
Cryptanalysis of the RSA Subgroup Assumption
from TCC 2005?

Jean-Sébastien Coron1, Antoine Joux2,3, Avradip Mandal1, David
Naccache4, and Mehdi Tibouchi1,4

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg

{jean-sebastien.coron,avradip.mandal}@uni.lu
2 Direction générale de l’armement (DGA)

3 Université de Versailles–Saint-Quentin, Laboratoire PRISM
45, avenue des États-Unis, f-78035 Versailles Cedex, France

antoine.joux@m4x.org
4 École normale supérieure

Département d’informatique, Groupe de cryptographie
45, rue d’Ulm, f-75230 Paris Cedex 05, France
{david.naccache, mehdi.tibouchi}@ens.fr

Abstract. At TCC 2005, Groth underlined the usefulness of working
in small RSA subgroups of hidden order. In assessing the security of
the relevant hard problems, however, the best attack considered for a
subgroup of size 22` had a complexity of O(2`). Accordingly, ` = 100
bits was suggested as a concrete parameter.
This paper exhibits an attack with a complexity of roughly 2`/2 opera-
tions, suggesting that Groth’s original choice of parameters was overly
aggressive. It also discusses the practicality of this new attack and various
implementation issues.

Key-words: rsa moduli, hidden order, subgroup, cryptanalysis.

1 Introduction

In 2005, Jens Groth [6] proposed a collection of cryptographic primitives
based on small RSA subgroups of Z∗N of hidden orders. The motivation
behind these constructions is improved efficiency and tighter security re-
ductions.

The RSA moduli N used in [6] are of the form:

N = p · q = (2p′r + 1) · (2q′s+ 1)

? An extended abstract of this paper will appear at pkc 2011. This is the full version.



where p, p′, q, q′ are prime integers and r, s are random integers. Then
there exists a unique subgroup G of Z∗N of order p′q′. Letting g be a
random generator of G, the pair (N, g) is made public whereas everything
else including the group order p′q′ is kept secret.

The best attack considered in [6] has complexity O(p′). Therefore,
when proposing concrete parameters, the author suggests to take the bit-
lengths `p′ and `q′ of the primes p′ and q′ as `p′ = `q′ = 100.

This paper does not consider any specific scheme from [6]. Instead, it
describes an attack that recovers the secret factors of N from the public
data (N, g) in Õ(

√
p′). This results in a 250 attack making the choice

`p′ = `q′ = 100 potentially insecure. We analyze the practicality of our
attack with an implementation, for which we provide the source code in
the Appendix.

Remark 1. In [6], Groth also considers RSA subgroups where r and s
are smooth integers (i.e. all prime factors of r and s are smaller than
some bound B). For this specific variant an attack in complexity O(

√
p′)

is given in [6], and consequently larger parameters (`p′ = `q′ = 160) are
suggested. In this paper we do not consider this variant but directly focus
on the general case.

Remark 2. Other works have proposed schemes based on small subgroups
of Z∗n. The attack introduced in this paper applies to some, but not all of
them. In particular, the scheme proposed by Damg̊ard et al. in [5] uses a
subgroup of prime order v of Z∗n, where v is a factor of both p − 1 and
q − 1 (of around 160 bits). Since the group has the same order modulo
p and q, the attack presented herein does not apply to this scheme. On
the other hand, it does, in principle, apply to the subgroup variant of the
Paillier cryptosystem [10]. The parameter choice from the original paper
was more conservative than that of Groth, however (320-bit subgroup),
making it out of reach of our new attack.

2 The New Attack

Using the notations above, we factor N in time Õ(
√
p′) and memory

O(
√
p′) as follows. Recall that the RSA modulus N = pq is such that:

N = p · q = (2p′r + 1) · (2q′s+ 1)

where p′ and q′ are prime; besides, g is a generator of the subgroup G of
order p′q′. From gp

′q′ = 1 mod N we get:

gp
′

= 1 mod p (1)



Let ` denote the bit-length of p′, which we assume is even without loss of
generality, and write ∆ = 2`/2. We then have

p′ = a+∆ · b

with 0 ≤ a, b < 2`/2. From (1), we get:

ga = (g∆)−b mod p

If the prime factor p was known, one could carry out a baby-step giant-
step attack by generating the following two lists:

Lp = {gi mod p : 0 < i < 2`/2}
L′p = {(g∆)−j mod p : 0 ≤ j < 2`/2}

and finding a collision between Lp and L′p, which would reveal a, b and

thus p′ in total time and space O(2`/2).
Obviously p is unknown, so instead of computing Lp and L′p, we gen-

erate the two following lists modulo N :

L = {xi = gi mod N : 0 < i < 2`/2}
L′ = {yj = (g∆)−j mod N : 0 ≤ j < 2`/2}

One could then compute gcd(xi − yj , N) for all xi ∈ L and all yj ∈ L′.
Since we have

xa − yb = 0 mod p

this would reveal the factors of N for i = a and j = b. However, the
complexity of this naive approach is quadratic in ∆, and will thus require
2` computations, not 2`/2. Hence we proceed as follows instead:

1. Generate the polynomial:

f(x) =
∏
xi∈L

(x− xi) mod N

2. For all yj ∈ L′, evaluate f at yj and compute gcd(f(yj), N).

Since we have

f(yb) =
∏
xi∈L

(yb − xi) = (yb − xa) ·R = 0 mod p

computing gcd(f(yj), N) reveals the factors of N for j = b.
The attack is summarized in Algorithm 1. In the next section we show

that it can be carried out in time quasi-linear in the cardinalities of L
and L′.



Algorithm 1 Attack overview.

1: Let ∆← 2`/2.
2: for i = 0 to ∆− 1 do
3: xi ← gi mod N
4: yi ← (g∆)−i mod N
5: end for
6: Generate the polynomial

f(x)←
∆−1∏
i=1

(x− xi) mod N

7: for i = 0 to ∆− 1 do
8: Evaluate f(yi) ∈ ZN
9: Attempt to factor N by computing gcd(f(yi), N).

10: end for

3 Attack Complexity

This attack involves the computation and evaluation of a polynomial of
the form:

f(x) =
d−1∏
i=1

(x− xi) mod N

with d = 2`/2. It is a classical fact [1] that the coefficients of such a
polynomial can be computed using a product tree, with a total number of
operations in ZN which is quasilinear in d (namely O(M(d) log d), where
M(d) is the complexity of the multiplication of two polynomials of degree
d). Similarly, with a remainder tree, this polynomial can be evaluated at
all points yj , 0 ≤ j < d in O(M(d) log d) operations.

Since this approach is easy to follow, we provide the source code of
an implementation using this technique in Appendix C in SAGE [12] for
the reader’s convenience.

In our case, however, both (xi) and (yj) are geometric progressions,
hence even more efficient algorithms exist: the Newton basis conversion
algorithms of Bostan and Schost [4] make it possible to compute f us-
ing O(d) precomputations and a single middle product of polynomials of
degree d, and to evaluate f(yj) for all j using O(d) precomputations, a
product of polynomials of degree d and a middle product of polynomials
of degree d. See the next section for details. This results in an overall com-
plexity of 3M(d) + O(d) for the complete attack, with a small constant
in the O. Space requirements are also O(d), to store a few polynomials
of degree d.



Thus, for typical parameter sizes, the attack is essentially linear in√
p′ both in time and space.

4 Algorithmic Details

As discussed above, we can break down the attack in two steps: first com-
pute the coefficients of the polynomial f(x) =

∏d−1
i=1 (x−xi) mod N , and

then evaluate f mod N at each of the points yj . Since both (xi) and (yj)
are geometric progressions, both of these steps reduce to a variant of the
discrete Fourier transform, called the “chirp transform” (or its inverse)
[11, 2]. In our implementation, we carry out these computations using the
particularly efficient algorithms of Bostan and Schost [4], as described in
[3, §5.5]. More precisely, Bostan gives pseudocode, reproduced as Algo-
rithms 3 and 4 in Appendix A, to compute polynomial interpolation and
polynomial evaluation at a geometric progression.

In our case, a number of futher simplifications are possible in the
interpolation stage. Indeed, f(xi) = 0 for 1 ≤ i ≤ d − 1 and f(1) =∏d−1
i=1 (1 − xi), so with the notations of Algorithm 3, v0 = (−1)n−1sn−1

and vi = 0 for i > 0. This means in particular that the polynomial multi-
plication of Algorithm 3, Step 9 reduces to a simple scalar multiplication,
and that the computations of Steps 10–12 can be carried out in the main
loop. We can also have a slightly more conservative memory manage-
ment, with only 4 polynomials of degree n − 1 kept in memory for both
the interpolation and the evaluation step. Finally, the multiplications by
si in Algorithm 4, Step 14 can be skipped altogether as we search for a
factor of N with GCD computations, since the si’s are prime to N by
construction. We obtain the detailed procedure described in Algorithm 2.

The attack can again be broken down in three stages: interpolation in
Steps 2–18, evaluation in Steps 19–36 and factor search in Steps 37–40.
Complexity is dominated by the three quasi-linear multiplication steps:
the middle products of Steps 15 and 32, and the polynomial multiplication
of Step 36.

5 Implementation

We provide the source code of our attack in Appendix B. The implemen-
tation of polynomial interpolation and evaluation using Newton basis
conversions largely follows the pseudocode from [3] (Figure 5.1 and 5.2),
implemented in C using the FLINT library [8].



Algorithm 2 Detailed attack.
1: function Attack(g, n,N)
2: p← 1; q ← 1; s← 1; u← 1; z ← 1; w ← 1
3: Initialize U,Z, S,W as zero polynomials of degree n− 1
4: U0 ← u; Z0 ← z; W0 ← w
5: for i = 1 to n− 1 do
6: p← p · g mod N
7: q ← q · p mod N
8: s← s · (p− 1) mod N
9: u← u · p/(1− p) mod N

10: z ← (−1)iu/q mod N
11: w ← q/(s · u) mod N
12: Ui ← u; Zi ← z; Wi ← w
13: end for
14: Z ← (−1)n−1sn−1 · Z mod N
15: W ← mult(n− 1, U,W )
16: for i = 0 to n− 1 do
17: Wi ←Wi · Zi mod N
18: end for
19: g ← 1/(p · g) mod N . g ← g−∆

20: p← 1; q ← 1; s← 1; u← 1; z ← 1; w ← 1
21: U ← 0; Z ← 0
22: U0 ← u; Z0 ← z; S0 ← s
23: for i = 1 to n− 1 do
24: p← p · g mod N
25: q ← q · p mod N
26: s← s/(p− 1) mod N
27: u← u · p/(1− p) mod N
28: z ← (−1)iu/q mod N
29: Si ← s; Ui ← u; Zi ← z
30: Wi ←Wi/z mod N
31: end for
32: W ← mult(n− 1, Z,W )
33: for i = 0 to n− 1 do
34: Wi ← (−1)iWi · Ui mod N
35: end for
36: W ←W · S
37: for i = 0 to n− 1 do
38: if gcd(Wi, N) 6= 1 then return gcd(Wi, N) . Factor found!
39: end if
40: end for
41: end function



In Table 1, we provide the observed running time of our attack on an
Intel Core2 Duo E8500 3.12 GHz, for 1024-bit RSA moduli. The program
was linked to the following libraries: FLINT 1.6 (prerelease), MPIR 2.1.3
and MPFR 3.0, and ran on a single CPU core.

` = dlog2 p
′e running time

26 bits 1.9 seconds
28 bits 4.0 seconds
30 bits 8.1 seconds
32 bits 16.5 seconds
34 bits 33.5 seconds
36 bits 68.9 seconds

Table 1. Experimental attack running times for 1024-bit moduli.

From Table 1 we see that, as expected, running times are essentially
linear in

√
p′. Direct extrapolation yields the following estimates:

` = dlog2 p
′e running time estimated number of clock cycles

60 bits 3 days 250

80 bits 9 years 260

100 bits 9000 years 270

Table 2. Estimated attack running times for 1024-bit moduli.

Thus, even the parameter ` = 100 suggested in Groth’s paper [6]
would require a large but not unachievable amount of computation, even
by academic standards. As a comparison, the recent factorization of RSA
768 [9] required about 2000 CPU-years.

However, it is not obvious how the algorithm can be efficiently par-
allelized to distribute the computation. A naive parallelization strategy
is to reduce the number of xi’s and increase the number of yi’s by some
factor 2k, but this only reduces time and memory by a factor of about
2k while requiring 22k parallel nodes. It would be desirable to be able to
distribute the full size computation—both the FFT steps (multiplication
and middle product) and the precomputations—but this appears to be
nontrivial.



Most importantly, it is difficult to deal with larger parameters because
the attack is heavily memory-bound: the O(

√
p′) memory requirement is

a serious hurdle. In experiments, we encountered memory problems as
early as ` ≈ 38 for a 1024-bit modulus, and even with much more careful
memory management and the use of mass storage rather than RAM, it
seems unlikely that parameters larger than ` ≈ 60 can be attacked unless
storage can be efficiently distributed as well.

6 Conclusion

We have described an attack against the RSA subgroup of hidden order
described in [6] that works in time Õ(

√
p′) while the best attack consid-

ered in [6] had complexity O(p′). We have implemented our attack and
assessed its practicality. As expected, our attack exhibits a time com-
plexity quasi-linear in

√
p′. In terms of CPU time alone, the parameters

suggested in [6] appear to be within reach for a resourceful attacker. How-
ever, due to heavy memory requirements and parallelization problems,
these parameters may remain unchallenged.

An interesting open question is to decrease the memory requirement:
an algorithm similar to Pollard rho or Pollard lambda with constant mem-
ory would be the most convenient type of attack on this problem if it
exists. If not, a method for distributing the computation and storage effi-
ciently would be the simplest way to make the attack practical for larger
parameters.

Acknowledgments. We are grateful to Luca De Feo, Marc Mezzarobba
and anonymous referees for useful comments. This work was partly sup-
ported by the French ANR-07-TCOM-013-04 PACE Project and by the
European Commission through the IST Program under Contract ICT-
2007-216646 ECRYPT II.

References

1. D.J. Bernstein, Fast multiplication and its applications, Algorithmic number the-
ory: lattices, number fields, curves and cryptography, MSRI Publications, vol. 44,
Cambridge University Press, 2008, pp. 325–384.

2. L.I. Bluestein, A linear filtering approach to the computation of the discrete Fourier
transform, IEEE Trans. Electroacoustics, vol. 18, 1970, pp. 451–455.

3. A. Bostan, Algorithmique efficace pour des opérations de base en calcul formel (in
English), Ph.D. thesis, École polytechnique, 2003.

4. A. Bostan and E. Schost, Polynomial evaluation and interpolation on special sets
of points, Journal of Complexity, vol. 21(4), Elsevier, 2005, pp. 420–446.



5. I. Damg̊ard, M. Geisler and M. Krøigaard, Efficient and secure comparison for
on-line auctions, Proceedings of ACISP 2007, LNCS, vol. 4586, Springer-Verlag,
2007, pp. 416–430.

6. J. Groth, Cryptography in subgroups of Z∗n, Proceedings of TCC 2005, LNCS, vol.
3378, Springer-Verlag, 2005, pp. 50–65.

7. G. Hanrot, M. Quercia and P. Zimmermann, The middle product algorithm, I., Ap-
plicable Algebra in Engineering, Communication and Computing, vol. 14, Springer-
Verlag, 2004, pp. 415–438.

8. W.B. Hart, D. Harvey et al., Fast library for number theory, www.flintlib.org.
9. T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J.W. Bos, P. Gaudry,

A. Kruppa, P.L. Montgomery, D.A. Osvik, J.J. te Riele, A. Timofeev and P. Zim-
mermann, Factorization of a 768-bit RSA modulus, Proceedings of CRYPTO 2010,
LNCS, vol. 6223, Springer-Verlag, 2010, pp. 333–350.

10. P. Paillier and D. Pointcheval, Efficient public-key cryptosystems provably secure
against active adversaries, Proceedings of ASIACRYPT 1999, LNCS, vol. 1716,
Springer-Verlag, 2004, pp. 165–179.

11. L.R. Rabiner, R.W. Schafer and C.M. Rader, The chirp z-transform algorithm and
its applications, Bell System Tech. J., vol. 48, 1969, pp. 1249–1292.

12. Sage Library, available at http://www.sagemath.org/

A Bostan’s algorithms

Algorithm 3 Polynomial interpolation: compute the polynomial F of
degree < n such that F (pi) = vi, where pi = qi, 0 ≤ i ≤ n− 1.

1: function InterpGeom(p0, . . . , pn−1; v0, . . . , vn−1)
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; w0 ← v0
3: for i = 1 to n− 1 do
4: qi ← qi−1 · pi
5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1− pi)
7: zi ← (−1)iui/qi
8: end for
9: H ←

(∑n−1
i=0 vi/six

i
)
·
(∑n−1

i=0 (−x)iqi/si
)

10: for i = 1 to n− 1 do
11: wi ← (−1)i Coeff(H, i)/ui
12: end for
13: G← mult(n− 1,

∑n−1
i=0 uix

i,
∑n−1
i=0 wix

i)
14: return

∑n−1
i=0 zi Coeff(G, i)xi

15: end function

B Source code of the attack

#include <stdio.h>



Algorithm 4 Polynomial evaluation: evaluate the polynomial F at all
points pi = qi, 0 ≤ i ≤ n− 1.
1: function EvalGeom(p0, . . . , pn−1;F )
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; g0 ← 1
3: for i = 1 to n− 1 do
4: qi ← qi−1 · pi
5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1− pi)
7: zi ← (−1)iui/qi
8: end for
9: G← mult(n− 1,

∑n−1
i=0 zix

i,
∑n−1
i=0 Coeff(F, i)/zix

i)
10: for i = 1 to n− 1 do
11: gi ← (−1)iui Coeff(G, i)
12: end for
13: W ←

(∑n−1
i=0 gix

i
)
·
(∑n−1

i=0 s
−1
i xi

)
14: return s0 Coeff(W, 0), . . . , sn−1 Coeff(W,n− 1)
15: end function

#include <time.h>

#include <gmp.h>

#include "F_mpz_poly.h"

#include "F_mpz.h"

void F_mpz_poly_set_coeff_F_mpz(F_mpz_poly_t, ulong, const F_mpz_t);

void attack(F_mpz_t q, F_mpz_t m, unsigned long n)

{

F_mpz_poly_t polW, polU, polZ, polS;

F_mpz_t pi, qi, si, ui, zi, wi, x;

unsigned long i;

printf("Attack started.\n");

F_mpz_poly_init2(polW, n);

F_mpz_poly_init2(polU, n);

F_mpz_poly_init2(polZ, n);

F_mpz_poly_init2(polS, n);

/* Step 1: interpolation */

F_mpz_init(pi); F_mpz_set_ui(pi, 1);

F_mpz_init(qi); F_mpz_set_ui(qi, 1);



F_mpz_init(si); F_mpz_set_ui(si, 1);

F_mpz_init(ui); F_mpz_set_ui(ui, 1);

F_mpz_init(zi); F_mpz_set_ui(zi, 1);

F_mpz_init(wi); F_mpz_set_ui(wi, 1);

F_mpz_init(x);

F_mpz_poly_set_coeff_F_mpz(polU, n-1, ui);

F_mpz_poly_set_coeff_F_mpz(polZ, 0, zi);

F_mpz_poly_set_coeff_F_mpz(polW, 0, wi);

for(i=1; i<n; i++) {

F_mpz_mulmod2(qi, qi, pi, m);

F_mpz_mulmod2(pi, pi, q, m);

/* s_i = s_{i-1} * (p_i - 1) */

F_mpz_sub_ui(x, pi, 1);

F_mpz_mulmod2(si, si, x, m);

/* u_i = u_{i-1} * p_i/(1 - p_i) */

F_mpz_invert(x, x, m);

F_mpz_mul2(ui, ui, pi);

F_mpz_mul2(ui, ui, x);

F_mpz_neg(ui, ui);

F_mpz_mod(ui, ui, m);

F_mpz_poly_set_coeff_F_mpz(polU, n-1-i, ui);

/* z_i = (-1)^i u_i / q_i */

F_mpz_invert(x, qi, m);

F_mpz_mulmod2(x, x, ui, m);

if(i & 1)

F_mpz_neg(zi, x);

else

F_mpz_set(zi, x);

F_mpz_poly_set_coeff_F_mpz(polZ, i, zi);

/* w_i = q_i / (s_i * u_i) */

F_mpz_mul2(x, x, si);

F_mpz_invert(wi, x, m);



F_mpz_poly_set_coeff_F_mpz(polW, i, wi);

}

/* W *= (-1)^{n-1} s_{n-1} */

if(!(n & 1))

F_mpz_neg(si, si);

F_mpz_poly_scalar_mul(polW, polW, si);

F_mpz_poly_scalar_smod(polW, polW, m);

F_mpz_poly_mul_trunc_left(polW, polU, polW, n-1);

F_mpz_poly_right_shift(polW, polW, n-1);

for(i=0; i<n; i++) {

F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, polZ->coeffs + i, m);

}

printf("Polynomial interpolation complete.\n");

/* Step 2: evaluation */

F_mpz_mul2(q, q, pi);

F_mpz_invert(q, q, m);

F_mpz_set_ui(pi, 1);

F_mpz_set_ui(qi, 1);

F_mpz_set_ui(si, 1);

F_mpz_set_ui(ui, 1);

F_mpz_set_ui(zi, 1);

F_mpz_set_ui(wi, 1);

F_mpz_poly_zero(polU);

F_mpz_poly_zero(polZ);

F_mpz_poly_set_coeff_F_mpz(polU, 0, ui);

F_mpz_poly_set_coeff_F_mpz(polZ, n-1, zi);

F_mpz_poly_set_coeff_F_mpz(polS, 0, si);

for(i=1; i<n; i++) {

F_mpz_mulmod2(qi, qi, pi, m);

F_mpz_mulmod2(pi, pi, q, m);



/* s_i = s_{i-1} / (p_i - 1) */

F_mpz_sub_ui(x, pi, 1);

F_mpz_invert(x, x, m);

F_mpz_mulmod2(si, si, x, m);

F_mpz_poly_set_coeff_F_mpz(polS, i, si);

/* u_i = u_{i-1} * p_i/(1 - p_i) */

F_mpz_mul2(ui, ui, pi);

F_mpz_mul2(ui, ui, x);

F_mpz_neg(ui, ui);

F_mpz_mod(ui, ui, m);

F_mpz_poly_set_coeff_F_mpz(polU, i, ui);

/* z_i = (-1)^i u_i / q_i */

F_mpz_invert(x, qi, m);

F_mpz_mulmod2(x, x, ui, m);

if(i & 1)

F_mpz_neg(zi, x);

else

F_mpz_set(zi, x);

F_mpz_poly_set_coeff_F_mpz(polZ, n-1-i, zi);

/* w_i /= z_i */

F_mpz_invert(x, zi, m);

F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, x, m);

}

F_mpz_poly_mul_trunc_left(polW, polZ, polW, n-1);

F_mpz_poly_right_shift(polW, polW, n-1);

F_mpz_poly_clear(polZ);

for(i=0; i<n; i++) {

if(i & 1)

F_mpz_neg(polU->coeffs + i, polU->coeffs + i);

F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, polU->coeffs + i, m);



}

F_mpz_poly_clear(polU);

F_mpz_poly_mul(polW, polW, polS);

F_mpz_poly_clear(polS);

printf("Evaluation complete. Searching for a factor.\n");

for(i=0; i<n; i++) {

F_mpz_gcd(x, polW->coeffs + i, m);

if(!F_mpz_is_one(x)) {

printf("Factor found!\n");

F_mpz_print(x);

printf("\n");

break;

}

}

F_mpz_poly_clear(polW);

F_mpz_clear(pi);

F_mpz_clear(qi);

F_mpz_clear(si);

F_mpz_clear(ui);

F_mpz_clear(zi);

F_mpz_clear(wi);

F_mpz_clear(x);

}

int main()

{

F_mpz_t m, g;

unsigned long d;

clock_t c0, c1;

printf("Enter parameters N, g, d.\n");

F_mpz_init(m);

F_mpz_init(g);

F_mpz_read(m);



F_mpz_read(g);

scanf("%lu", &d);

printf("\nParameters:\nN = ");

F_mpz_print(m);

printf("\ng = ");

F_mpz_print(g);

printf("\nd = %lu\n\n", d);

c0 = clock();

attack(g, m, 1L<<d);

c1 = clock();

printf("Elapsed time: %.3f seconds.\n",

((float)(c1-c0))/CLOCKS_PER_SEC);

}

C Simpler, less efficient tree-based version in SAGE

import sys,time

def GenSubgroup(n=30,l=100):

"Generates a prime p=2*pp*r+1 of size l bits, with pp of size n bits"

while True:

pp=random_prime(2^n,lbound=2^(n-1))

r=ZZ.random_element(2^(l-n))

if 2*pp*r+1 in Primes(): break

return 2*pp*r+1,pp,r

def ProdPoly(X,xi):

"Computes \prod (X-x_i)"

l=len(xi)

if l==1: return X-xi[0]

return ProdPoly(X,xi[:int(l/2)])*ProdPoly(X,xi[int(l/2):])

def ProdPolyTree(X,yi):

"Returns the multiplication tree for polymomial \prod (X-y_i)"

l=len(yi)

if l==1: return (X-yi[0],False,False)

t1=ProdPolyTree(X,yi[:int(l/2)])



t2=ProdPolyTree(X,yi[int(l/2):])

return (t1[0]*t2[0],t1,t2)

def EvaluationTree(f,tr):

"Evaluates polynomial f using the multiplication tree for \prod (X-y_i)"

(p,t1,t2)=tr

if t1==False: return [f.quo_rem(p)[1]]

f1=f.quo_rem(t1[0])[1]

f2=f.quo_rem(t2[0])[1]

return EvaluationTree(f1,t1)+EvaluationTree(f2,t2)

def Evaluation(X,f,yi):

return EvaluationTree(f,ProdPolyTree(X,yi))

def Attack(n=24,l=512):

print "n=",n

print "Key generation"

p,pp,r=GenSubgroup(n,l); q,qq,s=GenSubgroup(n,l)

NN=p*q

#print "NN=",NN,"\np=",p,"\nq=",q,"\npp=",pp,"\nqq=",qq

g=ZZ.random_element(NN)

g=power_mod(g,2*r*s,NN)

k=2^(n//2)

t0=time.time()

print "Generation of the x_i’s and y_i’s"

t=time.time()

xi=[1]

for i in range(1,k-1):

xi.append(mod(xi[-1]*g,NN))

yi=[power_mod(g,2^n,NN)]

h=power_mod(g,-k,NN)

for i in range(1,k):

yi.append(mod(yi[-1]*h,NN))

print " Done in %.2f s" % (time.time()-t)

R=PolynomialRing(IntegerModRing(NN),’X’)

X=R.gen()

print "Construction of polynomial f(x)"

t=time.time()



f=ProdPoly(X,xi)

print " Done in %.2f s" % (time.time()-t)

print "Evaluation of f(x)"

t=time.time()

fi=Evaluation(X,f,yi)

print " Done in %.2f s" % (time.time()-t)

for f in fi:

u=gcd(f,NN)

if u!=1 and u!=NN:

print "Total running time: %.2f s\n" % (time.time()-t0)

return u==p or u==q

def test(l=512):

for n in range(24,36,2):

Attack(n,l)


