4 Basic Attack With Periodic Differentials d = 2−21

In this section and in later Family 5.3-5.4 attacks we are going to generalize the
Fixed Point attack in 2191 from Section 18 (a variant with complexity 2192 is
also described in [50]), which remains the fastest single key attack in this paper
though it requires 264 of data. We are going to show that there are attacks with
multiple fixed points which are faster and more realistic than a single key attack
with T = 2191 and 264 of data.

We observe that if a pair A,B propagates as in Fig. 18, in addition it will
give exactly the same pair A,B with probability at most 2−77 and in fact about
2−64−9 = 2−73. This is due to the fact which we have observed experimentally
that if the differential propagates the entropy of A⊕B is not 14 bits but about
9 bits, this independently of the key. We have 251 pairs such as in Fig. 18 and
for a random GOST key the probability that one is periodic with A,B being
mapped to A,B respectively is about 2−73+51 = 2−22. This is a special case of
related fixed points for 8 rounds of GOST, see Fact 123 in Appendix I.4 for the
general case and variants which agree on a smaller set of bits. Here we limit to
the case of pairs with 50 bits fixed. We have the following interesting family of
keys:

rounds values/differences key size

A � 80700700 80700700 � B
8 ↓ E ↓ 256

A � 80700700 80700700 � B
8 ↓ E ↓ 256

A � 80700700 80700700 � B
8 ↓ E E ↓ 256

A ./ A � 80700700 80700700 � B ./ B
8 ↑ D D ↑ 256

D C
bits 64 64

Fig. 22. A Differential-Double-Fixed-Point Attack on GOST

Fact 58 (Weak Keys Family 5.2, d = 2−21). We define the Weak Keys
Family 5.2 (it was Family 9 in earlier versions of this paper) by keys such that
there exists two points A,B such that B = E(A), A = E(B) OR A = E(A),



100

B = E(B), and such that the pair A,B and their encryptions after 8 rounds
have the differences with 14 active bits depicted in Fig. 18. The first of the two
cases is shown in Fig. 22. This occurs with probability d = 2−21 over the key.

Justification: We have 252 pairs such as in Fig. 18 and for a random GOST key
the probability that one is periodic with A,B being mapped to A,B respectively
is about 2−72+51 = 2−22 as above. Furthermore the probability to map A,B to
B,A in Fig. 18 is also 2−72+51 = 2−22. The sum is d = 2−21. This is half of
d = 2−20 obtained in Fact 57 because here we assume additional differences
after 4 rounds (cf. Fig. 18).

Now we are going to show how to break these weak keys.

Fact 59 (Key Recovery For Family 5.2). Given 264 KP we can obtain 4
KP for 8 rounds which is correct with probability 2−73 and accordingly we can
recover a weak key in Family 5.2 in time of 2167 GOST encryptions and with
small memory.

Justification: We guess A,B and our guess will be true with probability not
264+14−1 as the reader might expect but about 2−64−9 = 2−73 as explained
above due to the low entropy. Then we determine C,D from the encryption
data. Overall we can obtain A,B,C,D which is correct with probability 2−73.
In this attack by definition we always define C = Enck(B) and D = Enck(A).
We have obtained 4 pairs for 8 rounds of GOST which are either A 7→ A, B 7→ B,
C 7→ B, D 7→ A, or in the other case we have included in the definition of Family
5.2, where A,B are swapped, which is not the case shown in Fig. 22, we have
the following 4 pairs for 8 rounds: A 7→ B, B 7→ A, D 7→ B, C 7→ A.

Now we might be tempted to apply Fact 7. With 4 KP it allows to recover
the key in time of 294 GOST encryptions. However this is not going to work.
Two out of four pairs share 50 plaintext and ciphertext bits and many internal
bits. This means that individual key are less likely to be rejected with such data
and there is many more correct keys than 264 which is the case with unrelated
encryptions in Fact 6. However, even if we have more solutions, it is very easy
to see that each solution is easier to find: this is because two out of the three
encryptions share many internal bits with higher probability, there is basically
less variables or they have smaller joint entropy.

So we need a more precise dedicated attack to see what is the best attack in
this case. In Appendix J.2 we show that with two couples related by differences
it can be done in 294 GOST encryptions in the same way as with Fact 7. In this
case we have a situation between these two cases, and we conjecture that it can
be done by a similar dedicated method with 294 GOST encryptions. Overall we
need 294+73 = 2167 GOST encryptions.

Fact 60 (Family 5.2 in the Multiple Key Scenario). Given a population
of 220 different random keys, with access to 264 KP per key, one can recover one
of these 256-bit keys in total overall time of about 2188 GOST encryptions.

Justification: With Fact 59 above, we can break weak keys of Family 5.2 in time
of 2167 for each key and 264 KP per key. We need to repeat this attack 221 times,
for both weak and strong keys.



101

Remark In these attacks we use differential properties. Therefore the com-
plexity of these attacks depends on the set S-boxes used and the attack requires
a very careful adaptation and optimisation for each set of S-boxes. No system-
atic method to do this is known, and the degree of freedom for the attacker is
vast, see [36–38, 40]. We refer to [42, 44, 41, 81] for some results and discussion
on alternative S-boxes.

25.5 Second Attack With Periodic Differentials d = 2−51

This attack is based on the previous attack but we are going to assume that
in addition one of the points A,B is symmetric. This will decrease the number
of weak keys however it will provide very substantial gains in later steps of
the attack and arguably overall better attacks, though working only if the key
diversity is large enough.

rounds values/differences key size

A � 80700700 80700700 � B
8 ↓ E ↓ 256

A � 80700700 80700700 � B
8 ↓ E ↓ 256

A � 80700700 80700700 � B
8 ↓ E E ↓ 256

A ./ A � 80700700 80700700 � B ./ B
8 ↑ D D ↑ 256

A C
bits 64 64

Fig. 23. A Differential-One-Symmetric-Two-Fixed-Points Attack on GOST

Fact 61 (Weak Keys Family 5.3, d = 2−52). We define the Weak Keys
Family 5.3 (it was Family 10 in earlier versions of this paper) by keys such that
there exists two points A,B such that B = E(A), A = E(B) OR A = E(A),
B = E(B), and such that the pair A,B have the differences with 14 active bits
depicted in Fig. 18. The first of the two cases is shown in Fig. 23. Moreover we
assume that one of these two values A,B which without loss of generality we
can assume to be A, is symmetric with two identical 32-bit halves. This occurs
with density d = 2−52.

Justification: Again if a pair A,B propagates as in Fig. 18, it will give the same
pair A,B with probability 2−73. We have 251 pairs such as in Fig. 18 and for a
random GOST key the probability with to map A,B to themselves OR to B,A
in Fig. 18 is twice 2−73+51 = 2−22 with sum being 2−21 total. Furthermore with
probability 2−31 one of the two values A,B is symmetric. Overall our weak key
occurs with probability 2−21−31.

Now we are going to show how to break these weak keys. Can we for example
simultaneously do better than 2128 GOST encryptions needed in Fact 49, require
less data, and work for a higher proportion of keys d? Or require the same
quantity of data but work for more keys than in Section 24.1 and [77]?



102

Fact 62 (Key Recovery For Family 5.3). Given 232 ACP (Adaptively Cho-
sen Plaintexts) we can obtain 3 KP valid with probability 2−9 and recover a weak
key in Family 5.3 in time of 2119 GOST encryptions and with small memory.

Justification: We guess A which is a symmetric fixed point. Our guess is expected
to be true with probability 2−0 because we do not expect additional symmetric
fixed points to occur by accident. To determine A we need 232 CP because A is
symmetric.

Then we guess B and determine C by flipping up to 14 bits of A inside the
mask we assumed. Because we have already determined A, this requires further
up to 214 ACP (Adaptively Chosen Plaintexts). Now the entropy of A⊕B is only
about 9 bits. Overall we obtain A,B,C and our triple is correct with probability
only 2−9.

We have obtained 3 pairs for 8 rounds of GOST which are either A 7→ A,
B 7→ B, C 7→ B, or in the other case we have included in the definition of Family
5.3, where A,B are swapped, which is not the case shown in Fig. 23, we have
the following 3 pairs for 8 rounds: A 7→ B, B 7→ A, C 7→ B.

Now we might be tempted to apply Fact 6. With 3 KP it allows to recover the
key in time of 2110 GOST encryptions. Again, this is not going to work. Two out
of three pairs share 50 plaintext and ciphertext bits and many internal bits. This
means that individual key are less likely to be rejected with such data and there
is many more correct keys than 264 which is the case with unrelated encryptions
in Fact 6. However, even if we have more solutions, it is very easy to see that
each solution is easier to find: this is because two out of the three encryptions
share many internal bits with higher probability, there is basically less variables
or they have smaller joint entropy. So we need a more precise dedicated attack
to see what is the best attack in this case. In Appendix J.1 we show that it can
be done in 2110 GOST encryptions, cf. Fact 124. The fact the the final result is
very similar to the result of Fact 6 should be considered as a coincidence. Overall
we need 2110+9 = 2119 GOST encryptions.

Fact 63 (Family 5.3 in the Multiple Key Scenario). Given a population
of 252 different random keys, with access to 232 ACP per key, one can recover
one of these 256-bit keys in total overall time of about 2139 GOST encryptions.

Justification: With Fact 62 above, we can break weak keys of Family 5.3 in time
of 2119 for each key and 232 ACP per key. As in many attacks such as Fact 92
or Fact 50 and unlike in Fact 60, we can reject keys which are not weak at a low
cost: we do not have to run the whole attack for a majority of these non-weak
keys. This is true because for a random permutation, the probability that Enck()
has a symmetric fixed point A is about 2−32, and we can reject all the other cases
by examining the encryption of all symmetric points and with only 232 KP for
non-weak keys. Only for strong keys we require 232 ACP as in Fact 62. Time
spend examining a majority of 252 non-weak keys is only 252+32 and can be
neglected compared to 2119 GOST encryptions spent on one weak key. However
additionally we need to run the whole attack on 252−32 non-weak keys for 2119

GOST encryptions. All this requires 252−32+119 = 2139 GOST encryptions total.



103

25.6 The Future of Periodic Differential Cryptanalysis of GOST

Our basic Family 5.2 attack works for 2−21 of weak keys. It uses one family
of differential properties based on [38, 40]. Many more such results exist. For
example with the situation in Fig. 18 we get 251 pairs which satisfy all the
differences and 2−21 of weak keys. Here is another situation of type 1+5 using
the vocabulary of [40], with the same number of active bits and for which there
is also about 251 such pairs:

0x07070008 0x08007070

(4 Rounds)

0x07070008 0x08007070

(4 Rounds)

0x07070008 0x08007070

Fig. 24. Another Event With 3x14 active Bits For 8 Rounds

This gives another similar proportion of about 2−21 of weak keys for Family
5.2. Now the point is that these weak key families are rather disjoint and many
other such patterns in GOST cipher are expected to exist. It is in fact not
excluded that various families of weak keys might cover the whole key space
of GOST. Therefore a systematic exploration of such families of attacks could
lead to efficient single key attacks.

This provides a motivation for further study of differential attacks on GOST
which is vast topic with already a substantial history of finding more and more
powerful attacks, see [62, 63, 74, 36–40] and this paper. Some other sets from
[100] with 40 active bits are studied in Section I.3.

25.7 More Combined Differential Complexity Reduction Attacks

Some additional attacks which use a differential property for 16 rounds of GOST
instead of 8 rounds, which is not periodic for 8 rounds, and which use the in-
volution property of the last 16 rounds or a double reflection are described in
Appendix H.

In Section 27.1 we present Family 5.4 which is a straightforward extension of
Family 5.3 with one more symmetric fixed point and which leads to a much faster
attack in the multiple key scenario. In order however to achieve that we are going
to study more advanced and higher order differential properties. We are going
to study differentials with 3 and 4 points which is very rare in cryptanalysis.



104

26 Multiple Approximate Fixed Points, Single Key
Bicliques, Higher-Order Truncated Differential
Attacks and Black Box Complexity Reductions

In this section we introduce a new general concept which is closely related but
distinct from many well known attacks in symmetric cryptanalysis. The main
motivation for the introduction of this new concept is the periodicity of GOST
and the large variety of self-similarity attacks on GOST which we have already
discovered. All these attacks start by guessing many relations such as A = B or
A = C or A ⊕ B ∈ 0x8070070080700700 and subsequently they obtain several
I/O relations for 8 rounds of GOST which are (jointly) solvable in practice.

We are looking for a sort of magical trick which would be able to enhance such
attacks: make the cost of such assumptions simultaneously lower, even though
if overall this would have a certain price to pay. Very surprisingly due to the
internal structure and poor diffusion inside GOST such a property exists for
8 rounds of GOST and will lead to many interesting new attacks on GOST.
Our new concept is essentially an invariant affine space common for many
encryptions at both sides or a multiple approximate fixed point concept.

Definition 26.0.1 (An approximate fixed point biclique). An approxi-
mate fixed point biclique with k points and dimension D and for r = 8 rounds
of GOST is defined as a set of k+k values A,B, . . . and A′, B′, . . ., such that A′

is the encryption of A after 8 rounds etc.. , see Fig. 25, and such that all these
k+k values lie in the same affine space of dimension D.

Fig. 25. An approximate fixed point biclique with k = 4

We have discovered a new form of approximate self-similarity of GOST
which happens to occur in the real life. For example, for one set we can have four
input points (k = 4) and four output points which share some fixed set of 50
bits, so that D = 14, and that for every arrow in Fig. 25, the 50 bits in question
are the same. This can be seen as a simultaneous truncated differential property
in which every pair has small Hamming weight differences. Surprisingly this
occurs for GOST and 256-bit keys generated at random with a non-negligible
probability. The key observation is that, as we will see later, the number of such
events with 3,4 points is NOT much lower than the number of events with 2
points, see Section 26.3 and Appendix I.3.



105

26.1 The Power of the New Concept

Our new concept can be seen in terms of subspace selection: it brings the two
sets of input and output points closer together, for example 8 points as shown
in Fig. 25 and this subspace is the same for the inputs and the outputs. This
is interesting and allows one to design a plethora of new self-similarity attacks
such as all the attacks in this paper, but possibly at an overall lower cost. Now
all sort of assumptions which we are used to make in attacks with Complexity
Reduction and which relate these points in various ways, are expected to be less
costly. For example:

1. For example when we assume that A = B′, it will now have a much higher
probability, of 2−14 instead of 2−64.

2. We may also wish to guess B knowing A. In theory this will be of 2−14

instead of 2−64. This result however is pessimistic. In the real life we have
observed that when approximate fixed point bicliques occur, the distribution
of the differences are very far from random, on the contrary, they tend to
follow a much smaller number of special differential patters which results in
much lower entropies for each of differences A ⊕ B etc. and further lower
joint entropy if we need to predict several such values.
For example in the case where we show the existence of multiple fixed point
bicliques such as in fact 64 we have observed that the entropy of the random
variable A⊕B is only about 9 bits instead of 14.
This entropy is computed over different (unknown) random GOST keys (it
might be even lower for a fixed key but this fact may be difficult to use for
the attacker). This makes guessing easier than expected.

3. This low entropy phenomenon does NOT concern relations with variables
taken from both sides, such as A = A′, i.e. A is a fixed point for the first 8
rounds of GOST. It will still be valid with probability 2−14 instead of 2−64.

4. In some attacks on 32 rounds, it is possible to show that the probability that
in the first two encryptions the state in the middle after the first 16 rounds
is simultaneously respectively B′ and A′, given that it is A′ and B′ after 32
rounds is now only 2−14 instead of 2−128. We can note that the probability
is already reduced to 2−64 instead of 2−128 due to the fact that the last
16 rounds of GOST are an involution, for cryptanalytic applications of this
property see for example Section G and Appendix H.3.

5. Other assumptions can have a lower relative cost w.r.t. other assump-
tions, for example if the 50 bits in question are the inactive bits inside
0x8070070080700700, (cf. [36–40]) and if we already assumed that A is sym-
metric, then the probability that for example C ′ is also symmetric, is as low
as 2−7 because their difference has 14 active bits and positions of these bits
are symmetric.

6. In addition some differential assumptions inside the cipher are greatly facil-
itated by this assumption. For example it is possible to see that for 2 pairs
for 8 rounds, if both the input difference and output difference are of the
form 0x8070070080700700 in the sense of [36–40], we may want to study
the probability that the middle difference after 4 rounds is also of the form



106

0x8070070080700700, as shown in Fig. 18 in Section 25. This probability is
quite high, about 50 %. Such additional differences with very low entropy
can make our key recovery attacks substantially faster.

The main idea of our “approximate fixed point biclique” assumption as de-
picted in Fig. 25 is that it decreases the cost of making many other self-similarity
assumptions at an overall reasonable amortized cost. This however needs yet to
be demonstrated: we need to show that it leads to attacks on GOST faster than
other known attacks. For example in later Fact 69 we show that some full 256-bit
GOST keys generated at random can be recovered in total time as low as 2117

GOST encryptions, then we will achieve 2110 in later Fact 81, and even 2101

in Fact 89 which attack also appears in [34]. All these attacks are substantially
faster than any other known attacks on GOST.

Before that we need to show that such configurations exist and estimate
the probability with which they occur. Even before that we need to find an
appropriate set of say 50 bits, which is another highly non-trivial task and which
leads to new important optimization problems in cryptanalysis which in general
have exponential complexity and therefore we do not expect that it is possible
to systematically explore all possible sets of this type. Consequently it is very
hard to find a really good attack on GOST of this type, and it is also very hard
to know if GOST is secure against such attacks.

26.2 Relation to Known Cryptanalytic Concepts

Our idea of “approximate fixed point biclique” attacks is closely related to several
well known concepts in cryptanalysis.

1. In one sense, we have here multiple approximate fixed points, where
the input and the input differ by for example only 14 bits.

2. The term biblique means complete bipartite graph. Bicliques with many
different keys are a very famous recent concept in the cryptanalysis of AES
[11]. However we only look at bicliques with one single key.

3. Moreover connections in our graph do NOT have the same meaning as in [11].
Our connections with arrows in both directions mean that the two points are
related or similar, for example their difference lies in a small linear space. For
every arrow in Fig. 25 we can have some interesting relations, for example A
and B′ will differ by very few bits with a rather high probability, cf. Section
26.1. This also means that A = B′ can occur with high probability, and
it can occur for any connection in our graph. This being subject to logical
relations between such constraints which will affect the probabilities if the
attacker wants to impose several conditions simultaneously.

4. Our configurations are a form of a higher-order truncated differential
attack which works for any number of points 2, 3, 4, . . . and where more
than the XOR of all input values is constrained, in fact all the output values
are constrained and lie in the same affine space.

5. If we relax the condition that the shared D bits for the k inputs must be the
same as the shared D bits for the k outputs then simple configurations with
2 points could also be called truncated collisions or (better) truncated



107

I/O collisions (cf. collision test in [52]) and are essentially the same as
truncated differentials of Knudsen. For more than 2 points we could call
them truncated I/O multi-collisions. The term I/O emphasizes the fact
that collisions occur simultaneously on subsets of bits in the Inputs and
subsets of bits in the Outputs. Some such events are studied in section I.1.

Fig. 26. Truncated I/O multi-collisions with k = 3: the k inputs share n−D bits and
k outputs share n−D bits which are not necessarily the same n−D bits.

26.3 Approximate Fixed Point Bicliques for 8 Rounds

We can remark that we are looking at a relatively strong property and sets of
points which satisfy it are unlikely to exist for many more rounds of GOST or
for a random permutation. However the internal structure and poor diffusion
inside GOST allows many sets which satisfy the Definition 26.0.1 for some k.

Can this sort of event happen for k = 2, 3, 4 a random 256-bit GOST key
and a value D much smaller than 64? Quite surprisingly it can.

Fig. 27. An approximate fixed point biclique with k = 3

Fact 64 (A 2/3/4-point approximate fixed point biclique for 8 rounds
of GOST and D = 14). For a typical GOST key we have on average 22 pos-
sibilities for the set of 4 points A,B,A′, B′, such that A′, B′ are the encryption
of A,B after 8 rounds, AND which have differences with up to 14 bits and all
the points A,B,A′, B′ share the same set of 50 bits, following the pattern using
the mask 0x8070070080700700 as depicted in Fig. 21.



108

For a proportion of at least 2−8 of GOST keys there exists a set of 50 bits
and a set of 6 points A,B,C and A′, B′, C ′, such that A′ is the encryption of A
after 8 rounds etc. , and which have differences with up to 14 bits and share the
same set of 50 bits as depicted in Fig. 27.

For another proportion of at least about 2−9 of GOST keys there exists a set
of 50 bits such and a suitable set of 8 points A,B,C,D and A′, B′, C ′, D′, which
all share 50 bits as depicted on earlier Fig. 25.

Justification: The justification takes several steps. We say that the result will be
at least the one we compute below because there are many potentially many
more interesting affine spaces with 214 elements which should lead to overall
higher number of events/a higher proportion of keys. Our construction is based
on one fixed differential set from [36–40] which are the same we used in Section
25. We consider the affine space of D = 14 defined by the popular mask
0x8070070080700700

It is possible to observe that for one encryption A,A′ for 8 rounds of GOST,
if A ⊕ B ∈ 0x8070070080700700 then if A′ ⊕ B′ ∈ 0x8070070080700700 with
probability 2−25.0 cf. [37–40]. There is about 264+14/2! ≈ 277 couples A,B with
suitable input differences, then with probability 2−25 for one pair we have the
correct output difference A′ ⊕ B′. Furthermore then common 50 bits are the
same for the input and for the output with probability 2−50. Thus we expect
that there are on average about 277−25−50 ≈ 22 pairs which share a fixed 50
common bits as depicted in Fig. 21.

For k > 2 the existence of such configurations can be seen as a simultaneous
truncated differential attack with 3 or 4 points respectively. As above, if A⊕B ∈
0x8070070080700700 then if A′ ⊕ B′ ∈ 0x8070070080700700 with probability
2−25.0 cf. [37–40]. Then if A,A′ and B,B′ are the suitable pairs for 8 rounds,
it is easier to find more such pairs C,C ′. Our computer simulation shows that
now if C ⊕ A ∈ 0x8070070080700700 then C ′ ⊕ A′ ∈ 0x8070070080700700 with
probability of only about 2−22 instead of 2−25.0. This is due to the fact that
some bits of A already have interesting suitable values.

In the same way, there will be a fourth pair D,D′ with even better probabil-
ity of about 2−13 which means that for the remaining 2−14 values D, there could
be several solutions. This probability is quite high and suggests that several ad-
ditional points will frequently exist and there isn’t much difference in probability
that a set of 3 suitable A,B,C exist with all the possible pairwise equalities on
50 bits as depicted in Fig. 27 below, and the probability that we have 4 suitable
points such as depicted in Fig. 25 for k = 4.

There is about 264+14+14/3! ≈ 289.4 triples A,B,C with suitable input dif-
ferences, then with probability 2−25 for one pair we have the correct output
difference A′ ⊕ B′, and then the third point also has the same 50 bits with
probability of only about 2−22. Thus we expect that there are on average about
289−25−22−50 ≈ 2−8 cases which share a fixed 50 common bits which have dif-
ferences with up to 14 bits as depicted in Fig. 27.

In the same way, there is about 264+14+14+14/4! ≈ 2101.4 quadrupleA,B,C,D
with suitable input differences, with probability 2−25 for one pair we have the



109

correct output difference A′⊕B′, and then the third point is correct with proba-
bility of only about 2−22, this multiplied by 2−13 for the fourth point and finally
by 2−50 for the 50 bits on both sides being equal. Thus we expect on average
about 2101−25−22−13−50 ≈ 2−9 cases which share a fixed 50 common bits and
have differences with up to 14 bits as depicted on earlier Fig. 25.

Real Life Events

No theory can replace to verify if the events which we study really happen as
predicted. For example it is very surprising to see that events with 4 points will
occur more or less as frequently as events with 3 points. To validate this we have
tried 239 encryptions for 8 rounds with random keys an initial random difference
with 14 active key bits within 0x8070070080700700 and if after the 8 rounds the
final difference was also within 0x8070070080700700, then we count how many
other plaintexts with the same 50 bits also produce the same 50 bits as the two
cases. In our simulation we have seen exactly 21 events with 4 points and also
exactly 21 events with 4 points with random keys and random 50 bits.

Examples: We exhibit one event with 4 points from our simulation. This
event have been generated strictly at random and has no special properties other
than those which might occur naturally at random for such events. The data are
self-explanatory. We also display the difference between each plaintext and the
last plaintext, and the same for the ciphertexts.

8 rounds 4 points 50 inactive bits 8070070080700700

key=C4EEEC4D9FC4A3C55DB81B7BEE470567396682007AE8D9B59E3FD9A3225BC7B4

P=6492F05231436EBF E4D2F152317368BF 64D2F452B14368BF E492F552B1736EBF

8000030080300000 8040000000000200 0040030080300200 0000000000000000

C=89C3449606C28E22 09C3409606C28F22 89C3409686A28822 09C3449686A28922

8000030080000400 0000030080000000 8000000000000400 0000000000000000

Events With Other Masks and More Points Or/And Single Keys

Fact 64 is only a lower bound, the probability is in fact higher, as several other
interesting affine spaces of dimension 14 can exist, which contribute another
proportion of GOST keys. One example of such additional space is given in Fig.
24 page 103, and some other possibilities are discussed in Section 3.1. in [40].
This is for linear spaces of the same size with D = 14. In Appendix I.3 we present
a complete of analogue of Fact 64 with D = 24. In Appendix I.5 another case
with D = 28.

More Points and Single Keys In our simulation with 239 encryptions
with random keys we more than 4 points have occurred only once. Moreover the
events studied in Section 26 happen only for some keys, for example 2−9 GOST
keys. However if we take a large mask we can obtain events with more points
or/and which happen for all GOST keys, see Appendix I.5.



110

27 New Improved Attacks With Multiple Reflection

In this section we propose several new attacks. Our goal is to see if we can
achieve results similar or better than 2129 total cost per 256-bit key with more
data overall but possibly with a small amount of data per key. The first attack
uses approximate fixed point bicliques, some other attacks are traditional attacks
without any differential properties, and interestingly several attacks exist which
can be constructed both using approximate fixed point bicliques and without
them, and we will be able to compare both sorts of attacks. These additional
differential properties lead to overall lower proportion of keys for which the
attack will work, however we obtain substantially faster running times in the
version with internal correlations.

27.1 A Triple Fixed Point Biclique Attack With Double Reflection

This attack can be seen as a straightforward extension of Family 5.3. with one
more symmetric fixed point like on the left hand side of Fig. 23. Since it has
two symmetric fixed points it also is an extension of attacks from Section 24
which allows the attacker to use the fact that symmetric fixed points happen
with higher frequency than expected. More precisely we consider a new Family
5.4 defined as follows.

rounds values/differences key size

A/B � 80700700 80700700 � C
8 ↓ E ↓ 256

A/B � 80700700 80700700 � C
8 ↓ E ↓ 256

A/B � 80700700 80700700 � C
8 ↓ E E ↓ 256

A/B ./ A/B � 80700700 80700700 � C ./ C
8 ↑ D D ↑ 256

A/B D
bits 64 64

Fig. 28. A Differential-Two-Symmetric-Three-Fixed-Points Attack on GOST

Fact 65 (Weak Keys Family 5.4, d = 2−77). We define the Weak Keys
Family 5.4 by keys such that there exists three points A,B,C such that A =
E(A), B = E(B), C = E(C), AND such that A,B,C lie in some affine space
of dimension 14 defined by some set of fixed 50 inactive bits which follow the
pattern 0x8070070080700700, AND such that two points A,B are symmetric
but not C. This occurs with density approximately d = 2−77.

Justification: We recall Fact 64. For a proportion of at least 2−8 of GOST keys
there exists a set of 50 bits and a set of 6 points A,B,C and A′, B′, C ′, such
that A 7→ A′, B 7→ B′ and C 7→ C ′ after 8 rounds, and such that all the 6 points
share the same set of 50 bits as depicted in Fig. 27.



111

Then the probability that A⊕B = A′⊕B′ and simultaneously A⊕C = A′⊕C ′
is maybe about 2−16 due to low joint entropy of these differences, cf. Section 26.1.
Then the probability that A = A′ is about 2−14 see Section 26.1. This implies
that also B = B′ and C = C ′. Furthermore, the probability that A is symmetric
is about 2−32. Finally given the fact that and A is symmetric, for B to become
symmetric it is sufficient for the difference A⊕B is symmetric which occurs with
expected probability of at most 2−7, because these values differ only on up to
14 bits with differences such as A⊕B being of type 0x8070070080700700 which
is a symmetric pattern. Overall we obtain d = 2−8−16−14−32−7 = 2−77 over all
GOST keys and we get the situation depicted in Fig. 29.

Fig. 29. Key assumption in Family 5.4.

Now we are going to show how to break these weak keys.

Fact 66 (Key Recovery For Family 5.4). Given 232 ACP (Adaptively Cho-
sen Plaintexts) we can obtain 4 KP for 8 rounds valid with probability 2−9 and
recover a weak key in Family 5.4 in time of 2103 GOST encryptions and with
small memory.

Justification: We guess A,B which are symmetric fixed points for 32 rounds of
GOST. Our guess is expected to be true with probability 2−0 because we do not
expect any symmetric fixed points to occur by accident. To determine A,B we
need 232 CP because they are symmetric. Then we guess C by flipping up to 14
bits of A inside the mask we assumed and because we have already determined
A, this requires further 214 ACP (Adaptively Chosen Plaintexts). Let D be such
that E(D) = C, see Fig. 28. Given C we determine D by encryption. Overall we
can obtain A,B,C,D and our quadruple is correct with probability 2−9 due to
low entropy of B ⊕C cf. Section 26.1. We have obtained 4 pairs for 8 rounds of
GOST which are A 7→ A, B 7→ B, C 7→ C, D 7→ C.

Now we might be tempted to apply Fact 6. We need a dedicated attack with
special differences which works in the same way as another dedicated attack
described in Fact J.2. With Fact J.2 we obtained 294 and we conjecture that
with even more differences than in Fact 125 for which we also could obtain 294,
we estimate that key recovery can also be done in at most 294 GOST encryptions.
Further research is needed to validate this claim exactly and improve the running
time.



112

Overall we need 294+9 = 2103 GOST encryptions.

Fact 67 (Family 5.4 in the Multiple Key Scenario). Given a population
of 277 different random keys, with access to 232 ACP per key, one can recover
one of these 256-bit keys in total overall time of about 2116 GOST encryptions.

Justification: With Fact 66 above, we can break weak keys of Family 5.4 in time
of 2103 for each key and 232 ACP per key. We can reject keys which are not weak
at a low cost by using the fact that for a random permutation, the probability
that Enck() has two symmetric fixed points A,B is about 2−64, and we can
reject all the other cases by examining the encryption of all symmetric points
and with only 232 KP for non-weak keys. Only for strong keys we require 232

ACP as in Fact 66. Time spend examining a majority of 277 non-weak keys is
only 275+32 and can be neglected compared to 2103 GOST encryptions spent on
one weak key. However additionally we need to run the whole attack on 277−64

non-weak keys for 2103 GOST encryptions. All this requires 277−64+103 = 2116

GOST encryptions total.



113

27.2 A Quadruple Fixed Point Biclique Attack With Double
Reflection

In this attack we are going to assume an approximate fixed point biclique (cf. Fig.
25) such that in addition A,B,C,D are mapped to B,C,D,A after 8 rounds.

Fig. 30. Key assumption in Family 6

Fact 68 (Weak Keys Family 6, d = 2−84).
We define the Weak Keys Family 6 by keys such that we have the situation

depicted in Fig. 30 with A,B,C,D becoming B,C,D,A after 8 rounds of GOST,
AND A,B,C,D lie in some affine space of dimension 14 defined by some set of
fixed 50 inactive bits which follow the pattern 0x8070070080700700, AND such
that both C,D are symmetric.

Such keys occur with density d = 2−84.

Justification: Following Fact 64 a basic configuration occurs for a proportion of
at least 2−9 GOST keys. Then the probability that A′ = B is about 2−14 see
Section 26.1. Likewise following Section 26.1 we estimate that the joint sets of
differences A′ ⊕ B′, B′ ⊕ C ′, C ′ ⊕ D′ follows the same probability distribution
as A⊕B,B ⊕ C,C ⊕D with low entropy which is probably not bigger than 20
bits. This following our preliminary rough simulations on the surprisingly low
entropy of such sets of differences which occur in such configurations. Overall
we estimate that the situation depicted in Fig. 30 with A,B,C,D lying in some
affine space of dimension 14 defined by some set of fixed 50 inactive bits which
follow the pattern 0x8070070080700700, occurs with probability of only roughly
about 2−9−14−20 = 2−43 over all GOST keys.

Furthermore, the probability that C is symmetric is about 2−32 and the
probability that both C,D are symmetric is only about 2−41 as these values
differ on up to 14 bits which difference C ⊕ D is symmetric with probability
of at least 2−7, this given the fact that set of 14 bits comes from the pattern
0x8070070080700700 which is symmetric.

Overall we obtain d = 2−43−41 = 2−84 over all GOST keys.
Improvements. Moreover such keys occurs with a higher probability if we

consider other patterns than 0x8070070080700700, which we leave for future
research on how to improve our attack.



114

Fact 69 (Weak Key Family 6 Attack).
For each key in Family 6 given 233 CPCC (Chosen Plaintexts and Chosen

Ciphertexts) we can obtain 4 KP for 8 rounds true with probability 2−0 and can
recover the key in time of at most 294 GOST encryptions.

If we dispose of 284 devices with distinct keys, one of the keys can be recovered
in total time of 2117 GOST encryptions.

Justification: We obtain pairs for 8 rounds as illustrated in Fig. 31.

rounds values key size

D
8 E ↓ 256

A A
8 ↓ E ↓ 256

B B
8 ↓ E ↓ 256

C C ./ C
8 ↓ E D ↑ 256
D ./ D B

8 ↑ D 256
C

bits 64 64

Fig. 31. Family 6 of Weak Keys

Normally with arbitrary A,B,C,D and without approximate fixed point
bicliques the situation depicted in Fig. 31 occurs with probability 264−32−32−64

which is d = 2−64 over the GOST keys. It can also be seen as the situation from
Fig. 9 with an additional assumption Z = D. Here it occurs with d = 2−84 and
we get a much stronger property with 150 = 3× 50 additional equalities on bits
of A,B,C,D. This is very good and this observation alone justifies all our work
on approximate fixed point bicliques.

It is possible to see that we are unlikely to see observe any A,B,C,D such as
in Fig. 31 and with shared 50 bits which are not correct. The attacker does NOT
need to guess any of A,B,C,D. They can be obtained with near certainty as fol-
lows. For a random permutation, the probability that for some symmetric point
C after decryption, the plaintext A has the same 50 bits is about 232−50 = 2−18.
In addition the probability that for some symmetric point D after encryption,
the ciphertext B has the same 50 bits is about further 232−50 = 2−18. Finally
the probability that the 50 fixed bits shared by both symmetric C and D are
the same is further 2−25. Overall the situation visible to the attacker implied
by the observable inputs and outputs in Fig. 31 AND C,D being symmetric
AND the fact that A,B,C,D should lie in the same space with shared 50 bits,
assuming also that these shared bits must be symmetric set of 50 bits, occurs
with probability 2−18−18−25 = 2−61 for various GOST keys. Thus for weak keys



115

we obtain 4 pairs for 8 rounds for free, because a second such event is unlikely
to happen.

Unhappily we cannot just apply Fact 7 in 294 for key recovery because our 4
pairs are quite special. We need a dedicated attack with special differences which
works in the same way as another dedicated attack described in Fact J.2. With
Fact J.2 we obtained 294 and we conjecture that with even more differences than
in Fact 125 for which we also could obtain 294, we estimate that key recovery
can also be done in at most 294 GOST encryptions. Further research is needed
to validate this claim.

Now if we dispose of 284 devices with distinct keys, we see that only with
probability 2−61 the attacker needs to run the attack. He can reject all the other
cases after examining some 233 of data for this key which can be checked in time
of about 284+33 CPU clocks, which is about 2107 GOST encryptions. Then the
attacker needs to run the analogue of Fact 125 for about 284−61 times 294 GOST
encryptions. This is about 284−61+94 = 2117 GOST encryptions which dominates
our attack.

Future Research. We expect that even better attacks following the same
framework exist, by combination of several different spaces of dimension 214.



116

27.3 Quadruple Reflection Attack Family 7.1

We have the following new attack with quadruple reflection.

Fact 70 (Weak Keys Family 7.1, d = 2−64, 6 KP for 8R).
We define the Weak Keys Family 7.1 by keys such that there exists a point

A such that all the four points A, B = E(A), C = E2(A), D = E3(A) are all
symmetric. Such keys occur with density d = 2−64, as there are 264 possible A
and then we have four consecutive events each occurring with probability 2−32.

For every key in Family 7.1, and given 232 ACC (Adaptively Chosen Cipher-
texts) we obtain 6 P/C pairs for 7 rounds of GOST correct with probability
about 2−33.

Justification: We proceed as follows.

rounds values key size

X
8 E ↓ 256

Y Y
8 E ↓ E ↓ 256

Z Z Z
8 E ↓ E ↓ E ↓ 256

A A A A ./ A
8 ↓ E ↓ E ↓ E D ↑ 256

B B B ./ B Z
8 ↓ E ↓ E D ↑ 256

C C ./ C A
8 ↓ E D ↑ 256
D ./ D B

8 ↑ D 256
C

bits 64 64 64 64

Fig. 32. A weak-key quadruple reflection attack with 6 pairs for 8 rounds

1. We observe that Enck(A) = C and both A and C are symmetric. These pairs
are known to the attacker given 232 CP or 232 CC. Moreover the attacker
can obtain the values A,C essentially and almost ”for free”.

2. This is because it is an exceptional event, which for a random permutation
occurs only once on average: there are 232 symmetric A and the encryption
is symmetric with probability 2−32. With our assumption, there is about two
pairs of symmetric A,C, one being the correct one.

3. We can guess which pair A,C is the correct one as in Fig. 32 with probability
2−1.

4. We can determine Y for free by decryption. At this stage we need 232 CC.
5. Now we guess B, which is correct with probability 2−32.
6. Now we can determine both Z and X be double decryption. This requires

only 232 ACC (Adaptively Chosen Ciphertexts) because we decrypt two
times from a symmetric value B.



117

7. Thus overall given 232 ACC we have obtained 6 P/C pairs for 8 rounds of
GOST correct with probability about 2−33.
These pairs are: X 7→ Y , Y 7→ Z, Z 7→ A, A 7→ B, B 7→ C, C 7→ D.

From here we obtain a very interesting attack:

Fact 71 (Key Recovery for Weak Keys Family 7.1, d = 2−64).
One can recover the keys for the Weak Keys Family 7.1 with 232 ACC, running

time of 2116 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact 70
and Fact 127 which gives 283 GOST encryptions for 6 KP and 8 rounds. Overall
we can recover the key in time of 283+33 GOST encryptions. There is no false
positives expected in this attack.

27.4 Conversion of Family 7.1 Into A ”Regular” Attack with
Multiple Keys Generated At Random

We have the following conversion with early rejection of non-weak keys:

Fact 72 (Key Recovery for A Diverse Population of 264 Keys).
If we have a diverse population of at least 264 different 256-bit GOST keys

generated at random, with access to 232 ACC per key, one can recover one of
these 256-bit keys in total overall time of about 2180 GOST encryptions.

Justification: Unhappily we need to run 264 times the attack of Fact 71.



118

27.5 A Better Quadruple Reflection Attack Family 7.2

The Family 7.2 is the same as Family 7.1 in which the same situation as in Fig.
34 is achieved with additional constraints on A,B,C,D which are shown to be
possible due to the existence of approximate fixed points bicliques.

Fact 73 (Weak Keys Family 7.2, d = 2−84, 6 KP for 8R).

We define the Weak Keys Family 7.2 by keys such that there exists a point
A such that all the four points A, B = E(A), C = E2(A), D = E3(A) are all
symmetric. and such that all the four points A,B,C,D lie in the same affine
space of 250 elements. This occurs with density d = 2−84.

For every key in Family 7.2, and given 232 ACC (Adaptively Chosen Cipher-
texts) we obtain 6 P/C pairs for 7 rounds of GOST correct with probability
about 2−4.

Justification: We start with Fig. 27. Following Fact 64 a basic configuration with
k = 3 occurs for a proportion of at least 2−8 GOST keys. Then the probability
that A′ = B is about 2−14 see Section 26.1. Now the probability that B′ =
C is about not 2−14 but only about 2−9. This is our observations concerning
the surprisingly low entropy of differences such as A ⊕ B which occur in such
configurations for 8 rounds of GOST. Since now A′ = A in order to have B′ = C
it is sufficient to have A′ ⊕B′ = B ⊕ C which occurs with probability of rather
2−9 than 2−14, see Section 26.1. Overall we estimate that the situation depicted
in Fig. 33 with A,B,C,D lying in some affine space of dimension 14 defined by
some set of fixed 50 inactive bits which follow the pattern 0x8070070080700700,
occurs with probability of only roughly about 2−31 over all GOST keys.

Furthermore, the probability that A is symmetric is about 2−32. We observe
that given the fact that and A is symmetric, for B to become symmetric it is
sufficient for the difference A ⊕ B is symmetric with probability 2−7, because
these values differ on up to 14 bits with differences such as A⊕B being of type
0x8070070080700700 which is a symmetric pattern. Accordingly the probability
that all the A,B,C,D are symmetric is only about 2−32−7−7−7 = 2−53 .

Overall we obtain d = 2−31−53 = 2−84 over all GOST keys which can be
compared to 2−64 in Family 7.1. Here for a higher price of 2−84 we get a much
stronger property with 150 = 3× 50 additional equalities on bits of A,B,C,D.

Fig. 33. Key assumption in Family 7.2



119

As in Fact 70 we can determine A,C for free. However it is easier to guess B,
see Fig. 32. Against due to reduced entropy which we have observed we expect
that the entropy of the symmetric B knowing symmetric A is only 4 bits instead
of 7 in the worst case. Thus our triple A,B,C can be guessed easily and will be
correct with probability of roughly about 2−4.

Now we are going to investigate the complexity of breaking such weak keys.

Fact 74 (Key Recovery for Weak Keys Family 7.2, d = 2−84).
One can recover the keys for the Weak Keys Family 7.2 with 232 ACC, running

time of about 287 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact 70
and Fact 127 which gives 283 GOST encryptions for 6 KP and 8 rounds. Due to
abundant amount information provided by 6 pairs, even if related, we do NOT
expect that this complexity of 283 increases in our cases with A,B,C,D lying in
a smaller affine subspace. Overall we can recover the key in time of 283+4 GOST
encryptions.

Furthermore we have the following conversion with early rejection of non-
weak keys:

Fact 75 (Key Recovery for A Diverse Population of 264 Keys).
If we have a diverse population of at least 264 different 256-bit GOST keys

generated at random, with access to 232 ACC per key, one can recover one of
these 256-bit keys in total overall time of about 2146 GOST encryptions.

Justification: We do NOT need to run 282 times the attack of Fact 74. For a given
random key the probability that there exists a pair of symmetric texts A,C such
that Enck(A) = C is about 1. Furthermore the probability that A ⊕ B is zero
on our symmetric set of 50 bits is equal to 2−25 because of the symmetry. Thus
we can reject a proportion of cases and we need to apply Fact 74 only 284−25

times. Overall we expect to recover one key in time of about 284−25+87 = 2146

GOST encryptions.



120

28 New Attacks With Multiple Symmetric Points

In this section we propose several further new attacks. An in the previous Section
27 we exploit approximate fixed point bicliques and attempt to try to improve the
attacks with additional differential properties. In Section 27.5 these additional
differential properties lead to overall lower proportion of keys for which the
attack works however overall the attack is substantially faster.

Could it lead to a higher proportion of keys? In this paper sometimes we are
really very surprised to find out that with additional properties the appropriate
events are expected to happen with a higher probability than expected, which
means that we have underestimated the frequency of these events for the real-
life GOST cipher by assuming that certain events are independent, while they
are strongly correlated. This unexpected reduction in probability has already
happened in Section 24.5 and made our multiple key attack about 24 times slower
because the complexity of the last step of the attack would be increased if there
are relations between points, or we have to avoid these cases and concentrate
on cases where the two points are uncorrelated. Later in this section we will see
examples where there is enough data for the last step and the attacker is able to
filter out all the non-weak keys with near certainty. This will lead to particularly
efficient attacks.

First we describe one basic attack without internal correlations.

28.1 Small Size Cycle With Symmetric Points - Family 8.1

Here is another family of weak keys. We define weak key family Family 8.1. Later
we will define a slight variant of it which will be called Family 8.2.

Fact 76 (Weak Keys Family 8.1, d = 2−98, Getting 3 KP for 8R). We
define the Weak Keys Family 8.1 by keys such that there exists A such that
E3(A) = A, and all the three values A,B = E2(A), C = E3(A) are symmetric
(both 32-bit halves are equal). This occurs with density d = 2−98.

For every key in Family 8.1, given 232 CP we can obtain 3 P/C pairs for 8
rounds of GOST, correct with probability close to 1.

Justification: The expected number of cycles of length 3 for a random permuta-
tion is 1/3 = 2−1.6 cf. [85] for detailed statistics on random permutations. The
probability that a random 64-bit permutation has a cycle of length 3 with 3
symmetric points is roughly about 2−96−1.6 ≈ 2−98.

We proceed as follows:

1. We observe that since E3(A) = A, we also have E3(B) = B and E3(C) = C.
2. We have

Enck(A) = D(S(E3(A))) = D(S(A)) = D(A) = C = D(A).

In the same way, Enck(B) = A and Enck(C) = B.
If we consider the 3-fold iteration Enc3k(·) we observe that all the three points
A,B,C are fixed points for Enc3k(·) and they are symmetric fixed points of
Enc3k(·).



121

rounds values key size

A
8 E ↓ 256

B B
8 E ↓ E ↓ 256

C C C
8 ↓ E ↓ E ↓ 256

A A A ./ A
8 ↓ E ↓ E D ↑ 256

B B ./ B C
8 ↓ E D ↑ 256

C ./ C A
8 ↑ D 256

B

bits 64 64 64

Fig. 34. Weak Key Family 8.1 With Triple Reflection And 3 KP For 8R

3. Given 232 CP (all values we use are symmetric) we can identify A,B,C
because they form a cycle of length 3 for Enck(·) with 3 elements and we
don’t expect that more such cycles exist in which all these elements would
also be symmetric. It would be an unlikely event.

4. We get 3 P/C pairs for 8 rounds which are E(A) = B, E(B) = C, E(C) = A
and these are correct with probability close to 1.

Fact 77 (Key Recovery for Weak Keys Family 8.1, d = 2−98).
For the weak keys of Family 8.1 one can enumerate 264 key candidates given 232

CP, with running time of 2110 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact
76 and 2110 of Fact 6 for 3 KP.

28.2 Conversion of Family 8.1 Into A ”Regular” Attack with
Multiple Keys Generated At Random

We have the following conversion with early rejection of non-weak keys:

Fact 78 (Key Recovery for A Diverse Population of 298 Keys).
If we have a diverse population of at least 298 different 256-bit GOST keys

generated at random, with access to 232 CP per key, one can recover one of
these 256-bit keys in total overall time of about 2120 GOST encryptions.

Justification: We consider 297.6 random devices and we do NOT apply the Fact
77 for each device. Instead we examine the data, 232 CP with the encryption
of all symmetric points, to see if our attack is likely to be applicable. We scan
for all cases where the encryption is also symmetric and list all cases where this
is true. For a random permutation the probability that one symmetric point
gives another symmetric point after encryption is 2−32 and there are 232 points.
Therefore we expect to find one on average but frequently also 0 or several
such cases. We examine these few cases for a cycle of length 3. This is going



122

to happen only with probability 2−97.6. For all except a proportion of about
2−97.6 GOST keys, all those where the key is not weak, we can reject them by
checking 232 plaintexts as explained here in time of 297.6+32 CPU clocks, which
happily is significantly less than 297.6+32 GOST encryptions, but rather about
2119.6 GOST encryptions.

For the remaining proportion of 2−97.6, we expect them to come from Family
8.1 with overwhelming probability. Therefore for all the cases where the key
is weak, we enumerate 264 candidates for the correct key in time 2110 GOST
encryptions due to Fact 77, and check which key is correct with additional pairs
for full 32 rounds. Overall we expect to recover one key in time of about 2110 +
2119.6 ≈ 2120 GOST encryptions.

28.3 Improved Small Size Cycle Attack - Family 8.2

The Family 8.2 is the same as Family 8.1 in which the same situation as in Fig.
34 is achieved with additional constraints on A,B,C which are shown to be
possible due to the existence of approximate fixed points bicliques.

Fig. 35. Key assumption in Family 8.2

Fact 79 (Weak Keys Family 8.2, d = 2−84, 3 KP for 8R). We define the
Weak Keys Family 8.2 by keys such that there exists A such that E3(A) = A,
and all the three values A,B = E2(A), C = E3(A) are symmetric, and such that
all the three points lie in the same affine space of 250 elements. This occurs with
density d = 2−84.

For every key in Family 8.1, given 232 CP we can obtain 3 P/C pairs for 8
rounds of GOST, correct with probability close to 1.

Justification: Following Fact 64 a basic configuration with k = 3 occurs for a
proportion of at least 2−8 GOST keys (an alternative justification can be found
in Appendix I). Then the probability that A′ = B is about 2−14 see Section 26.1.
Likewise we estimate that the joint sets of differences A′ ⊕ B′, B′ ⊕ C ′ follows
the same probability distribution as A⊕B,B⊕C which entropy is probably not
bigger than further 16 bits, then following our preliminary rough simulations
on the surprisingly low entropy of such sets of differences which occur in such
configurations, see Section 26.1. Overall we estimate that the situation depicted
in Fig. 35 with A,B,C lying in some affine space of dimension 14 defined by



123

some set of fixed 50 inactive bits which follow the pattern 0x8070070080700700,
occurs with probability of only roughly about 2−8−14−16 = 2−38 over all GOST
keys.

Furthermore, the probability that B is symmetric is about 2−32, in the same
way as in Family 7.2 the probability that the three points A,B,C are all sym-
metric is only about 2−32−7−7. Overall we obtain d = 2−38−32−7−7 = 2−84 over
all GOST keys which is surprisingly low compared to 2−98 in Family 8.1.

Now we are going to investigate the complexity of breaking such weak keys.

Fact 80 (Key Recovery for Weak Keys Family 8.2, d = 2−84).
For the weak keys of Family 8.2 one can recover the key given 232 CP, with

running time of 2110 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact
79 and a dedicated version of Fact 6 for 3 KP such as Fact 124 in Section
J.1, for which we expect still about 2110 GOST computations even though we
will need to enumerate and check with additional pairs for more than 264 key
candidates, which however probably still takes significantly less time than 2110

GOST computations. This is a preliminary rough and simplified analysis and
the calculation of the exact complexity of this attack requires a further study.

Furthermore as for Family 8.1, we have the following conversion with early
rejection of non-weak keys:

Fact 81 (Family 8.2 Attack For a Population of 284 Random Keys).
If we have a diverse population of at least 284 different 256-bit GOST keys

generated at random, with access to 232 CP per key, one can recover one of
these 256-bit keys in total overall time of about 2110 GOST encryptions.

Justification: As in Section 28.2 the probability that a random 64-bit permuta-
tion has a cycle of length 3 with 3 symmetric points is about 2−98. Thus for all
except the correct device out of 284 we can reject this device right away after
checking 232 plaintexts in time of 284+32 CPU clocks which is about 2106 GOST
encryptions. This not counting additional differences on A,B,C which we also
have in our attack.

For the remaining one case which really is our weak key with correct addi-
tional differences we apply Fact 80 which gives about 2110 GOST encryptions
and with negligible memory. Overall we expect to recover one key in total overall
time of about 2110 GOST encryptions.



124

28.4 On Triple and Quadruple Symmetric Fixed Points in GOST

In Section 24.3 we have established that pairs of symmetric points for 8 rounds
and also the full 32-bout GOST occur with probabilities higher than expected.
In Section 28.3 we have seen that cycles of length 3 with 3 symmetric fixed points
occur with high probability. In this Section we look at another closely related
question: triples and quadruples symmetric fixed points which are going to be
used in later the Family 8.3. and 8.4. attacks.

Fact 82 (Frequency of Triple and Quadruple Symmetric Fixed Points).
Following Section 45 we have established that for the default set of GOST S-
boxes the probability that for 8 rounds there are two symmetric fixed points
sharing as many as 50 bits is at least 2−60 instead of about 2−2−64−50 for a
random permutation.

The probability that there are three symmetric fixed points sharing the same
set of 50 bits is at least 2−70 instead of roughly about 2−4−96−50 for a random
permutation.

For four symmetric fixed points sharing the same set of 50 bits it is at least
2−79 instead of roughly about 2−6−128−50 for a random permutation.

Justification: Let A′ = E(A) and B′ = E(B) and C ′ = E(C) as in Fig. 27 page
107. Following Fact 64 for a proportion of at least 2−8 of GOST keys there exists
A,B,C such that all the 6 points share the same set of 50 bits following the mask
0x8070070080700700. Now the probability that A is symmetric is 2−32. Then the
probability that A = A′ is 2−14. Then the probability that A⊕B = A′⊕B′ and
simultaneously A⊕ C = A′ ⊕ C ′ is maybe about 2−16 due to low joint entropy
of these differences, cf. Section 26.1.

Overall for a proportion of at least d = 2−8−32−14−16 = 2−70 of GOST keys
we have three symmetric fixed points A,B,C sharing the same 50 bits.

In the same way for a proportion of maybe d = 2−9−32−14−24 = 2−79 of
GOST keys we have four symmetric fixed points A,B,C,D sharing the same 50
bits.

Warning: These are very rough estimations and they require further re-
search.

Remark 1. This is much higher than what would get for having just 3/4
symmetric fixed points without any extra condition which is roughly about
2−4−96/2−6−128 for a random permutation.

Remark 2. Again this reduction in probability was only demonstrated for
the default set of GOST S-boxes. However, this is a conservative estimate with
just one mask 0x8070070080700700 and these probabilities get higher if take into
accounts other masks. We expect similar results for other sets of S-boxes.

Remark 3. Again symmetric fixed points for 8 rounds are also symmetric
fixed points for the full 32-round GOST [75, 77]. As in Fact 47 page 87 we obtain
another distinguisher attack on full GOST which is stated below.

Fact 83 (More Distinguisher Attacks on Full GOST). This distinguisher
extends the result of [77] and of Fact 47 page 87 from two to three points. It



125

works is we have access to many instances of GOST with different keys. For
the default set of GOST S-boxes the probability that there are three symmetric
fixed points is at least 2−70 instead of about 2−100 for a random permutation.
Moreover the probability that there are three symmetric fixed points sharing as
many as 50 bits in 0x8070070080700700 is also at least 2−70 instead of about
2−150 for a random permutation.

The probability that there are four symmetric fixed points is at least 2−79

instead of about 2−134 for a random permutation. Moreover the probability that
there are four symmetric fixed points sharing 50 bits in 0x8070070080700700 is
also at least 2−79 instead of about 2−184 for a random permutation.

Warning: These are very rough estimations and they require further re-
search. Unhappily we do not dispose of a computing power of 266+32 necessary
to check if GOST keys selected at random will really have 2,3 or 4 symmetric
fixed points as predicted. So we need to find a special approximation method-
ology to validate this result. Our early simulations trying to validate this fact
give diverging results and do NOT confirm the exact figures given above. These
results should be therefore considered as a first approximation.



126

28.5 Triple Symmetric Fixed Point Attack Family 8.3

The Family 8.3 is an extension of Family 0 attack from [75, 77] and Family 4.2
attack based on [77] with yet another (third) symmetric fixed point. It is also
somewhat related to Family 8.1 and 8.2 attacks as in all these attacks we are
dealing with symmetric points lying in cycles of small size, so that they can be
identified by the attacker.

Fact 84 (Weak Keys Family 8.3, d = 2−70, 3 KP for 8R). We define
the Weak Keys Family 8.3 by keys such that there exists three symmetric fixed
points A,B,C for the 8 rounds E(). With the default GOST S-boxes this occurs
with density of at least d = 2−70.

For every key in Family 8.3, given 232 CP we can obtain 3 P/C pairs for 8
rounds of GOST, correct with probability close to 1.

Justification: We get d = 2−70 by applying Fact 82. The three pairs are then
simply E(A) = A, E(B) = B and E(C) = C. How do we break these keys?

Fact 85 (Key Recovery for Weak Keys Family 8.3, d = 2−70).
For the weak keys of Family 8.3 one can recover the key given 232 CP, with

running time of 2120 GOST encryptions and with negligible memory.

Justification: We need to design a special dedicated version of Fact 124 from
Section J.1. We expect at most 2120 GOST computations. Finally as previously
we have the following conversion with early rejection of non-weak keys:

Fact 86 (Family 8.3 Attack For a Population of 270 Random Keys).
If we have a diverse population of at least 270 different 256-bit GOST keys

generated at random, with access to 232 CP per key, one can recover one of
these 256-bit keys in a total overall time of about 2120 GOST encryptions.

Justification: The probability that a random 64-bit permutation has 3 symmetric
fixed points is about 2−100. This not counting additional differences on A,B,C
which we also have in our attack which could be used to reject with even higher
probability. Thus for all except the correct device out of 270 we can reject this
device right away after checking 232 plaintexts in time of 270+32 CPU clocks
which is about 292 GOST encryptions.

For the remaining one case which we expect to be really our weak key with
correct additional differences we apply Fact 85 which gives about 2120 GOST
encryptions and negligible memory. Overall we expect to recover one key in time
of about 2120 GOST encryptions.



127

28.6 Quadruple Symmetric Fixed Point Attack Family 8.4

The Family 8.4 is a further extension with one more symmetric fixed point which
occurs with surprisingly high probability.

Fact 87 (Weak Keys Family 8.4, d = 2−79, 4 KP for 8R). We define the
Weak Keys Family 8.4 by keys such that there exists four symmetric fixed points
A,B,C,D for the 8 rounds E(). With the default GOST S-boxes this occurs with
density of at least d = 2−79.

For every key in Family 8.4, given 232 CP we can obtain 4 P/C pairs for 8
rounds of GOST, correct with probability close to 1.

Justification: We get d = 2−79 by applying Fact 82. The four pairs are then
E(A) = A, E(B) = B, E(C) = C and E(D) = D. Accordingly:

Fact 88 (Key Recovery for Weak Keys Family 8.4, d = 2−79).
For the weak keys of Family 8.4 one can recover the key given 232 CP, with

running time of 299 GOST encryptions and with negligible memory.

Justification: We have designed special dedicated version of Fact 125 from Sec-
tion J.2. We obtain at most 299 GOST computations J.3. The difference between
Fact 125 in 294 and 299 from from Fact 126 is that in this case the points have
many more solutions in common which make it harder to reject sets of key bits.

Again we have a conversion step with early rejection of non-weak keys:

Fact 89 (Family 8.4 Attack For a Population of 279 Random Keys).
If we have a diverse population of at least 279 different 256-bit GOST keys

generated at random, with access to 232 CP per key, one can recover one of
these 256-bit keys in total overall time of about 2101 GOST encryptions.

Justification: We have an attack where given 232 CP per device, namely the
encryption of all symmetric plaintexts, the weak key become immediately “vis-
ible” for the attacker. The probability that a random 64-bit permutation has 4
symmetric fixed points is about 2−134. This not counting additional differences
on A,B,C,D which we also have in our attack which could be used to reject
with even higher probability. Thus for all except the correct device out of 279 we
can reject this device right away after checking 232 plaintexts in time of 279+32

CPU clocks which is about 2101 GOST encryptions.
For the remaining one case which we expect to be really our weak key with

correct additional differences we apply Fact 85 which gives about 299 GOST
encryptions and negligible memory. Overall we expect to recover one key in time
of about 2101 GOST encryptions.

Remark: These two attacks will also appear in [34].



128

29 Summary: Comparison of Principal Known Attacks
on GOST, Weak and Strong Keys

In Table 4 we compare our attacks with weak keys compared to selected other
attacks with regular keys in such a way that we can compare them fairly. We also
include most recent Differential-Reflection-Fixed Point Family 10 attack from
Section 25 which is a particularly strong attack in the multiple key scenario.

For each weak-key attack the table shows TWO applications of it: one if we
know that the key is weak, and another if we have a mix of weak and strong
keys where weak keys occur with their natural probability.

Attack Ref. §15.3/[50] §18.1/[50] Red. 3 §17 [39, 40] F.0 [75] Fam. 2 Fam. 2 Fam. 3 Fam. 4.X.

Keys density d 0.63 0.63 1 2−32 2−64 2−64

Data/key 32R 232 KP 264 KP 264 KP 264 KP 232 CP 232 CC 232 ACC 264 KP 232 CP/264

Obtained for 8R 2 KP 3 KP - 1 KP 3 KP 4 KP 2 KP

Valid w. prob. 2−96 2−64 2−64 - 2−1 2−64 2−64 2−1 2−0

Storage bytes 246/239 246/239 267 270 small 267 for data

] False positives 2128 2128 2192 264 2−0 264 2128

Time for 8 R 2127/2128 2127/2128 2110 - 2192 2110 294 294 2128

Attack time 32 R 2223/2224 2191/2192 2206 2179 2192 2174 2158 295 2128

Cost of 1 key, if 2224/2225 2192/2193 2207 2179 2193 2206 2190 2159 ≥ 2129

key diversity ≥ single key attacks or for > 50% of keys 232 265

Data x keys 233 264 265 264 264 296 / 128

Family cf. Fam. 5.3 Fam. 5.4 Fam. 6 Fam. 7.2 Fam. 8.1 Fam. 8.2 Fam. 8.3 F. 8.4 / [34]

Keys density d 2−52 2−77 2−84 2−84 2−98 2−84 2−70 2−79

Data/key 32R 232 ACP 232 ACP 233CPCC 232 ACC 232 CP 232 CP 232 CP 232 CP

Obtained for 8R 3 KP 4 KP 4 KP 6 KP 3 KP 3 KP 3 KP 4 KP

Valid w. prob. 2−9 2−9 2−0 2−4 2−0 2−0 2−0 2−0

Storage bytes small

] False positives ? small 0 264 > 264 ? small

Time for 8 R 2110 294 294 283 2110 2110 2120 294

Attack time 32 R 2119 2102 294 287 2110 2110 2120 294

Cost of 1 key, if 2139 2116 2117 2146 2120 2110 2120 2101

key diversity ≥ 252 275 284 284 298 284 270 279

Data x keys 284 2107 2121 2116 2130 2116 2102 2111

Table 4. Major attacks on full GOST cipher: single vs. multiple random keys scenario.
Various attacks are here compared according to their capacity to find some keys when
weak keys occur at random with their natural probability. In lower table we see that
if we allow higher key diversity requirements and more data collected in total (for all
keys), the overall time cost to recover one key, this including the cost to examine keys
which are not weak, decreases down to 2101 and beats all known single key attacks.

A crucial point is that the multiple key scenario is stronger and much more
versatile than the single key scenario. If we assume that keys are generated at
random and weak key occur naturally, and if the computing power of the attacker
is limited, it is cheaper and easier to break some keys with special properties
first, rather than not to break any keys with a given computational effort.



129

29.1 Analysis: Which Attack on Full GOST is the Best? Why Weak
Keys Are Important for Attacks on Regular Random Keys

In our research we have discovered that single key attacks are NOT the most
practical attacks on GOST (cf. also [31]). The security of GOST decreases very
substantially in the multiple key scenario, and we obtained several attacks which
can find keys at a cost which is much lower than for the best single key attack.
The price to pay for this is an access to a larger diversity and more data overall,
but not always a lot of data per key: many attacks use only 232 of data per key.
This cost decreases with key diversity but it reaches a natural limit. We cannot
hope to obtain an even better attack with 296 or more different keys. This can be
seen as follows: with at least 232 data per key we need to spend at least 296+32

steps in examining all the data for the keys for which the attack does not work,
at the beginning we don’t know for which keys the attack will work.

There are several interesting new results with only 232 of data per key (but
more data total) which were developed in late 2012. For example with 232 of data
per key and 264 of data total, one of our Family 2.1 attacks allows to recover one
full 256-bit key in time of 2190 GOST encryptions. This has never been achieved
before September 2012. Now with 232 of data per key and 296 of data total, one
can achieve as little as 2129 per key with recent Family 4.X attacks related to or
resulting from the work of [77]. Furthermore with 232 of data per key and 2128

of data total, one can achieve as little as 2101 per key with our Family 8.X and
many other results below 2120.

29.2 Lessons Learned

These recent results are very surprising and are due to the fact that, in the
same way as in Fact 50 and in Fact 92, in many other attacks such as Family
0,4.X.,5.3,5.4,6,8.1,8.2, etc. the weak keys are “visible” when looking at the data,
and the attacker can efficiently discard many keys which are not weak, without
running the whole attack for these keys, but by looking only at the data for the
[non-]existence of appropriate data points.

The initial idea of Algebraic Complexity Reduction was to identify a
highly non-trivial property H of the values which occur inside the encryption
process such that ifH holds, the key can be efficiently recovered. However now we
see that there is another way of great practical importance. It is more important
that if H does NOT hold, the key can efficiently discarded. The second prop-
erty seems harder to achieve because in arguably most realistic attacks which
we have studied this rejection process is done more frequently than the case
when H holds. It appears that the main problem in the cryptanalysis of GOST
is about being to reject large sets which contain almost all GOST keys of type
such as 2256− 2192 of all keys, in one single relatively very fast step. Such a step
does not yet yield any sort of exploitable information about they key and it is
not easy to see how it helps to break the cipher. It exists in order to pre-select
encryption instances for which special properties on internal data do hold, so
that we can apply “key recovery techniques knowing H” in fewer cases in which
they are more likely to succeed.



130



Part VII

Attacks With 128-bit Keys





133

30 Attacks on GOST With Repeated 128-bit Keys

In this section we study the security of GOST with 128-bit keys. Unhappily,
though we found many different attacks which allow to break 256-bit keys, the
sheer cost ot the final key recovery step and the existence of false positives makes
that our previous attacks are very far from being able to break 128-bit keys. In
this section we show that there are weak keys which allow very efficient attacks
and these keys exist with probability high enough to be a practical concern in a
population of diverse keys, leading to a compromise of certain keys in practice.

We assume that the GOST key is such that the same 128-bit key is repeated
twice. We ignore if such a variant of GOST is used in practice but this method
is one of the interesting special variants of GOST explicitly considered on page
594 of [8]. Our attack uses a modified variant of the attack from [75] which we
named Family 0, see Fact 30. In the new version called Family 0’ we will consider
fixed points for 4 rounds instead of 8 rounds. Let F be the first 4 rounds with
128-bit key. If the key is repeated we have E = F ◦ F .

Then we define the Family 0’ of weak keys as follows:

Definition 30.0.1 (Weak Keys Family 0’). We define the Weak Keys Family
0’ as 128-bit keys with repetition AND such that F has a fixed point A which
is symmetric, i.e. A = A.
This occurs with probability of d = 2−32 over all GOST keys.

Then we have the following:

Reduction 6 (Family 0’, d = 2−32, Reduction to 1 KP for 4R). For
every key in Weak Keys Family 0’, given 232 chosen plaintexts for GOST, we
can compute A and obtain 1 P/C pair for 4 rounds of GOST correct with very
high probability of about 2−1.

Justification: It is the same as for Fact 30: If A is symmetric and F(A) = A then
Enck(A) = A. However there are also, on average some other values for which
Enck(A) = A, as every permutation of 64 bits has about one fixed point which
occurs by accident, not due to the internal structure. Thus we obtain 1 P/C pair
for 4 rounds of GOST F(A) = A, which is correct with high probability of about
1/2.

Fact 90 (Key Recovery for Family 0’ With 128-bit Keys). We assume
that the GOST key is 128-bit with repetition and belongs to family 0’. Then
given 232 CP one can recover the 128-bit key from Family 0’ in average time of
265 GOST encryptions and with negligible memory.

Justification: We obtain A with 232 CP, as a symmetric fixed point of F(·).
This is done once at the beginning. The time to do this is less than 232 GOST
encryptions and can be neglected. We have

F(A) = A

where F is the first 4 rounds with 128-bit key.
Our A is correct with high probability of about 2−1.



134

Now we can obtain a uniform enumeration of exactly 264 keys on 128-bits
which satisfy this equation as follows: we fix the 64-bit key for the first 64 rounds,
and because the GOST S-boxes are bijective, this gives us the knowledge of
inputs and outputs of both rounds 3 and 4, and allows us to uniquely determine
the second 64-bit of the key in time of encrypting with GOST for 2 rounds, which
is 2/32 GOST encryptions. Overall, we get a uniform enumeration of exactly 264

keys on 128-bits in time of 260 GOST encryptions. Each of these keys needs to
be checked with another P/C pair for the full 32-round GOST. The total time
is 21(260 + 264) ≈ 265 GOST encryptions. and half this time on average.

30.1 Attacks on A Diverse Population of 128-bit Keys

Now we need to translate this to a more realistic scenario where there is a
population of different GOST keys, but we don’t know which ones are weak.

Fact 91 (Attack with Diverse 128-bit Keys, 232 CP Per Key, d = 2−32).
We assume that there is a population of 232 devices with 128-bit GOST keys
repeated twice to form a 256-bit key (and in principle not being weak keys in
most cases). Then one of these keys on average is a weak key from Family 0’.
Given 232 CP per device, the device having the weak key can be identified and
the key recovered in total time of 266 GOST encryptions on average and with
negligible memory.

Justification: Let j be a key number. For each of 232 keys j, given the possibility
to obtain 232 CP per key, for all possible symmetric plaintexts, we check if there
are any symmetric fixed points A for Enckj

(·). This first step takes about 264

steps, but in practice this is really substantially less than 264 GOST encryptions,
and can be neglected.

Only for the weak keys, and in about on average one another case, any of the
fixed points is symmetric. Most devices are rejected immediately except a few.
We obtain a list of about 21 pairs j, A. In each of these 21 cases we apply Fact
90. Thus total time is about 266 GOST encryptions and the memory remains
negligible.

Is this attack practical? Given that the population of our planet is about
233, and one person can use during their life many cryptographic keys, this attack
should be considered as semi-realistic. In a hypothetic future, for example if
GOST becomes an ISO standard, given the fact that it has larger keys than triple
DES, and is cheaper to implement than triple DES and any other comparable
cipher [83], it is possible that GOST becomes quite widely used, also in a 128-
bit version, which would be judged secure enough for practical purposes. Then
assume that these keys are embedded in some secure hardware (common practice
in the industry) which can be freely accessed by the attacker and he can dispose
of 232 CP per key. Then our attack will allow to recover some of these 128-bit
keys in practice.



135

30.2 Attacks With 1 CP Per Key

Now we are going to develop an even more realistic scenario where there is a
population of different GOST keys, and we are given only 1 CP per key. We can
break GOST also in this scenario.

Fact 92 (Attack with Diverse 128-bit Keys, 1 CP Per Key, d = 2−64).
We assume that there is a population of 264 devices with, possibly different, but
can also be repeated, 128-bit GOST keys in repeated twice to form a 256-bit key
(and in principle not being weak keys in most cases).

And that the attacker is given just the encryption of some symmetric plain-
text, such as A = 0 (for full 32 round GOST) for each of these keys, plus any
additional data for confirmation of the right keys, such as a ciphertext-only at-
tack, in the form of some longer message encrypted with the same key in a given
cipher mode such as CBC.

Then for 232 cases, the key will be a weak key from Family 0’, and if one case
on average A, being symmetric, will be a fixed point of F , and also of Enck()
and will be also equal to A.

Then the case out of 264 with the weak key, and with A being a fixed point
can be identified and the key recovered in total time of 266 GOST encryptions
on average and with negligible memory.

Justification: Let j be a key number. For each of 264 keys j, we filter out the keys
for which A is a fixed point. We expect to obtain one right case, in which the
key will be a weak key from Family 0’, and A being a fixed point of F , and one
another case where the fixed point A occurs by accident. This first step takes
about 264 steps, but in practice this is really substantially less than 264 GOST
encryptions, and can be neglected.

Most devices are rejected immediately except a few. We obtain a list of about
21 pairs j, A. In each of these 21 cases we apply Fact 90. Each of the 264 keys
found in this process needs to be checked with another few P/C pairs for the
full 32-round GOST or with the data provided for the ciphertext-only attack
The total time is again about 266 GOST encryptions and the memory remains
negligible.

Is this attack practical? Given that the population of our planet is about
233, and one person can use a standardized cipher such as GOST 10 times per
day over one year to encrypt a message of 5 Megabytes containing only zeros,
then one of the keys used over that period can be identified and recovered in
total time of about 266 GOST encryptions.

Remark It is easy to see that we also can have an attack with 2X CP
per key and d = 2−64+X and total time of still 266 GOST encryptions for any
X = 0 . . . 32.



136

31 One Particularly “Bad” Family B of 128-bit Keys

There is another natural method to use GOST with 128-bit keys. We assume
that the second part of the key is not the repetition but an inverted repe-
tition of the first part. By definition we call GOST keys of this form k =
(k0, k1, k2, k3, k3, k2, k1, k0) the Family B of keys (B stands for “Bad”). We don’t
know if this method is ever used in practice to encrypt data, but this method
is also one of those weak variants explicitly discussed on page 603 of [8]. This
makes the key schedule perfectly periodic in spite of the inversion of keys in the
last 8 rounds of GOST which is a protection against known slide and fixed point
attacks. Thus one should not be surprised that this will make a “pathologically”
bad block cipher with many interesting attacks. We would like to stress the fact
that this key schedule is fully compliant with the GOST encryption standard,
yet very weak. We have:

Fact 93 (GOST with Family B Keys). We assume that the GOST key is
in Family B, in other words, let k = (k0, k1, k2, k3, k3, k2, k1, k0). Again let F be
the first 4 rounds with 128-bit key. Then we have the following immediate and
easy to prove consequences of the structure of the cipher:

1. The sequence of round keys becomes perfectly periodic and symmetric:

rounds 1 8 9 16 17 24 25 32

keys k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0

Table 5. The effect of key scheduling on Family B keys

2. The second 4 encryption rounds can be written as follows:

S ◦ F−1 ◦ S

3. The first 8 encryption rounds E can be written as follows:

E = S ◦ F−1 ◦ S ◦ F (9)

E−1 = F−1 ◦ S ◦ F ◦ S (10)

This is a product of two involutions.
4. The function S ◦ E is an involution and it is equal to its own inverse.

S ◦ E = F−1 ◦ S ◦ F
E−1 ◦ S = F−1 ◦ S ◦ F

5. It follows that for every X,Y :

Y = E(X)

m

X = E(Y ).



137

6. The function S ◦ E for the first 8 encryption rounds without the final twist,
is a conjugated version F−1 ◦S ◦F of a function which has exactly 232 fixed
points. It follows that it has exactly 232 fixed points which are exactly those
and only those for which the state is symmetric after the first 4 rounds.

7. X is a fixed point of E if and only if X is a fixed point for the same E .
8. For every k ≥ 1 we have

S ◦ Ek = G ◦ (S ◦ G)
k−1

= (S ◦ G)
k−1 ◦ G

E−k ◦ S = G ◦ (S ◦ G)
k−1

= (S ◦ G)
k−1 ◦ G

where we define G def
= F−1 ◦ S ◦ F which is an involution.

9. For every k ≥ 0 the function S ◦ Ek is an involution and it can be written as

G ◦ S ◦ G ◦ S ◦ · · · ◦ G,
where G appears k − 1 times and swap S appears k times.

10. For every k ≥ 0 the function Ek is a product of two involutions.
11. For every k ≥ 0 the function S ◦ Ek is an involution and can be written in

the form H−1 ◦ S ◦ H as follows:{
S ◦ Ek = E−l ◦ S ◦ E l when k = 2l

S ◦ Ek = E−l ◦ F−1 ◦ S ◦ F ◦ E l when k = 2l + 1

Consequently for every k it has exactly 232 fixed points which are exactly
those for which the state is symmetric after the first 4k rounds of GOST.

12. The whole encryption process is perfectly periodic provided that we “undo”
the final “irregular swap” and we have:

Enck = S ◦ E4 (11)

13. In particular, the encryption function Enck is an involution.
14. If the attacker has access to the encryption oracle, he can use it to decrypt

any message.

Y = Enck(X)

m

X = Enck(Y ).

15. Consequently the encryption function Enck can be distinguished from a
random permutation in constant time.

16. For every k X lies on a cycle of length exactly k for S ◦Enck if and only if X
also lies on cycle of length exactly k for S ◦Enck. This can be also obtained
using Fact 19 page 49.

17. X is a fixed point of S ◦ Enck if and only if X is also a fixed point for
S ◦ Enck.

18. The whole encryption function Enck has exactly 232 fixed points which are
exactly those for which the state is symmetric after the first 16 rounds.



138

The next question is what is the best key recovery attack on this version of
GOST. As we will see below, the most obvious (classical) slide and fixed point
attacks, provide an immediate reduction in the number of rounds. However key
recovery for 8 rounds is still far from being easy, even with the symmetry in the
key schedule and the particular “involution with a twist” structure S◦E = F−1◦
S◦F implied by the Family B keys, and key recovery remains difficult. Especially
in cases where the number of P/C pairs which can be obtained remains very
small. Better attacks will be obtained, because we will be able to obtain pairs for
4 rounds, and when we will study cyclic properties of E , and important involution
and reflection properties of E and discover many 128-bit keys are ‘weak’ w.r.t.
some previously studied weak key classes. All these properties provide multiple
very useful degrees of freedom for the attacker which we will exploit.

31.1 Basic Fixed Point Attacks on Family B Keys

First we present one simple attack on E which requires 264 KP. Later we will dis-
cover that E has some “very special” fixed points which allows attacks requiring
significantly less data.

Reduction 7 (Fixed Point Reduction for Family B). Given 264 known
plaintexts for GOST with keys being in Family B, it is possible to obtain two
P/C pairs for 4 rounds of GOST correct with probability of about 2−66 on
average.

Justification: Let A be a fixed point for 8 rounds. By definition we have:

E = S ◦ F−1 ◦ S ◦ F .

This function is expected to have only a few fixed points, and we recall that X
is a fixed point of E if and only if X is also a fixed point for E , cf. Fact 93. In
contrast S ◦ E has exactly 232 fixed points. We expect that for 63 % of keys in
Family B there exists a fixed point A with A = E(A) and very few other fixed
points. Then we can observe also that it is a fixed point for S ◦ Enck, which is
also expected to have only a very few fixed points, (as opposed to Enck which
has exactly 232 fixed points).

Thus a A can be easily guessed by the attacker given 264 KP. Unhappily we
also have fixed points of S ◦ Enck = E4 which are not fixed points of E , but
occur naturally. We consider that our fixed point for S ◦ Enck will correctly be
also a fixed point for E with probability of roughly about 2−1.5.

Then there exists B = F(A) such that we get two pairs for 4 rounds:
B = F(A) and B = F(A). These two pairs are distinct if neither B not A
are symmetric, which happens with high probability. Additionally, it is easy to
see that the overall event that there exist A,B where none of the two values is
symmetric, AND B = F(A) AND B = F(A) is likely to occur with probability at
least about 63 % over Family B keys (for other keys this attack fails). This can be
justified as follows There are still (264− 232)2 ≈ 2128 couples A,B where neither
A nor B are symmetric, and the equations B = F(A) AND B = F(A) will be

satisfied with probability about 2−128 in each case. And 1− (1− 1/N)
N ≈ 63%,

where N = 2128.



139

Finally we need also to guess B = F(A) and our guess will be correct with
probability 2−64. Overall we get two pairs for 4 rounds: B = F(A) and B = F(A)
which are correct and distinct with probability of about 2−66.

This Fact 7, will be used to recover keys for Family B.

Fact 94 (Fixed Point Attack for Family B). Given 264 known plaintexts for
GOST with keys being in Family B, the key can be computed in time equivalent
to 290 GOST encryptions. Memory is required only to store the 264 KP.

Justification: We use our Reduction 7 above and apply Fact 3: in each case the
128-bit key can be found in time of 224 GOST computations and with negligible
memory. Overall the key can be computed in time equivalent to 290 GOST
encryptions which is obtained as 224+66.

In what follows we are going to show an attack which is slightly slower but re-
quires significantly less data. This type of improved attacks are possible, because
E has another particularly interesting property.

31.2 On The Existence of Very Special Fixed Points for Family B

We have the following non-trivial fact:

Fact 95 (Special Symmetric Fixed Points for Family B). Given a GOST
key in Family B chosen at random the first 8 rounds F have a symmetric fixed
point with probability as large as about 2−0.7 this instead of a probability about
2−32 which we would expect for a random permutation.

Justification: We have
E = S ◦ F−1 ◦ S ◦ F .

We consider all the 264 possible pairs A,B such that both A and B are symmet-
ric. The probability that for a fixed pair A,B we have F(A) = B is 2−64. The

probability that there exists a pair A,B such that F(A) = B is 1−(1− 1/N)
N ≈

63%, where N = 264. Then, we exploit the fact A and B are both symmetric
and obtain:

E(A) = S(F−1(S(F(A)))) = S(F−1(B)) = S(A) = A.

Remark: Symmetric fixed points occur with high probability for any func-
tion which has about 232 or more fixed points, for example if it is of the form
G ◦ S ◦ G−1 or S ◦ G ◦ S ◦ G−1 or G ◦ S ◦ G−1 ◦ S etc. Consequently they also
occur for the function E ◦ S ◦ D for normal 256-bit keys, i.e. the last 16 rounds
of GOST. These points are precisely those which allowed to obtain and exploit
a double reflection in our attack in Section 17.

31.3 Fixed Point and Multiple Reflection Attacks

The main reason why keys in Family B are particularly weak is that, following
Fact 95, E has symmetric fixed points, which leads to fixed points for bigger
components such as E4, thus becoming detectable for the attacker. It is also a
multiple reflection attack: we are to create a double reflection in E which leads
to fixed points and further reflections inside E4.



140

Fact 96 (Family B vs. Family 0). A GOST key in Family B chosen at random
belongs to Weak Keys Family 0 with probability of about 2−0.7, instead of about
2−32 for a normal 256-bit GOST key chosen at random.

Justification: We recall that, by definition, the Weak Keys Family 0 are keys
such that E has a fixed point A which is symmetric, i.e. E(A) = A and A = A.
and we have already established, cf. Fact 95, that such symmetric fixed points
exist for E with very high probability ≈ 63% over all keys in Family B.

Fact 96 is a very interesting observation. In full 256-bit GOST, and in the
first “direct” method suggested by Biryukov and Wagner of using GOST with
128-bit keys, one could identify and break some weak keys which occurred with
probability 2−32. Here weak keys of Family 0, (also known from [75]) occur with
a very high probability, while the overall secret key is also shorter, of 128-bit
only. This will lead to a very good attack on GOST Family B of “inversed” keys,
which will work for 63 % of all such keys. For the remaining 37 % of Family B
keys this attack fails (but other attacks on Family B should still work).

How do we proceed to recover GOST keys? Here we could use the Fact 30:
for all Family 0 keys, given 232 CP, one can compute one P/C pair for 8 rounds
of GOST nearly for free, i.e. one which will be correct with very high probability
of about 2−1. Moreover, it is also possible to see that several such pairs could
be obtained with a non-negligible probability, this is because several pairs A,B
such that F(A) = B and A,B are symmetrical can exist (for a lower proportion
of Family B keys though). This leads to an attack just very slightly faster than
2128 GOST encryptions by direct application of Fact 6. We don’t study these
attacks because they are not very fast and slower than our previous fixed point
attack above (cf. Fact 94).

Instead, we are going to directly look at the question of getting P/C pairs for
4 rounds of GOST, which requires one to guess the (symmetric) value B. The
following result follows immediately:

Reduction 8 (Family B Reduction to 1 KP for 4R). Given a GOST key
in Family B chosen at random with probability of about 2−0.7 over the key, and
given 232 CP, one can obtain a P/C pair A,B for 4 rounds, where both A and
B are symmetric, and our guess will be correct with probability of 2−32

Justification: For every key in Family B, with probability of 0.63 ≈ 2−0.7 the
function E has at least one symmetric fixed point A, and it can be found given
on average only 231 CP and in the worst case twice that number. The value A
can be found by the attacker because it is also a fixed point for S ◦ Enck, and
the probability that S ◦ Enck has other fixed points which are symmetric, is
negligible.

Once the right A is identified with almost-certainty, we need also to guess
B = F(A) and our guess will be correct with probability 2−32. Overall we get
one pair for 4 rounds: B = F(A) where both A,B are symmetric, and our guess
is correct with probability 2−32.

Furthermore, with a non-negligible probability such an event can happen
twice:



141

Reduction 9 (Family B Reduction to 2 KP 4R). For a random key in
Family B, and given 232 CP, one can compute two distinct random couples A,B
and A′, B′ of four symmetric texts which satisfy F(A) = B and F(A′) = B′ for
4 rounds of GOST with overall probability of at least 2−66 over the choice of the
key and the choice of B and B′.

Justification: Only for some keys this can happen. We need to compute the prob-
ability that at least two distinct random couples A,B of symmetric texts satisfy
F(A) = B for 4 rounds of GOST. This is 1, minus the probability that none
of the N = 264 possible couples A,B satisfies F(A) = B, minus the probability
that exactly one out of N couples satisfies F(A) = B. This is equal to:

1− (1− 1/N)
N −

(
N

1

)
(1− 1/N)

N−1
(1/N)

1 ≈ 1− 2/e ≈ 26% ≈ 2−2,

then we guess B and B′ and obtain an overall probability of

(1− 2/e)2−32−32 ≈ 2−66.

For these 26% of keys in Family B where this can happen, the success prob-
ability is 2−64 and the key recovery is particularly easy. Here is how we proceed.

Fact 97 (Attack on Family B Keys). For a fraction of at least 0.26 ≈ 2−2

keys in Family B, given 232 CP, the attacker can break GOST in total time of
about 291 GOST computations. The memory required is to store the 232 texts.

Justification: First we need to find all the points for 32 rounds such that Enck(A) =
A. The time to do it is only about 232 steps, which in practice is significantly
less than 232 GOST encryptions.

We expect that on average about 5 such points will be found, 2 arising due
to our attack, and three more totally unrelated fixed points are expected an
average for any 4-fold iterated permutation such as E4. We refer to see [20, 85,
23, 24] for detailed work and explanations on fixed point statistics in iterated
permutations: one fixed point on average is expected for any permutation, and
two more on average will be inherited, as being fixed points for E and for E2.

In order to filter out the fixed points which are useful for the attack we need
to check typically about

(
5
2

)
≈ 23 cases. This allows us to identify the right

subset of points {A,A′}. For each case (A,A′) out of about 23 cases which we
need to check,we guess B and B′. Then we apply Fact 3 to these two pairs for
4 rounds F(A) = B and F(A′) = B′ and recover the key in time of 224 GOST
encryptions. Each key candidate is then checked against additional P/C pairs
for 32 rounds, and the number of false positives which need to rejected is about
266, and the time needed to reject them is negligible compared to 224. Thus the
total complexity of our attack is about 232+32+3+24 ≈ 291 GOST computations.

31.4 Cycling Attacks vs. Slide Attacks on Family B Keys

The simplest (classical) form of slide attacks applies for ciphers with perfect
periodicity, where the whole encryption process is a k-th iteration of a smaller
component E . They work by guessing certain P/C pairs for a reduced-round
cipher, and getting additional pairs through sliding, see [58, 7, 8].



142

However when the block size is smaller that the key size, the sliding attack
are not very good, because it is possible to obtain P/C pairs for the smaller
component E without guessing any initial relations on E . This can be done
directly by exploiting the cycles for the permutation E which can be easily com-
puted and analysed. We are going to describe and apply this method here, and
we will discover that in the case of this particular E , it is much easier than for
other permutations with similar structure and key size. This is because particu-
lar permutation has an anomalous cycle structure, where all cycles have lengths
much shorter that expected. This in turn being due to the internal structure of
E . We have the following result:

Fact 98 (Cycle Structure of E for Family B). Let E = S◦F−1◦S◦F where
F is an arbitrary keyed permutation. The typical cycle for E , by which we define
the cycle on which we are likely to be if start from a random point X has about
232 points, instead of about 263 for a random permutation. The chances that X
is on a cycle with much higher size are very small sizes of at least 232+t occur
with probability which decreases very quickly with t at a double exponential
speed.

Justification: This fact is due to the fact that if we iterate E , and if a reflection
occurs inside one of S functions, by which we mean that we encounter a symmet-
ric value, and this S has no effect, then further iteration is going to effectively
undo, step by step, all the previous steps. More precisely, we recall from Fact
93.9. that for every k ≥ 0 there exists H such that we have

S ◦ Ek = H−1 ◦ S ◦ H
and moreover we have the following precise decomposition:{

S ◦ Ek = E−l ◦ S ◦ E l when k = 2l

S ◦ Ek = E−l ◦ F−1 ◦ S ◦ F ◦ E l when k = 2l + 1

Depending on which S the reflection occurs, we will be in the first and or the
other case, and it is obvious that E will start going backwards revisit all points
previously visited or their symmetric images, and return to the initial point or its
symmetric image, after a reflection and the same number of steps. In other words,
given any starting point X, and for a random k, we have S◦Ek = H−1◦S◦H, and
if we consider all possible k = 1, 2, 3, . . . 231 with a large probability p a reflection
will occur for some k and we will obtain that Ek(X) = X for one k ≥ 231. We
can note that since E has two applications of S each, this probability p is already
about 60 % for 231 applications of E . Then this process continues until another
reflection occurs, and further applications of E will join the initial path and
form a complete cycle. Thus we get cycles with two reflection points, and with
overall expected cycle size being about 232. Moreover cycles much longer than
232 are unlikely to happen: the chances that X is indeed on a cycle with size of
at least 232+t = 2t+1 · 231 will decrease double exponentially fast with t, because
a segment of size 231+1+t without any reflection occurs with probability p2

t+1

.
Remark 1: Reflections can occur on boundaries of E , or inside some E with

E(Z) = Z for this particular application of E . Generally we expect to have two
reflections inside each cycle, this cannot however be guaranteed, there may be



143

shorter cycles which contain one or zero reflections, which are natural cycles
which occur by chance.

Remark 2: The cycle structure of E is rich and fascinating. From our proof
it follows that we expect that very frequently but not always, the points X and
X will lie on the same cycle. It also happens in Fact 95 which is a special case
with a very short cycle, with one symmetric point. For example, this will happen
each time a reflection occurs inside one of the applications of E with E(Z) = Z
at this point. Indeed if E(Z) = Z for at least one point Z lying on a given cycle,
then it is possible to see that for every point T lying on this cycle, T is also
on the same cycle and moreover the points are visited in exactly the opposite
direction when walking on the cycle. This comes from the fact that S ◦ Ek is an
involution and S ◦ Ek = E−k ◦ S, cf. Fact 93.8. Thus we have if E(Z) = Z then
for any k ∈ IN we have S(Ek+1(Z)) = E−k(S(E(Z))) = E−k(Z).
More generally, if just for one point on the cycle Z the point Z lies on the
same cycle, for all points on this cycle, their symmetric image lies on the same
cycle. The proof is the same as above: if Ek(Z) = Z then S(Em+k(Z)) =
E−m(S(Ek(Z))) = E−m(Z). In particular if k is even k = 2l this gives us a
situation where S ◦ Ek = E−l ◦ S ◦ E l and the reflection occurred at the border
of E l(Z), while previously we have seen one example where a reflection occurred
inside E . Both cases are possible therefore.

Remark 3: There are also rare cases where the points X and X will lie on
two distinct cycles. For example this happens in Reduction 7 where X and X are
two distinct fixed points for E . Moreover in the case when the points X and X lie
on two distinct none of these cycles contains any symmetric point, and none of
these cycles contains any couple of points Z,Z which would already force the two
cycles to merge, as shown above. Then it is easy to see, that both these cycles
are of the same size and contain exactly the symmetric images of all the points
from the other cycles, visited in exactly the order but in the opposite direction.
We call this situation ‘twin cycles’. Moreover none of these cycles contains any
reflection, because this will lead for the two ‘twin cycles’ to merge totally, as
shown above. This means that this situation of disjoint ‘twin cycles’ is quite rare
and occurs only for small cycles without any reflection whatsoever, which are a
small minority of cycles.

Remark 4: Thus for a great majority of cycles, if the size of the cycle is
odd, and if it contains all the symmetric images of all the points, it means that
the cycle must contain an odd number of symmetric points, otherwise the size
would be even. However because we expect that there are two reflection points
we expect that one reflection occurs on a boundary of E and a second reflection
occurs inside some E , and there is no more reflections and no more symmetric
points.

31.5 A Simple Cycling Attack on Family B Keys

In the real life the attacker does not have access to E but to E4. This however
allows in many interesting cases to easily reconstruct whole cycles for E and thus
get many P/C pairs for 8 rounds without any effort. More precisely:



144

Reduction 10 (Cycling Reduction for Family B). Given 232 chosen plain-
texts for GOST with keys being in Family B, it is possible in time of roughly
232 operations, to obtain about 232 P/C pairs for E which are simultaneously
correct with overall probability of about 2−1.

More precisely, for any point X chosen by the attacker, with probability at
least 1/2 over X, we can compute a cycle which contains X, and be able to
compute Ek(X) for any k ∈ ZZ.

Justification: Let T ≈ 232 be the size of the cycle on which lies the point X
for the permutation E . Moreover, with probability 1/2 over X this integer T is
odd and GCD(T, 4) = 1. We have verified experimentally with random GOST
keys from Family B and with many random starting points X that T ≈ 232 is
a reasonable assumption and that the probability that T is odd, is indeed large
enough and close to 1/2 so that our attack will work.

We recall that E4 = S ◦ Enck therefore the attacker has access to E4. The
attacker starts with X0 = X and computes:

Xi+1 = S(Enck(Xi)) = E4(Xi)

The attacker obtain thus a cycle the size of which divides T and if T is odd,
we have GCD(T, 4) = 1 and the cycle size for E4 is equal to T . Moreover we are
in a cyclic group of a known size and can easily compute E for any point lying
on our cycle:

E(A) = (E4)d(A)

where we define d = 4−1 mod T in the same way as in the RSA cryptosystem.
Thus in total time of essentially 232 steps, the attacker can compute a table of
232 P/C pairs for 8 rounds of GOST E .

Remark 1: The attacker is not able to see if T is odd, but if T is odd,
which happens with probability of about 2−1 then his resulting table of about
232 values for E is going to be correct.

Remark 2: There will be cases when T = 2U and U odd, and the attacker
will see a sub-cycle of length U , and can be mistaken to believe that T = U ,

Remark 3: It is possible to see that if at the start we choose X symmetric,
it increases the probability that the cycle size T will be odd and thus results in
a higher probability that our attack will work.

This Reduction 10 will be used to recover keys for GOST Family B given
only 232 chosen plaintexts. This is done as follows.

Fact 99 (Cycling Attack for Family B). For any GOST key in Family B and
given about 233 CP we can recover the key in time of 289 GOST computations.

Justification: We apply Reduction 10, start from a symmetric value X, and
obtain about 232 P/C pairs for E which are simultaneously correct with overall
probability of about 2−1. This in time of roughly 232 operations.

Then we need to guess the internal value for just one application of E such
that E(Z) 6= Z which guarantees that if we guess the internal value, we will
obtain two distinct P/C pairs for 4 rounds. The we apply Fact 3: the 128-bit key
can be found in time of 224 GOST computations and with negligible memory.



145

On average we need to repeat the attack for 21 distinct cycles hoping that T
is odd for one of them. Overall the key can be computed in time equivalent to
about 21+64+24 ≈ 289 GOST encryptions.

31.6 Fine Improvements On The Solver Side

Until now, in our attacks on Family B keys, we only used the very simple Fact 3
in the final stage of the attack. However, in many specific cases, finer and faster
algebraic attacks with SAT solver software can be found, leading to an overall
faster key recovery attack on this version of GOST with 128-bit keys. We have
the following result:

Fact 100 (Key Recovery for 4 Rounds and 3 KP with symmetric ci-
phertexts). Given 3 plaintexts for 4 rounds of GOST for which we know that
the corresponding ciphertext is symmetric, one can produce a list of 232 can-
didates for the the full 128-bit key, one of which is the correct key, in time
equivalent to 278 GOST encryptions on the same software platform. The mem-
ory requirements are very small. The attack works with a similar complexity for
any choice of GOST S-boxes.

Justification: This is an experimental result. In this attack we do not know the
ciphertext for any of the 3 plaintexts, but we assume it is symmetric, which gives
32 bits of information about this ciphertext. Furthermore we guess 57 bits of
information as follows: we guess 32 bits of information about the first symmetric
ciphertext, 25 bits of information about the second symmetric ciphertext, and
0 bits of information about the third symmetric ciphertext. This method of
guessing bits un-evenly is the one which experimentally works the best. Then
the key can be recovered in 2 seconds, which is about 221 GOST encryptions on
the same PC. Overall the complexity including the guessing phase is 221+57 = 278

GOST encryptions on the same PC. Given that the symmetry of the 3 ciphertexts
provides 96 bits of information about the 128-bit key, the attack will produce
roughly about 232 − 1 false positives.

This will lead to an important improvement in the running time of our best
attack so far (cf. Fact 99).

Fact 101 (Improved Cycling Attack for Family B). For any GOST key in
Family B and given about 235 CP we can recover the key in time of 281 GOST
computations.

Justification: As in the previous attack, each time we apply Reduction 10, we
start from a symmetric value X, and obtain about 232 P/C pairs for E which
are simultaneously correct with overall probability of about 2−1 (only if T was
odd). This in time of roughly 232 operations, each time.

Here on the contrary to the last attack given in Fact 99, we will be interested
in pairs with E(Z) = Z, while in addition Z being not symmetric. Each time
we do the above steps, we expect to find one such value on average, for each set
of 232 CP used in cycling. In these cases, due to the structure of E we get one
plaintext for 4 rounds for which the ciphertext after 4 rounds is symmetric (but
unknown).



146

We need to repeat this 3 times, moreover we need that T is odd simulta-
neously in all the 3 cases. Therefore we need to about 6 sets of 232 CP, out of
which we need to select three for which all T are odd, which requires on average
23 trials, and for each trial we apply Fact 100 to get a list of 232 possible keys in
time equivalent to 278 GOST encryptions. Overall we get a list of 232+3 possible
keys in time equivalent to 278+3 GOST encryptions. In a further step of the
attack we check all these keys against some pairs for 32 rounds, which (as usual)
takes negligible time compared to 278+3 GOST encryptions.

Overall our attack finds the right 128-bit key given less than 235 CP and in
time of 281 GOST encryptions.



147

31.7 Summary of Results on Family B and Other 128-bit Keys

In the following table we compare various attacks with focus on both families of
128-bit keys studied and comparison to some other families of keys.

Key size/type 256 Direct128 Inversed128

Key family Regular Family 8.1 Family 0’ Fam. B, Sec. 31 and also in [30]

Reduction cf. DC Fact 76 Red. 6 / [30] Red. 7 Red. 9 Reduction 10

Attack [39, 40] Fact 77 Fact 90 Fact 94 Fact 97 Fact 99 Fact 101

The density d 1 2−98 2−160 2−129 2−130 2−129

From (data 32 R) 264 KP 232 CP 232 CP 264 KP 232 CP 233 CP 235 CP

Obtained 8R - 3 KP 1 ≥ 2 ≥ 2 232 233

Selected 8R - 3 KP - 1 2 1 3

Valid w. prob. - 20 - 2−2 2−2 2−1 2−3

Obtained 4R - 1 2 2 2 3/2

Valid w. prob. - 2−1 2−66 2−66 2−65 2−3

Storage bytes 270 small - 267 235 236 238

] False positives large 264 264 264 small 264 232

Attack time 32 R 2179 2120 265 290 291 289 281

Cost of 1 key, if 2179 2120 266 291 293 290 283

key diversity ≥ 1 298 232 20.7 22 21 22

Table 6. Comparison of our attacks on 128-bit keys compared to some other attacks

Comparison of Different Attacks on Family B Keys: In this paper
we presented 4 different attacks on GOST keys of Family B with similar time
complexity. Our first attack (cf. Fact 94) required 264 KP which is not very
realistic. Our second, third and fourth attack require only about 232 CP. Our
third and fourth result (cf. Fact 99 and Fact 101) are better than the second
result because they work for arbitrary Family B keys, not 26% of them as in the
second result (cf. Fact 97). Then the time complexity gets smaller in each case
with a moderate increase in data complexity. This last improved attack of Fact
101 is arguably now the best known attack on GOST Family B, and currently
will also be the best known attack with key density d = 2−128, cf. Table 4 page
128.

We omit possible improvements to the second result (cf. Fact 97) by using
also Fact 100, which will not be very interesting because it would work even for
a smaller fraction of keys than 26% while our best attack works for all keys.

Note: Our principal (but not all) attacks on 128-bit keys also appear in [30].



148



Part VIII

How Secure Is GOST?





151

32 Should GOST Become An International Encryption
Standard?

In 2010 GOST was submitted to ISO to become a worldwide encryption stan-
dard. Should it be standardized? There are two quite different points of view on
this question.

From the cryptography research point of view we have broken GOST, and
many algorithms have been rejected by various standardization bodies for sig-
nificantly less than an actual key recovery attack faster than brute force.

However it does NOT mean that GOST should not be used. In practice, in
a pragmatic perspective, GOST with full 256-bit keys generated at random re-
mains still impossible to decrypt in practice. It remains a particularly economical
cipher in terms of gate count complexity in hardware implementation, cf. [83],
and thus suitable for resource-constrained environments such as smart cards and
RFID.

From the standardization point of view however, given the fact that academic
standards for block ciphers tend to be very high, and a provision should be
made for further improvements in cryptanalysis, GOST should not be used in
applications which require high security. In particular, it should never be used
by banks (at least two sets of GOST S-boxes have been explicitly identified as
being used by Russian banks cf. [101, 70]). Very few encryption algorithms have
ever been standardized by ISO. The international standard ISO/IEC 18033-3
specifies the following algorithms. Four 64-bit block ciphers: TDEA, MISTY1,
CAST-128, HIGHT, and three 128-bit block ciphers: AES, Camellia, SEED.
Recently PRESENT was also added to the same standard.

To summarize, GOST can be used and the risks remain quite low however it
is clear that ISO should not standardize GOST, as this algorithm is structurally
flawed, and does not provide the very high security level required by ISO.



152

33 Conclusion

The Russian encryption standard GOST is implemented in OpenSSL and other
crypto libraries [70, 105, 88], used by Russian banks, and increasingly also on the
Internet. It appears that GOST has a lower gate count than any comparable
cipher, cf. [83]. In 2010 GOST was submitted to ISO to become an international
standard. Given the 256-bit key size of GOST, and the large number of 32
rounds, GOST is expected to remain secure for many decades to come. Until
2011, no shortcut attack allowing to recover individual GOST keys faster than
brute force was found.

The general idea of Algebraic Cryptanalysis (also known as the method of
“Formal Coding”) has been around for more than 60 years [102, 71]. Yet only
in the last 10 years several efficient software tools for solving various NP-hard
problems involved have been developed, while numerous specific vulnerabilities
leading to efficient attacks of this type have been found. A number of stream
ciphers are indeed broken [16, 13, 14]. However for block ciphers only a few rounds
can be broken, see [19], and only one full-round real-life block cipher KeeLoq
could so far be shown to be weak enough, to be broken using an algebraic attack
[20]. This was due to self-similarity of large encryption blocks in this cipher. The
same sort of self-similarity is found in the Russian GOST. Can we break full 32-
round GOST by an algebraic attack? Can we ever hope to apply algebraic attacks
to modern ciphers with many more rounds knowing that they may be able to
deal with low quantities of data but only produce attacks with few rounds?

In this paper we introduce a general framework which allows one to reduce
an attack on a block cipher with many rounds to an attack on a cipher with less
rounds. We call it Algebraic Complexity Reduction. In order to achieve our
complexity reduction we need to solve a certain combinatorial puzzle. With well-
chosen equalities on internal values, we are able to literally break the cipher apart
into smaller pieces. This greatly reduces the complexity of the cipher as a circuit
but leaves the attacker with extremely few data pairs for the reduced cipher. Very
few low-data complexity attacks are known: mostly software “algebraic attacks”
and meet in the middle attacks (MITM). In this paper and in [35] we present a
dozen of highly competitive results obtained by combination of these techniques,
cf. also [32]. For regular GOST keys and single key attacks we obtain five non-
trivial black-box complexity reductions on full GOST which are summarized in
Table 3 on page 53.

In this paper we considerably enlarge the spectrum of self-similarity attacks
on block ciphers. Our attacks generalize many already known fixed point, sliding,
reflection and involution attacks. We are able to exploit similarities of individual
sub-blocks and their inverses. We are the first to propose attacks with double
triple and quadruple reflection. We are able to relax the conditions necessary
in slide attacks [58, 7, 8, 6, 57] in nearly arbitrary ways. We use fixed points in
innovative ways, different than in previous fixed point attacks (cf. [20, 75]). We
present numerous attacks on GOST which don’t use any reflections [74, 75, 77,
76] whatsoever. In Section 25 we combine all these with advanced differential
attacks and in Section 26 we will exploit multi-point differential properties.



153

In this paper we present some 50 different new attacks on GOST which are
faster than brute force in the single or the multiple key scenario and many
additional attacks. The last step of these attacks have been very substantially
improved in the last 2 years. Many very good results are now obtained through
highly optimized strategies inspired by MITM attacks, a careful analysis of the
internal connections inside the cipher, and software attacks with a SAT solvers.
Several of our new attacks described in this paper achieve substantially lower
memory requirements and faster running times than known MITM attacks, cf.
[50, 35, 32], see Section 9 and Appendix 12.

For single key attacks, six of our attacks are shown in Table 3 on page 53
and are compared to other known attacks in Table 7 below. The fastest single
key attack on GOST in this paper requires 264 known plaintexts and 2191 GOST
computations. The fastest single-key attack on GOST known is in 2179 cf. [39,
40].

Attack Ref. Red.1 §15.1 §15.3/[50] §18.1/[50] Red. 3 §17 [39, 40]

Type Internal Reflection Refl+MITM FP+MITM 2x Refl. DC

Data 232 KP 232 KP 264 KP 264 KP 264 KP

Memory bytes 2132 small 246/239 246/239 267 270

Time 2224 2227 2223/2224 2191/2192 2206 2179

Table 7. Principal single key attacks on GOST

33.1 Conclusion - Multiple Key Attacks

Ciphers are not used in practice with single keys, on the contrary. The multiple
key scenario is how ciphers are used in practice. In order to evaluate the security
of GOST in this scenario, we have done an extensive study of weak key classes
in GOST which are made possible by our complexity reduction methodology.
It is a very complex picture and our key results are summarized in Table 4 on
page 128. We deliberately compare these attacks to single key attacks. Many of
these new weak key classes occur with probability which is high enough, or/and
lead to significantly faster attacks than with regular keys. Many other attacks
beat best regular attack on running time also when the keys are not weak.
In order to achieve this, we consider a realistic scenario of encryption with a
population of devices with random diversified keys, with weak keys occurring
naturally. This allows compare all the attacks on one single scale. Thus we are
able to break full GOST in overall total time of about 2159, and more recently
even 2101, which includes checking all the keys and breaking one of the weaker
keys (this attack also appears in [34]). These have now become the best attacks
on GOST ever found in the general multiple key scenario. If the computing
ressources are bounded, an attack which finds one key in time 2101 or less is
infinitely better and more realistic than all single key attacks on GOST known:
2192 with 264 of data by Shamir et al [50] and 2179 with 264 of data by Courtois
[39, 40].

In later 2012 there were many new attacks and important improvements to
older attacks. Many attacks now require only 232 of data per key, e.g. Section



154

22.1. Many recent attacks allows for early rejection of non-weak keys in the
multiple key scenario which leads to many surprisingly realistic and powerful
attacks. For example the recent attack on GOST proposed by Kara and Karakoç,
cf. Section 23.2 and [77] can be extended to the multiple key scenario as we define
it in this paper and achieves an attack with time of about 213X per key, 296 data
overall and only 232 of data per key.

Additionally, in Section 25 we introduce a new family of differential/complexity
reduction attacks on GOST which exploits differential cryptanalysis, reflection,
fixed points and/or involution properties simultaneously, which creates addi-
tional degrees of freedom for the attacker and allows to enhance existing at-
tacks. For example with Family 5.3 we obtain 2139 GOST encryptions per key
with only 284 of data total and only 232 of data per key. Furthermore we dis-
covered new forms of advanced combined self-similarity attacks. In Section 26
we introduced a new notion of approximate fixed point biclique, which is a
single-key advanced invariant simultaneous truncated differential property which
can be defined for 2,3,4 and more plaintexts. With these new techniques with
Family 5.4 we obtain 2113 per key with 2107 of data total. Our Family 8.1 can
be now modified to reduce the cost per key to 2111 with 2110 of data overall and
only 232 of data per key, and with Family 8.4. we can achieve even faster time
of 2101 with 2111 of data cf. Fact 89 page 127 which attack also appears in [34].
Thus we obtain an attack with a total cost being a remotely feasible total
cost of 2101 GOST encryptions per key for 256-bit keys generated at
random given some 2111 of data overall and yet only 232 of data per key.

In addition, in this paper we also present several attacks on some major
reduced key size variants of GOST. Both “natural” methods of using GOST
with 128-bit keys which were previously suggested in the literature [8] are shown
to be broken in practice. With the “inversed” method we can recover arbitrary
128-bit keys within 281 GOST encryptions and given 235 CP, cf. Fact 101. With
the “direct” method we can identify and break only certain (weak) keys in overall
time of 265 GOST encryptions, and 232 CP, cf. Fact 91 in Section 30. Which again
leads to two attacks on arbitrary random 128-bit keys which can be recovered in
total time of 266 GOST encryptions per key. Our results on 128-bit GOST are
summarized in Table 6 on page 147.

Most of our attacks are expected to work for any choice of GOST S-boxes
but some have been optimized in just one case. Since most of our attacks require
large quantities of data and the time complexities remain astronomical, they do
not threaten practical applications of GOST with random 256-bit keys. However
our methods and results could have a very significant impact on decryption of
messages encrypted with some weaker variants of GOST, if such variants of
GOST are used in practice.



155

References

1. Martin Albrecht: Algebraic Attacks against the Courtois Toy Cipher, In Cryptolo-
gia, Vol. 32, Iss. 3 July 2008 , ppp. 220–276.

2. Martin Albrecht and Gregor Leander: An All-In-One Approach to Differential
Cryptanalysis for Small Block Ciphers, preprint available at eprint.iacr.org/

2012/401/.
3. Ludmila K. Babenko, Evgeniya Ishchukova, Ekaterina Maro: Research about

strength of GOST 28147-89 encryption algorithm, In SIN 2012: pp. 138-142, ACM,
2011.

4. Ludmila K. Babenko, Evgeniya Ishchukova, Ekaterina Maro: Algebraic analysis of
GOST encryption algorithm, In SIN 2011, pp. 57-62, ACM, 2011.

5. Lyudmila K. Babenko, Evgeniya Ishchukova: Differential analysis of GOST en-
cryption algorithm, In SIN 2010, pp. 149-157, ACM, 2010.

6. Eli Biham, Orr Dunkelman, Nathan Keller: Improved Slide Attacks, In FSE 2007,
LNCS 4593 Springer 2007, pp. 153-166.

7. A. Biryukov, D.Wagner: Slide Attacks, In proceedings of FSE’99, LNCS 1636, pp.
245-259, Springer, 1999.

8. Alex Biryukov, David Wagner: Advanced Slide Attacks, In Eurocrypt 2000, LNCS
1807, pp. 589-606, Springer 2000.

9. Alex Biryukov: Analysis of Involutional Ciphers: Khazad And Anubis, In FSE
2003, pp. 45-53 LNCS.

10. Eli Biham, Adi Shamir, Differential Cryptanalysis of DES-like Cryptosystems,
Journal of Cryptology, vol. 4, pp. 3-72, IACR, 1991.

11. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger: Biclique
cryptanalysis of the full AES, In Asiacrypt 2011, LNCS 7073, pp. 344-371, 2011.

12. Nicolas Courtois and Josef Pieprzyk: Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287, Springer.

13. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, LNCS 2656, pp. 345-359, Springer. An extended version
is available at http://www.minrank.org/toyolili.pdf

14. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Crypto 2003, LNCS 2729, pp: 177-194, Springer.

15. Nicolas Courtois CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited
Available at http://eprint.iacr.org/2007/152/.

16. Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4, LNCS 3373, pp. 67-83, Springer,
2005.

17. Gregory V. Bard, Nicolas T. Courtois and Chris Jefferson: Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomi-
als over GF(2) via SAT-Solvers, http://eprint.iacr.org/2007/024/.

18. Nicolas Courtois: 100 years of Cryptanalysis: Compositions of Permutations slides
about cryptanalysis of Engima and block cipher cryptanalysis, used teaching
GA18 Cryptanalysis course at University College London 2014-2016, http://www.
nicolascourtois.com/papers/code_breakers_enigma_block_teach.pdf

19. Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryp-
tion Standard, In Cryptography and Coding, 11-th IMA Conference, pp. 152-169,
LNCS 4887, Springer, 2007. Preprint available at eprint.iacr.org/2006/402/.

20. Nicolas Courtois, Gregory V. Bard, David Wagner: Algebraic and Slide Attacks on
KeeLoq, In FSE 2008, pp. 97-115, LNCS 5086, Springer, 2008.



156

21. Nicolas Courtois, Gregory V. Bard and Andrey Bogdanov: Periodic Ciphers with
Small Blocks and Cryptanalysis of KeeLoq, In Tatra Mountains Mathematic Pub-
lications, 41 (2008), pp. 167-188, post-proceedings of Tatracrypt 2007 conference,
The 7th Central European Conference on Cryptology, June 22-24, 2007, Smolenice,
Slovakia.

22. Nicolas Courtois: Self-similarity Attacks on Block Ciphers and Application to
KeeLoq, In Cryptography and Security: From Theory to Applications - Essays
Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th Birthday. LNCS
6805, Springer, 2012, pp. 55-66, David Naccache editor.

23. Nicolas T. Courtois and Gregory V. Bard: Random Permutation Statistics and
An Improved Slide-Determine Attack on KeeLoq, In Cryptography and Security:
From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater on
the Occasion of His 65th Birthday. LNCS vol. 6805, Springer, 2012, pp. 35-54,
David Naccache editor.

24. Gregory V. Bard, Shaun V. Ault and Nicolas T. Courtois: Statistics of Random
Permutations and the Cryptanalysis Of Periodic Block Ciphers, In Cryptologia,
Vol. 36, Issue 03, pp. 240-262, July 2012.

25. Nicolas Courtois and Blandine Debraize: Algebraic Description and Simultaneous
Linear Approximations of Addition in Snow 2.0., In ICICS 2008, 10th International
Conference on Information and Communications Security, 20 - 22 October, 2008,
Birmingham, UK. In LNCS 5308, pp. 328-344, Springer, 2008.

26. Nicolas T. Courtois, Pouyan Sepherdad, Petr Susil and Serge Vaudenay: ElimLin
Algorithm Revisited, In FSE 2012, LNCS, Springer.

27. Nicolas Courtois: Security Evaluation of GOST 28147-89 In View Of International
Standardisation, in Cryptologia, Volume 36, Issue 1, pp. 2-13, 2012. An earlier
version which was officially submitted to ISO in May 2011 can be found at http:

//eprint.iacr.org/2011/211/.
28. Nicolas Courtois: Cryptanalysis of GOST, a very long extended sets of slides

about the cryptanalysis of GOST, 2010-2014, http://www.nicolascourtois.com/
papers/GOST.pdf. An earlier and shorter version was presented at 29C3, see [29].

29. Nicolas Courtois: Cryptanalysis of GOST, (Security Evaluation of Russian GOST
Cipher; Survey of All Known Attacks on Russian Government Encryption Stan-
dard. ) Presentation at 29th Chaos Communication Congress (29C3), December
27th to 30th, 2012, Hamburg, Germany, http://events.ccc.de/congress/2012/
Fahrplan/attachments/2243_GOST_29C3_long.pdf
A video is available on: www.youtube.com/watch?v=o_sP0qJam-4
An MP3 audio recording is available at: http://blademp3.com/mp3/4709a02_

Security-Evaluation-of-Russian-GOST-Cipher.html.
30. Nicolas Courtois: Cryptanalysis of Two GOST Variants With 128-bit Keys, In

Cryptologia vol. 38(4), pp. 348-361, 2014. At http://www.tandfonline.com/doi/

full/10.1080/01611194.2014.915706.
31. Nicolas Courtois: Faster Attacks on Full GOST, A short presentation given

at FSE 2012 rump session, available at http://fse2012rump.cr.yp.to/

9c19b743f2434a74b3a0d3e281b52b01.pdf.
32. Nicolas Courtois, Jerzy A. Gawinecki, Guangyan Song: Contradiction Immunity

and Guess-Then-Determine Attacks On GOST, In Tatra Mountains Mathematic
Publications, Vol. 53 no. 3 (2012), pp. 65-79.

33. Nicolas T. Courtois: Cryptanalysis of GOST In the Multiple Key Scenario,
In post-proceedings of CECC 2013, Tatra Mountains Mathematical Publica-
tions. Vol. 57, no. 4 (2013), p. 45-63. At http://www.sav.sk/journals/uploads/

0124133006Courto.pdf



157

34. Nicolas Courtois: On Multiple Symmetric Fixed Points in GOST, In Cryptologia,
Volume 39, Issue 4, 2015, pp. 322-334, http://www.tandfonline.com/doi/full/
10.1080/01611194.2014.988362.

35. Nicolas T. Courtois: Low-Complexity Key Recovery Attacks on GOST Block Ci-
pher, In Cryptologia, Volume 37, Issue 1, pp. 1-10, 2013.

36. Nicolas Courtois, Micha l Misztal: Aggregated Differentials and Cryptanalysis of
PP-1 and GOST, In CECC 2011, 11th Central European Conference on Cryptol-
ogy. In Periodica Mathematica Hungarica Vol. 65 (2 ), 2012, pp. 1126, Springer.

37. Nicolas Courtois, Micha l Misztal: First Differential Attack On Full 32-Round
GOST, in ICICS’11, pp. 216-227, Springer LNCS 7043, 2011.

38. Nicolas Courtois, Micha l Misztal: Differential Cryptanalysis of GOST, In Cryptol-
ogy ePrint Archive, Report 2011/312. 14 June 2011, http://eprint.iacr.org/
2011/312.

39. Nicolas Courtois: An Improved Differential Attack on Full GOST, in “The New
Codebreakers a Festschrift for David Kahn”, LNCS 9100, Springer, 2015.

40. Nicolas Courtois: An Improved Differential Attack on Full GOST, In Cryptology
ePrint Archive, Report 2012/138. 15 March 2012, updated September 2015, http:
//eprint.iacr.org/2012/138.

41. Nicolas Courtois, Theodosis Mourouzis, Anna Grocholewska-Czurylo and Jean-
Jacques Quisquater: On Optimal Size in Truncated Differential Attacks, In
CECC 2014, Budapest, Hungary, 21 - 23 May 2014. Slides presented: http:

//www.nicolascourtois.com/papers/GOST_CECC2014.pdf. Post-proceedings in
print (Studia Scientiarum Mathematicarum Hungarica).

42. Nicolas T. Courtois, Theodosis Mourouzis, Micha l Misztal, Jean-Jacques
Quisquater, Guangyan Song: Can GOST Be Made Secure Against Differential
Cryptanalysis?, In Cryptologia, vol. 39, Iss. 2, 2015, pp. 145-156.

43. Nicolas T. Courtois, Theodosis Mourouzis: Advanced Differential Cryptanalysis
and GOST Cipher, accepted for a 30 minute oral presentation at the 3rd IMA
Conference on Mathematics in Defence At Tom Elliott Conference Centre, QinetiQ,
Malvern, UK on Thursday 24 October 2013. 6-pages paper in CD-ROM and web
proceedings planned.

44. Nicolas T. Courtois, Theodosis Mourouzis: Enhanced Truncated Differential
Cryptanalysis of GOST, in SECRYPT 2013, Reykjavik, July 2013, http://www.
nicolascourtois.com/papers/sec13.pdf

45. Nicolas T. Courtois, Theodosis Mourouzis: Propagation of Truncated Differentials
in GOST, in proc. of SECURWARE 2013, http://www.thinkmind.org/download.
php?articleid=securware_2013_7_20_30119

46. Nicolas T. Courtois, Daniel Hulme and Theodosis Mourouzis: Solving Circuit Op-
timisation Problems in Cryptography and Cryptanalysis, In (informal) proceed-
ings of SHARCS 2012 workshop, pp. 179-191, http://2012.sharcs.org/record.
pdf. Earlier preprint is available at, http://eprint.iacr.org/2011/475, and an
abridged version appears in the electronic proceedings of the 2nd IMA conference
Mathematics in Defence 2011, UK.

47. Nicolas Courtois, Theodosis Mourouzis: Black-Box Collision Attacks on the Com-
pression Function of the GOST Hash Function, appears in 6th International Con-
ference on Security and Cryptography SECRYPT 2011.

48. Charles Bouilleguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, Pierre-Alain
Fouque: Low Data Complexity Attacks on AES, Cryptology ePrint Archive, Report
2010/633. http://eprint.iacr.org/2010/633/.



158

49. Gustaf Dellkrantz: Cryptanalysis of Symmetric Block Ciphers, Break-
ing Reduced KHAZAD and SAFER++, Royal Institute of Technol-
ogy, Sweden, supervised by Johan H̊astad and Christophe De Cannière,
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2003/

rapporter03/dellkrantz_gustaf_03110.pdf

50. Itai Dinur, Orr Dunkelman and Adi Shamir: Improved Attacks on Full GOST,
FSE 2012, LNCS 7549, pp. 9-28, 2012, early version available at http://eprint.

iacr.org/2011/558/.

51. Itai Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir: Reflections on Slide
with a Twist Attacks, 16 Oct 2014, At https://eprint.iacr.org/2014/847

52. Ali Doģanaksoy, Bariş Ege, Onur Koçak and Fatih Sulak: Cryptographic Random-
ness Testing of Block Ciphers and Hash Functions, In http://eprint.iacr.org/

2010/564.

53. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

54. Philippe Flajolet, Robert Sedgewick Analytic Combinatorics , Cambridge Univer-
sity Press.

55. I. J. Good and Cipher A. Deavours, Afterword to: Marian Rejewski, ”How Polish
Mathematicians Deciphered the Enigma”, Annals of the History of Computing, 3
(3), July 1981, 229-232.

56. Fleischmann Ewan, Gorski Michael, Huehne Jan-Hendrik, Lucks Stefan: Key re-
covery attack on full GOST block cipher with zero time and memory, Published
as ISO/IEC JTC 1/SC 27 N8229. 2009.

57. Soichi Furuya: Slide Attacks with a Known-Plaintext Cryptanalysis, In ICISC 2001,
LNCS 2288, 2002, pp. 11-50.

58. E. K. Grossman, B. Tuckerman: Analysis of a Weakened Feistel-like Cipher, 1978
International Conference on Communications, pp.46.3.1-46.3.5, Alger Press Lim-
ited, 1978.

59. L. V. Kovalchuk: Upper-bound estimation of the average probabilities of integer-
valued differentials in the composition of key adder, substitution block, and shift
operator, In Cybernetics And Systems Analysis Vol. 46, Number 6 (2010), pp.
936-944, Springer.

60. L. V. Kovalchuk and O. A. Sirenko: Analysis of mixing properties of the operations
of modular addition and bitwise addition defined on one carrier, In Cybernetics
And Systems Analysis Vol. 47, Number 5 (2011), pp. 741-753, Springer.

61. A. N. Alekseychuk and L. V. Kovalchuk: Towards a Theory of Security Evaluation
for GOST-like Ciphers against Differential and Linear Cryptanalysis, Preprint 9
Sep 2011, http://eprint.iacr.org/2011/489.

62. V.V. Shorin, V.V. Jelezniakov, E.M. Gabidulin Security of algorithm GOST 28147-
89, (in Russian), In Abstracts of XLIII MIPT Science Conference, December 8-9,
2000.

63. Vitaly V. Shorin, Vadim V. Jelezniakov and Ernst M. Gabidulin: Linear and Dif-
ferential Cryptanalysis of Russian GOST, Preprint submitted to Elsevier Preprint,
4 April 2001

64. I. A. Zabotin, G. P. Glazkov, V. B. Isaeva: Cryptographic Protection for Infor-
mation Processing Systems, Government Standard of the USSR, GOST 28147-89,
Government Committee of the USSR for Standards, 1989. In Russian, translated
to English in [65].



159

65. An English translation of [64] by Aleksandr Malchik with an English Preface co-
written with Whitfield Diffie, was published in 1994, at 193.166.3.2/pub/crypt/

cryptography/papers/gost/russian-des-preface.ps.gz
66. Vasily Dolmatov, Editor, RFC 5830: GOST 28147-89 encryption, decryption and

MAC algorithms, IETF. ISSN: 2070-1721. March 2010. http://tools.ietf.org/
html/rfc5830

67. GOST R 34.11-94, the Russian hash function standard, the original Russian ver-
sion can be found at http://protect.gost.ru/document.aspx?control=7&id=

134550 and an English transation can be found at ftp.funet.fi/pub/crypt/

cryptography/papers/gost/russian-des-preface.ps.gz.
68. Vasily Dolmatov, Editor, RFC 5831: GOST R 34.11-94: Hash Function Algorithm,

IETF. ISSN: 2070-1721. March 2010. http://tools.ietf.org/html/rfc5831.
69. V. Popov, I. Kurepkin, S. Leontie: RFC 4357: Additional Cryptographic Algo-

rithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001,
and GOST R 34.11-94 Algorithms, IETF January 2006. http://tools.ietf.org/
html/rfc4357

70. A Russian reference implementation of GOST implementing Russian algorithms
as an extension of TLS v1.0. is available as a part of OpenSSL library. The file
gost89.c contains eight different sets of S-boxes and is found in OpenSSL 0.9.8 and
later: http://www.openssl.org/source/

71. J. Hulsbosch: Analyse van de zwakheden van het DES-algoritme door middel van
formele codering, Master thesis, K. U. Leuven, Belgium, 1982.

72. Florian Mendel, NorbertPramstaller and Christian Rechberger: A (Second) Preim-
age Attack on the GOST Hash Function, In Kaisa Nyberg editor, FSE 2008, LNCS
5086, pp. 224234, Springer, 2008.

73. Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak and
Janusz Szmidt: Cryptanalysis of the GOST Hash Function, In Crypto 2008, LNCS
5157, pp. 162 - 178, Springer, 2008.

74. Takanori Isobe: A Single-Key Attack on the Full GOST Block Cipher, In FSE
2011, pp. 290-305, Springer LNCS 6733, 2011.

75. Orhun Kara: Reflection Cryptanalysis of Some Ciphers, In Indocrypt 2008, LNCS
5365, pp. 294-307, 2008.

76. Jialin Huang and Xuejia Lai: What is the Effective Key Length for a Block Cipher:
an Attack on Every Block Cipher, eprint.iacr.org/2012/677.

77. Orhun Kara and Ferhat Karakoç: Fixed Points of Special Type and Cryptanalysis
of Full GOST. In CANS 2012, LNCS 7712, pp 86-97, 2012.

78. John Kelsey, Bruce Schneier, David Wagner: Key-schedule cryptanalysis of IDEA,
G-DES, GOST, SAFER, and triple-DES, In Crypto’96, pp. 237-251, LNCS 1109,
Springer, 1996.

79. Lars R. Knudsen: Truncated and Higher Order Differentials, In FSE 1994, pp.
196-211, LNCS 1008, Springer.

80. Nick and Alex Moldovyan: Innovative Cryptography, textbook, 2nd edition,
Charles River Media, Boston, 2007.

81. Theodosis Mourozis: Optimizations in Algebraic and Differential Cryptanalysis,
PhD thesis, under superivsion of Dr. Nicolas T. Courtois, University College
London, January 2015, http://discovery.ucl.ac.uk/1462141/2/PhD_Thesis_

Theodosis_Mourouzis.pdf
82. Klaus Pommerening: Permutations and Rejewskis Theorem, http://www.staff.

uni-mainz.de/pommeren/MathMisc/Permut.pdf
83. Axel Poschmann, San Ling, and Huaxiong Wang: 256 Bit Standardized Crypto for

650 GE GOST Revisited, In CHES 2010, LNCS 6225, pp. 219-233, 2010.



160

84. C. Charnes, L. O’Connor, J. Pieprzyk, R. Savafi-Naini, Y. Zheng: Comments on So-
viet encryption algorithm, In Advances in Cryptology - Eurocrypt’94 Proceedings,
LNCS 950, A. De Santis, ed., pp. 433-438, Springer, 1995.

85. Random Permutation Statistics – wikipedia article, 22 January 2008, available at
http://en.wikipedia.org/wiki/Random~permutation~statistics.

86. J.-J. Quisquater and J.P. Delescaille: How Easy is Collision Search. New Results
and Applications to DES, In Crypto89, LNCS 435, pp. 408-413.

87. J.-J. Quisquater and Y. Desmedt and M. Davio: The Importance of ‘good’ Key
Scheduling Schemes (How to make a secure DES scheme with ≤ 48 bit keys?, In
Crypto’85, LNCS 218, pp. 537–542, Springer, 1985.

88. RSA Labs PKCS #11: Cryptographic Token Interface Standard, ver. 2.30, Sep
2009, mechanisms part 1, Sections 6.39-6.40.7ftp://ftp.rsasecurity.com/pub/
pkcs/pkcs-11/v2-30/pkcs-11v2-30m1-d7.pdf

89. Marian Rejewski: How Polish Mathematicians Deciphered the Enigma, Annals of
the History of Computing, vol. 3, number 3, July 1981, 213-234.

90. Marian Rejewski: Mathematical Solution of the Enigma Cipher, In Cryptologia,
vol. 6, number 1, January 1982, pp. 1-37.

91. Marian Rejewski. An application of the theory of permutations in breaking the
Enigma cipher. Applicaciones Mathematicae, 16(4), Warsaw, 1980. At http://

www.impan.pl/Great/Rejewski/article.html

92. Marian Rejewski: Memories of My Work at the Cipher Bureau of the General Staff
Second Department 1930-45, second edition, Adam Mickiewicz University Press,
Poznan, Poland, 2011.

93. Frank Carter: The First Breaking of Enigma: Some of the Pioneering Techniques
Developed by the Polish Cipher Bureau Report No 2, Bletchley Park Trust, new
edition September 2008.

94. Vladimir Rudskoy: On zero practical significance of Key recovery attack on full
GOST block cipher with zero time and memory, Preprint 31-Mar-2010, http:

//eprint.iacr.org/2010/111

95. Vladimir Rudskoy, Andrey Dmukh: Algebraic and Differential Cryptanalysis of
GOST: Fact or Fiction, In CTCrypt 2012, Workshop on Current Trends in
Cryptology, affiliated with 7th International Computer Science Symposium in
Russia (CSR-2012), 2 July 2012, Nizhny Novgorod, Russia. Full papers will
be submitted and published in a special issue of Russian peer-review jour-
nal Mathematical Aspects of Cryptography. An extended abstract is available
at: https://www.tc26.ru/invite/spisokdoc/CTCrypt_rudskoy.pdf slides are
available at: https://www.tc26.ru/documentary%20materials/CTCrypt%202012/
slides/CTCrypt_rudskoy_slides_final.pdf

96. Vladimir Rudskoy and Andrey Chmora: Working draft for ISO/IEC 1st WD of
Amd1/18033-3: Russian Block Cipher GOST, ISO/IEC JTC 1/SC 27 N9423, 2011-
01-14, MD5=feb236fe6d3a79a02ad666edfe7039aa

97. Igor Semaev: Sparse Algebraic Equations over Finite Fields, SIAM J. Comput.
39(2): 388-409 (2009).

98. Haavard Raddum and Igor Semaev: New Technique for Solving Sparse Equation
Systems, ECRYPT STVL website, January 16th 2006, available also at eprint.

iacr.org/2006/475/

99. Markku-Juhani Saarinen: A chosen key attack against the secret S-boxes of GOST,
unpublished manuscript, 1998.

100. Haruki Seki and Toshinobu Kaneko: Differential Cryptanalysis of Reduced
Rounds of GOST. In SAC 2000, LNCS 2012, pp. 315-323, Springer, 2000.



161

101. Bruce Schneier: Section 14.1 GOST, in Applied Cryptography, Second Edition,
John Wiley and Sons, 1996. ISBN 0-471-11709-9.

102. Claude Elwood Shannon: Communication theory of secrecy systems, Bell System
Technical Journal 28 (1949), see in particular page 704.

103. Niklas Sörensson, Niklas Eén: MiniSat 2.06. an open-source SAT solver package.
104. Mate Soos: CryptoMiniSat 2.92, an open-source SAT solver package based on

earlier MiniSat software, at http://www.msoos.org/cryptominisat2/

105. Wei Dai: Crypto++, a public domain library containing a reference C++ imple-
mentation of GOST and test vectors, http://www.cryptopp.com

106. Pavol Zajac: Solving Trivium-based Boolean Equations Using the Method of Syl-
logisms, Fundam. Inform. 114(3-4): 359-373 (2012)

107. Pavol Zajac, Radoslav Cagala: Local reduction and the algebraic cryptanalysis of
the block cipher gost. In Periodica Mathematica Hungarica 65(2): 239-255 (2012).

108. Marcel Zanechal: An algebraic approach to fix points of GOST-algorithm, Math-
ematica Slovaca 51 (2001), no. 5, 583-591.

109. Otokar Grosek, Pavol Zajac: Two papers in Encyclopedia of Artificial Intelli-
gence Automated Cryptanalysis, on pages 179-185 and Automated Cryptanalysis
of Classical Ciphers, pages 186-191.
Rabuñal, Dorado, Pazos (Eds.), 3 Volumes, IGI Global 2009, ISBN 9781599048499

110. Bo Zhu and Guang Gong: Multidimensional Meet-in-the-Middle Attack and
Its Applications to GOST, KTANTAN and Hummingbird-2, Cryptology ePrint
Archive: eprint.iacr.org/2011/619/, 17 Feb 2012, the initial attack was appar-
ently incorrect and later versions of this paper do NOT study GOST cipher at
all.



162



Part IX

Additional High-Level
Attacks





165

A An Alternative Reduction With 264 KP and Without
Internal Reflections

In this paper we introduce many attacks with Internal Reflection and two more
attacks where such reflection occurs twice. Reflection occurs frequently because
the last 16 rounds of GOST have a large number of 232 fixed points, which is
instrumental in most of our attacks. Here we provide yet another, very surprising
method to obtain 4 pairs given 264 KP, and with the same success probability
of 2−128 as in Reduction 4. The method however is very different and this will
be on of the very few attacks in this paper which do NOT use any internal
reflection and where no symmetric 64-bit values appear. This attack is rather
a new and peculiar form of a slide attack, and it is somewhat reminiscent of
certain fixed point attacks [20], except it uses points of type E(D) = D where by
definition D is the value on 64-bits with both 32-bit halves exchanged. Similarly
as for other attacks in this paper the black box reduction stage is non-trivial: it
is not clear if such attacks should exist at all for any given block cipher. This
attack is also described in [27].

We consider texts D such that E(D) = D. Then we just look a few steps
backwards:

Assumption 2 (Assumption W). Let A be such that E(D) = D where D is
defined as D = E3(A).

Again, it is possible to see that:

Fact 102 (Property W). Given 264 KP there is on average one value A which
satisfies the Assumption W. For 63% of all GOST keys at least one such A exists.

This property has some very important consequences:

Fact 103 (Consequences of Property W). If A satisfies the Assumption W
above and defining B = E(A) and C = E(B) we have:

1. Enck(A) = D. This is illustrated on the right hand side of Fig. 36.
2. Enck(B) = C This can be seen on the left hand side of Fig. 36.

rounds values key size

A
8 E ↓ 256

B B
8 ↓ E ↓ 256

C C
8 ↓ E ↓ 256

D D ./ D
8 ↓ E D ↑ 256

D ./ D D
8 ↑ D 256

C

bits 64 64

Fig. 36. An alternative attack with reduction to 4 pairs and no internal reflection

This leads directly to our new reduction:



166

Reduction 11. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−128.

Justification: Given 264 known plaintexts, there is on average one value A = Xi

with Property W. We guess A and B and our choice is correct with probability
2−128. This gives us immediately C and D as shown in Fig. 36. For each (A,B)
this computation of (C,D) is done in constant time if we assume that all the
pairs Xi, Yi are stored using a hash table.

Thus we obtained 4 pairs for 8 rounds of GOST:
A 7→ B,B 7→ C,C 7→ D,D 7→ D.

A.1 How to Use This Reduction 11 to Break GOST

Both our previous Reduction 4 and this new Reduction 11 described here achieve
exactly the same result by a different method.

Thus that attack which uses this reduction will also be exactly the same
as the attack given in Section 17 with additional guess of D, as described in
Section 17.1 which is also summarized in the next to last column in Table 3 and
the complexity is exactly the same: 2222 GOST encryptions.

Summary. Overall our attack requires 264 known plaintexts, time is 233

times faster than brute force. The storage required is for the 264 known P/C
pairs.

A.2 Can One Do Better?

In Section 17 of this paper we presented one attack which obtains 3 KP for 8
rounds which will be correct with probability 2−96 and 4 KP could be obtained in
Section 17.1 with probability 2−128, and by a second alternative method in this
Appendix A. An interesting question is whether these results can be improved.
For typical GOST keys the answer is probably no. However these probabili-
ties can be further quite substantially improved for particular (still quite large)
classes of weak keys. For example if we have a diverse population of GOST keys
where 2−32 will be weak, for such weak keys one can then obtain 4 KP for 8
rounds which will be correct with probability 2−64 instead of 2−128, see Fact 35.
Moreover this probability can be reduced to almost certainty, about 2−1 if we
allow a further reduction in the number of weak keys considered, and 2−64 of all
keys will be weak, see Fact 39.

A.3 Generalizations of Reduction 11

This attack does not use the peculiar (weak) nature of S which is not only an
involution (it is equal to its own inverse function) but has as many as 232 fixed
points, which we do not require. It only exploits the (weaker) property that the
last 16 rounds of GOST are an involution. Then it still uses some sort of fixed
points, for the function S ◦E , which does not have a particularly large number of
such fixed points, just 1 on average. It is possible to see that this attack would
also work for any cipher defined as Enck = D◦F◦E◦E◦E where F is an arbitrary



167

involution which could also depend on some cryptographic key, potentially even
a key independent on the key used in E , thus increasing the key space. In this
sense it clearly is a stronger and more general attack.

A.4 One More Reduction To 4 KP Without Internal Reflections

There is also another method to get the same result as in Reduction 11,
We combine Reduction 5 to get 2 pairs for 8 rounds, then we use the ampli-

fication property of Fact 105 to get one more pair for 16 rounds, and we guess
64-bits in the middle of it. Thus we get 4 pairs for 8 rounds which are with very
high probability distinct.

As before, this is yet another attack on GOST faster than brute force. How-
ever as we will see below, it is better and more productive to just apply Reduction
5 twice, which will lead to a slightly faster attack.



168

B Another Cheaper Reduction With 264 KP and
Without Internal Reflections

In this paper we presented three black-box reductions allowing to produce 4
P/C pairs for 8 rounds of GOST, given 264 KP, and at the price of making an
assumption which holds with probability 2−128: these are Reduction 4, Reduction
A.4 and Reduction 11.

In this section and in the next section we present two more such reductions.
which both have a slightly better success probability: 2−127 instead of 2−128.
All these reductions lead to attacks which will in 2222 or 2221 faster than brute
force, (like in Section 17.1 and the next to last column in Table 3). However
these are not the fastest of our attacks, see Section A.2. Therefore their interest
is (for now) purely academic. It is also another two attacks which do NOT use
any internal reflection. All these reductions are very different and work for a
majority but not all GOST keys, for example for 63 % of keys, or less, and
different reductions work for different keys, and therefore they complement each
other. This reduction is very simple and we essentially need to apply Reduction
5 twice:

Reduction 12. [From 264 KP for 32 Rounds to 4KP for 8 Rounds]
We assume that E has two fixed points, which occurs with probability about
26%. Given 264 known plaintexts for GOST, it is possible to obtain four P/C
pairs for 8 rounds of GOST and our guess will be correct with probability 2−127.

Justification: Let E be such that it has two or more fixed points, which occurs
with probability 1− (1− 1/N)

N −
(
N
1

)
(1− 1/N)

N−1
(1/N)

1 ≈ 1− 2/e ≈ 26%,
where N = 264, see [20, 85, 23, 24]. We can apply Reduction 5 twice and guess
two fixed points A and A′ for E . However the probability to guess 2 fixed points
for E2 is only about 2−127 instead of 2−128, this is because if A,A′ is a correct
guess on 128 bits, A′, A is also correct.

Again this can be used to break GOST directly in the same way as before,
we apply Fact 7 and compute the key in time of 294 GOST encryptions.

Fact 104. Given 264 known plaintexts, it is possible to determine the full 256-
bit key of GOST cipher in time of 2232 GOST encryptions. The storage required
is 264 times 8 bytes.

Summary. Thus we obtained another attack with 264 KP, but time is now
223 times faster than brute force.



169

B.1 Yet Another Cheaper Reduction To 4 KP

Here is another black-box reduction allowing to produce 4 P/C pairs for 8 rounds
of GOST making an assumption which also holds with probability 2−127. All
these attacks work for a different (quite large) fraction of all GOST keys, but
not all GOST keys, and complement each other. It can be seen as a slight variant
of Reduction B which gives in some cases identical, and in some cases different
cases (there is a non-trivial intersection of both attacks).

Reduction 13. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
We assume that E has a cycle of length 2 which occurs with probability 50%.
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−127.

Justification: We consider the initial 16 rounds E2. It is easy to see that points
of order two for E come in pairs and the expected number of cycles of length 2 is
1/2 for E , cf. [20, 85, 23, 24]. Similarly as before, the probability to guess 2 fixed
points for E2 is about 2−127 instead of 2−128, this is because if X,Y is a correct
guess on 128 bits, Y,X is also correct.

Then we proceed as follows: This gives us immediately Z and T as shown in
Fig. 37. For each (X,Y ) this computation of (Z, T ) is done in constant time if
we assume that all the pairs Xi, Yi are stored using a hash table.

Thus we obtained 4 pairs for 8 rounds of GOST:
X 7→ Y, Y 7→ X,Z 7→ Y , T 7→ X.

rounds values key size

X
8 E ↓ 256

Y Y
8 ↓ E ↓ 256

X X
8 ↓ E ↓ 256

Y Y ./ Y
8 ↓ E D ↑ 256

X ./ X Z
8 ↑ D 256

T

bits 64 64

Fig. 37. A slightly cheaper alternative attack with no internal reflection

Resulting Attack. Again, if we combine this with Fact 6 we get an attack
which breaks GOST given 264 known plaintexts, time is also 223 times faster
than brute force (as in Fact 104). The storage required is for the 264 known P/C
pairs.



170

C Involution Property For 16 Rounds of GOST and
Amplification Property for Full GOST

We discovered a peculiar amplification-like property of GOST. which is closely
related to many the attacks described in this paper and reminiscent of slide
attacks [58, 7] and yet it is different than any slide attack known to us. It is
based on the fact that the last 16 rounds of GOST are an involution, i.e. a
special sort of permutation where all cycles are of length 1 or 2.

Basic slide attacks [58, 7, 8] where the encryption process is assumed to be
perfectly periodic, and to be a straightforward periodic iteration of one single
key-dependent function fk, operate as follows. The attacker assumes that he
knows one P/C pair for this function fk, and then uses the sliding property to
obtain an additional P/C pair for fk. This process can be iterated and generate
many P/C pairs for fk. In contrast, in more advanced self-similarity attacks like
in this paper and in [20], some of which are considered to be “advanced” slide
attacks, and some of which use some special points such as fixed points, the
process cannot be continued and one can generate only a very limited number
quantity of P/C pairs for the smaller component.

In GOST cipher the periodicity which is very helpful in slide attacks [58, 7,
8] is deeply broken by the inversion of keys which occurs in the last 8 rounds.
However an analogous property for GOST still exists.

Fact 105 (Amplification Property for Full 32-rounds GOST). For any
X,Y we have:

Y = E2(X)

m

Enck(X) = E2(Deck(Y )).

Given access to both encryption and decryption oracles for the full GOST
Enck(·) For each P/C pair for 16 rounds of GOST Y = E2(X) such that E3(X)
is not symmetric, the attacker can obtain another different P/C pair Z = E2(T )
for 16 rounds of GOST with Z = Enck(X) and T = Deck(Y ).

rounds values key size

X T
8 ↓ E ↓ 256

8 ↓ E ↓ 256
Y Z

8 ↓ E E ↓ 256

Q ./ Q Q ./ Q
8 ↑ D D ↑ 256

Z Y

bits 64 64

Fig. 38. Involution property: one-time amplification at zero cost



171

Justification: This property is due to the fact that the last 16 rounds of GOST
are an involution. From our initial pair Y = E2(X) such that X we obtain a pair
Y,Enck(X) for the last 16 rounds of GOST which is D ◦ S ◦ E . Indeed:

Enck(X) =
(
D ◦ S ◦ E3

)
(X) = (D ◦ S ◦ E) (Y )

However this function D ◦ S ◦ E representing the last 16 rounds of GOST is
an involution, therefore also Enck(X), Y is a valid pair:

Y = (D ◦ S ◦ E) (Enck(X))

Now we decrypt both sides to obtain:

Deck(Y ) =
(
D3 ◦ S ◦ E ◦ D ◦ S ◦ E

)
(Enck(X)) = D2(Enck(X))

Therefore we have:

Enck(X) = E2(Deck(Y ))

Now we need to see under which condition the pair Z, T is distinct from the
initial pair Y = E2(X). This happens if and only if Enck(X) 6= Y . Equivalently
when

(D ◦ S ◦ E) (Y ) 6= Y

which in turn is equivalent to S(E(Y )) 6= E(Y ) which occurs if and only if
E(Y ) = E3(X) is not symmetric.

General Method More generally, this amplification method can be applied
to any combination of type I · P where I is an involution, cf. later Fig. 39.

C.1 Additional Remarks - Can Amplification Be Iterated?

In Fact 105, each time E3(X) is not symmetric, and given one pair for 16 rounds
Y = E2(X) we obtain another distinct pair for 16 rounds Z = E2(T ) where by
definition Z = Enck(X) and T = Deck(Y ).

Unhappily this process cannot be iterated. By reasoning from one assumption
on 16 bits we can infer at maximum one another distinct pair, and then we
immediately enter a cycle of length 2:

Y = E2(X)

`

Enck(X) = E2(Deck(Y ))

`

Enck(Deck(Y )) = E2(Deck(Enck(X)))

The third pair is identical to the first. Moreover it was already shown that
if E3(X) is symmetric, and only in this case, all these pairs for 16 rounds are
identical (we have a fixed point in our inference process of Fact 105).



172

C.2 Can This Fail - The Guessing Paradox

In many attacks studied in this paper we have E3(X) which is symmetric, a re-
flection occurs in the involution function D◦S◦E . In these attacks the method of
Fact 105 does exceptionally not work and gives the same pair X,Y . In most other
cases, and with overwhelming probability of 1− 2−32, E3(X) is not symmetric,
and our method of Fact 105 is guaranteed to work.

This leads to the following observation which is sort of paradox, what we
gain on one side, we lose on another.

Consider E2 which is the fist 16 rounds of GOST. Normally, a random pair
X,Y is valid E2 for with probability 2−64, i.e. E2(X) = Y with probability
2−64. Such pairs can be amplified, i.e. another pair will be obtained with high
probability close to 1 (in fact to be precise it is equal to 1− 2−32).

Now there is also a method for generating pairs X,Y which are valid with
probability 2−32 i.e. E2(X) = Y can be guessed and are true with probability
2−32. For this we need consider pairs X,Enck(X) for any X. It is easy to see
that such pairs are valid with probability 2−32, which is because the last 16
rounds have as many as 232 fixed points. However, bad luck, these pairs cannot
be amplified, as explained above.

C.3 The Amplification Paradox

Our amplification property is not very dangerous, no attack really exploits it.
Now imagine that we have a second property like this. Then we could combine

both these properties to generate an unlimited number of P/C pairs for 16
rounds, probably the whole code-book, starting from one single assumption on
16 rounds, which is quite affordable to make for the attacker (64 bits need to be
guessed). And maybe even generate 232 pairs, make some of the inputs repeat
by the birthday paradox, realize that the predicted outputs are different, which
would prove that there was a contradiction, proving that the initial assumption
on 64 bits was incorrect (this cannot be guaranteed). We call this “amplification
paradox”: one such property is not very dangerous, two would be a source of
very powerful attacks, which transform the security of GOST with 32 rounds
and broken/imperfect periodicity, to 16 rounds of GOST with perfect periodicity,
which will be therefore much easier to break by various slide, fixed point, cycling
and other attacks.



173

C.4 The General Amplification Property

Fact 105 is not the only possible amplification property inside GOST. There are
many other cases where an amplification property can exist. Amplification can
basically occur each time we have a permutation of type I · P where I is an
involution and P is an arbitrary permutation and such that the adversary has
access to I · P.

More precisely, let Ac() be the oracle access to I ·P. Then from one pair X,Y
for P we can obtain by using the encryption and decryption oracles another par
for P which will be Ac−1(Y ), Ac(X) which is illustrated on the following picture:

X T = Ac−1(Y )
↓ P P ↓
Y Z
l I I l

Z = Ac(X) Y

Fig. 39. General framework for amplification for I · P

Now we are going to show two new ways to decompose GOST in order to
obtain involutions which will lead to two new amplification properties in later
sub-section C.6.

C.5 Additional Involutions in GOST

Now let A be the first 4 rounds of GOST, B be the next 4 rounds, and the full
GOST can be written as:

Enck = A−1 ◦ B−1 ◦ S ◦ B ◦ A ◦ B ◦ A ◦ B ◦ A (12)

We recall that E = B ◦ A is the first 8 rounds of GOST and let E ′ = A ◦ B.
There are three interesting ways of writing Enck in which what is between

two parentheses will be an involution:

Enck =
(
A−1 ◦ B−1 ◦ S ◦ B ◦ A

)
◦ E2 (13)

and also

Enck = A−1 ◦
(
B−1 ◦ S ◦ B

)
◦ E ′2 ◦ A (14)

and also

Enck = B ◦
(
B−1 ◦ A−1 ◦ B−1 ◦ S ◦ B ◦ A ◦ B

)
◦ E ′2 ◦ B−1 (15)

These properties are exploited in Section C.6 below.



174

C.6 Additional Amplification Properties

For example imagine that we guess the 128-bit key in the first 4 rounds of GOST
A. Then the attacker has oracle access to the the following permutation:

A ◦ Enck ◦ A−1 =
(
B−1 ◦ S ◦ B

)
◦ E ′2 (16)

Or alternatively, imagine that we guess the 128-bit key in the second 4 rounds
of GOST B. Then the attacker has oracle access to the the following permutation:

B−1 ◦ Enck ◦ B =
(
B−1 ◦ A−1 ◦ B−1 ◦ S ◦ B ◦ A ◦ B

)
◦ E ′2 (17)

These two formulas can be easily obtained from the last two formulas in the
previous section. In both cases, given a partial key guess we obtain a permutation
of type I · P where where I is an involution. Consequently we have following
two amplification properties which can be obtained in the same way as in Fig.
39 above.

Fact 106 (Amplification Property With Guessed First Half-Key).
If the attacker guesses the 128-bit key in A, for each P/C pair for the 16

rounds of GOST (A ◦ B)
2

which is E ′2, he can generate another such pair.
More precisely, for any X,Y we have:

Y = E ′2(X)

m

A(Enck(A−1(X))) = E ′2
(
A(Deck(A−1(Y )))

)
.

We also have:

Fact 107 (Amplification Property With Guessed Second Half-Key).
If the attacker guesses the 128-bit key in B, for each P/C pair for the 16

rounds of GOST (A ◦ B)
2

which is E ′2, he can generate another such pair.
More precisely, for any X,Y we have:

Y = E ′2(X)

m

B−1(Enck(B(X))) = E ′2
(
B−1(Deck(B(Y )))

)
.

Remark. It is furthermore trivial to characterize exactly when this second
pair is distinct from the first pair, which will be as in Fact 105 if and only if we
avoid the fixed points of respectively A(Enck(A−1(X))) and B−1(Enck(B(X))).

Applications. It is not clear if the combination of these properties could
lead to some sort of meet-in-the-middle attack on GOST keys.



175

D Black-box Reductions from 32 to 16 Rounds

Most black-box reductions in this paper are reductions from 32 to 8 rounds.
In this section we study very briefly the question of black-box reduction to 16
rounds. We don’t propose any new attack, but such reductions give important
insights about the structure of GOST cipher, and structure the space of other
reductions studied in this paper. In fact our basic reduction presented below,
underpins most (but not all) of our reductions from 32 to 8 rounds and can be
seen as a first step in these more complex reductions and the resulting attacks.

The key question to be asked for the cipher such as GOST is: what is the cost,
in terms of success probability in our guess, and data complexity, of obtaining 1
P/C pair for 16 rounds? Similarly what will be the cost of obtaining more pairs?

D.1 Black-box Reductions from 32 to 16 Rounds

One such reduction is already present in Step 1. in Table 3 and underlies all
the attacks which are summarized in this table. For completeness, we recall this
reduction in its basic form:

Reduction 14. [From 232 KP for 32 Rounds to 1KP for 16 Rounds]
Given an average expected number of 232 known plaintexts for GOST, it is
possible to obtain one P/C pair for 16 rounds of GOST and our guess will be
correct with probability 2−32.

Justification: The full justification is already given in Reduction 1 as shown in
Fig. 7 in Section 15.1, which is also used in Reduction 2 in Section 16. We guess
i. The reflection occurs with probability 2−32 in which case E3(A) is symmetric
where A = Xi. Then we obtain our pair for 16 rounds as follows. Let C =
Enck(A) then C = Enck(A) = D(S(E3(A))) = D(E3(A)) = E2(A).

Remark: One we get a pair for 16 rounds, one can be tempted to apply our
Amplification method given by the Fact 105. However here, quite exceptionally,
we are in the case in which it does not work, which is also because an internal
reflection occurs. Therefore it is not trivial to obtain 2 pairs for 16 rounds.

D.2 More Black-box Reductions from 32 to 16 Rounds

By Applying Reduction 14 twice we immediately obtain that:

Reduction 15. [From 233 KP for 32 Rounds to 2KP for 16 Rounds]
Given an average expected number of 233 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.

D.3 Slight Improvement Based On Amplification

There is another simple method to obtain two pairs for 16 rounds, where our
guess will be correct with probability 2−64. We simply guess 1 pair, X,Y , and
apply the Amplification property of Fact 105.



176

Y = E2(X)

`

Enck(X) = E2(Deck(Y ))

However this method as described here seems less interesting that Reduction
15 above. It seems to require 264 KP to be able to either encrypt X or decrypt
Y . Happily we are able to propose a non-trivial variant of this method which
requires only 232 KP, which will be a strict improvement compared to 233 KP
required by Reduction 15.

Reduction 16. [From 232 KP for 32 Rounds to 2KP for 16 Rounds]
Given an average expected number of 232 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.

Justification: Given a set of 232 KP, Xi 7→ Yi for 32 rounds, the probability
that there exists i, j such that Xj = E2(Yi) is close to 1. We guess i, j and we
obtain two pairs without any further access to encryption/decryption oracles by
the Amplification method. Following Fact 105 we have the following (not totally
obvious) result:

Xj = E2(Yi)

`

Yj = E2(Xi).

D.4 Potential Applications

Under certain conditions, our Reduction 15 as well as Reduction 16 could allow
attacks faster than brute force on the full 32-round GOST:

Fact 108 (Hypothetic Attack with Reduction to 16 rounds). If there
exists an attack on 16 rounds of GOST which allows to recover the key given
only 2 P/C pairs for 16 rounds (with 2128 false positives generated during this
process checked later against additional P/C pairs ) which is faster than 2192 full
GOST encryptions, then it can be transformed into an attack on the full-round
GOST faster than brute force.

Justification: This is obvious given Reduction 15 or Reduction 16 which would
multiply the complexity of our key recovery attack by a factor of 264.

In the next section we revisit the question of reductions which result in
P/C pairs for 16 rounds and we are going to develop much more interesting
applications for these reductions.



177

E Algebraic Complexity Reduction and Chosen Plaintext
or Chosen Ciphertext Attacks

Now we are going to do something quite unique, compared to other reductions
described in this paper. All the other reductions are reductions to 2,3,4 or 5
known P/C pairs for 4 or 8 rounds. However the outcome of a Black-Box Al-
gebraic Complexity Reduction can also be for example 4 chosen plaintexts (or
chosen ciphertexts) for 8 rounds, this if we are able to do the reduction in such
a way that the attacker can choose the plaintexts or the ciphertexts, which is
in general much harder to achieve than a reduction which produces just some
known pairs. Of course we are not going to obtain a choice of specific plaintexts
or ciphertexts by the attacker with certainty, but, as in all our reductions, an
attack in which some pairs are freely chosen by the attacker, but the result is
only correct with some probability. With this probability, for example 2−32, we
should obtain all the relations and characteristics it is claimed to have to hold
simultaneously. In other cases, for example with probability 1 − 2−32 we still
have chosen plaintexts, but the result is incorrect, which, as usual, needs to be
taken into consideration of false positives in the attack. And again, if the total
number of these false positives is small enough, we don’t need to worry about
them, even if each of them needs to be checked against additional pair for 32
rounds.

A care also needs to be taken in such attacks that the attacker can have a
sufficient supply of cases to choose from, because only with some small proba-
bility the choices of the attacker are actually used in the “effective” part of the
attack execution, which is the one which finds the correct key.

E.1 Chosen Plaintext Reductions From 32 to 16 Rounds

Now we can look at the reductions from 32 to 16 rounds in the previous sec-
tions in the new light. Reductions in which the attacker is able to choose both
plaintexts, will be much more interesting than other reductions.

We are going to revisit Reduction 14 and Reduction 15.

Reduction 17. [From 232 KP for 32 Rounds to 1CP for 16 Rounds]
Given an average expected number of 232 CP for GOST, it is possible to obtain
one P/C pair for 16 rounds of GOST where the plaintext is freely chosen by
the attacker, sampled from a probability distribution, or from another source
such as an oracle, and our guess (and the corresponding ciphertext value after
16 rounds we obtained for the chosen plaintext) will be correct with probability
2−32.

Justification: We guess i, for which the reflection occurs at round 24 of encryption
of Xi. This happens with probability 2−32 in which case E3(A) is symmetric
where A = Xi and we obtain our pair for 16 rounds as usual, it is A,C =
Enck(A).

Again by Applying Reduction 17 twice and exactly in the same way as before,
twice we immediately obtain that:



178

Reduction 18. [From 233 KP for 32 Rounds to 2CP for 16 Rounds]
Given an average expected number of 233 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.

Remark. We could have also produced a reduction to 1 or 2 chosen cipher-
texts in the same way, and some other. We leave it for further research.



179

F Approximate Reflection in GOST

It is possible to show the following property:

Fact 109 (Approximate Internal Reflection Property). Consider the (bi-
jective) function D ◦ S ◦ E for one fixed GOST key. Consider the difference be-
tween X and the value obtained when this function is applied:

X ⊕D(S(E(X))).

and look at the 50 bits out of 64 which are at 0 in 0x8070070080700700.
The probability that these 50 bits are at 0 is at most about 2−49 instead of 2−50

expected for a random permutation.

Justification: The basic justification is as follows. Let Y = E(X). We consider
the difference between Y and Y ′ = S(Y ). This value Y ⊕ Y ′ = Y ⊕ S(Y ) is a
symmetric value with both halves equal. The probability that such a value has
the 50 bits at 0 at all the 50 positions which are at 0 in 0x8070070080700700 is
high and equal to the probability that the left hand side has 25 bits at 0, which
is 2−25.

Let
Z = D(S(E(X))).

We have
E(Z) = S(E(X)).

and for this couple of applications of E we have here an output difference of type
0x8070070080700700 with probability at least 2−25, and thus we also have an
input difference of type 0x8070070080700700 with probability at least 2−25−25 =
2−50. But this can also occur by accident with probability 2−50. Overall we expect
it occurs with probability of about 2−50 + 2−50 = 2−49.

Remark: This is a VERY weak property, knowing that exact reflection oc-
curs with probability 2−32. Moreover we need to compare the result obtained
not to random permutations, to a random involution.

The bar is very high because every involution will have approximate reflec-
tions of some sort. For example if we call Twin Points pairs of points A,A′ such
that they differ by just 1 bit and E(A) = A′ and E(A′) = A, it is possible to see
that for any involution on n bits there exists on average 0.63 · n Twin Points.



180

G Conjugation Property of GOST

We discovered another peculiar property of GOST. It is not clear if this property
leads to any attacks on GOST. We recall our decomposition of GOST encryption
function:

Enck = D ◦ S ◦ E ◦ E ◦ E (18)

Fact 110 (Conjugation Property). The cycle structure of Enck is exactly
the same as of S ◦ E2. In particular Enck has i points of order j if and only if
S ◦ E2 has i points of order j.

In particular, given 264 KP, the cycle structure of S ◦ E2 can be computed
by the attacker.

G.1 One Potential Application

This property implies that if we had a large proportion of the code-book of the
first 16 rounds of GOST, we could immediately see if this code-book is authentic
or not, which is related to Amplification Paradox of Section C.3 above: if we are
able to derive from one single pair for 16 rounds, a large number of pairs for 16
rounds, then some of them could lead to a contradiction with the cycle structure
of S ◦ E2 which is always known to the attacker.

G.2 An Actual Application

Another application will be to detect that the GOST key is weak. Then the
statistics on the cycle structure and other properties of S ◦ E2 may provide
circumstantial evidence, or disprove an assumption, that a given GOST device
has keys with a particular structure (which may make GOST weaker and easier
to cryptanalyse). For example for keys of Family B studied in Section 31, it is
possible to see that (cf. Fact 93) the function S ◦ E2 is an involution, which is
very easy to detect with 2 CP. If this is not the case, we can be certain that
a given key is not in Family B. Similarly, we can use this property to easily
disprove that a given key belongs to other weak key families. In this paper we
precisely study several such families of weak keys in GOST.

Another straightforward application of this property is given in Appendix
H.2 below.



Part X

Additional High-Level
Attacks With Differential

Properties





183

H Combined Differential Complexity Reduction Attacks
With A 16 Rounds Property

This is a continuation of Section 25 which deals with a combination of advanced
truncated differential attacks and complexity reduction attacks. Here we work
with differential properties for 16 rounds which are harder to find than for 8
rounds.

H.1 A Differential Property For 16 Rounds of GOST

The situation we are going to study is very similar to what happens for a different
number of rounds inside the so called Alpha property in Section 4.1 of [40].

We recall that when we speak of a non-zero input difference of the following
type (0xF0000787, 0x80780000) we mean that all 216− 1 differences with active
bits under (0xF0000787, 0x80780000) are allowed. All the rounds have the final
swap in Fig. 40.

0xF0000787 0x80780000

(1 Round)

0x80780000 0x00000700

(7 Rounds)

0x80700700 0x80700700

(7 Rounds)

0x00000700 0x80780000

(1 Round)

0x80780000 0xF0000787

Fig. 40. Symmetric event with asymmetric differences with 16/8/14 active bits and 16
rounds

Fact 111. We look at the combination of any non-zero input difference of type
(0xF0000787, 0x80780000) and any non-zero output difference of type
(0x80780000, 0xF0000787). For a typical permutation on 64-bits (can be a ran-
dom permutation, or full GOST with 32 rounds) we expect that there are 231

pairs Pi, Pj with such differences.
For 16 rounds of GOST and for a given random GOST key, there exist about
231 + 232 pairs with such differences. Inside these, 232 pairs are due to “prop-
agation” which can be defined in this cases as having the difference of type
(0x807007000x80700700) in the middle after 8 rounds which event is unlikely to
happen for any of the other 231 pairs.

Justification: For a random permutation on 64 bits, as in Section 4 of [40] we
observe that a random couple of input and output differences of 64+64 bits
occurs 0.5 times on average as we have about 2127 pairs and only about 2128

possible sets of two differentials. Now we have (216−1)(216−1) ≈ 232 possibilities
here and on average 231 will be realized for a given (random) permutation.

We are going to make a conservative estimation assuming that the propaga-
tion follows a certain pattern and exhibit 232 pairs which will follow the pattern.



184

The number of additional cases which do not follow the pattern is expected to
be 231 as above which will give a total of 231 + 232 pairs.

We look at Fig. 40 and start from the middle of this figure after 8 rounds.
There are 264+14−1 = 277 pairs with a difference being (0x80700700, 0x80700700)
in the very middle of the 16 rounds.

Then following Fact 2.3.2. of [40] the set (0x80700700, 0x80700700) produces
a differential of the form (0x00000700, 0x80780000) with probability of 2−22.19

for the previous 7 rounds of GOST going backwards from the middle difference.
In the same way, the middle difference of (0x80700700, 0x80700700) propa-

gates with probability of 2−22.19 for the previous 7 rounds of GOST and gives
also (0x00000700, 0x80780000) going forward from the middle.

Overall we expect that 277−22.2−22.2 = 232.6 pairs are such that the differences
for the 14 middle rounds are such as in Fig. 40. Then it is very easy to see that the
propagation for the first 1 round backwards occurs with a very high probability
of 20.26. Overall we expect that 232.6−0.4−0.4 ≈ 232 pairs with all the differences
being as in Fig. 40.



185

H.2 An Internal Correlation Attack on GOST

Following Fact 111 on page 183 for each GOST key there exist about 232 pairs
P,Q which have all the differences shown in Fig. 40 page 183, which we reproduce
here in a different version with a final Feistel swap omitted, so that we represent
here the function S ◦ E2 and our property becomes iterative, see Fig. 41 below.
We also show the order of round keys.

0xF0000787 0x80780000

k_0 (1 Round)

0x80780000 0x00000700

k_1-7 (7 Rounds)

0x80700700 0x80700700

k_0-6 (7 Rounds)

0x00000700 0x80780000

k_7 (1 Round)

0x80780000 0xF0000787

- (undo the swap)

0xF0000787 0x80780000

Fig. 41. Iterative event for S ◦ E2 with 16/8/14/8/16 active bits

In this attack we are going to identify events which are visible to the attacker
and such that they immediately lead to correlations inside the cipher. Very
surprisingly this is possible for GOST due to its special internal structure.

We have the following result.

Fact 112 (Cycle Structure Property of GOST). The cycle structure for
the full 32-round GOST is the same as for S ◦ E2, and the fixed points for the
full 32-round GOST are mapped to fixed points of S ◦ E2.

Justification: As in the Reflection Property by Kara [75] cf. Fact 17, here we
see another very different case of a “conjugated” structure of type Q−1 ◦ P ◦Q
but here it applies to the full 32-round GOST, not to the first 16 rounds. A well
known historical theorem sometimes called “The Theorem Which Won World
War 2” [55] says that P and Q−1 ◦ P ◦ Q have the same cycle structure. Here
P = S ◦ E2 and Q = E and the whole GOST encryption can be written as
Enck = D ◦ S ◦ E ◦ E ◦ E which was initially shown in [75].

This property allows the attacker to identify encryptions with fixed points
for S ◦ E2 in the middle 16 rounds of GOST even though he cannot see what
happens inside the cipher. Following Fact 110 we have:

Fact 113 (Internal Fixed Point Structure Property of GOST). For ev-
ery fixed point A for the full 32-round GOST, E(A) is a fixed point for the middle
16 rounds S ◦ E2.



186

Now we define a new weak key class which occurs very frequently with GOST:

Definition H.2.1 (Weak Key Family 10). We define the Weak Keys Family
10 as keys such that we have the situation depicted in Fig 40 for the middle 16
rounds S ◦ E2 for a couple of fixed points for the whole 32-round GOST A,B.
This occurs with probability of d = 2−42 over all GOST keys.

Justification: The probability that GOST has 2 or more fixed points is 1−2/e ≈
26% ≈ 2−2, see [85, 20, 23, 24]. Now it is very surprising but nevertheless true
that such fixed points exhibit very strong internal correlations. This comes from
the fact that following again Fact 111 for each GOST key there exist about
232 pairs P,Q which have all the differences shown in Fig. 41 above. In these
pairs the difference is invariant with 16 bits under 0xF000078780780000. Now
as at many places in this paper, it is possible to see that for these 232 pairs
and due to the internal propagation the entropy of these differences computed
over random GOST keys is lower than 16 bits, maybe about only 10 bits (more
computer simulations are needed to compute it more precisely). This means that
the probability that the input difference is the same as the output difference for
the remaining 16 active bits in one of the 232 pairs P,Q is about 2−10. Thus for
every GOST key we have about 222 pairs P,Q with identical input and output
differences on 64 bits. Now with probability 2−64 the image of P by the middle
16 rounds S ◦ E2 is going to be P itself which implies also another fixed point
for Q. This occurs with probability d = 222−64 = 2−42 over the GOST keys.

rounds values/differences key size

A B
8 ↓ ↓ 256
E(A) = E(A) � F0000787 80780000 � E(B) = E(B)

8 ↓ ↓ 256
C � 80700700 80700700 � D

8 ↓ ↓ 256

E(A) ./ E(A) � 80780000 F0000787 � E(B) ./ E(B)
8 ↑ ↑ 256

A B
bits 64 64

Fig. 42. Weak Key Family 10

Now it is not uncommon for the full GOST to have two fixed points, it
happens for 2−2 of GOST keys. However for d = 2−42 of all GOST keys we have
internal relations with very high probability:

Fact 114 (Internal Double Fixed Point Correlation Property of GOST).
For all Weak Keys Family 10 and for at least d = 2−42 of all GOST keys IF A,B
is a couple of fixed points for the full GOST THEN we have E(A) ⊕ E(B) ∈
0xF000078780780000 and moreover we also have all the other internal differ-
ences after round 9, 16, and 23 as shown in Fig. 41.

We leave the key recovery for Family 10 keys for future research. We sketch
one simple attack below.



187

Fact 115 (Family 10 Attack). For all Weak Keys Family 10 and for d = 2−42

we can recover the 256-bit key in time of about 2229.

Justification: We guess E(A), E(B) and our guess is correct with probability
about 2−64−10 due to the low entropy of their difference. We guess C,D and our
guess is correct with probability about 2−64−8 due to the low entropy of their
difference. Thus we obtain 6 pairs for 8 rounds and recover the key in time 283.
This is 264+10+64+8+83 = 2229 total.

Further Research an Variants of Family 10. It is easy to see that this
attack can be improved: we only determine parts of these values, fix a well-chosen
subset of kety bits, obtain a contradiction, or extend the key and data sets, etc..
This is expected to lead to efficient attacks for Family 10.

We can also get larger d, closer to single key attacks by considering larger
sets of active bits in our differentials. We leave it for future research.



188

H.3 A Differential-Involution Attack on GOST

We consider the first 16 rounds of GOST and the following sets of non-zero 64-
bit differences at round 0,8,16 with up to respectively 16,14,16 active bits, which
are shown in the middle column of Fig. 43 for the first 16 rounds.

rounds values/differences key size

A � F0000787 80780000 � A′

8 ↓ E ↓ 256
B � 80700700 80700700 � B′

8 ↓ E ↓ 256
C � 80780000 F0000787 � C′

8 ↓ E E ↓ 256

Q ./ Q Q ./ Q
8 ↑ D D ↑ 256

C′ � F0000787 80780000 � C
bits 64 64

Fig. 43. A Differential-Involution Attack on GOST

We have:

Fact 116 (Weak Keys Family 11, d = 2−32). We define the Weak Keys
Family 11 by keys such that there exists two points A,A′ such that if B = E(A),
C = E(B) and similarly B′ = E(A′), C ′ = E(B′), then we have the full situation
with all equalities and all the differences depicted in Fig. 43 and also additional
internal differences at round 1 and 15 specified at Fig. 40. This occurs with
density d = 2−32.

Justification: Following Fact 111 there are 232 pairs A,A′ which satisfy the spec-
ified differences in the first 16 rounds. We denote by Last16 the permutation
which represents the last 16 rounds of GOST.

We consider the following event: can we have Last16(C) = C ′ for some pair
A,A′ with the desired differences in the first 16 rounds? Because we have 232

such pairs, this happens with probability 2−32. Therefore such a pair will exist
for some weak keys with a relatively high density of d = 2−32 over full 256-bit
GOST keys. In addition, because Last16 is an involution, if this happens we
also have Last16(C ′) = C, which also implies the differences in the ciphertexts.
We have the full situation depicted in Fig. 43 and also additional differences at
round 1 and 15 specified at Fig. 40.

Fact 117 (Key Recovery For Weak Keys Family 11). Given 264 KP we
can recover a weak key in Family 11 in time of very roughly about 2202 GOST
encryptions .

Justification: In the same way in Fact 111, there exist 231 cases with the outside
differences which can be observed by the attacker. Just one of them will satisfy
all the internal relations depicted on the upper half of Fig. 43 and also all those
specified in Fig. 40 used in Fact 111. Therefore we can guess A,A′, C, C ′ with
probability 2−31. Furthermore we guess B,B′ with 50 difference bits already
known and which will be correct with probability 2−64−14+1 = 2−77.



189

Unhappily we cannot apply Fact 7, with 294 GOST encryptions because it
deals with 4 unrelated encryptions which typically lead to one key on 256 bits on
average. Here we have two pairs of related encryptions which share many data
bits, and exactly as in Fact 117, on one side it is easier to find such individual
solutions, but the number of solutions to enumerate is much higher We study this
question in Appendix J.2 and we obtain 294 GOST encryptions, see Fact 125.
Overall in our attack on 32 rounds with Family 11, we expect to do 231+77+94 =
2202 GOST encryptions to recover the full 256-bit key.

Fact 118 (Family 11 in the Multiple Key Scenario). Given a population
of 232 different random keys, with access to 264 of data per key, we one can
recover one of these 256-bit keys in total overall time of about 2234 GOST
encryptions.

Justification: We run the attack 232 times for both strong and weak keys.

H.4 A Differential-Double Reflection Attack on GOST

We consider the first 16 rounds of GOST and precisely those sets of non-zero
64-bit differences at round 0,8,16 with up to respectively 16,14,16 active bits,
which are shown in the middle column of Fig. 44.

rounds values/differences key size

A � F0000787 80780000 � A′

8 ↓ E ↓ 256
B � 80700700 80700700 � B′

8 ↓ E ↓ 256
C � 80780000 F0000787 � C′

8 ↓ E E ↓ 256

Q ./ Q Q′ ./ Q′

8 ↑ D D ↑ 256
C � 80780000 F0000787 � C′

bits 64 64

Fig. 44. A Differential-Double Reflection Attack on GOST

We have:

Fact 119 (Weak Keys Family 11’, d = 2−32). We define the Weak Keys
Family 11’ by keys such that there exists two points A,A′ such that if B = E(A),
C = E(B) and similarly B′ = E(A′), C ′ = E(B′), then we have the full situation
with all equalities and two reflections and all the differences depicted in Fig.
43 and also additional differences at round 1 and 15 specified at Fig. 40. This
occurs with density d = 2−32.

With this Family 11’ we do NOT expect attacks better than with Family 11.



190

I More Approximate Fixed Point Bicliques and Other
Multiple Point Properties

In this section we continue the work of Section 26.3 and we provide additional
examples and interesting special cases.

I.1 Discovery of Three Point Properties
The objective of this section it to study some basic 3-point differential properties
which can be useful in order to justify certain results in earlier Section 26.3 and
in Appendix I below. They are also of independent interest.

We ask the following question: let D be an integer in the range 9 ≤ D ≤
24. Is there a property with D active bits such that if we fix 64 − D bits at
random, and look at 8-round properties which share the same 64 − D bits at
the input, and consider an affine space of 2D points with these 64−D bits, are
there any triples in this space such that the three points also share the same
64 − D bits at the output? In addition we would like to know which sets are
the most interesting sets: we examine many different sets following the heuristic
evolutionary discovery method described in [45] and report the best results we
could obtain after trying for a few days.

This is exactly what we called ”Truncated I/O Multi-collisions” before, cf.
Fig. 26 which we reproduce here for convenience.

Fig. 45. Truncated I/O multi-collisions with k = 3: the 3 inputs live in the same space
of dimension D and the 3 outputs live in another space of dimension D.

Remark. Some results are given in Table 8. For example in line 3 we find a
set of active 14 bits such that given one fixed plaintext on 50+14 bits and 214

variants of it with varying the 14 active bits, we expect that with probability
of about 2−8.5 there will be an event with 3 points which share 50 bits at the
output, i.e. their pairwise differences are contained in the same mask on 14 bits.
This result can be use to provide another justification for the (approximate)
figure 2−8 obtained for three points in Fact 64. Here for every shared 50 bits
at the input the chances to have a 3-point property A,B,C,A′, B′, C ′ with the
outputs sharing the specified 50 bits are 2−8.5. Overall there are 250−8.5 such
cases, and inside these there are about 250−8.5−50 events where the input shared
50 bits and the output shared 50 bits coincide.



191

Table 8. Study of invariant truncated differential properties with 3 points for some
values of 9 ≤ D ≤ 24 bits. We display a rough approximate average number of such
events per one set of 2D plaintexts for one fixed value on n−D bits.

D GOST S-box Truncated 3 points
Set Name differential set S 8R

14 0 GostR3411 94 TestParamSet 80700700 80700700 2−8.5

17 0 GostR3411 94 TestParamSet 80700704 80701704 2−3.2

19 0 GostR3411 94 TestParamSet A4700704 80701704 2−1.9

20 0 GostR3411 94 TestParamSet A0780702 A0780702 2+3

20 2 Gost28147 TestParamSet A0780702 A0780702 2+3

20 3 Gost28147 CryptoProParamSetA A0780702 A0780702 2+2

22 0 GostR3411 94 TestParamSet A0780782 A0780782 2+6

22 2 Gost28147 TestParamSet A0780782 A0780782 2+6

22 3 Gost28147 CryptoProParamSetA A0780782 A0780782 2+5

24 0 GostR3411 94 TestParamSet 7070707007070707 2+13



192

I.2 Approximate Fixed Point Bicliques For 4 Rounds

For 4 rounds it is much easier to find such configurations.

Fact 120 (A 2/3/4-point approximate fixed point biclique for 4 rounds
of GOST and D = 14). For a typical GOST key we have 213.4 possibilities for
the set of 4 points A,B,A′, B′, such that A′, B′ are the encryption of A,B after
4 rounds, and which have differences with up to 14 bits and such that all 2+2
points share the same set of 50 bits, as depicted on earlier Fig. 21.

We also have 210.5 possibilities for the set of 6 points A,B,C and A′, B′, C ′,
such that A′ is the encryption of A after 8 rounds etc. , and which have differences
with up to 14 bits and such that all the 3+3 points share the same set of 50 bits,
as depicted on earlier Fig. 27.

For proportion of at least about 2−1.6 of GOST keys there exists a set of 50
bits such and a suitable set of 8 points A,B,C,D and A′, B′, C ′, D′, and such
that all 4+4 points share 50 bits as depicted on earlier Fig. 25.

Justification: The justification is the same as for Fact 64, only some probabilities
need to be updated. For 4 rounds if A⊕ B ∈ 0x8070070080700700 then if A′ ⊕
B′ ∈ 0x8070070080700700 with probability 2−13.6 cf. [37, 38, 40]. Thus we expect
that there are on average about 277−13.6−50 ≈ 213.4 pairs which share a fixed 50
common bits and such as depicted in Fig. 21.

For k = 3, if A,A′ and B,B′ are already the suitable pairs for 4 rounds, our
simulation shows that it is no longer easier to find more such pairs C,C ′ but a bit
harder (for 4 rounds, configurations with 2 points are more frequent than those
with more points) and the propagation occurs with probability of about 2−15.3.
Further simulations show that there will be a fourth pair D,D′ with probability
of about 2−12.1 a fifth pair probability of about 2−11.1 and more than 5 with
high probability. Thus, for k = 3 and on average for one GOST key there are on
average about 289.4−13.6−15.3−50 ≈ 210.5 triples such as in Fig. 27. For k = 4 we
expect about 289.4−13.6−15.3−12.1−50 ≈ 2−1.6 4-tuples as in Fig. 25.

This Fact 120 has interesting unexpected consequences:

Fact 121 (Double symmetric fixed points for 4 rounds of GOST). For
4 rounds of GOST, there exists two symmetric fixed points with probability of
at least 2−47 instead of 2−64 for a random permutation.

Justification: From Fact 120 for k = 2 we know that there are 213.4 possibilities
for A,B,A′, B′ as depicted in Fig. 21 and sharing the same 50 bits. Then A is
symmetric with probability 2−32 and B will also be symmetric with probability
2−7 and then A′ ⊕B′ = A⊕B with probability of about 2−7 (similar but lower
than in low entropy discussion in Section 26.1). and A = A′ with probability of
about 2−14. Overall we expect to get 2 symmetric fixed points with probability
at least 213.4−32−7−7−14 ≈ 2−47 instead of 2−64 for a random permutation.

Remark. The Fact 121 is only a lower bound. In the real life what is the
probability that 4 rounds of GOST has 2 symmetric fixed points? Our simu-
lations show that it is indeed roughly about 2−47 and that pairs of symmetric
fixed points found tend to have interesting small Hamming weight differences.
We have tested this fact for various known sets of GOST S-boxes and we have
seen no significant difference. More research about this topic is needed.



193

I.3 Alternative Sets With D = 24

Similar results as Fact 64 and Fact 120 can be obtained for other spaces of di-
mension D = 14 some of them not symmetric, see Section 25.6. Other interesting
results can be obtain for other values of D. Below we give one example.

It is interesting to discover that in terms of propagation probabilities for
pairs of points, the set of differentials with 24 active points using the mask
0x70707070070707 by Seki and Kaneko [100] is not as good as the set using the
mask 0x8070070080700700 from [36–38, 40]. According to [38] this first property
propagates for 8 rounds with probability of 2−30 which is substantially lower
than predicted by the authors, see [100, 38]. The second property propagates for
8 rounds with probability of 2−25 cf. [37] which may seems better. However in
terms of the number of pairs A,B with respective difference propagation, both
sets are quite good. In the first case we have 264+24−1−30 = 257 pairs, in the
second case we have 264+14−1−25.0 = 252 pairs.

Now a major observation is that the number of triples, 4-tuples and larger
sets in which all possible pairs have suitable differences is still relatively large
compared to the number of pairs. Two examples were already given in Fact 64
and 120, now we look more closer at the sets with D = 24 based on [100]. The
sets of [100] has only 40 fixed bits as opposed to 50 bits in [36–40], which was
handicap in distinguishers of [36–40] but it is going to become an advantage
here. Unhappily these alternative old/new difference masks with 24 active bits
[100] are not symmetric so they are not suitable for the same applications, for
example they are not suitable for Weak Family 8.2. attack and many other.

Fact 122 (A 2/3/4-point approximate fixed point biclique for 8 rounds
of GOST and D = 24). For a typical GOST key we have on average 217

possibilities for the set of 4 pointsA,B,A′, B′, such thatA′, B′ are the encryption
of A,B after 8 rounds, AND which have differences with up to 24 bits following
the pattern using the mask 0x70707070070707 and share the same set of 40 bits,
as depicted in Fig. 21.

For k = 3 we we have about 214 possible sets of 6 points A,B,C and A′, B′, C ′

sharing the same set of 40 bits and such as depicted in Fig. 27.

For k = 4 we we have about 211 possible sets of 8 points A,B,C,D and
A′, B′, C ′, D′ sharing the same set of 40 bits and such as depicted in Fig. 25.

Justification: We consider the affine space of D = 24 defined by the mask
0x70707070070707 from [100]. This property propagates for 8 rounds with prob-
ability of 2−30 [38] and the number of pairs A,B with respective difference prop-
agation for 8 rounds is 264+24−1−30 = 257 pairs. Inside these the input shared
40 bits are going to be equal to the output 40 bits with probability 2−40. This
gives 217 approximate fixed point pairs.

As before if both A ⊕ B and A′ ⊕ B′ have suitable differences then it is
easier to find more such pairs C,C ′. Our early simulations show that there is
roughly about 214 approximate fixed point triples and further roughly about 211

approximate fixed point 4-tuples. More simulations are needed to obtain exact
figures.



194

I.4 Multiple Fixed Points for 8 Rounds

As in Fact 121, all our work on simultaneous truncated differentials has some
unexpected consequences.

Fact 123 (Multiple related fixed points for 8 rounds of GOST). For 8
rounds of GOST and a random key, the probability that there is a fixed point
is about 0.63 and is expected to be the same for a random permutation. How-
ever the probability that there are two fixed points sharing 40 bits as in set
0x70707070070707 is at least 2−19 instead of 2−42 for a random permutation.
Stronger pairs of fixed points sharing as many as 50 bits as the inactive bits in
mask 0x8070070080700700 exist with probability at least 2−20 instead of 2−52

for a random permutation.
Similarly the probability that there are three fixed points for 8 rounds with
shared 40 bits is at least 2−32 instead of 2−84 for a random permutation. Addi-
tionally three fixed points sharing 50 bits within 0x8070070080700700 exist with
probability at least 2−34 instead of 2−104 for a random permutation.
Finally the probability that there are four fixed points for 8 rounds with shared
40 bits is at least 2−45 instead of 2−126 for a random permutation. Additionally
four fixed points sharing as many as 50 bits within 0x8070070080700700 exist
with probability at least 2−45 instead of 2−156 for a random permutation.

Justification: We refer to [20, 23, 24, 85] for the basic facts about statistics on the
number of fixed points in random permutations.

We apply Fact 122. We get 217 possibilities for the set of 4 points A,B,A′, B′,
such that A′, B′ are the encryption of A,B after 8 rounds, AND sharing a fixed
value on 40 bits Now following Section 26.1 but for a different set we estimate
roughly that the entropy of A ⊕ B is low and the probability that A ⊕ B =
A′ ⊕ B′ is about 2−12, this is a conservative estimation. Furthermore A = A′

with probability 2−24 which also implies B = B′. Overall we expect that for a
proportion of d = 217−12−24 = 2−19 of GOST keys we have two fixed points A,B
sharing the same 40 bits.

For 50 bits and the mask 0x8070070080700700 we apply Fact 64 and obtain
a proportion of at least d = 22−8−14 = 2−20 of GOST keys for which we have
two fixed points A,B sharing the same 50 bits.

For k = 3 we we have about 214 possible sets of 6 points A,B,C and A′, B′, C ′

sharing the same set of 40 bits and such as depicted in Fig. 27. We postulate that
the probability that A⊕B = A′⊕B′ and simultaneously A⊕C = A′⊕C ′ is about
2−22, this is a conservative estimation. Furthermore A = A′ with probability
2−24 which also implies B = B′ and C = C ′. Overall we expect that for a
proportion of d = 214−22−24 = 2−32 of GOST keys we have three fixed points
A,B,C sharing the same 40 bits. For 50 bits and the mask 0x8070070080700700
we apply Fact 64 and obtain a proportion of at least d = 2−8−12−14 = 2−34 of
GOST keys for which we have three fixed points A,B,C sharing the set of 50
bits we defined.

For k = 4 we we have about 211 possible sets of 8 points A,B,C,D and
A′, B′, C ′, D′ sharing the same set of 40 bits and such as depicted in Fig. 25.
We postulate that the probability that A ⊕ B = A′ ⊕ B′ and simultaneously



195

A ⊕ C = A′ ⊕ C ′ and simultaneously A ⊕ D = A′ ⊕ D′ is maybe about 2−32.
Furthermore A = A′ with probability 2−24 which also implies B = B′ and C =
C ′ and D = D′. Overall we expect that for a proportion of roughly maybe about
d = 211−32−24 = 2−45 of GOST keys we have four fixed points A,B,C,D sharing
the same 40 bits. For 50 bits and the mask 0x8070070080700700 we apply Fact 64
and obtain a proportion of at least roughly maybe about d = 2−7−24−14 = 2−45

of GOST keys for which we have four fixed points A,B,C,D sharing the set of
50 bits we defined.

These probability estimations are quite imprecise and require more work.

I.5 Events With More Than 4 Points and Single Key Events

In Section 26.3 we have done a longer simulation with 239 encryptions with
random keys. In this simulation we have seen an event with more than 4 points
only once. Moreover the events studied in Section 26 happen only for some keys,
for example 2−9 GOST keys.

One method to obtain more points or/and events with single keys is to use
less rounds. See Appendix I.2 for the study of events for 4 rounds of GOST.
Another method it to takes a larger mask. Then we can easily obtain events
with more points or/and which happen for all GOST keys.

Example of Event With 12 Points. For example with 0xF0F80F80F0F80F80
which has 28 active bits we can easily obtain as many as 12 points which share
the same set of 64-28=36 inactive bits. We show one example found at random
and without any special properties below:

8 rounds 12 points 36 inactive bits F0F80F80F0F80F80

key=03F5F3471CDC6376EF079890A8AD0B3BC747FB61F05E21C722F3B06C77E44D8D

P1=64E9DC846E50462A P2=04C1D1046E90462A P3=8411D6041ED04D2A

P4=A4F1D684BE90452A P5=E481D4046E60442A P6=A4C1D9846E60412A

P7=74E1D004FED0482A P8=A4C1D2846EA0472A P9=F4D1D5846EA0472A

P10=E489D7843E60442A P11=44E1DE04FEA047AA P12=24C1D404EEB04A2A

C1=9F92744EC5C905B0 C2=7F9A724EB57109B0 C3=8F9A704EB5090EB0

C4=DF92724EA5710D30 C5=FF9A744E75C104B0 C6=AFA27B4EC5D90430

C7=5FA276CE15690F30 C8=5F92764E05390C30 C9=9FAA714E65A102B0

C10=8F92734E25A907B0 C11=CF92764EF5E10630 C12=AF92704EA5090830

Such events are surprisingly frequent. In order to find this event we had to
do try only about 236 encryptions for 8 rounds with random keys. In a sense we
have tried 236 pairs composed of a key and input 36 bits. Therefore we expect
very roughly that for every key there exists maybe one case of the input 36 bits
on average which gives more than 8 points. Therefore even having as many as
8 points seems to be a single key event which happens for a majority of GOST
keys, while 12 points might happen for at least 50 % of keys or similar. This is
based on rough estimations.



196



Part XI

Additional Low-Level
Attacks





199

J Additional Low-Data Attacks For 8 Rounds

In this section we provide additional variants of attacks from Section 12.

J.1 A Dedicated Attack for 3 KP and 8 R With Internal Differences

This attack is designed for case with 3 KP such that the first two plaintexts have
specific input and output differences such as in differential attacks on GOST [36–
40] and depicted in Fig. 18 page 95.

This result is NOT at all obvious given the fact we also obtained 2110 for
ordinary case of 3 KP in Fact 6. Here two plaintexts are related and therefore
these encryptions share some internal bits with high probability, and therefore
there is more solutions to enumerate than in Fact 6. However on the other side
each solution is easier to enumerate precisely because of these plausible difference
relations on internal bits, which is a powerful thing. This case requires a very
careful dedicated attack.

Fact 124. Given 3 KP for 8 rounds of GOST, with the last two of them having
both input difference and output difference within the set of 214 − 1 non-zero
differences of the form 0x80700700, 0x80700700, and also a middle difference
of the form 0x80700700, 0x80700700 after 4 rounds, all candidates for the full
256-bit key can be enumerated in time of about 2110 GOST computations and
negligible memory.

Justification: We proceed as follows.

1. We work with the right pane in Fig. 6 with 87+87 key bits.
2. We have fix 2 · 32 = 64 and NOT 3 · 32 middle bits. We discard one of the

encryptions related by input/output differentials and have only two ordinary
encryptions without any special properties on the data.

3. Following Fact 14, given a fixed set of 64 middle bits we would expect to get
only 287+2·3.6−64 = 230.2 possibilities for 87 bits of the key in the upper 4
rounds.

4. Furthermore, for the third encryption, we do not yet take into account the
third 32 middle bits which are partly related to the middle bits already
known, partly not yet known.
However we know all the 3 inputs and for the last 2 encryptions, we only
consider case where that given that in the current data, the input difference
is of the form 0x80700700, 0x80700700, for the 230.2 various keys considered
here, many of which are incorrect but this can only be seen later in the attack,
the output difference at round 4 will be of the form 0x80700700, 0x80700700,
with probability 2−13.6, in the same way as in [38].

5. Overall we estimate that there is maybe about 287+2·3.6−64−13.6 = 216.6

possibilities for 87 bits of the key in the upper 4 rounds.
6. In the same way, for the same 64 middle bits, we expect 216.6 possibilities

for the 87 key bits in the lower 4 rounds.



200

7. We fix 16 key bits out of 87: bits 0-11 in the first round and bits 47-50 in the
second round. Then we run a SAT solver with 3 KP and 4 rounds, where we
assume the 16 key bits guessed for all encryptions, guess 32+32 middle data
bits for the first two plaintexts, and add equations which say that the output
difference for the last 2 plaintexts is of the form 0x80700700, 0x80700700
after 4 rounds.

8. We want to determine the missing 87-16 bits. This takes less than 0.6 s on
average with CryptoMiniSat 2.92 [104]. This is about 221 GOST encryptions
on the same CPU. Unhappily the solution is not unique.

9. If the system is UNSAT, it means that the 16 bits can be rejected.

10. It may seems strange that we enumerate 216.6 solutions by examining 216

cases and most cases are rejected. The explanation is that solutions are NOT
random but correlated, they are organized in clusters with several solutions
sharing identical 16 bits. This is due to limited diffusion in GOST. Fact 8
deals with averages however in practice we have 0, 1 or several cases.

11. Total time spent in this step is about 264+16+21 = 2101 GOST encryptions.

12. We do further steps only if the system is SAT which happens with probabil-
ity experimentally about 2−3. Overall because we accept only a proportion
of 2−3, we expect 216−3 = 213 cases which give SAT and 216.6−13 = 23.6

clustered solutions in each case.

13. We extend these 16 bits by 4,8,12 and more bits, four bits at a time, checking
for UNSAT, which takes at most 0.5 s in each case, is done for four more bits
only for about 2−3 of cases, for four more bits only for a smaller proportion
of cases, etc...

14. Overall we expect that given the 16 bits already confirmed by SAT, we
can extend them by 4, 8 etc more bits, in a tree-like search with only 23.6

branches total for strings of 87 bits, and we claim that branching in this tree
is achieved progressively due to low diffusion in the cipher.

15. Locally strings have low entropy and each time we extend by four more bits,
we will frequently examine 22 cases on 2 bits, which takes at most 0.5 s in each
case, yet we will keep most of the time only one sometimes two cases. The
time to explore this “long” tree with only 23.6 leaves at the end and depth
about (87-16)/4 can be estimated to be about 23.6 · (87 − 16)/4 · 221 ≈ 229

GOST encryptions.

Overall we expect that this process takes about 264+16+29 = 2109 GOST
encryptions.

16. At this stage we get an enumeration of 264+16.6 cases with keys on 87 bits
and 32+32 bits of internal data for 2 pairs. Now we look at the 32 bits of
data for the 3rd pair.

17. Following the right pane of Fig. 6 the active bits are 12-27 on the left and
28-11 on the right. Some bits of our third set of 32 middle bits are already
constrained by the differences of the form 0x80700700, 0x80700700 with in-
active being 9-11,21-23,32. New bits which are not yet determined and can
be arbitrary values are 12-20,24-27 on the left, and 28-9 on the right. We have
13+14=27 bits out of 32 which are not yet determined by our assumptions.



201

18. Following Fact 14, we will have in each case with 32+32 data bits and 87
key bits, 23.6 possibilities for these 27 bits, and the time of this enumeration
of 23.6 cases can be neglected, because it is done only 264+16.6 times overall.

19. In the same way, for the same 64 middle bits, we enumerate all the 216.6

possibilities for the 87 key bits in the lower 4 rounds, plus 23.6 possibilities for
the same middle 27 bits, for each case, enumerated at negligible additional
cost. Time spent in this step is another 2109 GOST encryptions and 2110

GOST encryptions total for both.
20. We need a negligible quantity of memory to store these two sets of 216.6

half-keys on 87 bits.
21. Now we are going to enumerate all possible cases which will agree on the 27

middle bits for the third encryption.
22. For every 32+32 middle bits, we have two lists of 216.6+3.6 possibilities on

27 bits. For every 27 bits from the first list it will be in the second list with
probability 216.6+3.6−27 = 2−6.8. Therefore out of 216.6+3.6 possibilities on
27 bits in the first list, only 216.6+3.6−6.8 = 213.4 will survive.

23. Thus in our attack given 32+32 middle bits we are able to enumerate only
213.4 keys on 174=87+87 key bits.

24. In each case, given the 87+87 bits we run a SAT solver to determine the
remaining 256-174 bits. This is done 264+13.4 = 277.4 times. It takes just 1 s
which is 221 GOST encryptions.

25. This step takes about 277.4+21 = 298.4 GOST encryptions.
26. Overall our attack requires 2110 GOST encryptions and very small memory.



202

J.2 A Dedicated Attack for 4 KP and 8 R With Internal Differences

In Section 12.1 we provide one particularly simple attack on 4 rounds which was
initially developed and published in [35]. In this section we provide extensions
and variants of this attack which are needed in this paper to establish several
results which mix differential cryptanalysis and black-bow reductions. These
attack are designed for case with 4 KP such that the two pairs of plaintexts
have specific input and output and middle differences as for example on one half
of Fig. 111 (which is the same configuration as in the lower half). As in Section
J.1 two plaintexts are related and share internal bits with high probability or
have low joint entropy, and therefore one one hand there will be more solutions
to enumerate than in Fact 7, and on the other hand each solution is easier to
enumerate. We need to develop a careful and dedicated attack. Our first result
for 4 KP is as follows.

Fact 125. Given 4 KP for 8 rounds of GOST, with two of them having dif-
ferences such as in the first 8 rounds of Fig. 40, all the candidates for the full
256-bit key can be enumerated in time of about 294 GOST computations and
negligible memory.

Justification: We proceed as follows.

1. We use the encoding of GOST described in [46].

2. We use a guess then determine approach with a highly non-trivial set of bits
which are guessed, the other bits are determined by software.

3. We use the following specific set of 68 bits following [35, 32]. The exact bits
used are: 0-15,51-55,64-66,128-130,179-183,192-207,224-231,244-255.

4. We convert our problem to a native SAT problem with native XORs such
as accepted by CryptoMiniSat 2.92 software [104].

5. We run the software 268 times for all possible assignments of the 68 bits.

6. Computer simulations on a laptop Intel i7 CPU show that if we run this
software with the timeout of 27 seconds, a proportion of 1 − 2−6.5 of cases
on 68 bits terminates with UNSAT within 0.5 s on average or 221 GOST
encryptions. The total time spent in this step is about 268+21 ≈ 289 GOST
computations.

7. Now for each surviving key on 68 bits, we are going to extend it by 12 more
bits, to 80 bits. The additional 12 bits are: 16-19,128-130,160-161.

Now with a SAT solver we observe that a further proportion of 1 − 2−8.5

of cases on 80 bits terminates with UNSAT within 0.25 s on average or 220

GOST encryptions. Overall a proportion of 2−15 keys on 80 bits survives.

Time spent in this step is about 268+12−6.5+20 ≈ 293.5 GOST computations.

8. We add 4 more bits which are 34-35,161-163 to make 84 guessed bits total.
A further proportion of 1− 2−2 of cases on 88 bits terminates with UNSAT
within 0.25 s on average or 220 GOST encryptions. Time spent in this step
is about 284−15+20 ≈ 289 GOST encryptions. Overall a proportion of 2−17

keys on 84 bits survives.



203

9. We add 4 more bits which are 231-235 to make 88 guessed bits total. A
proportion of 1− 2−7 of cases on 88 bits terminates with UNSAT within 220

GOST encryptions. Time spent in this step is about 288−17+20 ≈ 291 GOST
encryptions. Overall a proportion of 2−24 keys on 88 bits survives.

10. Our 88 guessed bits total was a threshold determined experimentally, so
that when we run a SAT solver now with the correct 88 bits, a correct
and unique solution is always found. This takes 40 s which is about 227

GOST encryptions. Time spent in this step is about 288−24+27 ≈ 291 GOST
encryptions.

11. Overall the attack requires 294 GOST encryptions total.

J.3 Second Dedicated Attack for 4 KP and 8 R With Internal
Differences

This attack is motivated by the Family 8.4 attack from Section 28.6 which is
one of our fastest attacks on GOST however we are not sure if the last step of
this attack works as well as in Fact 125 because it produces 4 points with very
few bit differences which in the same way as in earlier Fact J.1 and J.2 makes
it easier to find individual keys but at the same time the number of solutions
increases. We need another careful and dedicated attack and we need to evaluate
the number of solutions.

Fact 126. Given 4 KP for 8 rounds of GOST, which all share the same 50 bits
at the input as in mask 0x8070070080700700, and which also share another 50
bits at the output as in mask 0x8070070080700700, there is at most 288 solutions
for the full 256-bit key and they can be enumerated in time of about 299 GOST
computations and negligible memory.

Justification:
example of 4 points with the same key:
In order to recover the key we proceed as follows.

1. We use the encoding of GOST described in [46].
2. We use a guess then determine approach with a highly non-trivial set of bits

which are guessed, the other bits are determined by software.
3. We use the following specific set of 68 bits following [35, 32]. The exact bits

used are: 0-15,51-55,64-66,128-130,179-183,192-207,224-231,244-255.
4. We convert our problem to a native SAT problem with native XORs such

as accepted by CryptoMiniSat 2.92 software [104].
5. We run the software 268 times for all possible assignments of the 68 bits.
6. Computer simulations on a laptop Intel i7 CPU show that if we run this

software with the timeout of 27 seconds, a proportion of 1 − 2−5 of cases
on 68 bits terminates with UNSAT within 0.3 s on average or 220 GOST
encryptions. The total time spent in this step is about 268+20 ≈ 288 GOST
computations.

7. Now for each surviving key on 68 bits, we are going to extend it by 12 more
bits, to 80 bits. The additional 12 bits are: 16-19,128-130,160-161.



204

Now with a SAT solver we observe that a further proportion of 1 − 2−4

of cases on 80 bits terminates with UNSAT within 0.1 s on average or 219

GOST encryptions. Overall a proportion of 2−9 keys on 80 bits survives.
Time spent in this step is about 268−5+12+19 ≈ 294 GOST computations.

8. We add 8 more bits which are 34-35,161-163,231-235 to make 88 guessed bits
total. A further proportion of 1 − 2−2 of cases on 88 bits terminates with
UNSAT within 0.1 s on average or 219 GOST encryptions. Time spent in
this step is about 288−9+20 ≈ 299 GOST encryptions. Overall a proportion
of 2−11 keys on 88 bits survives.

9. With our 88 guessed bits total, when we run a SAT solver, a unique solution
is found. This means that there is less than 288 solutions.
This takes 1 s which is about 221 GOST encryptions. Time spent in this step
is about 288−11+21 ≈ 298 GOST encryptions.

10. Overall the attack requires 299 GOST encryptions total.



205

J.4 Attacks on 6 KP and 8 Rounds

If we can obtain 294 for 4 KP and 8 rounds [35] one can expect that we will
obtain less for 5 KP and 6 KP. We have the following new attack which is in
structure very similar to one attack given in [35]:

Fact 127. Given 6 KP for 8 rounds of GOST the full 256-bit key can be found
in time of about 283 GOST computations and negligible memory.

Justification: We proceed as follows.

1. We use the encoding of GOST described in [46].
2. We use a guess then determine approach with a highly non-trivial set of bits

which are guessed, the other bits are determined by software.
3. We use the following specific set of 54 bits which is similar to the sets used

in [35]. The bits used are: 0-15,51-55,179-181,192-203,224-229,244-255.
4. We convert our problem to a native SAT problem with native XORs such

as accepted by CryptoMiniSat software [104].
5. We used the 64-bit version of CryptoMiniSat 2.92 under Windows 7.
6. We run the software 254 times for all possible assignments of our 54 bits.
7. Computer simulations on a laptop Intel i7 CPU show that if we run this

software with the timeout of 200 seconds, a proportion of 1 − 2−8 of cases
on 54 bits terminates with UNSAT within 95 s on average.

8. However if the assignment of 54 bits happens to be correct, and if we run
the same simulation with the timeout of 300 seconds, and on average over
the GOST keys, the SAT solver will output the correct key with probability
about 80 %.

9. Overall, it is NOT necessary to run all the 254 cases for 300 seconds, this
is because a proportion of 1 − 2−8 of cases terminates automatically with
UNSAT within 95 s average time which is 228.5 GOST encryptions on the
same CPU.

10. Assuming that all the other cases run for 300 s (some still terminate earlier)
our conservative estimate of the attack time is 254+29+254+31−8 ≈ 283 GOST
computations.

11. This for a success probability of at least 80 %.



206



Part XII

Induction Properties





209

K Inference of Internal Bits, Differential Induction

In this section we introduce a new guiding principle for the design of attacks
on GOST. A sort of meta-attack which can be applied in a variety of ways and
leading potentially to a large number of distinct attacks on GOST, at least in
theory. However in fact it is not very new. On the contrary. It is another way
of looking at many guess-then-determine attacks. In these attacks we work on
creating additional equations or relations between various data points inside the
cipher, at an overall low cost, or we try to optimize the price to pay for a set of
relations inside the cipher. In this section we look at very similar situations but
we emphasize something very different: once certain relations (or constraints)
are imposed, other relations (or constraints) will occur nearly for free or with
very high probability. We call it “Induction” which emphasizes the fact that
attacker can impose constraints remotely at places inside the cipher which are
not easily accessible.

Induction is also a form of two directional propagation of constraints. It is yet
another form of making some assumptions on the state of several encryptions,
and getting additional relations, hopefully at a relatively low “cost” or/and with
high “Amplification” (cf. Section 8 and [32]).

Even though Induction is just another method of viewing many already
known tricks and methods used in our attacks on GOST, it is a valuable sci-
entific and cryptanalytic tool. This is because it allows for systematic study,
comparison and thus further fine combinatorial optimisation of such events to
find better events and even better attacks. We do not formalize this property
fully, and it can exist in many different variants and flavors.

In most cases we look at situations of type 8+8 rounds and we focus on
generating some interesting relations on the data in the middle of the encryption
process.

K.1 The General Principle of Induction

The general principle of Induction is that we consider a combination of two key-
dependent permutations Q ◦ P , and we consider some relations or constraints
involving one, two or more encryptions. We add a number of constraints at both
ends, and we want to “induce” some equations in the middle by the combination
of constraints propagated from both ends. We are not looking for “black box”
properties but rather those which depend on special properties and internal
structure of P and Q.

input constraints input constraints

P P

??middle values?? becomes induced relations

Q Q

output constraints output constraints

Fig. 46. General principle of “Induction”: relations in the middle may occur with high
probability due to a combination of constrains from both sides



210

K.2 Induction With One Encryption

In this section we give some examples of Induction with one single encryption.
These examples have already been exploited in numerous attacks on GOST in
this paper.

For example we can re-visit the well-known fixed point property for an iter-
ated permutation and apply it to the first 16 rounds of GOST.

1 point, first 16 rounds of GOST

A A

(8 Rounds)

(16 Rounds) becomes A

(8 Rounds)

A A

1 bit 65 bits

A is an arbitrary unknown value

Fig. 47. Fixed points in the first 16 rounds of GOST seen as an Induction property:
the value in the middle is obtained nearly for free instead of 2−64

Fact 128 (Fixed-Point Induction For 16 Rounds of GOST). If A is a
fixed point for the first 16 rounds of GOST, A is also a fixed point for the first
8 rounds of GOST with probability about 50 %, cf. Fig. 47.

Justification: For a permutation, the probability to have 1 or more fixed points
is about 63%, cf. [85, 20, 23, 24]. This explains why in Fig. 47 we have written 1
bit below the left hand side. We expect that it is also about 63% for 8 rounds
of GOST. For 16 rounds we expect it is higher: 63% which would be obtained
for any permutation and also 63% which would be inherited from 8 rounds, with
substantial overlap.

K.3 Induction With One Encryption For the Last 16 Rounds

For the last 16 rounds of GOST Induction is easier, which can be established in
relation to the Reflection Property of Fact 17.

1 point, LAST 16 rounds of GOST

A A

(8 Rounds)

(16 Rounds) becomes symmetric

(8 Rounds)

A A

0 bit 32 bits

A is an arbitrary unknown value, many solutions

Fig. 48. Reflection in the last 16 rounds of GOST seen as an Induction property: 32
equalities in the middle are obtained nearly for free instead of 2−32



211

Fact 129 (Reflection-Based Induction For 16 Rounds of GOST). If A
is a fixed point for the last 16 rounds of GOST, we have a symmetric fixed point
inside with probability 100 %, cf. Fig. 48.

Justification: We recall that the last 16 rounds of GOST can be written as:
D ◦ S ◦ E . A fixed point for the whole gives also a fixed point for S, and S has
exactly 232 fixed points which are exactly all the symmetric values with both
halves equal.

K.4 Induction With Several Encryptions with Composition of
Involutions

Reflection attacks use a single involution. There are also induction attacks with
a composition of two involutions. Let Q◦P be a composition of two involutions.

One simple method is to observe that each involution will have 232 fixed
points, cf. Section 13.4, and their compositionQ◦P is likely to have a shared fixed
point, which allows therefore the attacker to infer a value inside the encryption
process with very high probability, this is because overall we do NOT expect the
whole large permutation Q ◦ P to have many other fixed points.

Now imagine that we are not lucky and the two involutions do NOT have a
shared fixed point. This method can be generalized as follows.

We recall our earlier Fact 21 page 50. Consider two short cycles of length k
for Q ◦ P. Then the consecutive points on these cycles are going to be mapped
by P with high probability. We just need to guess which of the two cycles is the
origin, and which is the right starting point on the other cycle. Overall we see
that we can generate as many as k P/C pairs for P which are correct with a still
quite large probability of about 1

2k .
This can also be interpreted as an induction property with 2k encryptions:

we have 2k P/C pairs for a large permutation with p+ q cipher rounds, and we
can guess values inside after p rounds, see Fact 21.



212

K.5 Differential Induction For 8 Rounds

In Differential Induction we will be looking at pairs of encryptions. The
main idea was already explicitly discussed in Section 26.1 in relation to Fig. 18,
however it was not clear if this property is very interesting. In this section we
make it a central object of interest and a starting point for many attacks.

We start with the following fundamental example for 8 rounds: cf. Fig. 49
below. We look at two different encryptions for 16 rounds of GOST, regardless
of the key schedule: it could be the first 16 rounds of GOST, the last 16 rounds
of GOST, or any other.

We assume that the input difference is of the formA⊕B ∈ 0x8070070080700700
which is equivalent to fixing exactly 50 bits of the difference between the two
plaintexts and assuming that they are distinct. This is like adding 50 bits of
entropy or knowledge about the two encryptions. Then we also assume that the
same 50 “inactive” bits are also equal for the two outputs after 16 rounds cf.
left hand side of Fig. 49 below. Both assumptions hold jointly with probability
2−100. In practice, there is many such events for any fixed GOST key: there are
2127 possible pairs of plaintexts for the 16 rounds and inside these there will be
about 227 pairs which satisfy all the 50+50 difference bits.

Now the question is as follows: for 16 rounds of GOST, what is the probability
that we have the additional 50 difference bits in the middle as shown on the right
hand side of Fig. 49.

This probability is surprisingly high.

2 points

A,B sharing 50 bits A,B sharing 50 bits

0x80700700 0x80700700 0x80700700 0x80700700

(8 Rounds)

(16 Rounds) becomes 0x80700700 0x80700700

(8 Rounds)

0x80700700 0x80700700 0x80700700 0x80700700

C,D sharing 50 bits C,D sharing 50 bits

50+50 bits 150 bits

2^28 events 2^27 events

Fig. 49. Differential Induction: 50 additional differences nearly for free instead of 2−50

Fact 130 (Induction Property For 16 Rounds). Given 16 rounds of GOST
and regardless of the particular key scheduling, given 100 bits assumption as
depicted on the left hand side of Fig. 49, the probability that we have additional
50 bits in the middle as shown on the right hand side Fig. 49 is very roughly
about 50 % instead 2−50.

Justification: This property is hard to verify experimentally but it is easy to
establish by theory. As in Section 25.1 there are 277 possible pairs with input
differences in 0x8070070080700700. Following [38] this propagates for 8 rounds



213

and gives the middle difference in 0x8070070080700700 with probability 2−25 and
propagates for another 8 rounds with another 2−25. Overall we predict that about
277−50 = 227 pairs which survive if the 2 propagations are independent. Moreover
we claim that these 227 pairs are going to be almost entirely disjoint with another
227 pairs which occur by accident for any (random or not) permutation Q◦P as
in Fig. 49 with all the 50+50 difference bits as on the left hand side of Fig. 49.
The argument to show they are disjoint is similar as in Section 4 of [40]: out of
227 pairs with the right 100 I/O differences, only a proportion of 2−50 will have
the right 50 difference bits in the middle. The intersection of two sets of 227 is
expected to be empty. Therefore it is clear that for 16 rounds of GOST, we will
get 227 + 227 events such as on the left hand side of Fig. 49, and out of these
about half are such as on the right hand side of Fig. 49.

Remark: In practice, Induction works not only for the 50 bits which we
study. The entropy of the whole difference on 64 bits after round 8 is also quite
low. For example for about 50 % of the time it is only about 9 bits instead of
64− 50 = 14, see Section 26.1.

K.6 Stronger Induction - More Rounds

It is easy to see that stronger Induction, or Induction for more rounds, can be
obtained if we reduce the space at both ends. We give here one example.

2 points

A,B sharing 63 bits A,B sharing 63 bits

0x80000000 0x00000000 0x80000000 0x00000000

(10 Rounds)

(20 Rounds) becomes 0x80700700 0x80700700

(10 Rounds)

0x00000000 0x80000000 0x00000000 0x80000000

C,D sharing 63 bits C,D sharing 63 bits

128 bits 178 bits

2^-1 events 2^-2 events

Fig. 50. Differential Induction: 50 additional differences nearly for free instead of 2−50

This probability is again quite high.

Fact 131 (Induction Property For 20 Rounds). Given 20 rounds of GOST
and regardless of the particular key scheduling, given 128 bits assumption as
depicted on the left hand side of Fig. 50, the probability that we have additional
50 bits in the middle as shown on the right hand side Fig. 50 is very roughly
about 50 % instead 2−50.

Justification: For more or less any permutation, there is 2127 possible pairs and
on average about 1/2 will have both an input difference and output difference
in 0x8000000000000000.

There are 263 possible pairs with input differences in 0x8000000000000000
and our computer simulations show that this propagates for 10 rounds and gives



214

the middle difference in 0x8070070080700700 with probability 2−25.5. This gives
263−25.5 = 237.5 possible pairs for the first 10 rounds. This means that each of the
277 possible pairs in the middle propagates backwards with probability 2−39.5

on average. In the same way it propagates forwards with probability 2−39.5 on
average. This will be about 277−39.5−39.5 = 1/4 or about 50 % of the 1/2 obtained
above.

K.7 Induction With Three Points

In the same way we can consider Induction with 3,4 and more points. We present
here just one particular way to do it in which all differences of 2 points are
constrained.

When we write 0x80700700, 0x80700700 for 3 points we mean all the 3 points
share the same 50 bits at the input, or equivalently that every difference has 14
active bits: A⊕B ∈ 0x8070070080700700, and the same for A⊕ C and B ⊕ C.
Now the initial constraint on 3 points on the left hand side has an entropy of
200 bits, and if it happens that the 3 middle differences share the same 50 bits,
this is additional 100 bits. For an ideal (very strong) cipher it would occur with
conditional probability of 2−100.

3 points

A,B,C sharing 50 bits A,B,C sharing 50 bits

0x80700700 0x80700700 0x80700700 0x80700700

(8 Rounds)

(16 Rounds) becomes 0x80700700 0x80700700

(8 Rounds)

0x80700700 0x80700700 0x80700700 0x80700700

D,E,F sharing 50 bits D,E,F sharing 50 bits

200 bits 300 bits

2^-3+2^-11 events 2^-3 events

Fig. 51. 3-Point Higher-Order Differential Induction: 100 additional differences ob-
tained with near certitude instead of 2−100 expected for an ideal cipher

In a preliminary estimation, this probability appears to be surprisingly high.

Fact 132 (3-Point Induction Property For 16R). Given 16 rounds of
GOST and regardless of the particular key scheduling, given a 200 bits I/O
constraint as depicted on the left hand side of Fig. 50, the probability that we
have additional 100 bits in the middle as shown on the right hand side Fig. 51
is very roughly about 99.5 % instead 2−100.

Justification: Again it is difficult to estimate the probability exactly. For more
or less any permutation, there is 2192/6 ≈ 2189.4 possible triples and on average
about 2200−189.4 ≈ 2−10.6 will have the same 50 points at the input and at the
output (for all the three encryptions).

Given any fixed 50 bits and 8 rounds of GOST, our computer simulations
show that with probability 2−6 there are 3 points sharing these 50 bits at the



215

input, and sharing some other 50 bits at the output. Then our computer simula-
tions show that the first two propagate for the next 8 rounds with probability of
about 2−25, and the third also has the same 50 bits with conditional probability
of about 2−22. Overall, we expect to have the situation as on the right hand side
of Fig. 51 for very roughly about 250−6−25−22 ≈ 2−3 triples of points. This 2−3

will be about 99.5 % compared to the additional 2−10.6 obtained above.
Remark. It appears that triple point events impose very strong constraints.

Or equivalently, with 3, 4 or more point events, we can impose stronger con-
straints on what happens inside the cipher. This means that with 3 points we
expect to get Induction properties which work for more rounds than with 2
points, and with 4 points even better Induction properties.

K.8 Induction For 32 Rounds

For 32 rounds we can assume that 50 bits are shared at the input, the output
and in the middle which happens for 2127−50−50−50 = 2−23 pairs A,B. Then we
can apply Fact 130 twice, and we obtain about 2−23 · 0.5 · 0.5 ≈ 2−25 pairs as on
the right hand side of Fig. 52.

2 points

A,B sharing 50 bits A,B sharing 50 bits

0x80700700 0x80700700 0x80700700 0x80700700

(8 Rounds)

C,D sharing 50 bits

(16 Rounds) 0x80700700 0x80700700

(8 Rounds)

E,F sharing 50 bits E,F sharing 50 bits

0x80700700 0x80700700 becomes 0x80700700 0x80700700

(8 Rounds)

G,H sharing 50 bits

(16 Rounds) 0x80700700 0x80700700

(8 Rounds)

0x80700700 0x80700700 0x80700700 0x80700700

I,J sharing 50 bits I,J sharing 50 bits

150 bits 250 bits

2^-23 events 2^-25 events

Fig. 52. Differential Induction for 32 Rounds

This is an interesting configuration, mainly because it is partly “visible” to
the attacker: for any given key there is 2127−50−50 = 227 pairs A,B for which the
outputs coincide on 50 bits. The attacker can guess which pair A,B is correct
with probability 2−27.

For a proportion of 2−25 of keys, and with probability 2−27 the attacker can
determine 150 bits inside the cipher. This is quite good. However it is not easy
to see how this can be exploited in an attack.



216

K.9 Weak Induction For 32 Rounds

In this section we describe one example which is substantially weaker in terms
of the induction probabilities obtained. The advantage is that the attacker does
not make any assumptions on the internal values after 16 rounds, only on the
inputs and the outputs.

2 points

A,B sharing 60 bits A,B sharing 60 bits

0xF0000000 0x00000000 0xF0000000 0x00000000

(8 Rounds)

C,D sharing 50 bits

0x80700700 0x80700700

(32 Rounds) becomes (16 Rounds)

E,F sharing 50 bits

0x80700700 0x80700700

(8 Rounds)

0x00000000 0xF0000000 0x00000000 0xF0000000

G,H sharing 60 bits G,H sharing 60 bits

120 bits 220 bits

2^7 events 2^-40 events

Fig. 53. Weak Differential Induction for 32 Rounds



Part XIII

Authentication and
Integrity Applications of

GOST





219

L GOST Hash and Self-Similarity Attacks

In this section we introduce a comprehensive framework which allows to discuss
some existing attacks on the GOST Hash compression function [67, 68, 72, 73,
47]. We want to define a framework which allows one to split the task of the
cryptanalysis of the GOST Hash function, or just for the GOST compression
function [72, 73, 47] into several independent welly-defined tasks which can be
studied separately. In this paper we only look at pseudo-collisions and pseudo-
pre-images for the compression function. Attacks on the full GOST Hash function
are outside of the scope of this paper, see [73]. Our goal is to see if the self-
similarity of the high-level structure of GOST hash can be exploited to find
interesting attacks.

L.1 Cryptanalysis of GOST Compression Function

On the following picture we provide a high-level description of the GOST com-
pression function. The fact that the the GOST compression function can indeed
be represented in this way is NOT trivial and requires to carefully read the
specification of the hash function [67, 68, 72, 73].

Fig. 54. One round of the GOST compression function

1. 4 instances of the full 256-bit GOST cipher,

2. One linear transformation L with 256+256 inputs and 1024+256 output bits.

3. Two 256-bit affine constants C2 and C3, other parts being linear.



220

4. One bijective linear transformation K on 256 bits which does not affect any
of our attacks on one single GOST compression function however it would
be important to study if we want to attack a composition of such functions.

All the attacks on this function can be derived in this abstract algebraic
representation and do not depend on details of individual components.

L.2 The Main Framework and Its Applications

The main idea which unifies different attacks on this compression function is as
follows. It can be seen as the special case of Constrained Inputs Constrained
Outputs (CICO) attack, which is a natural and popular methodology in crypt-
analysis of hash functions. Here the constraints of inputs and outputs are always
sets of linear equations. This sort of property is more or less the only thing we
need to develop attacks on the GOST compression function.

Definition L.2.1 (Affine CICO Reduction Property).

1. We assume some 256+64+64=256+256-128 linear equations to hold on the
two inputs at the top of the picture: Hi−1 and Mi.
This reduces the input space to 2128 inputs.

2. Then we observe that there will be, due to specific reasons explained later,
64 linear equations true with probability 1 on the output Hi.
In other terms if we choose carefully our linear assumptions, the output falls
within a LINEAR space with 2192 elements EACH TIME the input is a
member of the reduced input linear space with 2128 inputs.

There are two different methods to obtain this Affine Reduction Property.



221

L.3 Description of Method 1

This method of achieving our objective (Affine Reduction Property) comes from
[72] and works as follows (cf. Fig. 55).

1. We fix some target on 64 bits, for example x0 = a.
2. We fix the key k0 for the first instance of the cipher GOST.

This is 256 linear equations on the two inputs at the top Hi−1 and Mi.
3. We fix the input h0 of the first instance of the cipher GOST. This is another

64 linear equations.
4. We fix c0 (cf. Fig. 55). We fix it to the value a⊕ s0 in order to achieve our

target x0 = a. This is another 64 linear equations.
5. This allows one to make sure that once s0 is fixed and c0 is fixed, 64 bits of

the input of K are fixed, namely x0 = a, and therefore the output Hi lives
in a linear space of dimension 2192 as required.

Fig. 55. Method 1 to achieve our objective of ”Affine Reduction”



222

Fig. 56. Method 2 to achieve our objective of ”Affine Reduction”

L.4 Description of Method 2 Based On Self-Similarity

This method of achieving our objective (Affine Reduction Property) comes from
[47] and works as follows (cf. Fig. 56).

1. We assume that keys k0 and k1 for the first two instances of the cipher GOST
are the same.
This is 256 linear equations on the two inputs at the top Hi−1 and Mi.

2. We assume that the inputs k0 and k1 for the first two instances of the cipher
GOST are the same.
This is another 64 linear equations.

3. We fix c0 ⊕ c1 (cf. Fig. 56). This is another 64 linear equations.
4. This allows one to make sure that once s0 = s1 we obtain 64 linear equations

on the input of K are fixed, and therefore the output Hi lives in a linear
space of dimension 2192 as required.



223

L.5 How to Find Pseudo-Collisions for the GOST Compression
function

This is possible very easily with both Method 1 and Method 2 and we recall the
methods of [72, 73, 47].

1. With both Method 1 and Method 2 our output space has 2192 elements.
2. By birthday paradox we can find colliding inputs in time of 296.
3. Our input space is larger than 296 which is sufficient.
4. The memory complexity can be made negligible by very widely known ”mem-

oryless” cycling techniques, see [72, 86].

A more powerful method to find collisions which are no longer pseudo-
collisions and where almost the whole Hi can be “almost” an arbitrary value
is described in [73].

L.6 How to Find Pseudo-Pre-Images for the GOST Compression
Function in Time 2189

This is possible with Method 1 and already done in [72]. We revisit this attack.

1. Again let (x0, x1, x2, x3) = (a, b, c, d) be our target.
2. With Method 1, cf. Fig 55, we first chose any k0, h0, compute s0 with one

GOST encryption and put c0 = s0 ⊕ a which allows us to achieve x0 = a.
3. This triple of values h0, k0, c0 gives 256+64+64 linear equations on 512 input

bits.
4. We can compute a basis for a linear space of dimension 128.
5. We can then try 2128 cases in this space. We need to repeat this 264 times

for different initial choice of h0, k0.
6. We need to try 2191 cases on average until we get (x1, x2, x3) = (b, c, d).
7. In each of 2191 steps we need to compute just one GOST encryption and

most of the time we can reject this case because x1 6= b. This is only 2−2

evaluations of the GOST compression function.
8. Overall the expected running time 2191−2 = 2189 evaluations of the GOST

compression function.

Here also a more powerful method to find pre-images which are no longer
pseudo-pre-images and where almost the whole Hi can be “almost” an arbitrary
value is described in [73].



224

L.7 Can We Find Pseudo-Pre-Images with Method 2?
In this section we look if it is possible to find pseudo-pre-images with a variant
of our Method 2 which was successful with finding pseudo-collisions.

Fig. 57. Tentative Method 2’ to find pseudo-pre-images for the GOST Compression
function

1. With our new Method 2’, cf. Fig 57, we can first of all choose c0 ⊕ c1 to be
such that when s0 = s1 we get the current target value for x0 ⊕ x1.
This is 64 linear equations on the inputs.

2. Then with other assumptions being the same as in Method 2, k0 = k1 and
h0 = h1, a random input produces the output we want with probability
2−192.

3. For one given k0 the input space is of insufficient size 2128.
This attack only works with probability 2−64 over the target outputs.

4. With 6 possible choices of 2 out of 4 we get 2−61.4 over the target outputs.
5. We get another 2−61.4 if we consider the complementation property of GOST

described in Appendix C of [50]: instead of assuming that k0 = k1 and
h0 = h1, we assume that k0 = k1 ⊕ e31 and h0 = h1 ⊕ e31, and we XOR e31
also to our computed target for c0 ⊕ c1.

6. Overall we achieve a proportion of 2−60.4 of target outputs.
7. This attack only works for some target outputs and allows to find pseudo-

pre-images for them in time of 2192. This is not as good as with Method 1.
It seems that it is easier to design a pseudo-collision attack for GOST than
a pseudo-pre-image attack.


