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Abstract. This paper describes a new method in pairing-based signature schemes for identify-
ing the invalid digital signatures in a batch after batch verification has failed. The method more
efficiently identifies non-trivial numbers, w, of invalid signatures in constrained sized, N , batches
than previously published methods, and does not require that the verifier possess detailed knowl-
edge of w. Our method uses “divide-and-conquer” search to identify the invalid signatures within
a batch, pruning the search tree to reduce the number of pairing computations required. The
method prunes the search tree more rapidly than previously published techniques and thereby
provides performance gains for batch sizes of interest.
We are motivated by wireless systems where the verifier seeks to conserve computations or a
related resource, such as energy, by using large batches. However, the batch size is constrained by
how long the verifier can delay batch verification while accumulating signatures to verify.
We compare the expected performance of our method (for a number of different signature schemes
at varying security levels) for varying batch sizes and numbers of invalid signatures against earlier
methods. We find that our new method provides the best performance for constrained batches,
whenever the number of invalid signatures is less than half the batch size. We include recently
published methods based on techniques from the group-testing literature in our analysis. Our new
method consistently outperforms these group-testing based methods, and substantially reduces
the cost (> 50%) when w ≤ N/4.
Keywords Pairing-based signatures, Batch verification, Invalid Signature Identification, Identity-
based signatures, Short signatures, Wireless networks

1 Introduction

In many network security and E-commerce systems that use batch signature verification, the
verifier does not have the freedom to accumulate arbitrarily large batches of messages and
signatures to maximize the efficiency of the batch verifier. Typically the batch size is con-
strained by how long the verifier can delay verification of early arriving messages while waiting
to accumulate additional messages for the batch. In such applications, whenever a batch fails
verification, the verifier then chooses the best method available to identify the invalid signa-
tures. The choice is determined by the size of the batch, and perhaps based on some belief
about the likely number of, or some estimate of the bound on the number of, invalid signatures.

When the system is part of a data rate limited wireless network, the signature scheme
of choice is often a communication efficient bilinear pairing-based scheme.Some examples of
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such systems are: some secure wireless routing protocols [25, 41, 33, 26]; secure accounting and
charging schemes or schemes to provide incentives to nodes for exhibiting desirable behav-
ior [31, 5, 17, 28, 44]; authenticated localization messages and safety messages (vehicular net-
works) [32, 30, 43]; and authenticating bundled data messages in delay (or disruption) tolerant
networks [10, 37]. This choice is justifiable if the need for communication efficiency justifies the
higher processing costs of these schemes compared to 1) conventional signature schemes such
as ECDSA [13], or 2) signature schemes using implicit-certificates [1, 29, 4]. Such pairing-based
schemes include short signature schemes [3, 6] and bandwidth efficient identity-based signature
schemes [7, 6, 40, 6].

When batch verification fails, a number of methods have been proposed, primarily for large
batches, to identify the invalid signatures in batch verifiable, pairing-based signature schemes.
These proposals include “divide-and-conquer” (DC) methods such as Fast DC verifier [27] and
Binary Quick Search [18], and methods that significantly augment DC with other techniques
(i.e., hybrid methods) [21], and some specialized techniques that are practical for batches with
only a very few invalid signatures [18]. Recently, methods based on group testing have been
proposed [42]. However, no methods have been proposed specifically for constrained batches.

Our contribution.

In this paper, we present a new method for finding invalid signatures in pairing-based
schemes based on hybrid divide-and-conquer searching. The method outperforms earlier hybrid
divide-and-conquer methods when N is constrained (16 - 128) and w < N/2. We compare our
method with earlier work for a number of pairing-based schemes and present the results using
cost parameters drawn from a realization of the Cha-Cheon [7] signature scheme at the 80 bit
and 192 bit security levels. Our analysis can be easily applied to other schemes and at other
security levels. Our new hybrid method seeks to identify more invalid signatures in each (sub-)
batch than earlier hybrid methods before resorting to sub-dividing the (sub-)batches. The new
method reduces the number of computations required whenever w < N/2.

Recently group testing algorithms [9] have been proposed for use in identifying invalid
signatures in batches [42]. However, many group algorithms assume that w (or an upper bound)
is known. If the estimate d of w must be precise in order to obtain good performance, then
such methods will not be useful in practice. We compare the expected performance of our
method against the best methods in [42] for use in single processor systems. We find that our
new method, as well as some earlier methods, always significantly outperform the proposed
group testing methods, even when w is precisely known. We also examine the impact of an
inaccurate estimate on the expected performance of the method in [42] which has the best
worse case performance in our setting when w is known precisely. We find that even when the
estimate is good (dw = 2w), the impact on performance is severe when 2 ≤ w < N/2.

2 Notation

In this paper we assume that pairing-based schemes use bilinear pairings on an elliptic curve
E, defined over Fq, where q is a large prime. G1 and G2 are distinct subgroups of prime order
r on this curve, where G1 is a subset of the points on E with coordinates in Fq, and G2 is a
subset of the points on E with coordinates in Fqd , for a small integer d (the embedding degree).

2



The pairing e is a map from G1×G2 into GT where GT is a multiplicative group of order r in
the field Fqd .

Once the initial batch verification is performed, the costs of the methods for finding the
invalid signatures in a batch are dominated by the cost of a product of pairings computations,
CstMultPair, and the cost of multiplying two elements of GT , CstMultGT. A cost that can be
significant in large batches for some methods is the cost of additions in G1, CstAddG1, (or
additions in G2). The other operations used in the methods discussed in this paper, such as
exponentiation CstExptGT(t1) in Fqd (for small t1), computing an inverse in GT (CstInvGT),
multiplying an element of G1 or G2 by a modest sized scalar c, i.e.,c ≤ N , has minimal impact.

3 Background

Fiat [12] introduced batch cryptography, and the first batch verification signature scheme
was that of Naccache et al. [24] for a variant of DSA signatures. Bellare et al. [2] presented
three generic methods for batching modular exponentiations: the random subset test, the small
exponents test (SET), and the bucket test, which are related to techniques in [24, 38].

A number of pairing-based signature schemes have batch verifiers which use the small
exponents test, many of which have the form

e

(
N∑
i=1

Bi, S

)
=

n̄−1∏
h=1

e

(
N∑
i=1

Di,h, Th

)
(1)

where S and Th are system parameters. Examples when n̄ = 2 include Boneh, Lynn and
Shacham short signatures [3], when the batch consists of messages signed by a single signer or
a common message signed by different signers, the Cha-Cheon identity-based scheme [7], and
the scheme of Xun Yi [39] as interpreted by Solinas [35]. Examples of schemes that have this
form with n̄ = 3 include the Camenisch, Hohenberger, and Pedersen (CHP) short signature
scheme (for a common time period [6]) and a recent proposal of Zhang et al. [43] for signing
and batch verifying location and safety messages in vehicular networks.1

3.1 Identifying Invalid Signatures

Methods for identifying invalid signatures fall into three categories: divide-and-conquer meth-
ods [27, 18], exponent testing methods [19, 20, 36, 18], and hybrid techniques [20, 21] which
combine aspects of divide-and-conquer and other methods.

Divide-and-Conquer Methods Pastuszak et al. [27] first investigated methods for identi-
fying invalid signatures within a batch. They explored divide-and-conquer methods for generic
batch verifiers, methods that work with any of the three batch verifiers studied by Ballare
et al. In these methods the set of signatures in an invalid batch is repeatedly divided into
d ≥ 2 smaller sub-batches to verify. The most efficient of their techniques, the Fast DC Verifier

1 Some of these schemes are defined for pairings where G1 = G2. In CHP short signatures one of the pairings

has the form e
(
Th,

∑N
i=1 Di,h

)
. For simplicity of presentation we ignore such distinctions in the remainder

of this paper.
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Method, exploits knowledge of the results of the first d−1 sub-batch verifications to determine
whether the verification of the dth sub-batch is necessary. Performance measurements of one of
the methods of [27] for the Boneh, Lynn and Shacham (BLS) [3] signature scheme have been
reported [11].

In [18] a more efficient divide-and-conquer method, called Binary Quick Search (BQS),
for small exponents test based verifiers was presented. In this method a batch verifier that
compares two quantities, X and Y , is replaced with an equivalent test A = XY −1, and the
batch is accepted if A = 1. The BQS algorithm is always as least as efficient as any d = 2nary
DC Verifier [22]. The upper bound of the number of batch verifications required by BQS is
half that of the Fast DC Verifier for d = 2 [18].

Exponent Testing Methods The first exponent testing method, developed by Lee et al. [19],
was capable of finding a single invalid signature within a batch of “DSA-type” signatures. Law
and Matt presented two exponent testing methods for pairing-based batch signatures, the
Exponentiation Method and the Exponentiation with Sectors (EwS) Method, in [18]. Both
methods use exhaustive search during batch verification, resulting in exponential cost.

The Exponentiation Method replaces (1) with α0 =
n̄−1∏
h=0

e

(
N∑
i=1

Di,h, Th

)
where Di,0 = Bi

and T0 = −S. If α0 is equal to the identity, the batch is valid. Otherwise compute αj , for
1 ≤ j ≤ w,

αj =
n̄−1∏
h=0

e

(
N∑
i=1

ijDi,h, Th

)
(2)

and perform a test on the values αj , αj−1, . . . α0. For j = 1, test whether α1 = αz1
0 has a

solution for 1 ≤ z1 ≤ N using Shanks’ giant-step baby-step algorithm [34]. If successful, w = 1
and z1 is the position of the invalid signature. In general the method tests whether

αj =

j∏
t=1

(αj−t)
(−1)t−1 pt (3)

has a solution where pt is the tth elementary symmetric polynomial in 1 ≤ z1 < . . . < zj ≤ N .
The authors show that the tests can be performed in O(

√
N) for j = 1 and O(N j−1/(j − 1)!)

for j ≥ 2 multiplications in Fqd . If a test fails increment j, compute αj , and test. When j = w
the test will succeed, and the values of z1, . . . , zw are the positions of the invalid signatures.

The Exponentiation with Sectors Method uses two stages. In the first stage, the batch is
divided into approximately

√
N sectors of approximately equal size and the Exponentiation

Method is used, where each Di,h within a sector is multiplied by the same constant to identify
the v invalid sectors. In the second stage, the Exponentiation Method is used to find the invalid
signatures within a batch consisting of the signatures from the v invalid sectors.2

Hybrid DC Methods Lee et al. [20] applied their approach for DSA-type signatures to
identifying a single invalid signature in batches of RSA signatures. They addressed the problem

2 The EwS method is always outperformed by one or more of the other methods we discuss in this section in
our setting; therefore we do not discuss the performance of this method in Section 6.
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of identifying multiple invalid RSA signatures by using their RSA method in a DC method.
Each (sub-)batch is tested using their RSA method. If the (sub-)batch has multiple invalid
signatures, it is divided and its child sub-batches are tested. If a (sub-)batch has a single
invalid signature, that signature is identified; if a (sub-)batch has no invalid signatures, that
(sub-)batch is not tested further. Otherwise the (sub-)batch is divided and its child sub-batches
are tested. However, Stanek showed in [36] that their approach for RSA signatures is not secure.

In [22] Matt presented two hybrid DC methods. The first, called Single Pruning Search
(SPS), uses (2) and (3) for 0 ≤ j ≤ 1 to identify single invalid signatures in (sub-)batches
until the root of every maximal sub-tree of the search tree with a single invalid signature is
identified. This method is somewhat similar to the Lee et al. method for RSA signature batches
with multiple invalid signatures.

The second method, Paired Single Pruning Search (PSPS), extends SPS with an additional
test. When a (sub-)batch B has two or more invalid signatures, α0,L is computed for the left
child sub-batch of B, and if both child sub-batches have invalid signatures, then α0,R = α0 ·α−1

0,L

is calculated for the right child sub-batch. Then α1 = αzL
0,L · αzR

0,R is tested for a solution where
the exponents are restricted to the set of i’s used in the child sub-batches. A solution will exist
whenever both child sub-batches have a single invalid signature. The additional test determines
if the two child nodes are both roots of maximal sub-trees of the search tree with a single invalid
signature, without computing α1,L and α1,R.

4 A Hybrid DC Method Exploiting w = 2 Maximal Sub-Trees

Hybrid divide-and-conquer methods operate on (for simplicity) a binary tree T with w ≥ 1
invalid signatures whose root node is the batch, and each pair of child nodes represents the
two nearly equal size sub-batches of their parent. The SPS and PSPS methods search down
though T until the roots of the w maximal sub-trees STi, i = 1, .., w, of T , which represent sub-
batches that have a single invalid signature are reached and tested. The Triple Pruning Search
method we describe in this paper searches down through T until the roots of the maximal
sub-trees ST2i, i = 1, .., v, of T , which represent the sub-batches that have exactly two invalid
signatures, and the maximal sub-trees ST1j , j = 1, .., w−2v, which represent sub-batches that
have a single invalid signature and which are not a sub-tree of any of the ST2i sub-trees, are
reached and tested.

Let B be the batch. |X| is the size the (sub-)batch X of B, lowbnd(X) is the index in
B of the lowest position signature in X, w(X) is the number of invalid signatures in X, and
invalid(X) is the set of invalid signatures in X. If T is a binary tree and X is sub-batch, then
X̂ is the sibling of X.

4.1 Triple Pruning Search (TPS) Method.
The recursive algorithm below describes the Triple Pruning Search (TPS) method on a batch
B, which is a list of N = 2h, h ≥ 2, randomly ordered message / signature pairs ((m1, s1), . . . ,
(mN , sN )), where the signature components are verified elements of the appropriate groups.
On the initial call to TPS(X), X = B.

TPS(X) includes the initial batch verification (lines 2 through 4). When X = B, Get0(B)
computes α0,B following the SET algorithm, and then computes α−1

0,B. The test α0,B = 1
determines whether w(B) = 0.
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Algorithm 4.1 TPS (X) (Triple Pruning Search)

Input: X – a list of message / signature pairs.
Output: A list of the invalid pairs in the batch.
1: if X = B then
2: α0,[B] ← Get0(B)
3: if α0,[B] = 1 then
4: return
5: α1,[B] ← Get1(B)
6: z ← Shanks(B)
7: if z �= 0 then
8: print (mz, sz)
9: return
10: α2,[B] ← Get2(B)
11: (z1, z2)← FastFactor(B)
12: if z1 �= 0 then
13: print (mz1 , sz1), (mz2 , sz2)
14: return
15: (SearchLeft, SearchRight)← TPSQuadSolver(X,Left(X), Right(X)) .
16: if SearchLeft = true then
17: TPS (Left(X))
18: if SearchRight = true then
19: TPS (Right(X))
20: if X = B then
21: PrintList() // Prints the sorted list of invalid message / signature pairs
22: return

Lines 5 through 9 determine whether w(B) = 1, and if so they locate the invalid signature.
Get1(B) computes α1,B in about n̄ · N · CstAddG1+CstMultPair operations using the partial
results from the computation of α0,B, and then computes α−1

1,B. Shanks(B) is used to locate a

single invalid signature. Shanks(X) tests whether α1,X · (α−1
0,X)d = (αs

0,X)c has a solution with

l ≤ d ≤ s + l and 0 ≤ c ≤ t, where s ≈ √|X|, t ≈ |X|/s and l = lowbnd(X). If w(X) = 1,
Shanks(X) returns d+ c ∗ s, the position of the invalid signature. If w(X) > 1, then it returns
0. Shanks(X) uses the giant-step baby-step algorithm [34].

Lines 10 through 14 determine whether w(B) = 2, and if so they locate the two invalid
signatures. Get2(B) computes α2,B in about n̄·N ·CstAddG1+CstMultPair operations using the
partial results from the computation of α1,B and α0,B, and then computes α−1

2,B. FastFactor(B)

is used to locate the pair of invalid signatures. FastFactor(X) tests whether α4
2,X · (α−4

1,X)n ·
αn2

0,X = αm2

0,X has a solution with 2l + 1 ≤ n ≤ 2(l + |X|) − 1 and 1 ≤ m ≤ |X| − 1, where
l = lowbnd(X); if so, then z2 = (n+m)/2 and z1 = (n−m)/2 with z2 > z1 are the positions
of the two invalid signatures. If w(X) = 2, FastFactor(X) returns (z1, z2). If w(X) > 2,
FastFactor(X) returns (0, 0). See Appendix A.3.

In line 15, the function TPSQuadSolver(X, Left(X), Right(X)) determines whether X
has two or fewer invalid signatures in its left sub-batch Left(X) and two or fewer invalid
signatures in its right sub-batch Right(X). TPSQuadSolver places the locations of the invalid
signature it identifies in a list which PrintList() outputs.
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4.2 TPSQuadSolver(Parent, Left, Right)

The algorithm on page 8 describes the TPSQuadSolver(Parent, Left, Right) function on a
(sub-)batch Parent with |Parent| = 2h, h ≥ 2, and w(Parent) ≥ 3. Left and Right represent
the two equal size sub-batches of Parent.

TPSQuadSolver(Parent, Left, Right) uses Get0(Left) to compute α0,Left (and α−1
0,Left),

which requires a CstMultPair computation as well as some comparatively minor cost computa-
tions in G1. Lines 3 through 8 determine whether all of the invalid signatures in Parent are in
either Left, Right, or are divided between the two. If both Left and Right have at least one
invalid signature then Get0(Right) is used to compute α0,Right (α

−1
0,Right) with negligible cost.3

If TScap ≥ |Parent| ≥ 4, TriFactor(Parent) is used (line 11) to determine whether case
1) w(Left) = 2 and w(Right) = 1, or case 2) w(Left) = 1 and w(Right) = 2; otherwise it
fails. TriFactor(Parent), see Appendix A.4, uses the function TriSolver to test case 1 and if
that fails, case 2.

Case 1) TriSolver(P = Parent, L = Left, R = Right)

If α4
2,P · (α−4

0,R)
z23 · (α−4

1,P )
nL · (α4

0,R)
nL·z3 · αnL

2

0,L = αmL
2

0,L has a solution with 2lL + 1 ≤ nL ≤
2(lL + |L|) − 1, 1 ≤ mL ≤ |L| − 1 and lR ≤ z3 < lR + |R|, where lL = lowbnd(L) and
lR = lowbnd(R), then z2 = (nL+mL)/2 and z1 = (nL−mL)/2 where z2 > z1 are the positions
of the two invalid signatures in L, and z3 in R.

Case 2) TriSolver(P = Parent, R = Right, L = Left)

If α4
2,P · (α−4

0,L)
z21 · (α−4

1,P )
nR · (α4

0,L)
nR·z1 · αnR

2

0,R = αmR
2

0,R has a solution with 2lR + 1 ≤ nR ≤
2(lR + |R|) − 1, 1 ≤ mR ≤ |R| − 1 and lL ≤ z1 < lL + |L|, then z3 = (nR + mR)/2 and
z2 = (nR −mR)/2 where z3 > z2 are the positions of the invalid signatures in R, and z1 in L.

If w(Parent) = 3, TriFactor(Parent) returns the positions of the three invalid signatures,
which are added to the list of invalid signatures (line 13).

If |Parent| = 4 and TriFactor(Parent) fails, then the positions of the four signatures in
Parent are added to the list of invalid signatures (line 16).

If |Parent| > 4 and TriFactor(Parent) failed (or was not used), then Get1 is used to
compute α1,Left (and α−1

1,Left) as well as α1,Right (and α−1
1,Right) with approximate total cost

CstMultPair (line 19).

If the following Shanks(Left) test succeeds, then Get2(Right) can compute α2,Right =
α2,Parent·αz1

1,Left and its inverse efficiently with cost 2CstMultGT+2CstInvGT+CstExptGT(t1),
where t1 < �log2(N)�. This cost is much less than CstMultPair, we ignore this cost in Sec-
tion 5. Next if TriFactor(Parent) was not used, then FastFactor(Right) is used (line 24)
to test whether w(Right) = 2 and if so, identify the two invalid signatures in Right. If
TriFactor(Parent) was used, it must have failed, and so would FastFactor(Right).

If the Shanks(Left) test (line 20) fails, then Shanks(Right) (line 30) is used to test the
right sub-batch. If that test succeeds, then by exchanging Left and Right, the preceding
paragraph describes the function of lines 31 through 38.

If w(Left) ≥ 2 and w(Right) ≥ 2, then Get2 is used to compute α2,Left and α2,Right and
their inverses, with approximate total cost CstMultPair (line 40), followed by tests of Left and
Right using FastFactor.

3 αi,Right where i = 0, 1, 2 can be computed inexpensively if αi,Left is known by αi,Right = αi,Parent · α−1
i,Left.
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Algorithm 4.2 TPSQuadSolver(Parent, Left, Right)

Input: Parent, Left, Right – the lists of message / signature pairs.
Return: (SearchLeft, SearchRight) – control behavior of TPS
1: (z1, z2, z3, z4)← (0, 0, 0, 0)
2: α0,[Left] ← Get0(Left)
3: if α0,[Left] = 1 then
4: copyAlphasAndInverses(Right, Parent);
5: return (false, true)
6: if α0,[Left] = α0,[Parent] then
7: copyAlphasAndInverses(Left, Parent)
8: return (true, false)
9: α0,[Right] ← Get0(Right)
10: if TScap ≥ |Parent| ≥ 4 then // TScap = 8, see Section 6
11: (z1, z2, z3)← TriFactor(Parent)
12: if z1 �= 0 then
13: AddToList(z1, z2, z3)
14: return (false, false)
15: if |Parent| = 4 then
16: i← lowbnd(Parent); AddToList(i, i+ 1, i+ 2, i+ 3)
17: return (false, false)
18: SearchLeft← false; SearchRight← false
19: α1,[Left] ← Get1(Left); α1,[Right] ← Get1(Right);
20: z1 ← Shanks(Left)
21: if z1 �= 0 then // w(Left) = 1
22: α2,[Right] ← Get2(Right)
23: if |Parent| > TScap then
24: (z3, z4)← FastFactor(Right)
25: AddToList(z1, z3, z4) // zeros are not added to the list
26: if z3 = 0 then
27: SearchRight← true
28: return (false, SearchRight)
29: else // w(Left) ≥ 2
30: z3 ← Shanks(Right)
31: if z3 �= 0 then // w(Right) = 1
32: α2,[Left] ← Get2(Left)
33: if |Parent| > TScap then
34: (z1, z2)← FastFactor(Left)
35: AddToList(z1, z2, z3) // zeros are not added to the list
36: if z1 = 0 then
37: SearchLeft← true
38: return (SearchLeft, false)
39: else // w(Left) ≥ 2 and w(Right) ≥ 2
40: α2,[Left] ← Get2(Left); α2,[Right] ← Get2(Right)
41: (z1, z2)← FastFactor(Left); (z3, z4)← FastFactor(Right)
42: AddToList(z1, z2, z3, z4) // zeros are not added to the list
43: if z1 = 0 then
44: SearchLeft← true
45: if z3 = 0 then
46: SearchRight← true
47: return (SearchLeft, SearchRight)
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5 Expected Cost of the New Method

TPS requires that initial batch verification is performed using the Small Exponents Test. For

simplicity, we assume that the batch verifier is of the form α0,B =
∏n̄−1

h=0 e
(∑N

i=1Di,h, Th

)
.

The cost of this process for Cha-Cheon signatures (n̄ = 2) includes first checking that the
signature components are in G1, (and that the authenticated system parameters Th are in G2)
then computing the terms

∑N
i=1Di,h, h = 0, 1 in G1, and finally computing α0,B and testing

whether α0,B = 1. If α0,B 	= 1 compute α−1
0,B.

If α0,B 	= 1 (and all Di,h ∈ G1), then assuming that the intermediate values Di,h are re-
tained, the cost of computing α1,B and the cost of computing α2,B are each n̄ · |B| · CstAddG1

+CstInvGT+ CstMultPair. Since CstInvGT � CstMultPair, we ignore the cost of computing
the inverses.

If w = 1, the cost of TPS, not including initial verification, is n̄·|B|·CstAddG1+CstMultPair
plus the average cost of a successful Shanks(B), which is 4

3

√|B|CstMultGT.

If w = 2, the cost is 2(n̄·|B|·CstAddG1+CstMultPair)+2
√|B|CstMultGT +11

4 |B|CstMultGT),
which is the cost of computing the two products of pairings, including their inputs, a failed
Shanks(B), and the average cost of a successful FastFactor(B).

If w > 2, the cost includes the term 2(n̄ · |B| ·CstAddG1+CstMultPair)+2
√|B|CstMultGT

+9
2 |B|CstMultGT, which is two products of pairings computations, a failed Shanks(B), and

a failed FastFactor(B). In addition the cost includes the cost generated by the recurrence
relation R(TPS)(w,M) below, with |B| = 2h, where h ≥ 2, and on initial call M = |B| and
w(B) ≥ 3.

R(TPS)(w,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1, 2,

w > M ;

⎡
⎢⎢⎣

w∑
i=0

(
M/2
w−i

)(
M/2
i

)
(R(TPS)(w − i,M/2) +R(TPS)(i,M/2)

+C(TPS)(w − i, i,M/2))

⎤
⎥⎥⎦

(Mw)
, w ≥ 3,

where the cost functions C(TPS)(·, ·, ·) are given in the following table. Note that CstMultGT �
CstMultPair, so we ignore small numbers of CstMultGT. For both TScap ≥ M > 4 and
for M > TScap, C(TPS)(w, 0,M/2) = C(TPS)(0, w,M/2) = CstMultPair, C(TPS)((w − 2) >
2, 2,M/2) = C(TPS)(2, (w − 2) > 2,M/2) and C(TPS)((w − i) > 2, i > 2,M/2) = C(TPS)(i >
2, (w − i) > 2,M/2).
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Costs

Argument CstMultPair CstMultGT

M = 4 C(TPS)(1, 2,M/2) 1 40+14
√
2

32 M + 9+3
√
2

32 M2

C(TPS)(2, 1,M/2) 1 128+14
√
2

32 M + 33+3
√
2

32 M2

C(TPS)(2, 2,M/2) 1 11
2 M + 3

2M
2

TScap ≥M > 4 C(TPS)(1, 2,M/2) 1 40+14
√
2

32 M + 9+3
√
2

32 M2

C(TPS)(2, 1,M/2) 1 128+14
√
2

32 M + 33+3
√
2

32 M2

C(TPS)(1, (w − 1) > 2,M/2) 2 4
3

√
M + 11

2 M + 3
2M

2

C(TPS)((w − 1) > 2, 1,M/2) 2 10
3

√
M + 11

2 M + 3
2M

2

C(TPS)(2, 2,M/2) 3 4
√
M + 11M + 3

2M
2

C(TPS)((w − 2) > 2, 2,M/2) 3 4
√
M + 123

4M + 3
2M

2

C(TPS)((w − i) > 2, i > 2,M/2) 3 4
√
M + 141

2M + 3
2M

2

M > TScap C(TPS)(1, 2,M/2) 2 4
3

√
M + 11

4 M

C(TPS)(2, 1,M/2) 2 10
3

√
M + 11

4 M

C(TPS)(1, (w − 1) > 2,M/2) 2 4
3

√
M + 9

2M

C(TPS)((w − 1) > 2, 1,M/2) 2 10
3

√
M + 9

2M

C(TPS)(2, 2,M/2) 3 4
√
M + 11

2 M

C(TPS)((w − 2) > 2, 2,M/2) 3 4
√
M + 71

4M

C(TPS)((w − i) > 2, i > 2,M/2) 3 4
√
M + 9M

6 Performance

All of the methods discussed in this section perform initial batch verification in a similar
manner. For Cha-Cheon signatures, they all check that the signature components are in G1,
then compute α0 for the batch, and then test whether α0 = 1. There are some slight variations
in how the terms

∑N
i=1Di,h are summed, but the cost in each case is the same. In Sections 6.1

we compare the expected performance of TPS against the methods discussed in Section 3.1
and in Sections 7.1 against the group testing based methods, once the initial batch verification
has failed. See Section 5 and Appendix A for the derivations of the costs presented below and
additional discussion of the performance of the methods.

We use Cases A and E of [14] for Cha-Cheon signatures to give an indication of how our
results change with variations in the relative cost of operations.4 In Case A, the group order
r is a 160-bit value, the elliptic curve E is defined over Fq, where q is a 160-bit value, and the
embedding degree d = 6. In Case E, the group order r is a 384-bit value, q is a 384-bit value,
and the embedding degree d = 12. All costs are given in terms of the number of multiplications
(m) in Fq, assuming that squaring has the same cost as multiplication, using the following
estimates from Granger, Page and Smart [14], Granger and Smart [15], and Devegili et al. [8].

4 The most important factor in the relative performance of all the methods is the ratio of CstMultPair to
CstMultGT. The ratio of CstMultPair to n̄ · |B| · CstAddG1 is much less significant in our setting.
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– For Case A, 1 double product of pairings = 14, 027m, 1 multiplication in Fq6 = 15m, 1
addition in G1 = 11m.

– For Case E, 1 double product of pairings = 104, 316m, 1 multiplication in Fq12 = 45m, 1
addition in G1 = 11m.

6.1 Peformance TPS vs Earlier Methods
Figures 1 through 4 show the expected cost of TPS, PSPS, SPS and BQS, the Exponential
method, as well as testing the signatures individually, in units of multiplications in Fq.
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Fig. 1: Number of multiplies in Fq, N = 16.
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Fig. 2: Number of multiplies in Fq, N = 32.
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Fig. 3: Number of multiplies in Fq, N = 64.
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6.2 Percent Difference Comparison of TPS with Earlier Methods

Figures 5 through 8 compare methods relative to PSPS, previously the best performing method
for our setting. We also include two additional divide-and-conquer methods, SPS and BQS,
the Exponential method, as well as testing the signatures individually.
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Fig. 5: Percent Difference Comparison with PSPS, N = 16.
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Fig. 6: Percent Difference Comparison with PSPS, N = 32.
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Fig. 7: Percent Difference Comparison with PSPS, N = 64.
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Fig. 8: Percent Difference Comparison with PSPS, N = 128.
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TPS uses successful TriSolver tests to avoid computing CstMultPair for α1’s (and perhaps)
α2’s for child sub-batches. We observe that the O(N2) cost of these tests requires that we
restrict the use of TriFactor to parent batches of size less than or equal to TScap (line 10
of Algorithm 4.2); otherwise for larger batches the cost of TriFactor, even when successful,
would become greater than the cost of the α’s and their associated Shanks and FastFactor
tests. In Figures 1 through 8 above, and Figures 9 through 16 in Section 7, TScap = 8 which
limits the cost of TriFactor to no more than ≈ 140 CstMultGT. Since the ratio of CstMultPair
to CstMultGT for Case A is 1275 : 1 and Case E is 2318 : 1, the cost of TriFactor does not
significantly impact the overall cost of TPS in these figures. However, setting TScap = 8 rather
than TScap = |B| increases the number of product of pairing computations used by TPS.

7 Group Testing Based Methods

Zaverucha and Stinson [42] recently examined algorithms from the group testing literature for
use in identifying invalid signatures in batches. Like Pastuszak et al., they work with generic
batch verifiers. Zaverucha and Stinson state that for single processor systems, identifying in-
valid signatures using Binary Splitting (same method as the Fast DC-verifier of Pastuszak et
al. [27]) and Hwang’s Generalized Binary Splitting (HGBS) methods have the lowest bounds
on the worse case number of verifications. Here we examine the expected performance of these
algorithms.

Binary Splitting tests an invalid (sub-)batch of size M by first testing �M2 
 signatures
from the (sub-)batch. If this test indicates an invalid signature, a test of the remaining �M2 �
signatures is required, and the method is applied to both sub-batchs; otherwise the test is not
performed on the sub-batch with the �M2 � signatures and the method is applied only to that
sub-batch. Binary splitting is the same method as the Fast DC-verifier of Pastuszak et al. [27].

The HGBS method [16] requires an estimate dw of the number of invalid signatures in a
batch of size M . The descriptions of the HGBS method which have appeared in the literature
differ slightly. Here we describe the version of HGBS which appears in [16].

G1:
If M ≤ 2(dw − 1) verify the M signatures individually, otherwise compute a ∈ N s.t.
2a+1 > (M − dw + 1)/d ≥ 2a and goto G2.

G2:
Test a sub-batch X of size 2a. If all are valid M ← M − 2a and go to G1 for the other
signatures. If X is invalid find one invalid signature in X using a tests via binary search
and dispose of the invalid signature and all valid sub-batches identified during the search.
Create a new batch consisting of all the remaining sub-batches. Set M to the size of this
batch and dw ← dw − 1 and go to G1.

Note that dw must be greater than or equal to w, otherwise the method is undefined.5

7.1 Comparison of TPS with Group Testing based Methods

In Figures 9 through 16 we compare the performance of TPS against two group testing methods,
Binary Splitting and HGBS, relative to BQS. We use BQS since it only requires that a batch

5 In [16] d is an upper bound, in [9] it is the known number of invalid signatures.
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verifier that compares two quantities, X and Y , can be replaced with the test A = XY −1.
BQS is intermediate between the more signature scheme specific TPS method and the general
group testing methods. We also show the extent to which uncertainty in the estimated (or a
bound of the) number of the invalid signatures in a batch degrades performance of HGBS.
Binary Splitting does not use such an estimate.

8 Conclusion

We presented the TPS method for identifying invalid signatures in pairing-based batch sig-
nature schemes using SET, and have analyzed its expected performance. The new method
provides improved performance for 1 < w ≤ N/2, for the range of batch sizes of interest. The
new method is the best available for our setting, constrained sized batches verified by single
processor systems, when the number of invalid signatures in a batch can vary considerably
but does not exceed N/2. The method is applicable to a number of batch verified signature
schemes, those presented in [11] and that of Zhang et al. [43].

In [42] the authors investigated using generic verifier methods derived from group testing
algorithms for invalid signature identification. Of the five methods they discussed, two —
Binary Splitting and HGBS — were identified as the best methods for single processor verifiers.
A number of group testing algorithms such as HGBS rely on an estimate, dw, of the number
of invalid signatures. In [42] the authors state that when dw differs from w “it is unclear to
what extent this will hurt the performance of the algorithm.” We investigated this issue for
the expected performance of HGBS and showed that the impact can be severe.

The authors also observed that more restrictive verifiers such as the Exponentiation and
EwS methods of Law and Matt [18] and the hybrid methods of Matt [21] (and by extension
ours) will outperform their generic verifiers for the class of signature schemes to which these
methods apply. We observe that BQS assumes only a common feature of many batch verifiers,
yet outperforms the generic group testing based verifiers, especially when the choice of value
of d is uncertain.
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A Auxiliary Algorithms for TPS

This section describes the new tests used by the TPS method in Section 4, FastFactor(X),
and TriFactor(Parent). and the functions Get2(X) and Get1(X). 6

A.1 Get2(X)

TPS uses Get2(X) to obtain α2,X (and α−1
2,X) for the (sub-)batch X. Algorithm A.1 presents

Get2 for batch verifers of the form α0 =
n̄−1∏
h=0

e

(
N∑
i=1

Di,h, Th

)
. In Algorithm A.1, V 0i,h =∑i

j=N Dj,h computed by Get0(B), and V 1i,h = i
∑i+1

j=N Dj,h +
∑1

j=i jDj,h by Get1(B). The
cost to compute α2,B and its inverse is n̄ · |B| · CstAddG1+CstInvGT+ CstMultPair. We use
n̄ · |B| · CstAddG1+CstMultPair for this case in Appendix 5.

When X is a left child the cost is no more than 3 · CstAddG1+ 2 · CstSubG1+CstInvGT+
CstDlbMultG1(t1, t2)+CstMultPair with t1 < �log2(N) + 1� and t2 < �2log2(N)�. We estimate
the cost of Get2(X) in this case as CstMultPair. If X is a right child and α2 for its sibling has
been computed, the cost is at most 2CstMultGT which we ignore. If the position of the single
invalid signature in the sibling of X is known then the cost of computing α2,X and its inverse
is 2CstMultGT+CstInvGT+CstExptGT(t1) where t1 < �log2(N)�. We use CstExptGT(t1) for
this case in Appendix 5. Since CstExptGT(t1)� CstMultPair we could ignore this cost as well.

A.2 Get1(X)

TPS uses Get1(X) to obtain α1,X (and α−1
1,X) for the (sub-)batch X. Algorithm A.2 presents

Get1 for batch verifers of the form α0 =
n̄−1∏
h=0

e

(
N∑
i=1

Di,h, Th

)
. In Algorithm A.2, V 0i,h =∑i

j=N Dj,h computed by Get0(B). The cost to compute α1,B and its inverse is n̄ · |B| ·
CstAddG1+CstInvGT+ CstMultPair. We use n̄ · |B| · CstAddG1+CstMultPair for this case in
Appendix 5.

When X is a left child the cost is no more than 3 · CstAddG1+ 2 · CstSubG1+CstInvGT+
CstDlbMultG1(t1, t2)+CstMultPair with t1 < �log2(N) + 1� and t2 < �2log2(N)�. We estimate
the cost of Get2(X) in this case as CstMultPair. If X is a right child and α2 for its sibling has
been computed, the cost is at most 2CstMultGT which we ignore.

6 TPS uses a modified version of Get1(X) which orginally appeared in [22], as well as Get0(X) which also
appeared in [22].
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Algorithm A.1 Get2(X) (Obtain α2 (and α−1
2 ) )

Input: X a list of message / signature pairs.
Output: None.
Return: The value α2,[X] for X.

1: P ← Parent(X); L← Left(P ); R← Right(P ); X̂ ← Sibling(X)
2: if (α2,[X]) then // True if α2,[X] has been computed
3: return (α2,[X])
4: else if (α0,[X] = α0,[P ]) then
5: α2,[X] ← α2,[P ]

6: invα2,[X] ← invα2,[P ]

7: return (α2,[X])

8: else if (ses[X̂] �= 0) then // Shanks found α1,[X̂] and stored the position of the invalid signature in ses[X̂]

9: α2,[X] ← α2,[X] · invαses[X̂]

1,[X̂]

10: invα2,[X] ← α−1
2,[X]

11: return (α2,[X])
12: else if (X = R) then // Right child
13: α2,[R] ← α2,[P ] · invα2,[L]

14: invα2,[R] ← invα2,[P ] · α2,[L]

15: return (α2,[R])
16: else if (X = L) then // Left child
17: l← lowbnd(L); u← upbnd(L)
18: for h = 0 to n̄−1 do
19: W2l,u,h ← V 21,h − (2 · V 2u+1,h + (2u− 1) · V 1u+1,h + u2 · V 0u+1,h)
20: if (l �= 1) then
21: if (W21,l−1) then // Test whether W21,l−1,h={0,n̄−1} has been computed
22: for h = 0 to n̄−1 do
23: W2l,u,h ←W2l,u,h −W21,l−1,h

24: else
25: for h = 0 to n̄−1 do
26: W21,l−1,h ← V 21,h − (2 · V 2l,h + (2l − 3) · V 1l,h + (l − 1)2 · V 0l,h)
27: W2l,u,h ←W2l,u,h −W21,l−1,h

28: α2,[L] ←
n̄−1∏
h=0

e (W2l,u,h, Th)

29: if ( α2,[L] �= α2,[P ]) then
30: invα2,[L] ← α−1

2,[L]

31: else
32: invα2,[L] ← invα2,[P ]

33: return (α2,[L])
34: else // Root node, compute α2,[B]

35: for h = 0 to n̄−1 do
36: V 2|X|,h ← V 1|X|,h
37: for i = |X| − 1 to 1 do
38: for h = 0 to n̄−1 do
39: V 2i,h ← V 2i+1,h + V 1i,h
40: for h = 0 to n̄−1 do
41: V 21,h ← V 21,h + V 22,h

42: α2,[B] ←
n̄−1∏
h=0

e (V 21,h, Th)

43: invα2,[B] ← α−1
2,[B]

44: return (α2,[B])
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A.3 FastFactor(X)

FastFactor(X) shown in Algorithm A.3 below tests whether the equation

α4
2,X · (α−4

1,X)n · αn2

0,X = αm2

0,X (4)

has a solution when with 2l+1 ≤ n ≤ 2(l+ |X|)−1 and 1 ≤ m ≤ |X|−1 where l = lowbnd(X).
If a solution exists then z2 = (n +m)/2 and z1 = (n −m)/2 where z2 > z1 are the positions
of the two invalid signatures. The algorithm is an improved version of the Factor Method [18].
Since 2|n ⇐⇒ 2|m, a solution to (4) can be found by searching for a solution to (5) and (6).

α4
2,X · (α−4

1,X)2n̂ · (α4
0,X)n̂

2
= (α4

0,X)m̂
2

(5)

In (5) n = 2n̂ and m = 2m̂ and the algorithm tests whether a solution exist such that
l + 1 ≤ n̂ ≤ (l + |X|)− 2 and 1 ≤ m̂ ≤ |X|/2− 1.

α4
2,X · (α−4

1,X)2n̂+1 · (α4
0,X)n̂

2+n̂+1 = (α4
0,X)m̂

2+m̂+1 (6)

In (6) n = 2n̂+ 1 and m = 2m̂+ 1 and the algorithm tests whether a solution exist such that
l ≤ n̂ ≤ (l + |X|)− 2 and 0 ≤ m̂ ≤ |X|/2− 1.

In the algorithm the function findMatch(leftside, rightside, Parent, flag) searches for a
match between the used locations in the lists leftside and rightside and returns the positions
of the invalid signatures in B or (0, 0).

When l 	= 1 the worse case cost of the algorithm is 3CstExptGT(t1) and (4.5|X|)CstMultGT.
When l = 1 the cost is about 4.5|X|CstMultGT compared to the worse case cost 8|X| of
the original Factor Method [18]. The average cost of the algorithm is 3CstExptGT(t1) when
l 	= 1, plus approximately 23

4 |X|CstMultGT compared to approximately 4.8 |X|CstMultGT

to 4.3 |X|CstMultGT of the original [22]. Since CstMultPair >> CstExptGT(t1), we ignore the
3CstExptGT(t1) cost as well as the cost of the small constant number CstMultGT in Appendix 5.
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Algorithm A.2 Get1(X) (Obtain α1 (and α−1
1 ) )

Input: X a list of message / signature pairs.
Output: None.
Return: The value α1,[X] for X.

1: P ← Parent(X); L← Left(P ); R← Right(P ); X̂ ← Sibling(X)
2: if (α1,[X]) then // True if α1,[X] has been computed
3: return (α1,[X])
4: else if (α0,[X] = α0,[P ]) then
5: α1,[X] ← α1,[P ]

6: invα1,[X] ← invα1,[P ]

7: return (α1,[X])
8: else if (X = R) then // Right child
9: α1,[R] ← α1,[P ] · invα1,[L]

10: invα1,[R] ← invα1,[P ] · α1,[L]

11: return (α1,[R])
12: else if (X = L) then // Left child
13: l← lowbnd(L); u← upbnd(L)
14: for h = 0 to n̄−1 do
15: W1l,u,h ← V 11,h − (V 1u+1,h + u · V 0u+1,h)
16: if (l �= 1) then
17: if (W11,l−1) then // Test whether W11,l−1,h={0,n̄−1} has been computed
18: for h = 0 to n̄−1 do
19: W1l,u,h ←W1l,u,h −W11,l−1,h

20: else
21: for h = 0 to n̄−1 do
22: W11,l−1,h ← V 11,h − (V 1l,h + (l − 1) · V 0l,h)
23: W1l,u,h ←W1l,u,h −W11,l−1,h

24: α1,[L] ←
n̄−1∏
h=0

e (W1l,u,h, Th)

25: if ( α1,[L] �= α1,[P ]) then
26: invα1,[L] ← α−1

1,[L]

27: else
28: invα1,[L] ← invα1,[P ]

29: return (α1,[L])
30: else // Root node, compute α1,[B]

31: for h = 0 to n̄−1 do
32: V 1|X|,h ← V 0|X|,h
33: for i = |X| − 1 to 1 do
34: for h = 0 to n̄−1 do
35: V 1i,h ← V 1i+1,h + V 0i,h

36: α1,[B] ←
n̄−1∏
h=0

e (V 11,h, Th)

37: invα1,[B] ← α−1
1,[B]

38: return (α1,[B])
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Algorithm A.3 FastFactor(X) (Identify two invalid signatures in X)

Input: X a list of message / signature pairs.
Output: None.
Return: The indexes in B of both invalid signatures in X or (0, 0).
1: l← lowbnd(X)
2: rightsideODD[0]← rightsideEV EN [1]← β1 ← α4

0,[X]

3: leftsideODD[l]← α4
2,[X] ∗ (invα4

1,[X])
2l+1 ∗ (β1)

l2+l+1

4: δl ← invα4
1,[X] ∗ (β1)

l

5: leftsideEV EN [l + 1]← leftsideODD[l] ∗ δl
6: β2 ← β1 ∗ β1

7: rightsideODD[1]← rightsideEV EN [1] ∗ β2

8: δl+2 ← δl ∗ β2

9: leftsideODD[l + 1]← leftsideEV EN [l + 1] ∗ δl+2

10: if (((z1, z2)← findMatch(leftsideEV EN, rightsideEV EN,X, even)) �= (0, 0)) then
11: return (z1, z2)
12: if (((z1, z2)← findMatch(leftsideODD, rightsideODD,X, odd)) �= (0, 0))) then
13: return (z1, z2)
14: δl+1 ← δl ∗ β1

15: for i = 2 to —X—-1 do
16: if i <= (|X|/2)− 1 then
17: rightsideEV EN [i]← rightsideODD[i− 1] ∗ βi−1

18: leftsideEV EN [l + i]← leftsideODD[l + i− 1] ∗ δl+i−1

19: if (((z1, z2)← findMatch(leftsideEV EN, rightsideEV EN,X, even)) �= (0, 0)) then
20: return (z1, z2)
21: if i <= (|X|/2)− 1 then
22: βi+1 ← βi ∗ β1

23: rightsideODD[i]← rightsideEV EN [i] ∗ βi+1

24: δl+i+1 ← δl+i ∗ β1

25: leftsideODD[l + i]← leftsideEV EN [l + i] ∗ δl+i+1

26: if (((z1, z2)← findMatch(leftsideODD, rightsideODD,X, odd)) �= (0, 0))) then
27: return (z1, z2)
28: return (0, 0)

27



A.4 TriFactor(Parent)

The algorithm for TriFactor(Parent) shown on page 29 uses TriSolver(Parent, Left, Right)
to test whether equation

α4
2,B · (α−4

0,R)
z23 · (α−4

1,B)
nL · (α4

0,R)
nl·z3 · αnL

2

0,L = αmL
2

0,L (7)

has a solution with 2lL + 1 ≤ nL ≤ 2(lL + |L|)− 1, 1 ≤ mL ≤ |L| − 1 and lR ≤ z3 < lR + |R|,
where lL = lowbnd(L) (L is Left the left child of Parent) and similarly for lR (and R). If the
test succeeds then z2 = (nL +mL)/2 and z1 = (nL−mL)/2 where z2 > z1 are the positions of
the two invalid signatures in L and z3 is the position of the invalid signature in R. If the test
fails then TriSolver(Parent,Right, Left) is used to test whether

α4
2,B · (α−4

0,L)
z21 · (α−4

1,B)
nR · (α4

0,L)
nR·z1 · αnR

2

0,R = αmR
2

0,R (8)

has a solution with 2lR + 1 ≤ nR ≤ 2(lR + |R|)− 1, 1 ≤ mR ≤ |R| − 1 and lL ≤ z1 < lL + |L|.
If the test succeeds then z3 = (nR + mR)/2 and z2 = (nR − mR)/2 where z3 > z2 are the
positions of the two invalid signatures in R and z1 is the position of the invalid signature in L.

Similar to FastFactorMethod, the TriSolver algorithm exploits the observation that
2|nX ⇐⇒ 2|mX where X = L or X = R. If the test of (7) is successful the expected
cost of TriSolver(Left,Right) is approximately

1

32

(
40 + 14

√
2 + 3

(
3 +
√
2
)
M
)
M CstMultGT

where M = |P |, otherwise the cost of the failed call to TriSolver(Left,Right) is 1
4(11 +

3M)M CstMultGT.
If the test of (8) is successful, then cost is the sum of the failed TriSolver(Left,Right), plus

a successful TriSolver(Right, Left) which is 1
64

(
2
(
64 + 7

√
2
)
+ 3

(
11 +

√
2
)
M
)
M CstMultGT.

Therefore the expected approximate cost of successful call to TriFactor(Parent) is
1
32

(
14
(
6 +
√
2
)
+ 3

(
7 +
√
2
)
M
)
M CstMultGT and a failed call is 1

2(11 + 3M)M CstMultGT.
The function findMatch(left, right, Parent, Child1, Child2, z, f lag) searches for a match

between the used locations in the lists left and right and returns the positions of the invalid
signatures in B or (0, 0).
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Algorithm A.4 TriFactor(Parent) (Identify three invalid signatures in Parent)

Input: Parent, a list of message / signature pairs.
Return: The indexes (za, zb, zc) in B of three invalid signatures in Parent

s.t. za < zb < zc and za is in Left and zc is in Right, or return (0, 0).
1: Left← Left(Parent); Right← Right(Parent);
2: (z1, z2, z3)← TriSolver(Parent, Left, Right)
3: if z1 �= 0 then
4: return (z1, z2, z3)
5: (z1, z2, z3)← TriSolver(Parent,Right, Left)
6: return (z3, z1, z2)

Function TriSolver(P , X, Y )
Input: X, Y sibling lists of message / signature pairs.
Return: The indexes in B of three invalid signatures, two in X and one in Y .
1: lX ← lowbnd(X); lY ← lowbnd(Y )
2: b← (invα1,[P ] ∗ α0,[Y ])

lY ; b̂← (α0,[Y ])

3: a← (invα0,[Y ])
l2Y ∗ b2lX+1; â← (invα0,[Y ])

2lY +1 ∗ (α0,[Y ])
2lX+1; ˆ̂a← (invα0,[Y ])

2

4: d← (α0,[X])
l2X+lX+1

5: e← (α0,[X])
lX

6: β1 ← α0,[X]; β2 ← β1 ∗ β1

7: rightsideEV EN [1]← β1

8: rightsideODD[1]← rightsideEV EN [1] ∗ β2

9: j ← 2
10: for z = lY to lY + |Y | − 1 do
11: if j ≤ (|Y |/2)− 1 then
12: rightsideEV EN [j]← rightsideODD[j − 1] ∗ βj−1

13: if (((za, zb)← findMatch(leftsideEV EN, rightsideEV EN,P,X, Y, z, even) �= (0, 0))) then
14: return (z, za, zb)
15: βj+1 ← βj ∗ β1

16: rightsideODD[j]← rightsideEV EN [j] ∗ βj+1

17: j ← j + 1
18: if (((za, zb)← findMatch(leftsideODD, rightsideODD,P,X, Y, z, odd) �= (0, 0))) then
19: return (z, za, zb)
20: leftsideODD[lX , z]← α2,[P ] ∗ a ∗ d
21: δl ← b ∗ e; δl+1 ← δl ∗ β1; δl+2 ← δl ∗ β2

22: leftsideEV EN [lX + 1, z]← leftsideODD[lX , z] ∗ δl
23: leftsideODD[lX + 1, z]← leftsideEV EN [lX + 1, z] ∗ δl+2

24: if (((za, zb)← findMatch(leftsideEV EN, rightsideEV EN,P,X, Y, z, even) �= (0, 0))) then
25: return (z, za, zb)
26: if (((za, zb)← findMatch(leftsideODD, rightsideODD,P,X, Y, z, odd) �= (0, 0))) then
27: return (z, za, zb)
28: for i = 2 to |X| − 1 do
29: leftsideEV EN [lX + i, z]← leftsideODD[lX + i− 1, z] ∗ δl+i−1

30: if (((za, zb)← findMatch(leftsideEV EN, rightsideEV EN,P,X, Y, z, even) �= (0, 0))) then
31: return (z, za, zb)
32: δl+i+1 ← δl+i ∗ β1

33: leftsideODD[lX + i, z]← leftsideEV EN [lX + i, z] ∗ δl+i+1

34: if (((za, zb)← findMatch(leftsideODD, rightsideODD,P,X, Y, z, odd) �= (0, 0))) then
35: return (z, za, zb)
36: a← a ∗ â; â← â ∗ ˆ̂a
37: b← b ∗ b̂
38: return (0, 0, 0)
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