
New attacks on Keccak-224 and Keccak-256

Itai Dinur1, Orr Dunkelman1,2 and Adi Shamir1

1 Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. The Keccak hash function is one of the five finalists in NIST’s
SHA-3 competition, and so far it showed remarkable resistance against
practical collision finding attacks: After several years of cryptanalysis
and a lot of effort, the largest number of Keccak rounds for which actual
collisions were found was only 2. In this paper we develop improved col-
lision finding techniques which enable us to double this number. More
precisely, we can now find within a few minutes on a single PC actual
collisions in standard Keccak-224 and Keccak-256, where the only mod-
ification is to reduce their number of rounds to 4. When we apply our
techniques to 5-round Keccak, we can get in a few days excellent near
collisions, where the Hamming distance is 5 in the case of Keccak-224
and 10 in the case of Keccak-256. Our new attack combines differential
and algebraic techniques, and uses the fact that each round of Keccak
is only a quadratic mapping in order to efficiently find pairs of messages
which follow a high probability differential characteristic.

Keywords: Cryptanalysis, SHA-3, Keccak, collision, near-collision, prac-
tical attack.

1 Introduction

The Keccak hash function [4] uses the sponge construction [3] to map arbitrary
long inputs into fixed length outputs, and is one of the five finalists of NIST’s
SHA-3 competition. The Keccak versions submitted to the SHA-3 competition
have an internal state size of b = 1600 bits, and an output size n of either 224,
256, 384 or 512 bits. The internal permutation of Keccak consists of 24 appli-
cation of a non-linear round function, applied to the 1600-bit state. Previous
papers on Keccak, such as [13], include analysis of Keccak versions with a re-
duced internal state size, or with different output sizes. However, in this paper,
we concentrate on the standard Keccak versions submitted to the SHA-3 com-
petition, and the only way in which we modify them is by reducing their number
of rounds.

Previous results on Keccak’s internal permutation include zero-sum distin-
guishers presented in [1], and later improved in several papers [5, 6, 8]. Although
zero-sum distinguishers reach a significant number of rounds of Keccak’s in-
ternal permutation, they have very high complexities, and they seem unlikely
to threaten the core security properties of Keccak (namely, collision resistance,
preimage resistance and second-preimage resistance). Other results on Keccak’s

internal permutation include a differential analysis given in [9] by Duc, Guo,
Peyrin and Wei. Using techniques adapted from the rebound attack [12], the
authors construct differential characteristics which give distinguishers on up to
8 rounds of the permutation, with complexity of about 2491. However, in their
method it is not clear how to reach the starting state differences of these char-
acteristics from valid initial states of Keccak’s internal permutation, since in
sponge constructions a large portion of the initial state of the permutation is
fixed and cannot be chosen by the cryptanalyst. Thus, although the results of
Duc et al. seem to be more closely related to the core security properties of
Keccak than zero-sum distinguishers, they still do not lead to any attacks on the
Keccak hash function itself.

Currently, there are very few results that analyze reduced-round variants of
the full hash function (rather than its building blocks): in [2], Bernstein described
preimage attacks which extend up to 8 rounds of Keccak, but are only marginally
faster than exhaustive search, and use a huge amount of memory. More recently,
Naya-Plasencia, Röck and Meier presented practical attacks on Keccak-224 and
Keccak-256 with a very small number of rounds [14]. These attacks include a
preimage attack on 2 rounds, as well as collisions on 2 rounds and near-collisions
on 3 rounds. In this paper, we extend these collision attacks on Keccak-224 and
Keccak-256 by 2 additional rounds: we find actual collisions in 4 rounds and
actual near-collisions in 5 rounds of Keccak-224 and Keccak-256, with Hamming
distance 5 and 10, respectively.

The collisions and near-collisions of [14] were obtained using low Hamming
weight differential characteristics, starting from the initial state of Keccak’s per-
mutation. Such low Hamming weight characteristics are also the starting point
of our new attacks, but we do not require the characteristics to start from the
initial state of the permutation. Given a low Hamming weight starting state
difference of a characteristic, we can easily extend it backwards by one round,
and maintain its high probability (as done in [9]). However, due to the very fast
diffusion of the inverse linear mapping used by Keccak’s permutation, the new
starting state difference of the extended characteristic has a very high Hamming
weight. We call this starting state difference a target difference, since our goal is
to find message pairs which have this difference after one round of the Keccak
permutation (after the fixed round, this difference will evolve according to the
characteristic with high probability).1 One of the main tools we develop in this
paper is an algorithm that aims to achieve this goal, namely, to find message pairs
which satisfy a given target difference after one Keccak permutation round. We
call this algorithm a target difference algorithm, and it allows us to extend our
initial characteristic by two additional rounds: we first extend the characteristic
backwards by one round to obtain the target difference (while maintaining the
characteristic’s high probability). Then, we use the target difference algorithm

1 We note that the target difference is not a valid initial difference of the permutation,
which fixes many of the state bits to pre-defined values. As a result, the high prob-
ability characteristic cannot be used to extend the results of [14] by an additional
round.

2

to link the characteristic backwards to the initial state of Keccak’s permutation,
through an additional round. We note that the final link backwards, which effi-
ciently bypasses Keccak’s first Sbox layer, uses algebraic techniques rather than
standard probabilistic techniques.

The target difference algorithm is related to several hash function cryptana-
lytic techniques that were developed in recent years. In particular, it is related
to the work of Khovratovich, Biryukov and Nikolic [11], where, similarly to the
our algorithm, the authors use linear algebra to quickly satisfy many conditions
of a differential characteristic. However, these techniques seem to work best on
byte-oriented hash functions, whose internal structure can be described using a
few sparse equations, which is not the case for Keccak. Our algorithm is also
closely related to the work of Khovratovich [10] that exploits structures (which
aggregate internal states of the hash function) in order to reduce the amortized
complexity of collision attacks: the attacker first finds a truncated differential
characteristic and searches for a few pairs of initial states that satisfy it. Then,
using the structures and the initially found pairs, the attacker efficiently obtains
many more pairs that satisfy the truncated characteristic. However, in the case
of Keccak, there are very few characteristics that can lead to a collision with
high probability, and it seems unlikely that they can be joined in order to form
the truncated differential characteristic required in order to organize the state
differences into such structures. Moreover, it seems difficult to find even one
pair of initial states that satisfy the target difference for Keccak. Another attack
related to the target difference algorithm is the rebound attack [12]. In this at-
tack, the cryptanalyst uses the available degrees of freedom to efficiently link and
extend two truncated differential characteristics, both forwards and backwards,
from an intermediate state of the hash function. However, once again, such high
probability truncated characteristics are unlikely to exist for Keccak. Moreover,
it is not clear how to use the rebound attack to link the backward characteristic
to the initial state of the permutation. Thus, our target difference algorithm can
be viewed as an asymmetric rebound attack, where one side of the characteristic
is fixed.

Our full attacks have two parts, where in the first part we execute the target
difference algorithm in order to obtain a sufficiently large set of message pairs
that satisfy the target difference after the first round. In the second part of the
attack, we try different message pairs in this set in order to find a pair whose
difference evolves according to a characteristic whose starting state is the target
difference. Since the target difference algorithm does not control the differences
beyond the first round, the second part of the attack is a standard probabilistic
differential attack (which only searches for collisions or near-collisions obtained
from message pairs within a specific set). The high probability differential char-
acteristic beyond the first round ensures that the time complexity of the second
part of the attack is relatively low.

Although the target difference algorithm is heuristic, and there is no provable
bound on its running time, it was successfully applied with its expected com-
plexity to many target differences defined by the high probability differential

3

characteristics. Consequently, we were able to find actual collisions for 4 rounds
of Keccak-224 and Keccak-256 within minutes on a standard PC. By using good
differential characteristics for an additional round, we found near-collisions for
5 rounds of Keccak-224 and Keccak-256. However, this required more computa-
tional effort (namely few days on a single PC), since the extended characteristics
have lower probabilities.

The paper is organized as follows. In Section 2, we briefly describe Keccak,
and in Section 3 we introduce our notation. In Sections 4 and 5, we give a compre-
hensive overview of the target difference algorithm and describe the properties
of Keccak that it exploits. In Section 6, we present our results on round-reduced
Keccak, and then describe the full details of the algorithm in Section 7. In Ap-
pendix A, we propose an alternative algorithm, which has a better understood
time complexity. Since the original algorithm gave us very good results in prac-
tice, we did not use this alternative version. However, it may be more efficient
in some cases, especially if someone finds longer high probability characteristics
for Keccak’s permutation.

2 Description of Keccak

In this section we give short descriptions of the sponge construction and the
Keccak hash function. More details can be found in the Keccak specification [4].

The sponge construction [3] works on a state of b bits, which is split into two
parts: the first part contains the first r bits of the state (called the outer part of
the state) and the second part contains the last c = b−r bits of the state (called
the inner part of the state).

Given a message, it is first padded and cut into r-bit blocks, and the b state
bits are initialized to zero. The sponge construction then processes the message in
two phases: In the absorbing phase, the message blocks are processed iteratively
by XORing each block into the first r bits of the current state, and then applying
a fixed permutation on the value of the b-bit state. After processing all the blocks,
the sponge construction switches to the squeezing phase, in which the first r bits
of the state are returned as output, and then the permutation is applied. This
is repeated until n output bits are produced.

The Keccak hash function uses multi-rate padding: given a message, it first
appends a single 1 bit. Then, it appends the minimum number of 0 bits followed
by a single 1 bit, such that the length of the result is a multiple of r. Thus,
multi-rate padding appends at least 2 bits and at most r + 1 bits.

The Keccak versions submitted to the SHA-3 competition have b = 1600 and
c = 2n, where n ∈ {224, 256, 384, 512}. The 1600-bit state can be viewed as a
3-dimensional array of bits, a[5][5][64], and each state bit is associated with 3
integer coordinates, a[x][y][z], where x and y are taken modulo 5, and z is taken
modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600
state bits. Each round of the permutation consists of five mappings R = ι ◦ χ ◦

4

ρ ◦ π ◦ θ. Keccak uses the following naming conventions, which are helpful in
describing these mappings:

– A row is a set of 5 bits with constant y and z coordinates, i.e. a[∗][y][z].
– A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][∗][Z].
– A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][∗].
– A slice is a set of 25 bits with constant z coordinate, i.e. a[∗][∗][z].

The five mappings are given below, for each x,y, and z (where the state ad-
dition operations are over GF (2)):

1. θ is a linear map, which adds to each bit in a column, the parity of two other
columns.

θ: a[x][y][z]← a[x][y][z] +

4∑
y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1]

In this paper, we also use the inverse mapping, θ−1, which is more compli-
cated and provides much faster diffusion: for θ−1, flipping the value of any
input bit, flips the value of more than half of the output bits.

2. ρ rotates the bits within each lane by T(x,y), which is a predefined constant
for each lane.
ρ: a[x][y][z]← a[x][y][z + T (x, y)]

3. π reorders the lanes.

π: a[x][y][z]← a[x′][y′][z], where

(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
4. χ is the only non-linear mapping of Keccak, working on each of the 320 rows

independently.
χ: a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])
Since χ works on each row independently, in can be viewed as an Sbox layer
which simultaneously applies the same 5 bits to 5 bits Sbox to the 320 rows
of the state. We note that the Sbox function is an invertible mapping, and
will use the extremely important observation that the algebraic degree of
each output bit of χ as a polynomial in the five input bits is only 2. We also
note that the algebraic degree the inverse mapping χ−1 is 3 (as noted in [4]).

5. ι adds a round constant to the state.
ι: a← a+RC[ir]

3 Notations

Given a message M , we denote its length in bits by |M |. Unless specified oth-
erwise, in this paper we assume that |M | = r − 8, namely we consider only
single-block messages of maximal length such that |M |(modulo 8) ≡ 0 (which
give us the maximal number of degrees of freedom, for single-block messages
containing an integral number of bytes). Given M , we denote the initial state of

5

the Keccak permutation as the 1600-bit word M , M ||p||02n, where || denotes
concatenation, and p denotes the 8-bit pad 10000001.

The first three operations of Keccak’s round function are linear mappings,
and we denote their composition by L , ρ ◦ π ◦ θ. We denote the Keccak
nonlinear function on 5-bit words defined by varying the first index by χ|5.
The difference distribution table (DDT) of this function is a two-dimensional
32 × 32 integer table, where all the differences are assumed to be over GF (2).
The entry DDT (δin, δout) specifies the number of input pairs to this Sbox
with difference δin that give the output difference δout (i.e., the size of the set
{x ∈ {0, 1}5 | χ|5(x) + χ|5(x+ δin) = δout}).

We denote the 1600-bit target difference, which is the input of the target
difference algorithm, by ∆T . The output of the algorithm is a subset of ordered
pairs of single block messages {(M1

1 ,M
2
1), (M1

2 ,M
2
2), ..., (M1

k ,M
2
k)} that satisfy

this difference after one roundR, namelyR(M
1

i)+R(M
2

i) = ∆T ∀i ∈ {1, 2, ..., k}.

4 Overview of the Target Difference Algorithm

When designing the target difference algorithm, we face two problems: first, the
target difference extends backwards, beyond the first Keccak Sbox layer, with
very low probability (due to its high Hamming weight). The second problem
is that the initial state of the permutation fixes many of the state bits to pre-
defined values, and the initial states that we use must satisfy these constraints.
On the other hand, Keccak-224 and Keccak-256 allow the user to control many
of the 1600 state bits of the initial state of the permutation. Thus, given a target
difference, we expect many solutions to exist (namely, one-block message pairs
which have the 1600-bit target difference after one permutation round): since we
consider message pairs, where each message is of length r − 8 = 1600 − 8 − 2n
bits (1144 for Keccak-224, and 1080 for Keccak-256), given an arbitrary 1600-bit
target difference, there is an expected number of 22(1600−8−2n)−1600 = 21584−4n

message pairs of this length that satisfy this difference (regardless of the value
of the inner part of the state). Thus, the algorithm has 704 and 560 degrees
of freedom for Keccak-224 and Keccak-256, respectively. Our target difference
algorithm exploits this huge number of degrees of freedom, in addition to other
properties of Keccak’s permutation (such as the low algebraic degree of its Sbox),
to find a sufficiently large set of message pairs which satisfy the given target
difference.

Given ∆T , an arbitrary message pair (M1,M2) in which |M1| = |M2| = r−8

is a solution to our problem if R(M
1
) +R(M

2
) = ∆T . We can reformulate this

condition using two constraints on the 1600-bit words (M1,M2):

1. The 2n + 8 MSBs of M
1

and M
2

are equal to p||02n, where p denotes the
8-bit pad 10000001.

2. R(M
1
) +R(M

2
) = ∆T (where R is the permutation round of Keccak).

We can easily formulate the first constraint using linear equations on the bits
of M1 and M2. Since Keccak’s Sbox has an algebraic degree of 2 over GF (2),

6

we can formulate the second constraint as a system of quadratic equations on
these bits. Standard heuristic techniques for solving such systems include using
the available degrees of freedom to fix some message values (or values before
the first Sbox layer) in order to linearize the system. However, these techniques
require many more than the available number of degrees of freedom. For example,
in order to get linear equations after one round of Keccak’s permutation, we can
fix 3 out of the 5 bits entering an Sbox (after the first linear layer), such that
there are no two consecutive unknown input bits entering the Sbox. Using this
technique reduces the single quadratic term in the symbolic form of each of the
Sbox’es output bits to a linear term. However, this requires fixing 320 · 3 = 960
bits per massage, and 2 · 960 = 1920 bits in total, which is significantly more
than the 704 available degrees of freedom for Keccak-224 (and clearly more
than the available number of degrees of freedom for the other Keccak versions).
Consequently, we have to repeat the linearization procedure a huge number of
times, with different fixed values, in order to find a solution.

Although we expect our quadratic system to have many solutions, solving all
the equations at once seems difficult. Thus, we split the problem into easier tasks
by exploiting the low algebraic degree of Keccak’s Sbox to a greater extent than
in the standard techniques: the algebraic degree of each one of the 5 output bits
of the Keccak Sbox, as a polynomial over GF (2) in the 5 input bits, is only 2.
Differentiating these polynomials reduces their degree to 1. Consequently, given
an input difference and an output difference to an Sbox, all the pairs of input
values that satisfy them form an affine subset.2 This suggests an algorithm with
two phases, where in the first phase (called the difference phase) we find an input
difference to all the Sboxes, and in the second phase (called the value phase) we
obtain the actual values of the message pairs that lead to the target difference.

Using this two-phase approach, the ordered pairs produced by our algorithm
satisfy two additional properties: the 1600-bit input difference of the initial states

is fixed to some 1600-bit value ∆I (i.e. M
1

i +M
2

i = ∆I ∀i ∈ {1, 2, ..., k}), and the
set composed of all the initial states defined by the first message in each ordered

pair (i.e.
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}), forms an affine subset. The algorithm outputs
the ordered pairs as the fixed 1600-bit input difference ∆I , and some basis for

the affine subset
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}.
The two constraints above, which define our quadratic equation system, are

broken into two sets of constraints, since we have to simultaneously enforce two
difference constraints (given as constraints on the 1600-bit word ∆I):

Difference Constraint 1 The 2n + 8 most significant bits (MSBs) of ∆I are
equal to zero.
Difference Constraint 2 L(∆I) is a valid input difference to the Sbox layer,
i.e. there exists some 1600-bit word W such that χ(W) + χ(W + L(∆I)) = ∆T

2 Similar observations were used in [7] to suggest that when DDT (δin, δout) =2 or 4,
the same holds. In the specific case of Keccak, we also use 3-dimensional affine
subsets of pairs that satisfy the Sbox difference transition (δin, δout), for which
DDT (δin, δout) = 8.

7

(note that since L is a linear function, L(∆I) is well-defined).

The first difference constraint simply equates bits of the input difference ∆I

to zero (456 bits for Keccak-224 and 520 bits for Keccak-256), while the second
difference constraint assigns to every 5 bits of L(∆I) that enter an Sbox, several
possible values which are not related by simple affine equations.

In the second phase, we enforce additional value constraints (given on the

1600-bit word M
1
):

Value Constraint 1 The 2n + 8 MSBs of M
1

are equal to p||02n, where p
denotes the 8-bit pad 10000001.

Value Constraint 2 R(M
1
) +R(M

1
+∆I) = ∆T .

Note that the first difference constraint and the first value constraint on each
M

1

i also ensure that the same value constraint holds for M
2

i (i.e., the 2n + 8

MSBs of M
2

i are equal to p||02n).

Given a single 1600-bit Sbox layer input difference, enforcing the two value
constraints simply reduces to solving a union of two sets of linear equations.
On the other hand, it is not clear how to simultaneously enforce both of the
difference constraints, since given an output difference to an Sbox δout, all the
possible input differences δin such that DDT (δin, δout) > 0, are not related by
simple affine relations.

We can try to enforce both difference constraints by assigning the undeter-
mined 1600−2n−8 bits of ∆I , in such a way that the second difference constraint
will hold. This usually involves iteratively constructing an assignment for ∆I ,
by guessing several undetermined bits at a time, and filtering the guesses by
verifying the second difference constraint. However, this is likely to have a very
large time complexity, since L diffuses the bits of ∆I in a way that forces us to
guess many bits before we can start filtering the guesses. Moreover, for any ∆T ,
the fraction of input differences satisfying the first difference constraint that also
satisfy the second difference constraint is very small. Thus, most of the computa-
tional effort turns out to be useless, since the guesses are likely to be discarded at
later stages of the algorithm. Another approach is to guess L(∆I) by iteratively
guessing the 5-bit Sbox input differences, and filtering the guesses by verifying
the first difference constraint. For similar reasons, this approach is likely to have
a very large time complexity.

Both of these approaches are very strict, since each guess made by the al-
gorithm commits to a specific value for some of the bits of ∆I , or L(∆I), and
restricts the solution space significantly. Thus, we use another interesting prop-
erty of Keccak’s Sbox, which gives us more flexibility, and significantly reduces
the time complexity: we notice that given any non-zero 5-bit output difference
to a Keccak Sbox, the set of possible input differences contains at least five 2-
dimensional affine subspaces. Thus, in order to enforce the second difference con-
straint, for each Sbox with a non-zero output difference (called an active Sbox),
we choose one of the affine subsets (which contains 4 potential values for the 5

8

Sbox input bits of L(∆I)), instead of choosing specific values for these bits. This
enables us to maintain an affine subspace of potential values for L(∆I), starting
with the full 1600-dimensional space, and iteratively reducing its dimension by
adding affine equations in order to enforce the second difference constraint for
each Sbox. In addition to these affine equations that we add per active Sbox, we
also have to add the linear equations for the non-active Sboxes (which equate
their 5 input difference bits to zero), and the additional 2n+ 8 linear equations
that enforce the first difference constraint. All of these equations are added to a
linear system of equations that we denote by E∆.

Since the 2n + 8 equations that enforce the first difference constraint do
not depend on the target difference, we add them to E∆ before we iterate the
Sboxes. While iterating over the active Sboxes, we add equations on L(∆I) in
order to enforce the second difference constraint and hope that for each Sbox,
we can add equations such that E∆ is consistent. Note that the equations in
E∆ in each stage of the algorithm depend on the order in which we consider the
active Sboxes, and on the order in which we consider the possible affine subsets
of input differences for each Sbox. Thus, if we reach an Sbox for which we cannot
add equations in order to enforce the second constraint (while maintaining the
consistency of E∆), it does not imply that it is impossible to satisfy the difference
constraints. In this case, we can simply change the order in which we consider
the active Sboxes, or the order in which we consider the affine subsets for each
Sbox, and try again. Since we cannot predict in advance the orderings that give
the best result, we choose them heuristically, as described in Section 7.

In case the difference phase procedure described above succeeds, it actually
outputs an affine subspace of candidate input differences, rather than a single
value for ∆I . Next, we can commit to a specific value for ∆I and run the value
phase, hoping that the set of all linear equations defined by the value constraints
has a solution. Namely, we allocate another system of equations, which we denote

by EM , and add the equations on M
1

that enforce the first value constraint. We
then add the additional linear equations that enforce the second value constraints
for all the Sboxes, and output the solution to the system, if it exists. However,
once again, this approach is too strict, and may force us to repeat the value phase
a huge number of times with different values for ∆I , until we find a solution.
Thus, we do not choose a single value for ∆I in advance. Instead, we reduce the
linear subset of candidates for ∆I gradually by fixing the input difference to each
one of the active Sboxes, until a single value for ∆I remains. Thus, we continue
to maintain E∆ throughout the value phase, and iteratively add the additional
2 equations which are required to uniquely specify a 5-bit input difference for
each active Sbox, among the 2-dimensional affine subsets chosen in the difference
phase. Once we fix the input difference to an Sbox, we immediately obtain linear

equations on M
1
, and we can check their consistency with the current equations

in EM . In case the equations in EM are not consistent for a certain Sbox, we
can try to choose another input difference for it. This gives different equations

on M
1
, which may be consistent and allow us to continue the process.

9

Similarly to the difference phase, the equations in EM in each stage of the
algorithm depend on the order in which we consider the active Sboxes, and on
the order in which we consider the possible input differences for each Sbox. Thus,
once again, if at some stage of the value phase we cannot add any consistent
equations to EM , we can change one of these orderings and try again, hoping to
obtain a valid solution.

We stress again that both phases of the algorithm are not guaranteed to
succeed. The success of each phase depends on the target difference, and on
orderings which are chosen heuristically. As a result, we may have to iterate
both phases of the algorithm an undetermined number of times with modified
orderings, hoping to obtain better results.

5 Properties of Keccak Exploited by the Target
Difference Algorithm

In Section 4, we mentioned three useful properties of Keccak-224 and Keccak-256
that are exploited by our attack. In this Section, we elaborate on these properties
with more detail.

The first property of Keccak that the algorithm exploits is that the algebraic
degree of its Sboxes is only 2. This implies that given a 5-bit input difference
δin and a 5-bit output difference δout, the set of values {v1, v2, ..., vl} such that
χ|5(vi) +χ|5(vi + δin) = δout is an affine subset. Since (vi + δin) + δin = vi, then
vi+δ

in ∈ {v1, v2, ..., vl}, implying {v1, v2, ..., vl} = {v1+δin, v2+δin, ..., vl+δ
in}.

Thus, both coordinates of the ordered pairs give the same subset, and we denote
it by A(δin, δout) (note that |A(δin, δout)| = DDT (δin, δout)). On the other hand,
since the algebraic degree of the inverse Sbox is 3, which is reduced to 2 (rather
than 1) after differentiation, the output values that satisfy an input and an
output difference do not necessarily form an affine subset.

The first property is exploited in the value phase in order to efficiently verify
the two value constraints, and to maintain (and output) the largest possible
solution subset, for a fixed ∆I .

The second property is the large number of available degrees of freedom.
In general, a larger number of degrees of freedom allows us to restrict the set
of solutions (i.e. the set of message pairs that satisfy the target difference) to
a smaller subset that can be found more easily. In particular, the algorithm
considers only message pairs with a fixed difference∆I , for which all the solutions
can be found by solving linear equations.

The number of possible solutions varies significantly according to the target
difference. To demonstrate this, we use the fact that L−1 has very fast diffu-
sion (i.e., even an input with one non-zero bit is mapped by L−1 into a roughly
balanced output). We consider the case where t > 0 out of the 320 Sboxes of
the target difference are active (i.e., there are t Sboxes with a non-zero output
difference). Each one of the 320 − t non-active Sbox zero output differences is
uniquely mapped backwards to a zero input difference into the first Sbox layer.
Using the Keccak Sbox DDT , it is easy to see that each one of the t active

10

Sbox output differences is mapped to more than 8 possible input differences.
Thus, the number of possible state differences after the first linear layer (or be-
fore the first Sbox layer) is more than 8t = 23t. Since L is invertible and acts
deterministically on the differences, the number of possible input differences to
the Keccak compression function remains the same. We now recall from the first
difference constraint in Section 4, that we require that the 2n + 8 MSBs of ∆I

are zero. However, for t large enough, we still expect more than 23t−2n−8 valid
solutions. When the target difference is chosen at random, we have t ≈ 310
(since the probability that an Sbox output difference is zero is 1

32). This gives
more than 2930−448−8 = 2474 expected solutions for Keccak-224, and more than
2930−512−8 = 2410 expected solutions for Keccak-256. On the other hand, con-
sider the extreme case of t = 1 (i.e., the target difference has only one active
Sbox). Clearly, this Sbox cannot contribute more than 31 possible differences
after the first linear layer. Since L−1 has very fast diffusion, these possible dif-
ferences are mapped to at most 31 roughly balanced non-zero possible input
differences, and we do not expect the 2n+ 8 MSBs of any of them to be zero. To
conclude, target differences with a small number of active Sboxes are likely to
have no solutions at all. On the other hand, a majority of the target differences
have a very large number of expected solutions for Keccak-224 and Keccak-256.
Note that having a large number of solutions does not imply that it is easy to
find any one of them, since their density is still minuscule.

The third property of Keccak that the algorithm exploits is as follows: for
any non-zero 5-bit output difference δout to a Keccak Sbox, the set of possible
input differences, {δin|DDT (δin, δout) > 0}, contains at least 5 (and up to 17) 2-
dimensional affine subspaces. These affine subspaces can be easily pre-computed
using the DDT , for each one of the 31 possible non-zero output differences.
However, we note that there is no output difference for which the set of possible
input differences contains an affine subspace of dimension 3 or higher.

The third property is exploited in the difference phase in order to efficiently
verify the two difference constraints on large affine subsets of possible input
differences. By keeping affine subspaces of differences rather than particular dif-
ferences, we can maintain (and output) a large number of possible input dif-
ferences in a compact way by specifying the linear subspace in which they all
reside, which gives the algorithm more flexibility and reduces its running time.

6 Application of the Target Difference Algorithm to
Round-Reduced Keccak

Since we would like to use the target difference algorithm in order to find colli-
sions and near-collisions in Keccak, it is crucial to verify the algorithm’s success
on target differences which lead to these results. Thus, before we run the algo-
rithm, we have to find such high probability differential characteristics, and to
obtain the target differences which are likely to be the most successful inputs to
the algorithm. As described in the Introduction, once we find a high probability
differential characteristic with a low Hamming weight starting state difference,

11

we extend it backwards to obtain the target difference (while maintaining its high
probability). We then use the target difference algorithm to link the extended
characteristic backwards to the initial state of Keccak’s permutation, with an
additional round. Thus, any low Hamming weight characteristic for x rounds of
Keccak’s permutation can be used to obtain results on a round-reduced version
of Keccak with x + 2 round. Specifically, in this section we demonstrate how
we use 2-round characteristics in order to find collisions for 4 rounds of Keccak-
224 and Keccak-256, and how to use 3-round characteristics in order to find
near-collisions for 5 rounds of these Keccak versions.

6.1 Searching for Differential Characteristics

We reuse the notion of a column parity kernel or CP-kernel that was defined
in the Keccak submission document [4]: a 1600-bit state difference is in the
CP-kernel if all of its columns have even parity. It is easy to see that such
state differences are fixed points of the function θ, which does not increase their
Hamming weight. Since ρ and π just reorder the bits of the state, the application
of L to a CP-kernel does not change its total Hamming weight. In addition, there
is a high probability that such low Hamming weight differential states are fixed
points of χ. Thus, when we start a differential characteristic from a low Hamming
weight CP-kernel, we can extend it beyond the Sbox layer, χ, to one additional
round of the Keccak permutation, with relatively high probability and without
increasing its Hamming weight. However, extending such a characteristic to more
rounds in a similar way is more challenging, since we have to ensure that the
state differential before the application of θ remains in the CP-kernel at the
beginning of each round.

In [9] and [14], the authors propose algorithms for constructing low Hamming
weight differential characteristics for Keccak. Both of these algorithms success-
fully find differential characteristics that stay in the CP-kernel for 2 rounds
(named double kernel trails in [14]), some of which lead to collisions on the
n-bit extract taken from the final state after 2 rounds, with high probability.
However, when trying to extend each one of these characteristics by another
round, the state difference is no longer in the CP-kernel and thus its Hamming
weight increases significantly (from less than 10 to a few dozen bits). Neverthe-
less, the Hamming weight of the characteristics is still relatively low, and they
can lead with reasonably high probability to near-collisions on the n output bits
extracted. Beyond 3 rounds, the Hamming weight of the characteristics becomes
very high (more than 100), and it seems unlikely that they can be extended to
give collisions or near-collisions with reasonable probability. The currently known
double kernel differential trails only extend forward to at most three rounds with
reasonably high probability (more than 2−100). Finding new high probability
differential characteristics, starting from a low Hamming weight state difference
and extending forwards more than 3 rounds, remains a challenging task, which
we do not deal with in this paper.

Our attacks on round-reduced Keccak make use of the type of differential
characteristics that were found in [9] and [14], namely low Hamming weight

12

characteristics that stay in the CP-kernel for 2 rounds. The double kernel trails
with the highest probability have Hamming weight of 6 at the input to the ini-
tial round, and due to their low hamming weight, we could easily find all these
characteristics within a minute on a standard PC. There are 571 such charac-
teristics out of which, 128 can give collisions for Keccak-224 and 64 can give
collisions for Keccak-256. However, when trying to extend the characteristics by
an additional round, we were not able to find any characteristics that give colli-
sions for Keccak-224 (or Keccak-256) with reasonable probability. Thus, our best
3-round characteristics lead only to near-collisions, rather than collisions. The
characteristics that give the near-collisions with the smallest difference Ham-
ming weight for Keccak-224 and Keccak-256 are, again, double kernel trails with
6 non-zero input bits. The best 3-round characteristics for Keccak-224 lead to
near-collisions with a difference Hamming weight of 5, and for Keccak-256, the
best 3-round characteristics leads to a near-collision difference Hamming weight
of 8. Examples of these characteristics are found in Appendix C.

Since the characteristics that we use start with a low Hamming weight state
difference, we can extend them backwards by one round without reducing their
probability significantly (as done in [9]): we take this low Hamming weight initial
state difference, and choose a valid state difference input to the previous Sbox
layer which could produce it. We then apply L−1, and obtain a new initial state
difference for the extended characteristic, which serves as a target difference for
our new algorithm. Note that the target difference is not in the CP-kernel (oth-
erwise, we would have found a low Hamming weight differential characteristic
that stays in the CP-kernel for 3 rounds). Thus, when we apply L−1 to the state
difference that is enters the Sbox layer, we usually obtain a roughly balanced
target difference, with only a few non-active Sboxes. This is significant to the
success of the target difference algorithm, which strongly depends on the number
of active Sboxes in the target difference 3. In case the target difference obtained
from a characteristic has too many non-active Sboxes, we can try to select an-
other target difference for the characteristic, by tweaking the state difference
input to the second Sbox layer.

Assuming that the algorithm succeeds and we obtain a sufficiently large linear
subspace of message pairs (such that it contains at least one pair whose difference
evolve according to the characteristic), we can find collisions for 4 rounds and
near-collisions for 5 rounds of Keccak-224 and Keccak-256. For example, if we
have an extended characteristic which can give collisions for 3 round of Keccak-
256 with probability 2−24, we need a linear subspace which contains at least
224 message pairs in order to find a collision on 4-round Keccak-256 with high
probability.

3 As demonstrated in Section 5, we expect a large number of non-active Sboxes to foil
the target difference algorithm. This should be contrasted to differential attacks,
where the attacker searches for differential characteristics with many non-active
Sboxes, which ensure that the differential transitions occur with high probability.

13

6.2 Applying the Target Difference Algorithm to the Selected
Differential Characteristics

We tested our target difference algorithm using a standard PC, on dozens of
double-kernel trails with Hamming weight of 6. For each one of them, after
tweaking the state difference input to the second Sbox layer at most once, we
could easily compute a target difference where all of the 320 Sboxes are active.
We then ran the target difference algorithm on each one of these targets. For
both Keccak-224 and Keccak-256, the target difference algorithm eventually suc-
ceeded: the basic procedure of the difference phase always succeeded within the
first two attempts (after changing the order in which we considered the Sboxes),
while the value phase was more problematic, and we had to iterate its basic pro-
cedure dozens to thousands of times in order to find a good ordering of the Sboxes
and obtain results. For Keccak-224, the algorithm typically returned an affine
subspace of message pairs with a dimension of about 100 within one minute. For
Keccak-256, the dimension of the affine subspaces of message pairs returned was
typically between 35 and 50, which is smaller compared to the typical result size
for Keccak-224 (as expected since we have fewer available degrees of freedom).
In addition, unlike Keccak-224, for Keccak-256 we had to rerun the algorithm
(starting from the difference phase) a few times, when the value phase did not
seem to succeed for the choice of candidate input difference subset. Hence, the
running time of the algorithm was typically longer – between 3 and 5 minutes,
which is still completely practical.

6.3 Obtaining Actual Collisions and Near-Collisions for
Round-Reduced Keccak-224 and Keccak-256

After successfully running the target difference algorithm, we were able to find
collisions for 4-round Keccak for each tested double-kernel trail with Hamming
weight of 6 (which leads to a collision). Since the probability of each one of these
differential characteristics is greater than 2−30, the probability that a random
pair which satisfies its corresponding target difference leads to a collision, is
greater than 2−30. Thus, we expect to find collisions quickly for both Keccak-
224 and Keccak-256, once the target difference algorithm returns a set of more
than 230 message pairs. However, even though the subsets we used contained
more than 230 message pairs, we were not able to find collisions within several
of these subsets for Keccak-224, and for many of the subsets for Keccak-256. As
a result, we had to rerun the target difference algorithm and obtain additional
sets of message pairs, until a collision was found. Thus, the entire process of
finding a collision typically took about 2–3 minutes for Keccak-224, and 15–30
minutes for Keccak-256. The reason that there were no 4-round collisions within
many of the subsets of message pairs, is the incomplete diffusion of the Keccak
permutation within the first two rounds. Since our subsets of message pairs are
relatively small (especially for Keccak-256), and the values of all the message
pairs within a subset are closely related, some close relations between a small
number of bits still hold before the Sbox layer of the second round (e.g., the

14

value of a certain bit is always 0, or the XOR of two bits is always 1). Some of
these non-random relations make the desired difference transition into the second
Sbox layer impossible, for all the message pairs within a subset. We note that we
were still able to find collisions rather quickly, since it is easy to detect the cases
where the difference transition within the second Sbox layer is impossible4(which
allowed us to immediately rerun the target difference algorithm). In addition,
when this difference transition is possible, we were always able to find collisions
within the subset. Two concrete example of colliding message pairs for Keccak-
224 and Keccak-256 are given in Appendix D.

In order to obtain near-collisions on 5-round Keccak-224 and Keccak-256, we
again start by choosing suitable differential characteristics. Out of all the char-
acteristics that we searched, we chose the differential characteristics described
in Appendix C, which lead to near-collisions of minimal Hamming weight for
the two versions of Keccak. The results of the target difference algorithm when
applied to targets chosen according to these characteristics, were similar to the
results described in Section 6.2. However, compared to the probability of the
characteristics leading to a collision, the probability of these longer characteris-
tics is lower: the probability of the characteristics are 2−57 and 2−59 for Keccak-
224 and Keccak-256, respectively. Thus, obtaining message pairs whose differ-
ences propagate according to these characteristics, and lead to 5-round near-
collisions, is more difficult than obtaining collisions for 4 rounds of Keccak-224
and Keccak-256. However, for each such main characteristic, there are several
secondary characteristics which diverge from the main one in final two rounds
and give similar results. Thus, the probabilities of finding near collisions with a
small Hamming distance for 5 rounds of Keccak-224 and Keccak-256, are higher
than the ones stated above. In addition, by using some simple message modifica-
tion techniques within the subsets returned by the target difference algorithm,
we were able to improve these probabilities further. Thus, for Keccak-224, we
obtained near-collisions with a Hamming distance of 5, which is the same as the
output Hamming distance of the main characteristic that we used. For Keccak-
256, the main characteristic that we used has an output Hamming distance of
8, but we were only able to find message pairs which give a near-collision with a
slightly higher Hamming distance of 10. All of these near-collisions were found
within a few days on a standard PC. Examples of such near-collisions are given
in Appendix D.

4 In order to detect that the difference transition within the second Sbox layer is
impossible for all the pairs in our subset, we try several arbitrary pairs in the subset,
and observe if at least one has the desired difference after two rounds. Since we only
need to check one Sbox layer transition, we expect that if this transition is indeed
possible, we will find a corresponding message pair very quickly. Otherwise, we have
to find a different set of message pairs by running the difference phase again.

15

7 Details of the Target Difference Algorithm

In this section, we give the full details of the target difference algorithm. The
general structures of the difference phase and the value phase of the algorithm
are similar: both include a main procedure, which iterates a basic procedure,
until it succeeds.

7.1 Calculating a Set of Candidate Input Differences

We give the details of the difference phase, which finds a set of candidate input
differences (∆I1 , ∆I2 , ...∆Ii , ...), given a target difference ∆T . To find such a set,
we have to simultaneously enforce the two difference constraints. As described
in Section 4, we maintain a linear system of equations, which we denote by E∆,
whose solution basis spans some affine subspace of potential values for L(∆I).
We can easily obtain a basis for the set of potential values for ∆I by multiplying
each element of the basis for L(∆I) by the matrix which defines L−1.

We assume that ∆T contains t active Sboxes and 320− t non-active Sboxes
whose input and output differences are zero. Before executing the algorithm,
we have to initialize a data structure that is used repeatedly in both phases of
the target difference algorithm. This data structure stores the subsets of input
differences for each active Sbox (which are precalculated per possible non-zero
Sbox output difference, as described in the third property in Section 5). In
addition, it specifies the order in which we consider the specific subsets for each
one of the t active Sboxes, and the order in which we consider the active Sboxes
themselves. As described in Section 4, these orderings have a significant effect
on the success and running time of the algorithm.

The input difference subsets, for each of the t active Sboxes, are stored in
a sorted input difference subset list, or IDSL. The heuristic algorithm we use
to pick the sorting order of each IDSL is specified in Appendix B, but since it
is irrelevant in this section, we assume some arbitrary ordering of each one of
the IDSLs. In addition, each one of the IDSLs contains a pointer to an input
difference subset, initialized to point at the first element in the list. The IDSLs
are stored in the main input difference subset data structure, or IDSD. The IDSD
contains t entries (one entry per active Sbox), sorted according to an IDSD order
(which may differ from the natural order of the Sboxes). The initial IDSD order
is chosen randomly, and is updated during both phases of the algorithm.

The steps of the basic procedure of the difference phase are given below:

1. Initialize an empty linear equation system E∆ with 1600 variables for the
unknown bits of L(∆I).

2. By inverting L, compute the coefficients of the 2n+ 8 linear equations that
equate the 2n+ 8 MSBs of ∆I to zero, and add the equations to E∆.

3. For each of the 320− t non-active SBoxes, add to E∆ the 5 equations which
equate the corresponding bits to zero.

4. Check if E∆ is consistent, and if not, output “Fail”.

16

5. Iterate over the t active SBoxes according to the IDSD order, and for each
one of them:

(a) Obtain the current 2-dimensional subset from the Sbox IDSL according
to the pointer, and obtain the 5− 2 = 3 affine equations that define this
subset.

(b) If E∆ is consistent after adding the 3 equations, add the equations and
continue to the next Sbox. Otherwise, continue to the next subset in the
Sbox IDSL, by incrementing the pointer and going to step a. If the end
of the IDSL is reached, output “No Solution”.

6. Output E∆.

Our initial linear equation system contains 2n+8 linear equations. Since each
2-dimensional subset of an active Sbox contributes 3 affine equations, the active
Sboxes contribute a total of 3t equations. The non-active Sboxes contribute
5(320− t) linear equations, since each non-active Sbox contributes 5 equations.
Altogether, we have 2n+8+3t+5(320−t) = 1600+8+2n−2t linear equations in
E∆. Thus, for t large enough, if the algorithm succeeds, the solution subset is of
dimension at least 1600−(1600+8+2n−2t) = 2t−2n−8 (for example, for t = 310,
n = 224 we get a solution subset of dimension at least 620 − 448 − 8 = 164).
If all the coefficients of the equations were chosen uniformly at random, then
for t > n + 4 we expect no dependencies among the equations, and thus the
dimension of the solution subset is exactly 2t− 2n− 8. However, our equations
are clearly not random, and thus we can only verify the procedure’s success
experimentally.

Note that the equations added in step 2 are independent, since L is invertible
(and thus all the 1600 linear equations that define L−1 are independent) and
equating each bit to zero reduces the remaining dimension by 1. In addition, the
equations of all the Sboxes are independent, since each Sbox gives equations on
a distinct set of 5 variables. However, there is no guarantee that the combined
equation set is independent, or consistent. In addition, note that dependencies
among the equations may foil the procedure in case they are inconsistent. On the
other hand, in case the dependent equations are consistent, they do not decrease
the dimension of the solution subset, which gives us more flexibility in the value
phase.

In case the procedure outputs “Fail”, then clearly there are no valid 1600-bit
valid state pairs that satisfy the target difference, and the algorithm aborts. If
the procedure outputs “No Solution”, then our current choice of 2-dimensional
subsets gives inconsistent equations, and we change our choice, using a heuristic
algorithm, hoping to obtain better results. The main idea behind the heuristic is
to change the order in which we consider the Sboxes, such that the “problematic”
groups of Sboxes (which tend to produce the inconsistent equations) are pushed
to the front of the IDSD order. When considering the first few Sboxes, the
number of equations in E∆ is relatively small, and we have more options to
choose consistent equations for these Sboxes. Thus, when the “problematic”
Sbox groups are considered first, it seems more likely that the basic procedure

17

will succeed. The main procedure of the difference phase is given below, where
T1 is some fixed constant threshold:

1. Initialize a counter to 0. Initialize the IDSD by resetting all the IDSL pointers
to the beginning of the lists, and randomizing the IDSD Sbox order.

2. Execute the basic procedure. If the procedure succeeds, output the current
E∆. If the procedure outputs “Fail”, abort. Otherwise (i.e., when the proce-
dure outputs “No Solution”), go to step 3.

3. Increment the counter. If the counter’s value is equal to T1, go to step 1.
4. Reset the pointer of the failed Sbox IDSL to its value before the last basic

procedure.
5. Change the IDSD order by bringing the failed Sbox to the front (and pushing

the rest of the Sboxes one position backwards).
6. Go to step 2.

Since there is nothing that ensures that the main procedure of the difference
phase halts, it may run a very long time without finding a solution (either because
there is no solution, or it is extremely difficult to find). The procedure may even
enter a loop by setting the state of the IDSD in steps 4 and 5 to a previously
considered state. Thus, after T1 executions of the basic procedure which output
“No Solution”, we start over by re-randomizing the IDSD order and resetting
all the IDSL pointers.

7.2 Choosing ∆I and the Set of Message Pairs

After we successfully enforce the difference constraints on the input difference
∆I in the difference phase and obtain a set of candidate input differences, we
are ready to execute the value phase. As described in Section 4, in this phase we
iteratively narrow down the dimension of the set of candidate input differences,
until only one candidate for ∆I remains. While doing so, we simultaneously nar-
row down the set of pairs of possible initial states: we start with a set containing
all the possible 1600-bit initial state pairs with the 2n+ 8 MSBs equal to p||02n,

and finally obtain the set {(M1

1,M
2

1), (M
1

2,M
2

2), ..., (M
1

k,M
2

k)}, where all pairs
have the difference ∆I and satisfy the target difference (the actual message can
be easily obtained from the corresponding 1600-bit value, by removing these
fixed 2n+ 8 MSBs).

Similarly to the procedure that we use for the difference phase, we continue
to maintain the set of linear equations which define the set of possible input
differences, E∆. We iterate over the active Sboxes according to the current IDSD
order, and for each Sbox we choose a 5-bit input difference that is consistent with
the current equations in E∆. We then narrow the set of possible input differences
down by adding the additional 5 − 3 = 2 equations that define this 5-bit input
difference to E∆.

In addition to maintaining E∆, we maintain another system of linear equa-

tions, whose solution basis spans the set of possible values for L(M
1
) (the 1600-

bit state obtained by invoking L on the first message in each one of the ordered

18

pairs). This set of equations is used to simultaneously enforce the two value
constraints given in Section 4, and is denoted by EM . Given EM , we can easily

obtain a basis for the set M
1

i ∀i ∈ {1, 2, ..., k}, by multiplying each element of

the basis for L(M
1

i) by the matrix that defines L−1.
Initially, we add to EM all the 2n+ 8 linear equations that enforce the first

value constraint on the first initial state of the ordered pairs. We then enforce the
second value constraint on each Sbox independently: for each Sbox with output
difference δout (computed from ∆T), once we determine its input difference δin,
we also obtain the linear equations that restrict the values of the 5 variables

of L(M
1
) to the affine subset A(δin, δout). We then enforce the second value

constraint on the Sbox by adding these linear equations to EM . Note that in
the difference phase, we ensured that in each stage of the value phase, for each
Sbox with a fixed output difference, there exists some input difference whose
equations can be added to E∆, while maintaining its consistency. In addition,
we ensured that the affine subset of values that corresponds to these input and
output differences is non-empty. However, we did not ensure that the equations

that restrict the values of the variables of L(M
1
) to this subset are consistent

with the equations that are currently in EM .
The steps of the basic procedure of the value phase are given below:

1. Initialize an empty linear equation system EM with 1600 variables for the

unknown bits of L(M
1
).

2. By inverting L, compute the coefficients of the 2n+ 8 linear equations that

equate the 2n + 8 MSBs of L(M
1
) to p||02n (p is the 8-bit pad 10000001),

and add the equations to EM .
3. Iterate the t active SBoxes according to the IDSD order:

(a) Using ∆T , Obtain δout for the Sbox.
(b) Obtain all the Sbox input differences that are consistent with E∆ (de-

noted by {δini }), and sort them in descending order according to the size
of the affine subset of values that satisfy the input-output difference (i.e.,
make sure that DDT (δini , δ

out) ≥ DDT (δini+1, δ
out)).

(c) Iterate the sorted input differences obtained in the previous step, starting
with δin1 (which gives the largest affine subset of values):

i. Using the current input difference, δini obtain the linear equations
that define the affine subset A(δini , δ

out).
ii. If EM is consistent with these linear equations, add the equations to

EM . In addition, add the additional equations on the input difference
(that were not added in the difference phase), which are defined by
δini , to E∆, and continue to the next Sbox in step 3.

iii. Otherwise, continue to the next input difference in step c. If no more
input differences remain, output “No Solution”.

4. Output the fully determined 1600-bit value of ∆I , in addition to the equation
system that defines the message values, EM .

The algorithm makes a heuristic choice in step c, by considering the input
differences for each Sbox, starting with the one that gives the largest affine subset

19

of values. The idea is to keep the number of equations in EM as small as possible,
in order to reduce the probability of failure. In addition, when we generate fewer
independent equations in EM at the end of the process, we get a larger set of
pairs that satisfy the target difference.

Similarly to the basic procedure of the difference phase, there is no guarantee
that this procedure succeeds. Hence, we may need to repeat it several times
with different choices of input differences for each Sbox, which result in different
systems of equations, EM . The steps of the main procedure of the value phase
are given below, where T2 is some fixed constant threshold:

1. Initialize a counter to 0.
2. Set E∆ to the equation system returned by the last successful execution of

the difference phase.
3. Execute the basic procedure of the value phase. If the procedure succeeds,

output ∆I and EM . Otherwise (i.e., the procedure outputs “No Solution”),
continue to step 4.

4. Increment the counter. If the counter’s value is equal to T2, output “No
Solution”.

5. Change the IDSD order by bringing the failed Sbox to the front (and pushing
the rest of the Sboxes one position backwards).

6. Go to step 2.

Note the difference between the structures of the two phases of the algorithm:
the only input to the difference phase is the value of ∆T (which we assume to
be fixed). Thus, unless it returns “Fail”, there is no reason to stop its execution
at any point. On the other hand, the value phase depends on the output of the
difference phase, E∆. Since the particular choice of candidate set for ∆I may foil
the procedure, we terminate the value phase after the number of unsuccessful
executions of its basic procedure reaches some threshold, T2. In this case, we
restart the difference phase, hoping that another choice of candidate set for ∆I

will give better results.

8 Conclusions and Future Work

In this paper, we presented practical collision and near-collision attacks on
reduced-round variants of Keccak-224 and Keccak-256. Our attacks are based on
a novel target difference algorithm, which is used to link high probability differ-
ential characteristics for the Keccak internal permutation to legal initial states
of the hash function. Consequently, we were able to significantly improve the
best known previous results on Keccak, by doubling (from 2 to 4) the number
of rounds for which collisions can be found in a practical amount of time.

Our target difference algorithm is clearly limited by the number of available
degrees of freedom, and it seems difficult to extend it to reach target differences
spanning 2 or more rounds of the Keccak permutation. However, it seems very
likely that the algorithm will be useful in the future if longer high probability
differential characteristics are found for the Keccak permutation.

20

References

1. Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing list, 2009.

2. Daniel J. Bernstein. Second preimages for 6 (7? (8??)) rounds of keccak? NIST
mailing list, 2010.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Presented at the ECRYPT Hash Workshop, 2007.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak
SHA-3 submission. Submission to NIST (Round 3), 2011.

5. Christina Boura and Anne Canteaut. Zero-Sum Distinguishers for Iterated Per-
mutations and Application to Keccak-f and Hamsi-256. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography, volume
6544 of Lecture Notes in Computer Science, pages 1–17. Springer, 2010.

6. Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order differ-
ential properties of keccak and luffa. Cryptology ePrint Archive, Report 2010/589,
2010. http://eprint.iacr.org/.

7. Joan Daemen and Vincent Rijemn. Plateau Characteristics. IET Information
Security, 1(1):11–17, 2007.

8. Ming Duan and Xuajia Lai. Improved zero-sum distinguisher for full round Keccak-
f permutation. Cryptology ePrint Archive, Report 2011/023, 2011.

9. Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. Unaligned rebound attack
- application to keccak. Cryptology ePrint Archive, Report 2011/420, 2011.

10. Dmitry Khovratovich. Cryptanalysis of Hash Functions with Structures. In Michael
J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas
in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 108–
125. Springer, 2009.

11. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding up Collision
Search for Byte-Oriented Hash Functions. In Marc Fischlin, editor, CT-RSA,
volume 5473 of Lecture Notes in Computer Science, pages 164–181. Springer, 2009.

12. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of Lecture Notes in Computer Science, pages
260–276. Springer, 2009.

13. Pawel Morawiecki and Marian Srebrny. A SAT-based preimage analysis of reduced
KECCAK hash functions. Cryptology ePrint Archive, Report 2010/285, 2010.

14. Maŕıa Naya-Plasencia, Andrea Röck, and Willi Meier. Practical Analysis of
Reduced-Round Keccak. In Daniel J. Bernstein and Sanjit Chatterjee, editors,
Progress in Cryptology - INDOCRYPT 2011, volume 7107 of LNCS. Springer,
Heidelberg, 2011.

A Appendix: An Alternative Value Phase

The value phase presented in section 7.2 chooses ∆I and the set of message pairs
iteratively, which gives it more options, and reduces its running time compared
to more restrictive algorithms which choose ∆I in advance. However, it has two
disadvantages: it restricts the messages to one block (by assuming a zero initial
value for the inner part of the state), and more significantly, has no known bound

21

on its expected running time. We can easily overcome the first disadvantage by
choosing a prefix of m − 1 arbitrary blocks, and calculating the inner part of
the state obtained after running the permutation on the prefix. We then use
the value of the inner state in order to apply the algorithm on an additional
final block (which is the only one in which we use a difference between the two
messages). The only change from the single-block version is that we initialize
the values of the equations in step 2 of the basic procedure of the value phase
according to the new inner state value.

Given that we choose a common prefix of several blocks for all message pairs,
and run the target difference algorithm only on the last block, the difference in
the inner states obtained after the prefix for each pair, is zero. Thus, the differ-
ence phase of the multi-block variant presented above is completely identical to
the original single-block version. In fact, since the difference phase is completely
independent of the inner state value, we can apply it and obtain suggestions
for ∆I before we even choose the prefix. This simple observation allows us to
design a completely different value phase, whose expected complexity can be
easily calculated using reasonable assumptions (and given that the difference
phase succeeds).

In the alternative value phase, we first pick a fixed ∆I from the input differ-
ence candidate set computed in the difference phase. This fixed input difference
gives many linear equations that involve message bits which we can easily con-
trol, and thus we can satisfy a large portion of the equations regardless of the
value of the inner part of the state. However, after fixing many message bits in
order to satisfy equations, we may remain with some linear equations which only
involve the inner part of the state, that cannot be directly controlled. Thus, we
compute the inner part of the state for arbitrary message prefixes, hoping that
one of them will satisfy the remaining equations by chance. The complexity of
the value phase is measured by the expected number of invocations of Keccak’s
internal permutation, which depends on the number of linear equations that can-
not be satisfied by the message bits (i.e., involve only the variables of the inner
part of the state). Thus, in the alternative value phase, we exploit the possibility
to vary the inner part of the state, instead of varying the input difference ∆I

(as we do in the original value phase). The steps of the alternative value phase
are given below:

1. Choose an input difference ∆I from the candidate input differences out-
putted by the difference phase.

2. Initialize an empty linear equation system EM with 1600 variables for the

unknown bits of L(M
1
).

3. For each Sbox:

(a) Using∆I and∆T , compute the Sbox input and input differences (δin, δout).

(b) Add the equations that define A(δin, δout) to EM .

4. By inverting L, compute the coefficients of the 8 linear equations that de-
fine the padding. If these equations are consistent with EM , add them and
continue to the next step. Otherwise, go to step 1.

22

5. Compute the coefficients of the 2n linear equations that define the inner part
of the state. Add them to EM , by allocating additional 2n variables for their
undetermined values (the vector of values of EM contain 2n undetermined
values).

6. Perform Gauss Elimination on EM , and obtain the dependent equations,

where the coefficients of the variables of L(M
1
) are zero. These give linear

equations on the 2n variables of the inner state.
7. Choose a common message prefix of m − 2 blocks, each containing r bits,
M∗1 ,M

∗
2 , ...,M

∗
m−2, where m > 1.

8. Compute the inner part of the state, Cm−2, after running the Keccak per-
mutation on the prefix.

9. Iterate over the 2r possible values of the message block with index m − 1,
M∗m−1, in some order:
(a) Execute the Keccak permutation on the message block M∗m−1 and the

inner state Cm−2, and obtain the next inner state Cm−1.
(b) Check if the equations obtained in step 6 hold for Cm−1. If they do,

output ∆I and EM (without the trivial equations), in addition to the
message prefix M∗1 ,M

∗
2 , ...,M

∗
m−1. Otherwise, go to the beginning of step

9 (choose the next value of M∗m−1).

Note that in step 2, we add no equations to EM for non-active Sboxes, and
for active Sboxes we add at most 4 equations (since all the non-zero DDT entries
that correspond to a non-zero output difference have a value of at least 2). Thus,
after step 3, EM contains a subset of dimension at least 1600− (4 · 320) = 320.
Since L−1 has a very fast diffusion, it is very unlikely that non of the initial states
defined by this large subset attain the value of the 8-bit pad. Consequently, it is
very unlikely that the procedure will fail even once on step 4. Thus, we ignore
this possibility and assume that step 9 is the time complexity bottleneck of the
procedure. Assuming that we get q dependent equations in step 6 of the attack,
we obtain q linear equations on the inner state bits after m − 1 blocks, Cm−1.
Thus, assuming that the Keccak permutation behaves randomly, we expect to
run it 2q times in step 9, until all the q equations are satisfied. Note that we
can calculate the expected running time of the algorithm only after selecting the
exact value of ∆I from the candidate set of input differences. Hence, it may be
useful to run steps 1–6 several times, and choose the value of ∆I which gives the
best expected running time.

Although we cannot bound its expected complexity, in practice, the running
time of the original value phase can be much lower than the running time of the
alternative value phase. Thus, it is advisable to run the original value phase in
case the expected running time of the alternative value phase is too high, and
to calculate the expected running time of the alternative value phase in case the
original value phase seems to be unsuccessful.

B Appendix: Sorting the Input Difference Subset Lists

In this section, we give the details of how we sort the IDSLs, by specifying
how to compare two input difference subsets in the list. Given a non-zero Sbox

23

output difference, all the maximal possible input difference subsets are of di-
mension 2, and add 3 linear equations to E∆. This does not give an obvious
reason to prefer one subset over another in the difference phase. However, the
input differences within each input difference subset give affine subsets of differ-
ent sizes: there are 20 specific non-zero Sbox output differences, δout, whose
DDT entries DDT (δin, δout), have values of 2, 4 and 8. For the remaining
11 output differences, the non-zero DDT entries attain only the values 2 and
4. In the value phase, we prefer input differences that give large subsets of
values. Thus, in the difference phase, we give precedence to input difference
subsets containing such input differences: assume that ∆T assigns a specific
Sbox an output difference δout, and we want to compare two input difference
subsets {δin1 , δin2 , δin3 , δin4 } and {δin5 , δin6 , δin7 , δin8 } such that DDT (δin1 , δ

out) ≥
DDT (δin2 , δ

out) ≥ DDT (δin3 , δ
out) ≥ DDT (δin4 , δ

out) > 0 and DDT (δin5 , δ
out) ≥

DDT (δin6 , δ
out) ≥ DDT (δin7 , δ

out) ≥ DDT (δin8 , δ
out) > 0. We first compare the

sizes of the largest subsets of values, DDT (δin1 , δ
out) and DDT (δin5 , δ

out), and
give precedence to the input difference subset for which the size is bigger. If the
sizes are equal, we compare DDT (δin2 , δ

out) and DDT (δin6 , δ
out), and so forth.

C Appendix: Differential Characteristics for Keccak

In this section, we give examples of 3-round differential characteristics, which
lead to collisions on 4-round Keccak-224 and Keccak-256, and 4-round charac-
teristics, which lead to near-collisions on 5-round Keccak-224 and Keccak-256.

The differential characteristics are given as a sequence of the starting state
differences in each round. In all the presented characteristics, all the active
Sboxes get an input difference with a Hamming weight of 1, and we assume
that they produce the same differences as outputs (which occurs with proba-
bility 2−2). In order to calculate the probability of the final transition, we only
consider active Sboxes which effect the output bits (since we truncate the final
state to obtain the hashed output). Each state difference is given as a matrix
of 5 × 5 lanes of 64 bits, ordered from left to right, where each lane is given
in hexadecimal using the little-endian format. The symbol ’-’ is used in order
to denote a zero 4-bit difference value. For example, consider the second state
difference in Characteristic 1: each of the first two lanes has a zero difference,
and only the LSB of the third lane contains a non-zero difference.

D Appendix: Actual Collisions and Near-Collisions for
Round-Reduced Keccak-224 and Keccak-256

We give several examples of collisions and near-collisions for Keccak-224 and
Keccak-256. The padded messages and output values are given in blocks of 32-
bits ordered from left to right, where each block is given in hexadecimal using
the little-endian format.

24

26978AF134CB835E	AF224C4D78366789	C4DAE35E2656F26B	357C4789AF3-6AF1	78D3526BC6A74C4D
26978AF134CB835E	AF224C4D78366789	C4DAE35E2656F26B	357C4789AF3-6AF1	78D3526BC6A74C4D
26978AF134CB835E	AF224C4D78366789	C4DAE35E2676F26B	357C4789AF3-6AF1	78D3526BC4A74C4D
26978AF134CB835E	AF224C4D78366789	C4DAE35E265EF26B	357C4789AF3-4AF1	78D3526BC6A74C4D
26978AF134CB835E	AF226C4D78366789	C4DAE35E2656F26B	35FC4789AF3-6AF1	78D3526BC6A74C4D

----------------	----------------	---------------1	-------4--------	----------------
----------------	----------------	----------------	----------------	----------------
----------------	----------------	----------------	-------4--------	----8-----------
----------------	----------------	---------------1	----------------	----8-----------

|----------------|----------------|----------------|--8-------------|2---------------|
|4---------------|----------------|----------------|----------------|2---------------|
----------------	----------------	----------------	--8-------------	----------------
4---------------	----------------	----------------	----------------	----------------

|----------------|----------------|----------------|----------------|----------------|
|-----------8----|-----------2----|----------------|----------------|----------------|
|----------------|----------------|-----------1----|----------------|-----------1----|
---------1------	-------4--------	----------------	----------------	----------------

The probability of each one of the first two transitions is 2−12. The probability of the
third transition is 1, since there are no active Sboxes which affect the output.
Characteristic 1: A 3-round characteristic leading to collisions on Keccak-224 and
Keccak-256 with probability 2−24

BD135E2FA6BD1346	12D789A92F12D78F	D7E26BC344D7E224	E69AF134B5E69AD5	98BC4D6BF898BC58
BD135E2FA6BD1346	12D789A82F12D78F	D7E26BC344D7E264	E69AF134B5E69AD5	98BC4D6BF898BC58
BD135E2FA6BD1346	12D789AB2F12D78F	D7E26BC344D7E224	E69AF134B5E29AD5	98BC4D6BF898BC58
BD135E2FA6BD1346	12D789A92F12D78F	D7E26BC344D7E224	E69AF134B5E69AD5	98BC4D6BF898BC58
BD135E2FA6BD1346	12D789A92F12D78F	D7E26BC344D7E224	E29AF134B5E69AD5	98BC4D7BF898BC58

----------------	------------1---	----------------	----------------	---4------------
----------------	------------1---	-----8----------	----------------	----------------
----------------	----------------	-----8----------	----------------	---4------------
----------------	----------------	----------------	----------------	----------------

----------------	----------------	----------4-----	----------------	----------------
------------2---	----------------	----------------	-4--------------	----------------
------------2---	----------------	----------4-----	-4--------------	----------------
----------------	----------------	----------------	----------------	----------------

----------------	----------------	----------------	------------8---	----------------
----------------	----------------	-----------1----	----------------	----------------
----------------	----------------	-----------8----	----------------	----------------
----------------	----------------	----------------	------2---------	----------------
----------1-----	----------------	----------------	--4-------------	----------------

----------------	2---------------	48-----4---2----	-4---12---------	---8---82-----1-
----98----------	-2---2-8-----4--	----------------	4---------------	--1----8----2---
-----------4----	2---1-----------	----12----------	4---2---2-8-----	------4---------
---1-4-----2---1	----------------	---------8------	--2-----8-----4-	----4--------9--
--2---1-----4---	-------------48-	1-4-----2---1---	----------------	-----------8----

The characteristic leads to near-collisions with a Hamming distance of 5 for Keccak-
224, and 8 for Keccak-256. The probability of each one of the first three transitions
is 2−12. The probability of the final transition is 2−21 for Keccak-224 and 2−23 for
Keccak-256. The total probability is 2−57 for Keccak-224 and 2−59 for Keccak-256.
Characteristic 2: A 4-round characteristic leading to near-collisions on Keccak-224
and Keccak-256

25

M1=

C4F31C32 4C59AE6D 5D19F0F4 25C4E44B D8853032 8D5E12F2 BB6E6EE2 27C33B1E 6C091058 EB9002D5
3BA4A06F 4A0CC7F1 CCB55E51 8D0DD983 2B0A0843 9B21D3B0 53679075 526DDED2 48294844 6FF4ED2C
1ACE2C15 471C1DC7 D4098568 F1EBF639 EAF7B257 09FDAE87 688878E6 4875EB30 C9C32D80 3C9E6FCB
3C2ABCFA E6A4807B 2AB281B8 812332B3

M2=

A4D30EF7 80BB8F69 90C048DF EB7213B9 A6650424 3A65F63E 8C268881 B651B81F AADAFA3C EE2CA5C3
DB78EAC2 C8EAE779 442F9C35 3221E287 B3017A5A 90790712 1B1C8BDC E08B10A8 9A9D25CA 1BE7AAAC
4E2F3E9C 73717DAD 5566015A A198CFB9 5A1CA8C2 A0E3348A AE6C0BB1 3980F9E4 A4FA8B91 6E81A989
89A9BCAA E12BF1F1 30EF9595 812E8B45

Output=

61FB1891 F326B6D5 24DD94DF 73274984 05DA9A1D 3FD359B9 78B8393B F2E7990B

The messages were found using the target difference algorithm on the target difference
given by Characteristic 1.

Collision 1: A collision for 4-round Keccak-256

M1=

FAC7AC69 2710BE04 8462C382 7ABF1BF9 D065CD30 DB64DEB8 1410CD30 C837D79B 22E446B7 31E9BD55
A6B2074C C86E32CC DE50A10A F7BAAA58 D96CBC88 9FBD75F6 5E0D735A D22AA663 16A574AA 7DB08692
558AB029 109B4D30 86CE5DCA 13A295C7 E7C9D94B 648794D2 62EE3CF8 69439337 8CAB9F15 AC7C3267
90F41CBE A20E6893 B4781F24 0BA37647 F29A67A0 81F628D0

M2=

CE5FBC81 47710FCC 462C92E0 48F5D2CF F92F6EC3 053E64E1 570780B9 F838EC54 8F74809F 66B4AC6F
70DD1843 BF34F0C5 5010C89A D8791148 D5CC073E 3239AEBC 7DF48D79 0EC7767B FB081604 AFA975B9
F8EFAE0F ED793473 479E931C F2F80A74 7192D08F 5EB5AB27 F1CAC04E F394232D 48656B2A A3471644
DB74E60A 05FB3B18 41DC27C3 8384BF53 32534C3E 811C00B5

Output=

826B10DC 0670E4E1 5B510CDA AB876AA8 B50557ED 267932FB AA4D38E8

The messages were found using the target difference algorithm on the target difference
given by Characteristic 1.

Collision 2: A collision for 4-round Keccak-224

26

M1=

23296F07 44536A2B 16E1E363 09B509F9 639CA324 2B834133 61457E6D 9CF07597 6797B3D4 D1715ABA
6D8F4F9F 70D12920 E014BB37 54C32ADE 6117B3FB 30114566 4BA7D70A 00F055F0 71CFFDD4 B53F2563
E223A16D CC8DDAC4 7A59836B A53FBDDE 9FFEC45F 6A3476DC 7349BB92 56AF6E92 83866932 56624032
A936E410 60AC00FA 7E7C61F9 81583CAC

M2=

49D48DE2 9FA843CA 747C88E0 55425134 098CA5B3 C97DC68A B82BC6FD 0F864996 26B13425 D9F73B75
932CD02F FB12E036 47706100 9DEFFFE4 79435F9C DA727EF0 D9CA67C6 520BE2D1 19CF3933 3136D1A9
EEBEA9DD 150CA247 D494BF4A 492EFB26 11CB4C8D F5A10A05 69128FF4 B142742F CA59FE32 4FE68436
068F76AB 041A673E 461575B5 81AA2A54

Output1=

407D4466 FEA8B231 EC968181 DF902165 23C219FF 54571D70 2800F506 E818644B

Output2=

407D4466 FEA8B231 EC928181 FF902165 23C019FF 1C571D74 2800F516 E810656B

The messages were found using the target difference algorithm on the target difference
given by Characteristic 2.

Near-Collision 1: A near collision with Hamming distance of 10 for 5-round
Keccak-256

M1=

7DBC1AA9 62A70B2A C2BDAF81 4A4D484B 672F6FAF ED312C83 24BC1974 16946039 6B46EDF6 1AE571A0
EDA59D6E 7561766D 8F0B4C57 3C05C569 715B7DF9 53F81761 F6D43507 6E040495 9B5C08AB 5130BA66
22AF7F5C 755840F2 2E893F59 4C4A730F 8C4F425D 182F8D00 E98515ED E29251AD 853AB863 DC46A7AC
9FB7BB08 14767EFC 5345C7AF AA774E81 8A01A570 81D65453

M2=

5659C936 AF3BA787 809C1CE6 B287F81B E0A5E769 ECCEB8A0 72506F44 1A1B2A02 EE9AE408 D16A9358
BF03C4D6 90845C46 0C0441CC 8203EA8D 6D122EB1 9193F64F 55C3A6A7 47377ED6 D26E806F DEC2CBF8
A3B8949E A91B248D 420B13BC BEAB4166 EE348CF6 DB6CCD82 122F6BDA 2FBFA7E4 75E8A429 F397BC46
7E9DE824 6A973A22 371FD02D 92035083 267D1C7A 812EDE70

Output1=

85373497 97D871C2 FBD0A823 584C0ED4 C1B3BF4F BC408766 0584B08D

Output2=

85373497 97D871C2 FBD0A823 784C0ED4 E1B1BF5F BC408776 0584B08D

The messages were found using the target difference algorithm on the target difference
given by Characteristic 2.

Near-Collision 2: A near collision with Hamming distance of 5 for 5-round Keccak-
224

27

