
Provable Security of BLAKE with
Non-Ideal Compression Function

Elena Andreeva, Atul Luykx and Bart Mennink

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink}@esat.kuleuven.be

Abstract. We analyze the security of the SHA-3 finalist BLAKE. The BLAKE hash function follows
the HAIFA design methodology, and as such it achieves optimal preimage, second preimage and col-
lision resistance, and is indifferentiable from a random oracle up to approximately 2n/2 assuming the
underlying compression function is ideal.
In our work we show, however, that the compression function employed by BLAKE exhibits a non-
random behavior and is in fact differentiable in only 2n/4 queries. Our attack on the indifferentiability
of the BLAKE compression function seriously undermines the security strength of BLAKE not only
with respect to its overall indifferentiability, but also its collision and (second) preimage security in the
ideal model.
Our next contribution is the restoration of the security results for BLAKE in the ideal model by refining
the level of modularity and assuming that BLAKE’s underlying block cipher is an ideal cipher. We prove
that BLAKE is optimally collision, second preimage, and preimage secure (up to a constant). We go on
to show that BLAKE is still indifferentiable from a random oracle up to the old bound of 2n/2 queries,
albeit under a weaker assumption: the ideality of its block cipher.

Keywords. SHA-3, BLAKE, collision resistance, (second) preimage resistance, indifferentiability.

1 Introduction

Hash functions are a main building block for numerous cryptographic applications. Due to a series
of attacks on the widely deployed SHA-1 hash function by Wang et al. [19, 20], the US National
Institute for Standards and Technology (NIST) recommended the replacement of SHA-1 by the
SHA-2 hash function family and announced a call for the design of a new SHA-3 hashing algorithm
in 2007 [16]. Five candidates, BLAKE [3], Grøstl [12], JH [21], Keccak [5] and Skein [11], made it
to the third and final round of the competition. Evaluating the security and performance of the
remaining five candidates is crucial in the ongoing process for the selection of the finalist hash
function.

The focus of this work is the security of the BLAKE hash function candidate. To assess the
security of BLAKE, we follow the security criteria listed by NIST in their call for a new SHA-3
hash function: collision, second preimage, preimage security and resistance to the length extension
attacks (encompassed by the indifferentiability security). The BLAKE hash function is designed by
Aumasson et al. [3], and follows the HAIFA design methodology of Biham and Dunkelman [6]. Its
underlying compression function f employs internally a block cipher E and exhibits some similarities
with the Davies-Meyer compression function [7]. As described in the SHA-3 provable security survey
by Andreeva et al. [1], BLAKE inherits preimage, second preimage, collision, and indifferentiability
security guarantees of the HAIFA design, assuming ideality of the underlying compression function.
More precisely, due to the specific HAIFA counter BLAKE is indifferentiable from a random oracle
in the indifferentiability framework of Maurer et al. [14]. The advantage of an adversary against the
collision and (second) preimage security of BLAKE is upper bounded by approximately q2/2n and
q/2n, respectively. While all of these results are true in the ideal compression function model, no
concrete (in)differentiability results are known for the BLAKE compression function, which is the
main motivation for this work.

Our Contributions. Firstly, in Sect. 3 we present an attack on the BLAKE compression function
f , which shows that f is differentiable from a random oracle in 2n/4 queries. This is less than ideally

expected, and as a consequence the existing BLAKE indifferentiability bound, together with the
collision and (second) preimage security bounds from [1], are reduced by a square root. These find-
ings yield security that is not compliant with the NIST security requirements. The indifferentiability
attack is a serious motivation for carrying out further security analysis of the BLAKE hash function
in a way that restores its security guarantees. One approach in this direction is to refine the level
of modularity in the security analysis and to investigate security properties of the BLAKE hash
function under the assumption that the underlying block cipher E, rather than the compression
function, is ideal.

This brings us to our second contribution, which is presented in Sect. 4. In the ideal cipher
model, we conclude optimal (up to a constant) collision and (everywhere) preimage security of f .
This result is important to establish a strong confidence in the security of f in the sense that even if
f exhibits some non-ideal behavior, its collision and preimage security are not compromised when
E behaves close to ideal. Furthermore, due to the collision and everywhere preimage resistance
preservation of the HAIFA design [2], the BLAKE hash function inherits the optimal security of f
with respect to both properties.

Next, in Sect. 5 we reconsider the second preimage resistance of BLAKE. As a HAIFA design,
BLAKE does not preserve second preimage resistance [2], and proving second preimage security
of BLAKE’s compression function does not directly translate to the second preimage security of
BLAKE. To assess the second preimage security of BLAKE, we therefore analyze directly the
BLAKE hash function in the ideal cipher model and prove it optimally (everywhere) second preim-
age resistance, up to a constant. This result confirms BLAKE’s resistance against the second preim-
age attacks of Dean [10] and Kelsey and Schneier [13], even when the non-ideal compression function
of BLAKE is employed.

Finally, in Sect. 6 we restore the indifferentiability result of BLAKE to the old bound of approxi-
mately 2n/2 queries by giving a proof with an ideal underlying block cipher E. We show that despite
the differentiability of BLAKE’s compression function f , in the ideal cipher model the BLAKE hash
function does not suffer structural design flaws. We summarize our results on BLAKE in Table 1.

Our results amount to an important contribution to the security analysis of the SHA-3 finalist
BLAKE in a way that addresses all the security criteria of NIST listed in their call for a new SHA-3
hash function. We provide a thorough investigation of these security properties for BLAKE in the
ideal block cipher model.

Table 1: A summary of our results on the BLAKE hash function H and its compression function
f . The bounds denote the required number of queries to forge an attack. All results in this table
are in the ideal cipher model.

preimage second preimage collision indifferentiability

f
Θ(2n)
Sect. 4

– Θ(2n/2)
Sect. 4

O(2n/4)
Sect. 3

H Θ(2n)
Sect. 4

Θ(2n)
Sect. 5

Θ(2n/2)
Sect. 4

Ω(2n/2)
Sect. 6

2 Preliminaries

For n ∈ N, let {0, 1}n denote the set of bit strings of length n and let {0, 1}∗ denote the set
of bit strings of arbitrary length. For two bit strings x, y, x‖y denotes their concatenation and
x ⊕ y their bitwise XOR. By [x]2 = x‖x we denote the concatenation of two copies of x. If x is
of even length, then xl and xr denote its left and right halves where |xl| = |xr|. For natural m,n,
〈m〉n is the encoding of m as an n-bits string. We denote by Bloc(2n) the set of all block ciphers
E : {0, 1}2n × {0, 1}2n → {0, 1}2n, where the first input corresponds to the key input. A random
oracle [4] is a function which provides a random output for each new query. A random 2n-bit block

cipher is a block cipher randomly sampled from Bloc(2n). A random primitive will also be called
“ideal”.

2.1 BLAKE

In accordance with the SHA-3 hash function specification, BLAKE [3] supports outputs of size
n = 224, 256, 384, and 512 bits. In this work we focus on the variants n = 256, 512, as the 224- and
384-variants are simply chopped versions of these.

BLAKE takes as input a salt s of n/2 bits (chosen by the user), and a message M of arbi-
trary length. The evaluation of H(s,M) is done as follows. Firstly, the message M is padded into
message blocks m1, . . . ,mk of 2n bits, where the padding function pad is defined as pad(M) =
M‖10−|M |−n/2−2 mod 2n1‖〈|M |〉n/2. Along with these message blocks, counter blocks t1, . . . , tk of
length n/4 bits are generated. This counter keeps track of the number of message bits hashed so
far and equals 0 if the i-th message block contains no message bits1. Starting from an initial state
value h0 ∈ {0, 1}n, the message blocks mi and counter blocks ti are compressed iteratively into the
state using a compression function f : {0, 1}n×{0, 1}n/2×{0, 1}2n×{0, 1}n/4 → {0, 1}n. Here, the
second input to f denotes the salt s. The outcome of the BLAKE hash function is defined as its
final state value H(s,M) = hk.

The compression function f internally uses a block cipher E : {0, 1}2n × {0, 1}2n → {0, 1}2n. f
is depicted in Fig. 1 and is defined as follows. Here, C ∈ {0, 1}n is a constant.

procedure f(hi−1, s,mi, ti)
vi ← (hi−1‖s‖[tli]2‖[tri]2)⊕ (0n‖C)
wi ← E(mi, vi)
hi ← wli ⊕ wri ⊕ hi−1 ⊕ [s]2
return hi

end procedure

hi−1
-/

n

s -/
n/2

tli ��:XXz/
n/8

tri ��:XXz/
n/8

‖ -/
2n

0n‖C

?

\2nivi -/
2n E

mi

?

\2n

wi-/
2n

j
*

i -/
n

i? -/
n

i
[s]2

?

\n

-/
n

hi

Fig. 1: The BLAKE compression function f of Sect. 2.1.

2.2 Preimage, Second Preimage and Collision Security

An adversary A is a probabilistic algorithm with oracle access to a randomly sampled block ci-

pher E
$← Bloc(2n). In this work, we consider information-theoretic adversaries only. This type of

adversary has unbounded computational power, and its complexity is measured by the number of
queries made to his oracle. The adversary can make queries to E and its inverse E−1. These queries
are stored in a query history Q as elements of the form (mj , vj , wj), where j is the query index,
mj is the key input to the block cipher (note that for BLAKE the message input to f is the key
input to E), and vj and wj denote the plain text and cipher text, respectively. Associated to query
(mj , vj , wj) we define the value xj = wlj ⊕wrj ⊕hj ⊕ [sj]2 as the output of the compression function

1 In more detail, ti = 〈i2n〉n/4 if i2n ≤ |M |, ti = 〈|M |〉n/4 if (i−1)2n < |M | ≤ i2n, and ti = 〈0〉n/4 if |M | ≤ (i−1)2n.

f , where we parse hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C). In the remainder, we assume that Q

always contains the queries required for the attack and that the adversary never makes queries to
which it knows the answer in advance.

Let F : {0, 1}p → {0, 1}n for p ≥ n be a compressing function instantiated with a randomly chosen

block cipher E
$← Bloc(2n). In this work, F will either be the BLAKE hash function H or its

compression function f . For the preimage and second preimage security analysis in this work, we
consider the notion of everywhere preimage and second preimage resistance [18]. In the ideal model
setting (where randomness is gained from the ideal primitive rather than from the use of an explicit
random key), these notions are the strongest options because they guarantee preimage (resp. second
preimage) security for every range (resp. domain) point.

Definition 1. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function
employing block cipher E ∈ Bloc(2n). The advantage of an everywhere preimage finding adversary
A is defined as

Advepre
F (A) = max

y∈{0,1}n
Pr

(
E

$← Bloc(2n), z ← AE,E−1
(y) :

F (z) = y

)
.

We define by Advepre
F (q) the maximum advantage of any adversary making q queries to its oracles.

Definition 2. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function
employing block cipher E ∈ Bloc(2n). Let λ ≤ p. The advantage of an everywhere second preimage
finding adversary A is defined as

Adv
esec[λ]
F (A) = max

z′∈{0,1}λ
Pr

(
E

$← Bloc(2n), z ← AE,E−1
(z′) :

z 6= z′ ∧ F (z) = F (z′)

)
.

We define by Adv
esec[λ]
F (q) the maximum advantage of any adversary making q queries to its oracles.

In case F denotes the BLAKE compression function f of Sect. 2.1, its domain points are of the
form z = (h, s,m, t). If F is the BLAKE hash function H, its domain points are parsed as z =
(s,M) ∈ {0, 1}n/2 × {0, 1}∗, where in the second preimage notion λ is required to be of length at
least n/2 bits.

We define the collision security of a compressing function F as follows.

Definition 3. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function
employing block cipher E ∈ Bloc(2n). Fix a constant h0 ∈ {0, 1}n. The advantage of a collision
finding adversary A is defined as

Advcol
F (A) = Pr

(
E

$← Bloc(2n), z, z′ ← AE,E−1
:

z 6= z′ ∧ F (z) ∈ {F (z′), h0}

)
.

We define by Advcol
F (q) the maximum advantage of any adversary making q queries to its oracles.

As before, in case F denotes the compression function f the strings z and z′ are of the form
(h, s,m, t) and (h′, s′,m′, t′), and if F is the BLAKE hash function, z and z′ are parsed as (s,M)
and (s′,M ′).

2.3 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [14] is an extension of the classical
notion of indistinguishability. It proves that if a construction CG based on an ideal subcomponent
G is indifferentiable from an ideal primitive R, then CG can replace R in any system. Although
recent results by Ristenpart et al. [17] show that indifferentiability does not capture all properties
of a random oracle, indifferentiability still remains the best way to rule out structural attacks for a
large class of hash function applications.

Definition 4. A Turing machine C with oracle access to an ideal primitive G is called (tD, tS , q, ε)
indifferentiable from an ideal primitive R if there exists a simulator S, such that for any distin-
guisher D we have

Advpro
C (D) =

∣∣∣Pr
(
DCG ,G = 1

)
−Pr

(
DR,SR = 1

)∣∣∣ < ε.

The simulator has oracle access to R and runs in time at most tS. The distinguisher runs in time
at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the “real world”, and to R,SR as the “simulated world”; the
distinguisher D converses either with the real or the simulated world and its goal is to tell both
worlds apart. D can query both its “left oracle” L (either C or R) and its “right oracle” R (either
G or S).

For the purpose of the presented indifferentiability results, G throughout denotes a random block

cipher E
$← Bloc(2n). C is either the BLAKE hash function H or its compression function f , and

R will be a random oracle RO with the same domain and range as C.

3 Differentiability of f

We consider the indifferentiability of the BLAKE compression function f from a random oracle RO
(with the same domain and range as f), when the underlying block cipher E is sampled uniformly at

random E
$← Bloc(2n). In more detail, we construct a distinguisher D, such that for any simulator S,

D differentiates (f,E) from (RO,S) in about 2n/4 queries, hence significantly faster than expected.

Theorem 1. Let E
$← Bloc(2n), and let RO : {0, 1}n+n/2+2n+n/4 → {0, 1}n be a random compres-

sion function. For any simulator S that makes at most qS ≤ 2n−3 queries to RO, there exists a
distinguisher D that makes at most 2n/4 + 1 queries to its oracles, such that

Advpro
f (D) ≥ 1− e−1 − qS

2n
≥ 0.5.

Proof. Let S be any simulator making at most qS queries to RO. We construct a distinguisher
D that differentiates (f,E) from (RO,S) with a significant probability. D has query access to
(L,R,R−1) (either (f,E,E−1) or (RO,S,S−1)) and operates as follows. Let α = 2n/4.

1. For j = 1, . . . , α, the distinguisher sets mj ← 〈j〉2n, queries vj ← R−1(mj , 0), and parses

hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C);2

2. If for all j ∈ {1, . . . , α} we have t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j , D guesses (L,R) = (RO,S) and halts;

3. Otherwise, let j ∈ {1, . . . , α} be such that t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j . The distinguisher queries

h← L(hj , sj ,mj , t
(1)
j ‖t

(3)
j),

and guesses (L,R) = (f,E) if and only if h = hj ⊕ [sj]2.

The distinguisher guesses his oracles correctly except if one of the following events occur:

E1 : ∀ j ∈ {1, . . . , α} : t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j

∣∣ (L,R) = (f,E);

E2 : ∃ j ∈ {1, . . . , α} : t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j and h = hj ⊕ [sj]2

∣∣ (L,R) = (RO,S).

In particular, Advpro
f (D) ≥ 1−Pr (E1)−Pr (E2). We start with Pr (E2), and we suppose (L,R) =

(RO,S). E2 in fact covers the event that S finds a fixed-point for RO, namely inputs hj , sj ,mj , tj
such that RO(hj , sj ,mj , tj) = hj ⊕ [sj]2. As S makes at most qS queries, he can find such fixed-
point with probability at most qS/2

n. Next, we consider Pr (E1), and we suppose (L,R) = (f,E).

2 The only requirement on the mj ’s is that they are distinct.

As E is a random block cipher and the message blocks mj are all different, the probabilities

Pr
(
t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j

)
are independent for different indices j, and satisfy

Pr
(
t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j

)
= 1−Pr

(
t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j

)
= 1− 1/2n/4.

Therefore, Pr (E1) =
(
1− 1/2n/4

)α
. For α = 2n/4, this bound is at most e−1. We thus obtain

Advpro
f (D) ≥ 1− e−1 − qS/2n ≥ 0.5 for qS ≤ 2n−3. ut

4 Collision and Preimage Resistance of f and H

In this section, we analyze the collision and (everywhere) preimage resistance of the BLAKE com-
pression function f . We achieve optimal security (up to a constant). As the HAIFA mode of opera-
tion preserves collision and everywhere preimage resistance [2], these results directly carry over to
the BLAKE hash function H.

Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a collision for f after
q < 22n−1 queries can be upper bounded by

Advcol
f (q) ≤ q(q + 1)

2n
.

Proof. Let j = 1, . . . , q. We consider the probability that the j-th query results in a collision. We
distinguish between forward and inverse queries.

Collision by a forward query. The adversary makes an encryption query of the form (mj , vj) to

receive a cipher text wj such that E(mj , vj) = wj . Parse hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C). If

t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j the block cipher query does not correspond to a compression function evaluation

and a collision is obtained with probability 0. Hence, we assume t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j . In this case,

the block cipher query corresponds to the compression function evaluation f(h, s,m, t
(1)
j ‖t

(3)
j) =

wlj ⊕ wrj ⊕ hj ⊕ [sj]2. The query renders a collision for f only if

wlj ⊕ wrj ⊕ hj ⊕ [sj]2 ∈ {xi | i = 1, . . . , j − 1} ∪ {h0}, (1)

where the xi are defined as in Sect. 2.2. Let x denote any of the j elements from the set at the right

hand side of (1). The j-th query collides with x with probability Pr
(
wlj ⊕ wrj = x⊕ hj ⊕ [sj]2

)
,

where hj and sj are fixed by the adversarial input vj to E. As wj is generated from a set of size
at least 22n − q, and at most 2n values wj satisfy the equation, this probability is upper bounded
by 2n

22n−q . Considering any choice of x, then the j-th query results in a collision with probability at

most j2n

22n−q .

Collision by an inverse query. The adversary makes a decryption query of the form (mj , wj) to

receive a plain text vj . We parse this plain text as hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj⊕(0n‖C). This query

only renders a collision if vj is consistent with the definition of f , i.e. it satisfies t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j .

Additionally, the query constitutes a collision for f only if

wlj ⊕ wrj ⊕ hj ⊕ [sj]2 ∈ {xi | i = 1, . . . , j − 1} ∪ {h0}. (2)

Let x denote any of the j elements from the set at the right hand side of (2). The j-th query results
in a collision with this x with probability

Pr
(
hj ⊕ [sj]2 = x⊕ wlj ⊕ wrj ∧ t

(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j

)
,

=
∑

s∈{0,1}n/2

∑
t∈{0,1}n/4

Pr

(
hj = x⊕ wlj ⊕ wrj ⊕ [s]2 ∧ sj = s

∧ t
(1)
j ‖t

(2)
j ‖t

(3)
j ‖t

(4)
j = [tl]2‖[tr]2

)
,

where the equality holds simply by conditioning on the values attained by sj and the tj ’s. As vj
is generated from a set of size at least 22n − q, for any fixed s and t this probability is upper
bounded by 1

22n−q . Considering any choice of x, s and t, then the j-th query results in a collision

with probability at most j2n/22n/4

22n−q = j23n/4

22n−q .

A collision for the compression function f is generated by either a forward or inverse query, and the

j-th query thus renders a collision with probability at most max
{

j2n

22n−q ,
j23n/4

22n−q

}
= j2n

22n−q . Summing

over all q queries, we obtain

Advcol
f (q) ≤

q∑
j=1

j2n

22n − q
≤ q(q + 1)2n

2(22n − q)
.

For q < 22n−1, we have 1
22n−q ≤

2
22n

, which completes the proof. ut

Theorem 3. Let n ∈ N. The advantage of any adversary A in finding a preimage for f after
q < 22n−1 queries can be upper bounded by

Advepre
f (q) ≤ 2q

2n
.

Proof. Let y ∈ {0, 1}n be any point to be inverted, as specified in Def. 1. The proof follows the
proof of Thm. 2 with the only difference that the j-th query (for j = 1, . . . , q) needs to hit this
particular value y, rather than any value x from a set of size j (cf. (1-2)). More detailed, the j-th
query needs to satisfy wlj ⊕wrj ⊕ hj ⊕ [sj]2 = y, and results in a preimage for y with probability at

most 2n

22n−q . When summing over all queries, we obtain

Advcol
f (q) ≤

q∑
j=1

2n

22n − q
≤ q2n

22n − q
≤ 2q

2n
,

where the last inequality holds as q < 22n−1. ut

5 Second Preimage Resistance of H

Due to the lack of second preimage security preservation [2] of the BLAKE hash function H, we
investigate the second preimage security of H directly, rather than its compression function (as in
the collision and preimage cases). Our proof shows similarities with the second preimage proof for
HAIFA by Bouillaguet and Fouque [8]. Our proof, however, is realized in the ideal cipher (rather
than ideal compression function) model .

Theorem 4. Let n ∈ N, and λ ≥ n/2. The advantage of any adversary A in finding a second
preimage for f after q < 22n−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ 4q

2n
.

Proof. Let (s′,M ′) ∈ {0, 1}n/2×{0, 1}λ−n/2 be the target preimage. Denote pad(M ′) = m′1‖ · · · ‖m′k′
and denote by t′1, . . . , t

′
k′ the corresponding counter values. Note that by construction, t′i′ = 〈i′2n〉n/4

for i′ ∈ {1, . . . , k′−2}, t′k′ 6= 〈k′2n〉n/4, and t′k′−1 may or may not be of the form 〈(k′−1)2n〉n/4. The
block cipher executions corresponding to this hash function evaluation are given to the adversary
for free. That is, A is forced to make the k′ corresponding queries but will not be charged for this.
Denote by h′0, . . . , h

′
k′ the state values corresponding to the evaluation of H(s′,M ′).

The goal of the adversary is to find a tuple (s,M) 6= (s′,M ′) such that H(s,M) = H(s′,M ′)
and such that the query history contains all block cipher evaluations required for the computation
of H(s,M). We pose the following claim.

Claim. Suppose A finds (s,M) 6= (s′,M ′) such that H(s,M) = H(s′,M ′). Denote by m1, . . . ,mk,
t1, . . . , tk, and h0, . . . , hk the message blocks, counter values and intermediate state values corre-
sponding to the computation of H(s,M). There must be i ∈ {1, . . . , k} and i′ ∈ {1, . . . , k′} such
that f(hi−1, s,mi, ti) = f(h′i′−1, s

′,m′i′ , t
′
i′), where (hi−1, s,mi) 6= (h′i′−1, s

′,m′i′) and ti, t
′
i′ satisfy

ti = t′i′ or
(
ti 6= 〈i2n〉n/4 and t′i′ 6= 〈i′2n〉n/4

)
. (3)

Proof (Proof of claim). As H(s,M) = H(s′,M ′), we have hk = h′k′ . If |M | 6= |M ′|, then mk 6= m′k′ ,
tk 6= 〈k2n〉n/4 and t′k′ 6= 〈k′2n〉n/4, and a collision of the prescribed form is found. Thus, suppose
|M | = |M ′|. This implies k = k′ and ti = t′i for i = 1, . . . , k. If s 6= s′, a collision for hk is directly
found. If s = s′, we necessarily have M 6= M ′ and by the standard collision resistance preservation
proof for the Merkle-Damg̊ard mode of operation (see e.g. [1, 2, 9, 15]), there must by an index
i such that f(hi−1, s,mi, ti) = f(h′i−1, s

′,m′i, t
′
i) but (hi−1,mi) 6= (h′i−1,m

′
i). This completes the

proof. ut

It consequently suffices to consider the probability of the adversary finding a collision with any of
the k′ compression function evaluations of H(s′,M ′), such that the corresponding counter values
satisfy (3). We call a collision of this form a “valid collision”. Thus,

Adv
esec[λ]
H (q) ≤

q∑
j=1

Pr (j-th query is valid collision) . (4)

Let j = 1, . . . , q. We consider the probability that the j-th query results in a collision with any of
the target state values. We distinguish between forward and inverse queries.

Valid collision by a forward query. The adversary makes an encryption query of the form (mj , vj) to

receive a cipher text wj such that E(mj , vj) = wj . Parse hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C). If

t
(1)
j ‖t

(3)
j 6= t

(2)
j ‖t

(4)
j the block cipher query does not correspond to a compression function evaluation

and a valid collision is obtained with probability 0. Hence, we assume t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j . In this case,

the block cipher query corresponds to the compression function evaluation f(h, s,m, t
(1)
j ‖t

(3)
j) =

wlj ⊕ wrj ⊕ hj ⊕ [sj]2.

If t
(1)
j ‖t

(3)
j = 〈α2n〉n/4 for some α ∈ {1, . . . , k′ − 1}, this means the query corresponds to a

compression function at the α-th position, and (3) may be satisfied only for i′ = α. If t
(1)
j ‖t

(3)
j 6= α2n

for any α ∈ {1, . . . , k′ − 2}, (3) can be satisfied only for i′ ∈ {k′ − 1, k′}. In any other case, there is
no i′ that makes (3) satisfied. In any case, there are at most 2 values that wlj ⊕wrj ⊕ hj ⊕ [sj]2 may
hit in order to render a valid collision. As in the proof of Thm. 2, the j-th query results in a valid
collision with probability at most 2·2n

22n−q .

Valid collision by a inverse query. The analysis follows the same lines. The j-th query results in a

valid collision with probability at most 2·23n/4
22n−q .

A valid collision for the compression function f is generated by either a forward or inverse query, and

the j-th query thus renders a valid collision with probability at most max
{

2·2n
22n−q ,

2·23n/4
22n−q

}
= 2·2n

22n−q .

Summing over all q queries, we obtain from (4):

Adv
esec[λ]
H (q) ≤

q∑
j=1

2 · 2n

22n − q
≤ 2q2n

22n − q
≤ 4q

2n
,

where the last inequality holds as q < 22n−1. ut

6 Indifferentiability of H

We show that the BLAKE hash function is indifferentiable from a random oracle in the ideal
cipher model. To this end, we construct a simulator such that any distinguisher requires at least
approximately 2n/2 queries to differentiate (H, E,E−1) from (RO,S,S−1).

Theorem 5. Let E
$← Bloc(2n), let H be the BLAKE hash function, and let RO be a random

oracle. Let D be any distinguisher that makes at most qL left queries of maximal length 2n · ` bits
(not including the salt), qR queries to R and R−1, and runs in time t. Then

Advpro
H (D) ≤ 3

q(q + 1)

2n
,

where q = `qL + qR and S is the simulator of Fig. 2, which makes less than qR queries to RO and
runs in time O(q2R).

The remainder of this section is devoted to the proof of Thm. 5. In Sect. 6.1, we introduce some
additional definitions required for the proof. The simulator used in the proof is introduced and
formalized in Sect. 6.2. Then, Thm. 5 is proven in Sect. 6.3.

6.1 Definitions

To facilitate the analysis, we rewrite the BLAKE padding function pad′, such that on input of a
tuple (s,M) ∈ {0, 1}n/2 × {0, 1}∗ it is defined as

pad′(s,M) = (s‖m1‖t1) ‖ · · · ‖ (s‖mk‖tk),

with m1‖ · · · ‖mk = pad(M) and the ti calculated appropriately based on the mi. The strings
s‖mi‖ti are called augmented message blocks which we will denote by ai. We analyze the BLAKE
hash function with pad′ padding and respectively its compression function f that accepts inputs of
the form (h, a), with h ∈ {0, 1}n, and a ∈ {0, 1}n/2+2n+n/4 the augmented message.

Let V := {0, 1}2n be the plain and cipher text space of both S(m, ·) and E(m, ·). We define
βh,s : V → {0, 1}n as

βh,s(w) = wl ⊕ wr ⊕ h⊕ [s]2.

For h′ ∈ {0, 1}n, we define β−1h,s(h
′) = {w ∈ {0, 1}2n | wl ⊕ wr ⊕ h ⊕ [s]2 = h′}. We call these sets

the fibers of βh,s. Note that each fiber is of size 2n.

For the construction of the simulator, we will maintain an initially empty table T , in which all
query-response tuples (m, v,w) of S and S−1 are stored. We write T+

m(v) = w and T−m(w) = v.
Associated to T we define a graph G, which is initialized with the single node h0. The compression
function evaluations corresponding to the entries of T are maintained in G. The domain and range of
S and S−1 are not intermediate state values and a query-response might not necessarily correspond
to a path in G. In fact, a query-response tuple (m, v,w) corresponds to a compression function
evaluation and can be converted into a path in G if and only if v can be parsed as h‖s‖[tl]2‖[tr]2 ←
v ⊕ (0n‖C). In this case, the tuple corresponds to the following path in G:

h
s‖m‖t−−−−→ βh,s(w).

Note that if G contains a path h0
a1−→ h1 · · ·

ak−→ hk, this implies T contains all queries required for
the evaluation of f(. . . f(f(h0, a1), a2) . . . , ak) = hk, when f is instantiated with S.

6.2 Simulator

Designing the simulator comes down to making sure that (RO,S,S−1) matches (H, E,E−1) as
closely as possible. Notice that for (H, E,E−1) an H query is a chain of E queries which can be
converted to

h0
a1−→ h1 · · ·

ak−→ hk,

with a1‖ · · · ‖ak = pad′(s,M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗; it is this property that the
simulator should mimic. What this essentially means is that the simulator needs to carefully handle
queries that may extend the set of nodes reachable from h0. For any other query, it suffices for the
simulator to respond randomly.

For simplicity and to improve the readability of the simulator, we opt for a simulator that
behaves like a random function. That is, when generating a random answer it will be sampled from
V , therewith allowing collisions in T . Clearly, this will result in a higher success probability for the
distinguisher, but because the elements of V are of size 2n bits (while the hash function has range
{0, 1}n), this security loss will be negligible. This loss will be reflected in the bound obtained in
Sect. 6.3.

Recall from Sect. 6.1 that a query-response tuple (m, v,w) adds an edge to the graph if and only
if v can be parsed as h‖s‖[tl]2‖[tr]2 ← v ⊕ (0n‖C) and for now we simply assume this to be true,

adding the edge h
s‖m‖t−−−−→ h′ = βh,s(w) to G. The main purpose of S is to maintain consistency for

the paths leaving from h0. Thus, we investigate how the simulator handles queries extending any
of these paths.

In case of inverse queries, note that h depends on the outcome of the simulator, v. If the
simulator generates v uniformly at random, the edge extends a path from h0 only if h hits any
node already reachable from h0. This case occurs with small probability, and we can safely have
the simulator respond randomly on an inverse query. The resulting security loss is reflected in the
obtained indifferentiability bound derived in Sect. 6.3.

In case of forward queries, h and a = s‖m‖t are determined by the inputs by the distinguisher,

and thus he may force the number of nodes reachable from h0 to increase. Suppose a path h0
a1−→

h1 · · ·
ak−→ hk = h is in G. We distinguish among the following cases:

– a1‖ · · · ‖ak‖a = pad′(s,M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. The simulator should assure
consistency with RO, hence its answer w should comply with βh,s(w) = RO(s,M);

– a1‖ · · · ‖ak‖a 6= pad′(s,M) for any s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. There is no consistency
required, and the simulator responds randomly.

Two peculiarities may occur in case of a forward query of this form. At first, it may be the case that
a newly added edge extends to two different paths. This would however mean a compression function
collision has occurred, an event that happens with small probability and results in a security loss
in the final indifferentiability bound obtained in Sect. 6.3. Secondly, the value h′ = βh,s(w) may hit
a node in the graph, in which case the path will be increased with two edges. A similar reasoning
as for inverse queries applies here: h′ hits another node in the graph with small probability only,
and the simulator does not need to handle this situation.

The formal description of the simulator is given in Fig. 2. It uses the following procedure.
procedure findPaths(h, a)

P ← ∅ . will contain paths and corresponding messages

for all paths h0
a1−→ h1 · · ·

ak−→ hk in G do
if h = hk and ∃M such that pad′(s,M) = a1‖ · · · ‖ak‖a then

P ←
(
M,h0

a1−→ h1 · · ·
ak−→ hk

)
end if

end for
return P

end procedure

Lemma 1. If the simulator does not return a response retrieved from the table T , the response will
be uniformly distributed over V .

Proof. With a forward query there are two cases, one where the simulator queries RO and one
where it does not. If the simulator does not query RO, then by definition it responds uniformly
over V . If the simulator does query RO, then it receives an h′ = RO(s,M) uniformly distributed
over {0, 1}n. As the fibers of βh,s form a partition of V , uniformly selecting an element from an
arbitrary fiber of βh,s is the same as uniformly selecting an element from V .

Since the inverse queries of the simulator are by definition uniformly distributed over V , we
attain our result. ut

Simulator Forward Query

1: procedure S(m, v)
2: if T+

m(v) =⊥ then
3: h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)

4: w
$← V

5: if t(1)‖t(3) = t(2)‖t(4) then
6: P ← findPaths(h, s‖m‖t(1)‖t(3))
7: if P 6= ∅ then
8: (M,path)

$← P

9: w
$← β−1

h,s(RO(s,M))
10: end if

11: add h
s‖m‖t(1)‖t(3)−−−−−−−−−→ βh,s(w) to G

12: end if
13: T+

m(v)← w
14: end if
15: return T+

m(v)
16: end procedure

Simulator Inverse Query

1: procedure S−1(m,w)
2: if T−m(w) =⊥ then

3: v ← T−m(w)
$← V

4: h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)
5: if t(1)‖t(3) = t(2)‖t(4) then

6: add h
s‖m‖t(1)‖t(3)−−−−−−−−−→ βh,s(w) to G

7: end if
8: end if
9: return T−m(w)

10: end procedure

Random Oracle
1: procedure RO(s,M)
2: if F [s,M] =⊥ then . F is an array

3: F [s,M]
$← {0, 1}n

4: end if
5: return F [s,M]
6: end procedure

Fig. 2: The definition of the simulator S used in the proof of Thm. 5, and the random oracle RO.

6.3 Proof of Thm. 5

In this section, we will bound the advantage of any distinguisher in differentiating the simulated
world (with the simulator of Fig. 2) from the real world. The proof of indifferentiability consists
of a sequence of six games where we specify three algorithms (Li, Ri, R

−1
i) (for i = 1, . . . , 6) with

which a distinguisher can interact. These games are given in Fig. 3. The first game corresponds
to the simulated world and the sixth game corresponds to the real world (HE , E,E−1). By Gi we

denote the event DLi,Ri,R
−1
i = 1. Clearly,

Advpro
H (D) = |Pr (G1)−Pr (G6)| ≤

5∑
i=1

|Pr (Gi)−Pr (Gi+1)| . (5)

In the remainder of this section, the distances between the adjacent games will be bounded, and
the claim of Thm. 5 will be directly obtained from (5).

Games 1 and 2

The first game is (RO,SRO, (SRO)−1). The biggest change in the second game is that HS is called

Game 1
1: procedure L1(s,M)
2: return RO(s,M)
3: end procedure

4: procedure R1(m, v)
5: return S(m, v)
6: end procedure

7: procedure R−1
1 (m,w)

8: return S−1(m,w)
9: end procedure

Game 2
1: procedure L2(s,M)
2: mark all (m, v,w) used in HS(s,M)
3: return RO(s,M)
4: end procedure

5: procedure R2(m, v)
6: if (m, v, T+

m(v)) is marked then
7: delete (m, v, T+

m(v)) from T
8: delete corresponding path from G
9: end if

10: deleteMarkedPaths(m, v)
11: w ← S(m, v)
12: make (m, v,w) unmarkable
13: return w
14: end procedure

15: procedure R−1
2 (m,w)

16: if (m,T−m(w), w) is marked then
17: bad← true
18: delete (m,T−m(w), w) from T
19: delete corresponding path from G
20: end if
21: v ← S−1(m,w)
22: make (m, v,w) unmarkable
23: return v
24: end procedure

Game 3
1: procedure L3(s,M)
2: return L2(s,M)
3: end procedure

4: procedure R3(m, v)
5: return R2(m, v)
6: end procedure

7: procedure R−1
3 (m,w)

8: if (m,T−m(w), w) is marked then
9: bad← true

10: end if
11: return S−1(m,w)
12: end procedure

Game 4
1: procedure L4(s,M)
2: HR4(s,M)
3: return RO(s,M)
4: end procedure

5: procedure R4(m, v)
6: w ← S(m, v)
7: if T+

m(v) 6=⊥ then
8: bad← isCollision(m, v, T+

m(v))
9: end if

10: return w
11: end procedure

12: procedure R−1
4 (m,w)

13: return S−1(m,w)
14: end procedure

Game 5
1: procedure L5(s,M)
2: return HR5(s,M)
3: end procedure

4: procedure R5(m, v)
5: return R4(m, v)
6: end procedure

7: procedure R−1
5 (m,w)

8: return R−1
4 (m, v)

9: end procedure

Game 6
1: procedure L6(s,M)
2: return HR6(s,M)
3: end procedure

4: procedure R6(m, v)
5: return E(m, v)
6: end procedure

7: procedure R−1
6 (m,w)

8: return E−1(m,w)
9: end procedure

Fig. 3: Games 1, . . . , 6 used in the proof of Thm. 5.

in L2 in line 2. Note that the result of HS is not used and L2 returns a value generated by RO,
i.e. the responses of L1 and L2 are identical. Yet, calling HS still has side effects on game 2 as
the simulator’s table and graph are updated based on the S queries made by HS . As a result the
simulator in game 2 gains more knowledge than the simulator in game 1. In particular, we will
mark each query-response from all calls of S in HS whenever a query has not been made before
by D; these marked query-responses in T represent the extra knowledge gained by the simulator in
game 2. Queries made by D are made unmarkable in line 12 in R2 and line 22 in R−12 , these queries
provide the simulator with no extra information compared to the simulator of game 1.

Note that if we ignore the lines of code in R2 and R−12 dealing with marked query-responses we

are left with lines 11, 13, 21, and 23, where we see that R2 and R−12 simply query S and S−1 and
return the result. The rest of the code is there in order to undo the side effects of HS . A first step
in removing the side effects of HS is, when a marked query is made by D, to remove the knowledge
S has of that query (implemented in the if-statements) and then to re-query S again. This does
not deal with all possible cases because we know that sometimes S queries RO in order to ensure
consistency. In particular, in game 1 the distinguisher could know that a particular intermediate
value should map to the result of some L1 response while the simulator does not know this, resulting
in a collision. Yet, this collision could be avoided if the simulator knows all of the intermediate values
used through a call to HS . To this end, R2 employs the following procedure so that S “forgets” the
intermediate values:

procedure deleteMarkedPaths(m, v)
h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)
if t(1)‖t(3) 6= t(2)‖t(4) then

return
end if
P ← findPaths(h, s‖m‖t(1)‖t(3))
for all (M,h0

a1−→ · · · ak−→ hk) ∈ P do
for i← 0, . . . , k − 1 do

if (m, v,w) associated with hi
ai+1−−−→ hi+1 is marked then

delete (m, v,w) from T

delete hi
ai+1−−−→ hi+1 from G

end if
end for

end for
end procedure

When invoked through a forward query, deleteMarkedPaths checks for all paths to which this
particular query extends using the findPaths procedure and deletes any marked query-responses
used along these paths, thereby eliminating all marked intermediate values used by a HS query.

Now we take a look at R−12 and see exactly how the HS query is dealt with. If the query-response
(m,T−m(w), w) is not marked, then either (m,w) has never been queried before or the distinguisher
has queried (m,w) before; in either case we get the exact same behavior as R−11 . If (m,T−m(w), w)
is marked, then this means that the distinguisher has not queried (m,w) and that HS has queried
(m,w). Removing (m,T−m(w), w) from T and G and then querying S−1(m,w) will return some
uniformly chosen response from V . This is the same as never having queried S−1(m,w) and then
querying it, meaning we get the same behavior out of S−1 in R−12 as in R−11 . Note that the newly
generated S−1(m,w) very likely differs from the value previously generated (when it was queried
by HS). However, as L2 never discloses the data from HS , this is not a problem.

Finally we just need to compare R1 with R2. Say that (m, v, T+
m(v)) is unmarked, i.e. HS has

never queried (m, v). When calling deleteMarkedPaths, there are a few possibilities:

– findPaths returns the empty set. The subsequent call to S will return some arbitrary element
of V , as would exactly happen in R1;

– findPaths finds some valid path, but there are no marked query-responses along this path.
This means that the distinguisher has queried the full path itself and S will respond similarly
in both R1 and R2;

– findPaths finds a valid path and there are marked query-responses along this path, but these
are removed. Thus, the simulator call from R2 has the same amount of information as the
simulator call from R1.

If (m, v, T+
m(v)) is marked, then knowledge of that particular query-response is removed. In effect

we are then dealing with an unmarked query-response (m, v, ⊥) and are reduced to the case above.
We have shown that each R2 and R−12 query will execute the same code within S as each R1

and R−11 query, respectively, and since they all return the response of the S query, we have

Pr (G1) = Pr (G2) .

Games 2 and 3

Note that L2 and L3, and R2 and R3 are exactly the same, so we need to compare the responses of
R−12 and R−13 . It is clear that R−12 and R−13 are identical until bad. The bad event corresponds to

HS first querying S resulting in the query-response (m, v,w) with path h1
a−→ h2, the distinguisher

guessing this particular w correctly from the set β−1h1,s(h2), and finally D calling R−1i (m,w) without

explicitly calling Ri(m, v) (otherwise Ri(m, v) would unmark (m, v,w)). Since every fiber of β−1h1,s
has size 2n, an upper bound for the probability of finding such a w is qR/2

n, as qR bounds the
number of right oracle inverse queries by D. Therefore, as bad can be triggered in both games,

|Pr (G2)−Pr (G3)| ≤ 2
qR
2n
.

Games 3 and 4

The following procedure is used in game 4 to detect collisions:
procedure isCollision(m, v,w)

h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v
if t(1)‖t(3) 6= t(2)‖t(4) then

return false
end if
h′ ← βh,s(w)
return h′ is a node of G . returns true/false

end procedure

Since R4 is identical to S, L3 and L4 are identical. The only difference between games 3 and
4 can be found in R3 and R4, yet this is the same difference as between R1 and R2 and we may
conclude that

Pr (G3) = Pr (G4) .

Games 4 and 5

The difference between games 4 and 5 lies in the response given by the left oracles: game 4 uses RO
while game 5 uses HR5 . We will show that as long as bad is not triggered, the responses of both
left oracles are the same.

Lemma 2. As long as bad is not set to true, L4(s,M) = L5(s,M).

Proof. We can write HRi(s,M), with i equal to 4 or 5, as

h0
a1−→ h1 · · ·

ak−→ hk,

with a1‖ · · · ‖ak = pad′(s,M). If none of the nodes hj for j > 0 are in G, then HRi will query Ri
in sequence starting from h0 and ending up at RO(s,M) since the simulator will learn the entire

message M in sequence by the time hk−1
ak−→ hk is queried and can respond with RO(s,M).

On the other hand, if there is some node hj in G, then it must be the case that the particular

path hj−1
aj−→ hj is in G, otherwise HRi(s,M) will trigger bad. Furthermore hj−2

aj−1−−−→ hj−1 must

have been queried before the hj−1
aj−→ hj query:

– if hj−2
aj−1−−−→ hj−1 is not in G then HRi(s,M) will place it in G resulting in a collision because

hj−1 is already in G, and

– if hj−2
aj−1−−−→ hj−1 is in G then it must have occurred before the aj query since the result of the

aj−1 query would otherwise have ended up as a node in G.

This means that Ri receives each of the hj−1
aj−→ hj queries in order from j = 1 to k and can

respond consistently with RO(s,M). ut

By the collision resistance of the BLAKE compression function (Sect. 4), the probability of a collision
occurring is upper bounded by q(q + 1)/2n. Hence, as bad can be triggered in both games,∣∣Pr (G4)−Pr (G5)

∣∣ ≤ 2
q(q + 1)

2n
.

Games 5 and 6

The right oracles of game 6 form a permutation for each message, whereas the right oracles of game
5 do not. By Lem. 1, the right oracles of game 5 are uniformally distributed over V (R5 and R−15

are essentially just the simulator), which means that the difference between game 5 and game 6 is
the difference between a permutation and a random function, which we know is bounded as follows:∣∣Pr (G5)−Pr (G6)

∣∣ ≤ qR(qR − 1)

22n
.

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), in part by the European Commission through the
ICT program under contract ICT-2007-216676 ECRYPT II, and in part by the Research Council
K.U.Leuven: GOA TENSE. The first author is supported by a Ph.D. Fellowship from the Flemish
Research Foundation (FWO-Vlaanderen). The third author is supported by a Ph.D. Fellowship
from the Institute for the Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen).

References

[1] Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round SHA-3 candidates. In: Informa-
tion Security Conference - ISC 2010. Lecture Notes in Computer Science, vol. 6531, pp. 39–53. Springer-Verlag,
Berlin (2010)

[2] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In:
Advances in Cryptology - ASIACRYPT 2007. Lecture Notes in Computer Science, vol. 4833, pp. 130–146.
Springer-Verlag, Berlin (2007)

[3] Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2010), submission to NIST’s SHA-3
competition

[4] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM
Conference on Computer and Communications Security. pp. 62–73. ACM, New York (1993)

[5] Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The KECCAK sponge function family (2011), submission to
NIST’s SHA-3 competition

[6] Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007), http://eprint.iacr.org/2007/278

[7] Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions
from PGV. In: Advances in Cryptology - CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp.
320–335. Springer-Verlag, Berlin (2002)

[8] Bouillaguet, C., Fouque, P.: Practical hash functions constructions resistant to generic second preimage attacks
beyond the birthday bound (2010), submitted to Information Processing Letters

[9] Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes
in Computer Science, vol. 435, pp. 416–427. Springer-Verlag, Berlin (1990)

[10] Dean, R.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton University, Princeton (1999)
[11] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein

Hash Function Family (2010), submission to NIST’s SHA-3 competition
[12] Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl

– a SHA-3 candidate (2011), submission to NIST’s SHA-3 competition
[13] Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: Advances in

Cryptology - EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 474–490. Springer-Verlag,
Berlin (2005)

[14] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology. In: Theory of Cryptography Conference 2004. Lecture Notes in Computer
Science, vol. 2951, pp. 21–39. Springer-Verlag, Berlin (2004)

http://eprint.iacr.org/2007/278

[15] Merkle, R.: One way hash functions and DES. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 428–446. Springer-Verlag, Berlin (1990)

[16] National Institute for Standards and Technology: Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA3) family (November 2007), http://csrc.nist.gov/groups/ST/hash/
documents/FR_Notice_Nov07.pdf

[17] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferentiability
framework. In: Advances in Cryptology - EUROCRYPT 2011. Lecture Notes in Computer Science, vol. 6632,
pp. 487–506. Springer-Verlag, Berlin (2011)

[18] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision resistance. In: Fast Software Encryption 2004.
Lecture Notes in Computer Science, vol. 3017, pp. 371–388. Springer-Verlag, Berlin (2004)

[19] Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Advances in Cryptology - CRYPTO 2005.
Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer-Verlag, Berlin (2005)

[20] Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Advances in Cryptology - EUROCRYPT
2005. Lecture Notes in Computer Science, vol. 3494, pp. 19–35. Springer-Verlag, Berlin (2005)

[21] Wu, H.: The Hash Function JH (2011), submission to NIST’s SHA-3 competition

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

	Provable Security of BLAKE with Non-Ideal Compression Function
	Elena Andreeva, Atul Luykx and Bart Mennink

