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Statistical Analysis of Second Order Differential
Power Analysis?

Emmanuel Prouff1, Matthieu Rivain2 and Régis Bévan3

Abstract— Second Order Differential Power Analysis (2O-
DPA) is a powerful side channel attack that allows an attacker to
bypass the widely used masking countermeasure. To thwart 2O-
DPA, higher order masking may be employed but it implies an
non-negligible overhead. In this context, there is a need to know
how efficient a 2O-DPA can be, in order to evaluate the resistance
of an implementation that uses first order masking and, possibly,
some hardware countermeasures. Different methods of mounting
a practical 2O-DPA attack have been proposed in the literature.
However, it is not yet clear which of these methods is the most
efficient. In this paper, we give a formal description of the higher
order DPA that are mounted against software implementations.
We then introduce a framework in which the attack efficiencies
may be compared. The attacks we focus on involve the combining
of several leakage signals and the computation of correlation
coefficients to discriminate the wrong key hypotheses. In the
second part of this paper, we pay particular attention to 2O-DPA
that involves the product combining or the absolute difference
combining. We study them under the assumption that the device
leaks the Hamming weight of the processed data together with
an independent gaussian noise. After showing a way to improve
the product combining, we argue that in this model the product
combining is more efficient not only than absolute difference
combining, but also than all the other combining techniques
proposed in the literature.

Index Terms— Embedded systems security, cryptographic im-
plementations, side channel analysis, higher order differential
power analysis.

I. INTRODUCTION

S IDE Channel Analysis (SCA in short) exploits information
that leaks from physical implementations of cryptographic

algorithms. This leakage (e.g. the power consumption or the
electro-magnetic emanations) may indeed reveal information on
the secret data manipulated by the implementation. Among the
SCA attacks, two classes may be distinguished. The set of so-
called Profiling SCA corresponds to a powerful adversary who
has a copy of the attacked device under control and who uses it to
evaluate the distribution of the leakage according to the processed
values. Once such an evaluation is obtained, a maximum likeli-
hood approach is followed to recover the secret data manipulated
by the attacked device. The second set of attacks is the set of
so-called Differential Power Analysis (DPA) [1]. It corresponds
to a more realistic (and much weaker) adversary than the one
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considered in Profiling SCA, as the focused adversary is only able
to observe the device behavior and has no a priori knowledge of
the implementation details. This paper only deals with the set of
DPA as it includes a great majority of the attacks encountered
e.g. by the Smart Card Industry. For further information about
Profiling SCA, the different studies conducted for instance in [2]–
[4] may be read.

A DPA is a statistical attack that correlates a physical leakage
with a prediction on the values taken by one or several interme-
diate variable(s) of the implementation that depend on both the
plaintext and the secret key (such variables are called here sensi-
tive variables). To avoid information leakage, the manipulation of
sensitive variables must be protected by adding countermeasures
to the algorithm.

A very common countermeasure to protect block ciphers im-
plementations is to randomize their sensitive variables by masking
techniques [5], [6]. All of these are essentially based on the same
principle which can be stated as follows: every sensitive variable
Z is randomly split into d shares M1,..., Md in such a way that
the relation M1 ? ... ?Md = Z is satisfied for a group operation ?
(e.g. the x-or or the modular addition). Usually, the d− 1 shares
M1,..., Md−1 (called the masks) are randomly picked up and the
last one Md (called the masked variable) is processed such that
it satisfies M1 ? ... ? Md = Z. This technique is usually called a
(d−1)-th order masking. When it is applied to protect the software
implementation of an algorithm, the elements M1, ... , Md are
manipulated at different times t1, ..., td and an attacker needs to
get information on all of them if he wants to get information on
Z. The class of Higher Order DPA (HO-DPA) attacks have been
introduced to defeat this kind of countermeasures.

When a (d − 1)-th order masking is used, a d-th order DPA
can be performed by combining the leakage signals L(t1), ...,
L(td) resulting from the manipulation of the d shares M1, ...,
Md. This enables the construction of a signal that is correlated to
the targeted sensitive variable Z. Such an attack can theoretically
bypass any (d− 1)-th order masking. However, the noise effects
imply that the difficulty of carrying out an HO-DPA in practice
increases exponentially with its order [5], [7]. On the other hand,
the design of an higher order masking scheme that is efficient
and secure against d-th order DPA for d ≥ 2 is still an issue [8].
Therefore, first order masking (together with hardware counter-
measures) is widely used to protect block ciphers implementations
against DPA [6], [9], [10].

In this context, second order DPA have been widely investi-
gated [5], [7], [11]–[16]. Mainly, two combining functions have
been proposed to mount sound second order DPA attacks against
masked implementations. The first one, proposed by Chari et
al. in [5], simply consists in processing the product of the two
leakages L(t1) and L(t2) (in the sequel we call it the product
combining). The second one, proposed by Messerges in [11],
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consists in computing the absolute value of the difference between
L(t1) and L(t2) (we call it the absolute difference combining).
Recently, a formal analysis of these combining functions has been
initiated. In [13], Joye et al. analyzed the single-bit second order
DPA (that is the DPA targeting a single bit of the sensitive data)
based on the absolute difference combining and they proposed a
way to improve it. In [7], Schramm and Paar analyzed the multi-
bit second order DPA based on the product combining. Although
these separate analysis allow to better understand the drawbacks
and the assets of each of these combining functions, it does not
allow to clearly establish which approach is the most suitable.
In [16], Oswald et al. compared the two combining functions
by evaluating some correlation coefficients in a noise-free model.
Based on their results, they argued that the absolute difference
combining is more efficient than the product combining. However,
the limitation of the leakage model used in [16] does not allow
to draw definitive conclusions.

In this paper, we conduct an in depth analysis of an HO-
DPA attacks that involve a combining function and target soft-
ware implementations of cryptographic algorithms. We define a
theoretical framework in which the efficiency of such an HO-
DPA can be measured and optimized once the combining function
has been chosen. Then, we analyze both the product combining
and the absolute difference combining according to a realistic
leakage model (namely the Hamming Weight model with noise)
and we show how the efficiency of the product combining can
be improved by pre-processing the leakage measurements. Our
analysis states that this improved product combining leads to
the best efficiency. We also argue that this function is the best
published function to perform a second order DPA when devices
leak the Hamming weight of the processed data and when the
noise is non-negligible.

II. PRELIMINARIES

A. Notations and useful definitions

We use the calligraphic letters, like X , to denote finite sets
(e.g. Fn2 ). The corresponding large letter X is used to denote a
random variable over X , while the lowercase letter x - a particular
element from X . The probability of the event (X = x) is denoted
P [X = x] or pX(x). The uniform probability distribution over a
set X is denoted U(X ) and the gaussian probability distribution
with expectation µ and standard deviation σ is denoted N (µ, σ).
The expectation of X is denoted by E [X], its variance by Var [X]

and its standard deviation by σ [X]. The correlation coefficient
between X and Y is denoted by ρ [X,Y ]. It measures the linear
interdependence between X and Y and is defined by:

ρ [X,Y ] =
Cov [X,Y ]

σ [X]σ [Y ]
, (1)

where Cov [X,Y ], called covariance of X and Y , equals
E [(X − E [X])(Y − E [Y ])] or E [XY ]−E [X] E [Y ] equivalently.

The empirical version of the correlation coefficient is the
Pearson coefficient:

ρ̂ (< x1, · · · , xN >,< y1, · · · , yN >) =∑N
j=1(xj − x)(yj − y)√∑N

j=1(xj − x)2
√∑N

j=1(yj − y)2
, (2)

where < x1, · · · , xN > (resp. < y1, · · · , yN >) denotes a sample
of N values taken by X (resp. Y ) over X (resp. Y) and where x
(resp. y) denotes the mean 1

N

∑N
j=1 xj (resp. 1

N

∑N
j=1 yj).

We recall hereafter a well-known property of the (Pearson)
correlation coefficient.

Property 1: The correlation coefficient (resp. the Pearson cor-
relation coefficient) stays unchanged when an increasing affine
transformation is applied to one of its input random variables
(resp. input samples).

In this paper, we often use the notion of Hamming weight. For
every vector x ∈ Fn2 , we denote by H(x) the Hamming weight of
x. It equals

∑n
ı=1 x[i], where x[i] denotes the ith bit-coordinate

of x. The Hamming weight function has the following property
which will be often used in Sect. IV:

Property 2: For every z,m ∈ Fn2 , the Hamming weight of z⊕
m satisfies

H(z ⊕m) = H(z) + H(m)− 2H(z ∧m) , (3)

where ⊕ denotes the bitwise addition and ∧ denotes the bitwise
multiplication.

B. Context of DPA attacks

DPA attacks exploit the leakage that results from the manipu-
lation of some sensitive variables. In the following definition, we
formalize the notion of sensitive variable:

Definition 1 (Sensitive variable): A variable Z is sensitive if it
depends on both a public variable X (derived from the plaintext)
and a secret variable K (derived from the secret key).
In the rest of the paper, Z, X and K are modeled as uniformly
distributed random variables satisfying

Z = g(X,K) , (4)

where g corresponds to an intermediate calculus (e.g. an SBox
function or a simple logic operation such as the bitwise addition)
during the processing of the algorithm1. Moreover, we shall
only consider variables K and Z defined over small sets (e.g.
isomorphic to Fn2 with n ≤ 8). Indeed, (HO)-DPA requires to
carry out statistical tests for almost all the possible values of K.
Hence, the complexity (e.g. in terms of leakage measurements) of
the attack increases exponentially with the dimension of K and
only sensitive data of small length n can be targeted.

Since g and X are public, information leakage on Z implies
information leakage on K. As a consequence, the manipulation
of Z has to be protected against DPA and the most common
algorithmic protection consists in using masking techniques [5],
[6]. As recalled in Sect. I, when (d − 1)-th order masking is
involved, every sensitive variable Z appearing in the algorithm is
represented by d shares M1, ..., Md such that:

M1 ? · · · ? Md = Z , (5)

where ? denotes a group law. The shares M1, ..., Md−1 are
mutually independent random variables uniformly distributed over
Z and the share Md is the random variable satisfying (5).

To ensure the security, the Mi’s are manipulated at different
times ti’s. Thus, the leakage signal L(ti) generated by the
algorithm execution, at each time ti, can be modeled as a noisy

1The fact that Z is uniformly distributed holds if and only if g is balanced
which is very usual for a block cipher intermediate calculus.
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function of Mi. More generally, we will denote by L(t) the
leakage generated at any time t.

As every tuple of d−1 shares is independent of Z, an attacker
has to consider the d leakages L(ti)’s simultaneously in order
to recover information on Z. This is the core principle of the
HO-DPA attacks we formally describe in the next section.

III. HIGHER ORDER DIFFERENTIAL POWER ANALYSIS

A. Adversary Model

In this paper, we assume that the attacker can query the targeted
cryptographic primitive with an arbitrary number of plaintexts and
obtain the corresponding physical observations. It is also assumed
that the attacker cannot profile the leakage distribution according
to the values of the manipulated data (Template and Profiling
Attacks are thus impossible). In fact, we shall assume in the
following that a correlation distinguisher is used to isolate the
expected sensitive data. The attacker who is modeled in such
a way is weaker than the one considered in Template Attacks.
However, he corresponds quite well to the kind of adversary
encountered in a large variety of applications such as the banking
and GSM ones. This adversary model which is very classical in
SCA, has been considered in many other studies (e.g. [11], [13],
[16], [17]).

Additionally, we assume that the attacker is able to precisely
determine the manipulation time of every intermediate variable
(e.g. masks, masked variables, etc.) that appears in the algorithm
whose implementation is under attack. This assumption simplifies
the study of the attacks. It may however be noticed that the
attacker is usually weaker than the one we consider. The ma-
nipulation times of the focused intermediate variables are indeed
a priori unknown by the attacker who usually needs to consider
numerous possible times within a given interval (see for instance
[12], [16]).

B. Attack Description

HO-DPA aims at recovering information on Z = g(X,K) (and
thus on K) by simultaneously considering the leakage signals at
the d times t1, ..., td that correspond to the manipulations of the
d shares.

The attack starts by combining the d signals L(t1), ..., L(td)

with a combining function C and by defining a prediction function
f according to some assumptions on the device leakage model.
Then, for every guess k on the value of the secret K, the attacker
computes the so-called prediction f ◦ g(X, k) and checks its
validity by estimating the following correlation coefficient:

ρk = ρ [C(L(t1), · · · , L(td)), f ◦ g(X, k)] . (6)

Remark 2: Due to (4), the coefficient ρK (that corresponds to
the correct guess) can be rewritten:

ρK = ρ [C(L(t1), · · · , L(td)), f(Z)] . (7)
The attack rests on the following fact: if the functions C and f are
well-chosen, then f ◦ g(X,K) (i.e. f(Z)) is highly correlated to
C(L(t1), · · · , L(td)) and thus, the coefficient ρK corresponding
to the correct guess must be greater than every coefficient ρk such
that k 6= K.

To estimate the different correlation coefficients ρk ’s,
the attacker processes N leakage measurements L1(t), ...,

LN (t) (where the Lj(t)’s can be modeled as N mutu-
ally independent random variables sharing the same distri-
bution as L(t)). For every k, the estimation of ρk is ob-
tained by computing the Pearson coefficient ρ̂k (N) between
the samples < f ◦ g(X1, k), · · · , f ◦ g(XN , k) > and <

C(L1(t1), · · · , L1(td)), · · · , C(LN (t1), · · · , LN (td)) >, where
Xj denotes the public variable corresponding to the j-th mea-
surement Lj(t). As ρ̂k (N) tends towards ρk when N increases,
for N large enough the secret K must be the one that maximizes
ρ̂k (N). Hence, the attacker selects the guess k that maximizes
ρ̂k (N).

An HO-DPA such as described above successfully makes it
possible to recover the secret K iff ρ̂K (N) > ρ̂k (N) holds for
every k 6= K. When the pair (C, f) is s.t. ρK = maxk ρk , the
quality of the estimations ρ̂k (N)’s increases with the number of
measurements N and the success of the attack essentially depends
on N . It can then be deduced a natural definition for the efficiency
of an HO-DPA involving a pair of functions (C, f).

Definition 3 (Efficiency of HO-DPA): The efficiency of an HO-
DPA given a success rate β is the smallest value N such that:

P
[
ρ̂K (N) > max

k 6=K
ρ̂k (N)

]
≥ β . (8)

The definition above allows us to evaluate the efficiency of an HO-
DPA in a formal way. However, since the probability in (8) relies
on the structure of the function g, it cannot be straightforwardly
used to decide on the efficiency of an HO-DPA in the general case
(i.e. whatever the targeted variable Z = g(X,K)). To render such
a decision possible, one usually assumes a very low correlation
between correct and incorrect guesses2. Under this assumption,
which implies that the correlation coefficients ρk are almost null
for every k 6= K, the efficiency of an HO-DPA mainly relies on
the correlation coefficient ρK . This fact has been argued in [18]–
[20] where it is shown that the number of leakage measurements
N for a successful attack is around α/ρ2

K where α is a value
that depends on the required success rate β and on the number
of key guesses |K|. In this paper, we will therefore compare
attack efficiencies by means of the correlation values ρK ’s. For
a given HO-DPA attack we will refer to ρK as the correlation
of the attack: the higher the correlation of an HO-DPA, the more
efficient the HO-DPA.

Remark 4: In Sect. IV-C, some experimental results are pro-
vided which confirm that the correlation is effectively a good
efficiency indicator for HO-DPA.

At this point, a natural issue arises that is the search for pairs
(C, f) which maximize the correlation ρK . As a first step, we
show in the next section how to deduce the prediction function
f maximizing ρK from a given combining function C.

C. Optimal Prediction Function

Let us begin our discussion with the following important result
which will be intensively used in the rest of the paper. In the
following proposition as well as in the rest of the paper, we shall
consider the conditional expectation E [C|Z] as a function E [C|·]
applied to Z.

Proposition 5: Let C and Z be two random variables. Then,
for every function f defined over Z , we have

ρ [f(Z), C] = ρ [f(Z),E [C|Z]]× ρ [E [C|Z] , C] . (9)

2This assumption which depends on the structure of g is fairly realistic if
g is highly nonlinear (e.g. the AES SBox).
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Before proving Proposition 5, let us introduce the following
useful lemma.

Lemma 6: Let C and Z be two random variables. Then, for
every function f defined over Z , we have

E [f(Z)C] = E [f(Z)E [C|Z]] . (10)

Proof. We assume that C and Z are discrete (the continuous case
holds straightforwardly from the discrete one). We have:

E [f(Z)C] =
∑
z,c

P [Z = z, C = c] f(z)c . (11)

Since P [Z = z, C = c] equals P [Z = z] P [C = c|Z = z], we get:

E [f(Z)C] =
∑
z

P [Z = z] f(z)
∑
c

P [C = c|Z = z] c

=
∑
z

P [Z = z] f(z)E [C|Z = z] ,

which leads to (10). �

Remark 7: Lemma 6 implies E [C] = E [E [C|Z]] (for f : z 7→
1), which is known as the law of total expectation, and it implies
E [E [C|Z] C] = E

[
E [C|Z]2

]
(for f : z 7→ E [C|Z = z]).

Based on Lemma 6, we give hereafter the proof of Proposition
5.

Proof. (Proposition 5) According to Remark 7, the covariance
between f(Z) and C satisfies:

Cov [f(Z), C] = E [f(Z)E [C|Z]]− E [f(Z)] E [E [C|Z]]

= Cov [f(Z),E [C|Z]] .

Hence, the correlation ρ [f(Z), C] satisfies

ρ [f(Z), C] = ρ [f(Z),E [C|Z]]× σ [E [C|Z]]

σ [C] . (12)

On the other hand, we have

ρ [E [C|Z] , C] =
Cov [E [C|Z] , C]
σ [E [C|Z]]σ [C] . (13)

Due to Lemma 6, the covariance Cov [E [C|Z] , C] equals
Cov [E [C|Z] ,E [C|Z]], namely it equals the variance Var [E [C|Z]].
Hence, (12) and (13) together imply (9). �

As a direct consequence of Proposition 5, we have the next
corollary:

Corollary 8: Let d be an integer and let C denote a combined
leakage C(L(t1), · · · , L(td)). The prediction function f that max-
imizes the correlation ρ [f(Z), C] is defined by

fopt(z) = E [C|Z = z] . (14)

Let ρopt the correlation ρ [fopt(Z), C]. If fopt is not constant, then
ρopt satisfies:

ρopt =
σ [E [C|Z]]

σ [C] . (15)

Proof. Let f be a function defined over Z and let ρK ′ denote the
correlation ρ [f(Z), C]. Then, due to Proposition 5, we have ρK =

ρ [f(Z),E [C|Z]] × ρopt. As ρ [f(Z),E [C|Z]] is always smaller
than or equal to 1 and since ρopt is greater than or equal to 0,
we deduce ρK ≤ ρopt. This implies that the function f = fopt :

z 7→ E [C|Z = z] maximizes ρK . Finally, (15) holds by definition
of fopt and by Lemma 6. �

Corollary 8 exhibits the optimal prediction function fopt and
the optimal correlation of an HO-DPA according to a given com-

bining function and the leakage distribution. Moreover, Proposi-
tion 5 gives us a mean to quantify the effectiveness loss occurring
when a sub-optimal function f is involved. Indeed, in this case
(9) implies that making a suboptimal prediction f decreases the
optimal correlation ρopt by a factor ρ [f, fopt].

In practice, the kind of adversary considered in this paper is
not able to compute the optimal prediction function exhibited in
Corollary 8. Indeed, such a computation requires to determine the
exact relationship between the leakages L(ti)’s and the shares
Mi’s. In the next section, we will estimate this relationship
by modeling the leakage and then we will study the optimal
prediction function and the optimal correlation for two widely
used second order combining functions. We will show that some
prediction functions proposed in the literature are in fact sub-
optimal and we will compute how much they decrease the
correlation ρopt (and thus the attack efficiency) from the optimal
one defined in (15).

IV. ANALYSIS OF THE EXISTING SECOND ORDER DPA

The different 2O-DPA that are studied in this section are
assumed to target an implementation that processes a masked
sensitive variable Z⊕M at a time t1 and the corresponding mask
M at a time t2. Variables Z and M are assumed to be mutually
independent and uniformly distributed over Fn2 .

As argued in Sect. III, studying a 2O-DPA essentially amounts
to studying the combining function it involves. Hereafter, we
pay particular attention to the product combining [5] and to the
absolute difference combining [11] which are the most widely
used functions in the literature. For both combining functions, we
exhibit the optimal prediction fopt and we calculate the optimal
correlation ρopt by applying (15). We also compare fopt with the
Hamming weight prediction function (which is often involved in
the published HO-DPA) and we study their impact on the attack
efficiency. Eventually, we analyze the obtained results and we
address other combining functions that have been proposed in
the literature.

Before presenting our analysis (and to allow us to exhibit
explicit formulae), we need to make the following assumption
which we claim is very usual and realistic.

Assumption 1 (Leakage Model): The leakages L(t1) and
L(t2) satisfy:

L(t1) = δ1 + H(Z ⊕M) +B1 , (16)

L(t2) = δ2 + H(M) +B2 , (17)

where δ1 and δ2 denote the constant parts of the leakages and H(·)
is the Hamming weight function. B1 and B2 are two gaussian
random variables centered in zero with a standard deviation σ

and Z, M, B1 and B2 are mutually independent3.
The model defined by Assumption 1 allows us to have a quite
good formal representation of the device leakage. It will be
referred as the Hamming Weight Model in the rest of the paper.

Remark 9: In some cases, it may be sound to assume that the
device does not leak the Hamming weight of the processed data
but the Hamming distance between this data and an initial state
(see for instance [17]). Extending our analysis to this so-called
Hamming distance model is straightforward. Let L(t1) equal δ1 +

3For the sake of simplicity we assume that both noises B1 and B2 have the
same standard deviation. The analysis can be straightforwardly generalized for
σ [B1] 6= σ [B2].
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H(IS1 ⊕ Z ⊕M) +B1 and L(t2) equal δ2 + H(IS2 ⊕M) +B2

where IS1 and IS2 are two initial states independent of Z and
M. After denoting by Z′ the summation IS1⊕IS2⊕Z and by M ′

the summation M⊕ IS2, it can be checked that L(t1) and L(t2)

respectively equal δ1+H(Z′⊕M ′)+B1 and δ2+H(M ′)+B2. As
Z′ and M ′ are uniformly distributed and mutually independent,
this model is equivalent to the one defined in Assumption 1.

When the noises B1 and B2 are both null, we shall say that
the model is idealized. The analysis of 2O-DPA in this model is
of interest. Firstly because some devices leak quite perfect non-
noisy information. Secondly because it is generic (it does not
take the component noise into account) and theoretical analyses
conducted in this model are usually simple. In such an idealized
model, exhibiting pertinent properties and/or characteristics for
new combining and prediction functions (C, f) is often much
more simple than in a model with noise. However, this primary
study is not sufficient alone and, once defined in the idealized
model, a pair of functions (C, f) must also be analyzed in the
noisy model. Indeed, the combining of leakage points always
results in an amplification of the noise (e.g. the noises B1 and
B2 are added or multiplied) and it is therefore important to study
the relationship between the efficiency of a combining function
and the noise variations. For this reason, in the following we
conduct our analysis in the context of both the idealized and the
non-idealized model.

A. Product Combining Second Order DPA

In this section we investigate the product combining function:

Cprod (L(t1), L(t2)) = L(t1)× L(t2) . (18)

This function has already been studied by Schramm and Paar in
[7]. Our main contribution compared to their work is that we
consider a leakage model where the offsets δi are not null. This
makes our analysis more practical since the leakage often has
a non-zero offset due to the contribution of the device activity
aside from the variable manipulation. During our study we show
in particular that the efficiency of the product combining is related
to the values of these offsets and we show how to significantly
improve it by applying a pre-processing to the leakage signals
before combining them.

Let us start our analysis by computing the optimal prediction
function corresponding to Cprod. According to Corollary 8, it is
the function fopt = z 7→ E [L(t1)× L(t2)|Z = z]. In the next
proposition we give an explicit formula for it.

Proposition 10: Let L(t1) and L(t2) satisfy (16) and (17).
Then, for every z ∈ Fn2 , we have

E [L(t1)× L(t2)|Z = z] = −1

2
H(z) +

n2 + n

4

+
n

2
(δ1 + δ2) + δ1δ2 . (19)

Proof: Since B1 and B2 are independent from M and satisfy
E [B1] = E [B2] = 0, the expectation E [L(t1)× L(t2)|Z = z] is
equal to E [H(z ⊕M)H(M)] + δ1E [H(M)] + δ2E [H(z ⊕M)] +

δ1δ2. Moreover, since M is uniformly distributed over Fn2 , we
have E [H(z ⊕M)] = E [H(M)] = n

2 and, from Lemma 21 (see
Appendix I), we have E [H(z ⊕M)H(M)] = − 1

2 H(z) + n2+n
4 .

Hence we get (19).
Proposition 10 together with Corollary 8 implies that the function
z 7→ H(z), or any decreasing affine function of it, may be used

as an optimal prediction function for a 2O-DPA involving the
product combining.

Corollary 11: In the Hamming weight model, the optimal
prediction function fopt corresponding to Cprod is of the form:

fopt : z 7→ A ◦H(z) , (20)

where A is an affine decreasing function defined over H(Z).
Proof: This a straightforward consequence of Corollary 8

and of Proposition 10.
It must be noticed that the Hamming weight function has

already been used as prediction function in previous works [7],
[16]. Corollary 11 shows that this choice maximizes the amplitude
of the correlation coefficient (in the Hamming weight model) and
that it results in a negative correlation (as observed in [16] for
instance).

To compute the optimal correlation corresponding to one of the
function satisfying (20), we exhibit in the following a formula for
the variance of L(t1)× L(t2).

Proposition 12: Let L(t1) and L(t2) satisfy (16) and (17).
Then, the variance of L(t1)× L(t2) satisfies

Var [L(t1)× L(t2)] =
2n3 + n2

16
+
n

4

(
nδ1 + δ2

1 + nδ2 + δ2
2

)
+
n2 + n

2
σ2 +

(
nδ1 + δ2

1 + nδ2 + δ2
2

)
σ2 + σ4 . (21)

Proof: As Z and M are mutually independent and uniformly
distributed, one can check that M and Z ⊕ M are mutually
independent. This implies that L(t1) and L(t2) are also mutually
independent and we get:

Var [L(t1)× L(t2)] = E
[
L(t1)2

]
E
[
L(t2)2

]
− E [L(t1)]2 E [L(t2)]2 . (22)

Since Z and M are uniformly distributed over Fn2 and mutually
independent, Lemma 20 (see Appendix I) implies E

[
H(M)2

]
=

E
[
H(Z ⊕M)2

]
= n2+n

4 . Then, since we have Bi ∼ N (0, σ),

one deduces that E [L(ti)] and E
[
L(ti)

2
]

equal respectively n
2 +

δi and n2+n
4 + nδi + δ2

i + σ2 for i = 1, 2. Finally, simplifying
(22) leads to (21).
It can be noticed in (21) that Var [L(t1)× L(t2)] is an increasing
function of nδ1 + δ2

1 + nδ2 + δ2
2 . Hence the offsets values that

minimize the variance are δ1 = δ2 = −n/2. Actually, this is not
surprising: with such offsets, the leakages are centered in zero (i.e.
E [L(t1)] = E [L(t2)] = 0) which alleviates the noise amplifica-
tion caused by the product combining. As a direct consequence,
minimizing the variance of L(t1)× L(t2) (and thus maximizing
the correlation) can be done by centering the leakage signals
L(t1) and L(t2) in zero (namely by substituting L(t)− E [L(t)]

for L(t)). This can be simply achieved by averaging the leakage
for a large number of measurements then subtracting the average
to each measurements. In the sequel, this pre-processing is called
normalization step.

In the Hamming weight model, if the data Vt manipulated at
time t is uniformly distributed over Fn2 , then the leakage after the
pre-processing step equals L(t)− E [L(t)] and satisfies:

L(t)− E [L(t)] = −n
2

+ H(Vt) +Bt .

After assuming that the pre-processing step is part of the
combining computation, we get the improved product combining
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function:

Cprod? (L(t1), L(t2)) = (L(t1)− E [L(t1)])×(L(t2)− E [L(t2)]) .

Then, we have the following proposition.
Proposition 13: For every z ∈ Fn2 , we have

E
[
Cprod? (L(t1), L(t2)) |Z = z

]
= −1

2
H(z) +

n

4
,

and,

Var
[
Cprod? (L(t1), L(t2))

]
=
n2

16
+
n

2
σ2 + σ4 .

Proof: Proposition 13 straightforwardly results from Propo-
sition 10 and Proposition 12 by setting δ1 = δ2 = −n/2.

As a consequence of the proposition above, in the Hamming
weight model, an optimal prediction function fopt corresponding
to Cprod? is of the form:

fopt : z 7→ A ◦H(z) ,

where A is an affine decreasing function defined over H(Z).
Due to Proposition 13 and Corollary 8, we can propose an

explicit formula for the optimal correlation ρprod
?

opt corresponding
to the improved product combining Cprod? and fopt. In the
Hamming weight, the correlation satisfies

ρprod
?

opt =

√
n√

n2 + 8nσ2 + 16σ4
. (23)

In particular, in the idealized model (σ = 0) it satisfies ρprod
?

opt =

1/
√
n and in the very noisy model (σ � n), it satisfies ρprod

?

opt ≈√
n/4σ2. As an illustration to (23), the following table gives some

values of the correlation for n ∈ {0, · · · , 8} and σ ∈ {0, 1, 5, 10}.

TABLE I
(OPTIMAL) CORRELATION FOR THE IMPROVED PRODUCT COMBINING

σ\n 1 2 3 4 5 6 7 8
0 1.00 0.707 0.577 0.500 0.447 0.408 0.378 0.354
1 0.200 0.236 0.247 0.250 0.248 0.245 0.241 0.236
5 0.010 0.014 0.017 0.019 0.021 0.023 0.025 0.026

10 0.002 0.004 0.004 0.005 0.006 0.006 0.007 0.007

To illustrate the gain of efficiency resulting from the normal-
ization step we propose in this paper, let us now consider the
correlation ρprod−0

opt for the classical product combining function
(18) in the Hamming weight model without offsets (such as
computed in [7]). It satisfies:

ρprod−0
opt =

√
n√

2n3 + n2 + 8(n2 + n)σ2 + 16σ4
.

It can be checked that ρprod−0
opt is strictly lower than the cor-

relation ρprod
?

opt we obtained for the product combining with
pre-processing Cprod? . Figures 1 and 2 show how the value
of the offsets (assuming δ1 = δ2 = δ) affects the correlation
ρprodopt for n ∈ {1, 4, 8} in the idealized model and in a noisy
model (σ = 2). The maximum of this correlation is always
reached for δ = −n/2. Moreover, we observe that the correlation
quickly decreases when the offset deviates from −n/2 which
demonstrates the effectiveness of our improvement.

−10 −5 0 5 10
0
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1

Fig. 1. Correlation ρprodopt for n = 8 (on the left), n = 4 (in the
middle) and n = 1 (on the right), in the idealized model, according to
the offset δ.
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0

0.02

0.04
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0.12

Fig. 2. Correlation ρprodopt for n = 8 (on the left), n = 4 (in the
middle) and n = 1 (on the right), in a noisy model (σ = 2), according
to the offset δ.

B. Absolute Difference Combining Second Order DPA

In this section, we investigate the absolute difference combining
function i.e. we take interest in the variable

Cdiff (L(t1), L(t2)) = |L(t1)− L(t2)| .

The absolute difference combining has already been studied by
Joye et al. in [13]. In their paper, the authors consider the
idealized model (i.e. without noise) and analyze a single bit 2O-
DPA (i.e. with a binary prediction function : f(Z) ∈ {0, 1}).
In the present paper, we extend this analysis to the multi-bit
case (i.e. where f is not a binary function but the optimal
prediction function) not only in the idealized but also in the
noisy model. In the Hamming weight model, Cdiff (L(t1), L(t2))

equals |δ1 − δ2 + H(Z ⊕ M) − H(M) + B1 − B2|. For this
combining to work correctly, it is important that δ1 be equal to δ2.
Indeed, if there is a great difference between these values, then
the effect of the absolute value is reduced (or even canceled) by
the constant term δ1 − δ2. For instance (neglecting the noise),
if we have |δ1 − δ2| > n then δ1 − δ2 + H(Z ⊕ M) − H(M)

is either strictly positive or strictly negative and, as noticed by
Messerges in [11], difference without absolute value is not a
sound combining function (i.e. the difference between the two
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leakages is not correlated to the sensitive variable). Consequently,
as for the product combining, we point out that the leakages
must be normalized in order to have identical offsets in both
leakage signals. Thus, as in Sect. IV-A, we will consider in this
section that the leakages are normalized before being combined
in order to ensure that they have similar offsets (i.e. we define
the combining function Cdiff? such that Cdiff? (L(t1), L(t2)) =

|L(t1)− E [L(t1)]− L(t2) + E [L(t2)]|). In that case, the com-
bined leakage after pre-processing satisfies

Cdiff? (L(t1), L(t2)) = |H(Z ⊕M)−H(M) +B| , (24)

where B denotes B1 −B2 and satisfies B ∼ N (0,
√

2σ).
For the absolute difference combining, it is not possible to

exhibit a simple formula for the expectation that would be
pertinent in the general case. Hence we structure our study of
the combining function in two steps: the first one is performed
in the idealized model and the second one in the noisy model.

1) Study in the Idealized Model.: If B is null, then (24)
becomes:

Cdiff? (L(t1), L(t2)) = |H(Z ⊕M)−H(M)| .

In the following proposition, we exhibit an explicit formula for
the expectation of |H(Z ⊕M)−H(M)|.

Proposition 14: Let z be an element of Fn2 . Then we have

E [|H(M)−H(z ⊕M)|] = 21−H(z)H(z)

(
H(z)− 1

bH(z)
2 c

)
. (25)

Proof: The proof of Proposition 14 is given in Appendix
II-B.
As a consequence of Proposition 14, the optimal prediction for the
absolute difference combining in the idealized Hamming weight
model is not the Hamming weight of Z but a non-affine function
of it.

Corollary 15: In the Hamming weight model, the optimal
prediction function fopt corresponding to Cdiff∗ is of the form:

fopt : z 7→ [A ◦ f ](z) ,

where f is the function z 7→ 21−H(z)H(z)
(H(z)−1

b H(z)
2 c
)

and where
A is either the identity function or an affine increasing function
defined over f(Z).

Proof: This a straightforward consequence of Corollary 8
and of Proposition 14.

Our main interest in Corollary 15 is that it tells us that
even when the leakage satisfies the Hamming weight model, the
Hamming weight of the targeted variable is not necessarily the
optimal prediction for an HO-DPA. It actually depends on the
combining function.

The variance of |H(Z ⊕M)−H(M)| has already been com-
puted by Joye et al. in [13]. The authors prove that it satisfies:

Var [|H(Z ⊕M)−H(M)|] =
n

2
−

(
2−2nn

(
2n

n

))2

. (26)

By Corollary 8 and in view of formulae (25) and (26), we deduce
the optimal correlation related to Cdiff? :

ρdiff
?

opt =
2n
∑n
i=0 2−2ii2

(n
i

)(i−1
b i

2 c
)2
−
(∑n

i=0 2−ii
(n
i

)(i−1
b i

2 c
))2

22n−2

(
n
2 −

(
2−2nn

(2n
n

))2
) .

We have computed in Table II the optimal correlation ρdiff
?

opt

for some values of n. For comparison, we have also computed
the correlation ρHW that corresponds to the Hamming weight
prediction function (i.e. f : z 7→ H(z)). As expected, choosing
our new prediction function makes it possible to slightly increase
the correlation value (especially for low values of n). Furthermore,
it can be checked that, as stated in Proposition 5, the efficiency
gain is ρ(f, fopt).

TABLE II
CORRELATIONS FOR THE ABSOLUTE DIFFERENCE COMBINING IN THE

IDEALIZED MODEL.

n 1 2 3 4 5 6 7 8
H 1.00 0.53 0.41 0.35 0.31 0.28 0.26 0.24
fopt 1.00 0.65 0.50 0.41 0.35 0.31 0.28 0.26

When the leakage is noisy, the previous analysis is no longer
valid and cannot be extended to take the noise into account.
Therefore, in the next section, we conduct a complementary
analysis which addresses the noisy model.

2) Study in the Noisy Model.: In the analysis that follows, we
shall use the notation erf to denote the error function defined
for every x ∈ R by erf(x) = 2√

π

∫ x
0 exp(−t2) dt. We recall

that the probability distribution function Φ of the standard gaus-
sian distribution N (0, 1) and the error function satisfy Φ(x) =
1
2

(
1 + erf

(
x/
√

2
))

. The following proposition shall be useful to
study Cdiff? when the leakage is noisy.

Proposition 16: Let s be a real number and let B be a Gaussian
random variable centered in zero with a standard deviation σ0.
The expectation of the variable |s+B| satisfies

E [|s+B|] = s erf
(

s√
2σ0

)
+

√
2σ0√
π

exp

(
− s2

2σ2
0

)
. (27)

Proof: The proof of Proposition 16 is given in Appendix I.

As a straightforward consequence of Proposition 16, we have
the following corollary.

Corollary 17: Let L(t1) and L(t2) satisfy (16) and (17). For
every z ∈ Fn2 , we have:

E
[
Cdiff? (L(t1), L(t2)) | Z = z

]
=

E
[
(H(z ⊕M)−H(M)) erf

(
H(z ⊕M)−H(M)

2σ

)]
+

2σ√
π

E

[
exp

(
− (H(z ⊕M)−H(M))2

4σ2

)]
, (28)

and

Var
[
Cdiff? (L(t1), L(t2))

]
= 2σ2 +

n

2

− E
[
Cdiff? (L(t1), L(t2))

]2
. (29)

Proof: After denoting S = H(z ⊕ M) − H(M), we
get E [|L(t1)− L(t2)| | Z = z] = E [|S +B|] and Proposition
16 directly leads to (28). Since we have E [B] = 0, then
E
[
|S +B|2

]
equals E

[
S2
]

+ E
[
B2
]
. Due to the linearity of

the expectation, E
[
S2
]

equals E
[
H(M)2

]
+ E

[
H(z ⊕M)2

]
−

2E [H(M)H(z ⊕M)]. Then, from Lemma 20 and Lemma 21 (see
Appendix I), we deduce E

[
S2
]

= H(z). On the other hand we

have E
[
B2
]

= 2σ2, hence we deduce E
[
|S +B|2

]
= 2σ2+H(z)

which finally gives (29) by definition of the variance.
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Corollary 17 does not allow to exhibit explicit formulae for
fopt and ρopt in the noisy model. However, (28) and (29) may
be involved to efficiently compute the optimal prediction function
and the optimal correlation corresponding to Cdiff? in the noisy
model for every pair (n, σ). As an illustration we give in Table
III the exact optimal correlation ρdiff

?

opt for n ∈ {1, · · · , 8} and
σ ∈ {0, 1, 5, 10}.

TABLE III
OPTIMAL CORRELATION FOR THE ABSOLUTE DIFFERENCE COMBINING.

σ\n 1 2 3 4 5 6 7 8
0 1.00 0.655 0.495 0.405 0.348 0.308 0.280 0.258
1 0.143 0.166 0.173 0.173 0.171 0.168 0.164 0.161
5 0.007 0.009 0.011 0.013 0.014 0.015 0.016 0.017
10 0.002 0.002 0.003 0.003 0.004 0.004 0.004 0.005

In order to determine the efficiency loss resulting from the use
of the Hamming weight as prediction function instead of the one
defined in (28), we computed the correlation ρ(H(Z), fopt(Z))

(as suggested in Proposition 5) for different values of n and σ.
Table IV lists some of our results.

TABLE IV
CORRELATION BETWEEN THE OPTIMAL PREDICTION FUNCTION AND THE

HAMMING WEIGHT.

σ\n 1 2 3 4 5 6 7 8
0 1 0.816 0.832 0.861 0.886 0.905 0.919 0.930
1 1 0.996 0.996 0.996 0.996 0.996 0.996 0.996
5 1 0.998 0.997 0.999 0.999 0.999 0.999 0.999
10 1 1 1 1 0.999 0.999 0.999 0.999

Table IV suggests that whatever the dimension n, the corre-
lation ρ(H(Z), fopt(Z)) tends toward 1 when σ increases. This
suggests that in the noisy model, the Hamming weight of Z (or
an affine function of it) is a good prediction for the absolute
difference combined leakage and that it becomes optimal as the
noise increases. The following corollary brings an explanation to
this phenomenon.

Corollary 18: Let L(t1) and L(t2) satisfy (16) and (17). Then
for every integer n and for every z ∈ Fn2 , we have:

E
[
Cdiff? (L(t1), L(t2)) | Z = z

]
=

2σ√
π

+
H(z)

2
√
πσ

+ ε

(
1

σ3

)
,

and

Var
[
Cdiff? (L(t1), L(t2))

]
=

2π − 4

π
σ2 +

π − 2

2π
n+ ε

(
1

σ2

)
.

Proof: Let us focus on (28) asymptotically. For every a, we
have erf(a) = 2√

π
a+ ε

(
a3
)

and exp(a) = 1 + a+ ε
(
a2
)

. Since
we also have H(z ⊕M)−H(M) = ε(1) (as n is a constant), we
can rewrite (28) in the following form:

E
[
Cdiff? (L(t1), L(t2)) | Z = z

]
=

1√
πσ

E
[
(H(z ⊕M)−H(M))2

]
+ ε

(
1

σ3

)
+

2σ√
π

(
1− 1

4σ2
E
[
(H(z ⊕M)−H(M))2

]
+ ε

(
1

σ4

))
.

(30)

Then, E
[
(H(z ⊕M)−H(M))2

]
equals E

[
H(M)2

]
+

E
[
H(z ⊕M)2

]
− 2E [H(M)H(z ⊕M)]. From Lemma 20

and Lemma 21 (see Appendix I), one verifies that this expression
equals H(z) which together with (30) and (29) implies Corollary
18.
Corollary 18 confirms the empirical study presented in Table IV:
in the noisy model, the Hamming weight is a good prediction for
the absolute difference combined leakage. Indeed, the function
z 7→ E [ |L(t1)− L(t2)| | Z = z] (which corresponds to the
optimal prediction function) tends toward an affine function of
H(z) when the noise increases. Moreover, we can deduce from
Corollary 8 and Corollary 18 an approximation of the correlation
ρdiff

?

opt when n is negligible compared to σ:

ρdiff
?

opt ≈
√
n

4
√

2π − 4σ2
.

C. Product vs. Absolute Difference

In the two previous sections, we have investigated the corre-
lation of 2O-DPA involving either the product or the absolute
difference as combining function. Tables I and III give the corre-
lations for n ∈ {0, · · · , 8} and σ ∈ {0, 1, 5, 10} and show that, for
all these parameters, the correlation for the product combining is
greater than the correlation for the absolute difference combining.

In a very noisy model (σ � n), we have shown that the
correlations satisfy:

ρprod
?

opt ≈
√
n

4σ2
= 0.25

√
n

σ2
,

and
ρdiff

?

opt ≈
√
n

4
√

2π − 4σ2
≈ 0.165

√
n

σ2
.

We observe a linear relationship between the two approximations
of the correlations in the very noisy model: ρprod

?

opt ≈ 1.5ρdiff
?

opt .
As a straightforward consequence of this relation, the correlation
ρprod

?

opt is always greater than ρdiff
?

opt when the noise is high and
the two correlations are asymptotically equivalent when the noise
increases.

1) Empirical verification.: In order to empirically verify the
analysis carryied out in the previous sections, we ran some 2O-
DPA attack simulations according to the defined Hamming weight
model. The targeted sensitive variable Z was a vector of n ≤ 8

bits chosen among the output bits of the AES S-Box (taking X⊕K
as input). The different values of X were randomly picked up to
model a known (but not chosen) plaintext attack. Tables V and VI
give the number of measurements required to reach a success rate
of either 90% or 99.9% for the product and the absolute difference
according to the values of n ∈ {0, · · · , 8} and σ ∈ {0, 1, 5} (10000

– resp. 1000 – simulations were performed for σ ∈ {0, 1} – resp.
σ = 5).

Remark 19: We can observe that the results printed in Tables
V and VI match very well the correlation values given in Tables
I and III. Indeed, there is a kind of one-to-one correspondance
between the correlation values and the number of measurements
required to reach a given success rate. These results confirm that
the correlation is a good indicator of the efficiency of an HO-DPA.

The number of measurements required by an HO-DPA quickly
increases as the noise increases. Consequently, we were not able
to derive some precise success rates for σ ≥ 10. However, we
have done several simulations with different noise deviations that
all led to the same results: the number of measurements required
to retrieve the targeted secret was almost all the time smaller for
the product combining than for the absolute difference combining.
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TABLE V
NUMBER OF REQUIRED MEASUREMENT FOR THE PRODUCT COMBINING.

n 1 2 3 4
σ = 0, SR = 90.0% 20 30 40 60
σ = 0, SR = 99.9% 30 50 80 130
σ = 1, SR = 90.0% 430 310 280 280
σ = 1, SR = 99.9% 940 690 600 600
σ = 5, SR = 90.0% 190000 100000 65000 55000
σ = 5, SR = 99.9% 410000 205000 135000 120000

n 5 6 7 8
σ = 0, SR = 90.0% 80 100 110 130
σ = 0, SR = 99.9% 150 190 230 280
σ = 1, SR = 90.0% 280 290 300 310
σ = 1, SR = 99.9% 570 600 650 700
σ = 5, SR = 90.0% 40000 35000 30000 25000
σ = 5, SR = 99.9% 85000 75000 65000 55000

TABLE VI
NUMBER OF REQUIRED MEASUREMENT FOR THE ABSOLUTE DIFFERENCE

COMBINING.

n 1 2 3 4
σ = 0, SR = 90.0% 20 40 60 90
σ = 0, SR = 99.9% 30 60 130 190
σ = 1, SR = 90.0% 900 800 800 700
σ = 1, SR = 99.9% 1800 1700 1650 1600
σ = 5, SR = 90.0% 420000 300000 225000 155000
σ = 5, SR = 99.9% 800000 770000 410000 380000

n 5 6 7 8
σ = 0, SR = 90.0% 130 170 210 250
σ = 0, SR = 99.9% 270 340 440 550
σ = 1, SR = 90.0% 700 750 750 800
σ = 1, SR = 99.9% 1550 1500 1600 1750
σ = 5, SR = 90.0% 115000 90000 80000 70000
σ = 5, SR = 99.9% 200000 200000 170000 160000

From our observations, we conclude that the product combining
is more efficient than the absolute difference combining not only
in the idealized but also in the noisy model (under the assumption
that the leakage is normalized before being combined as explained
in Sect. IV-A).

D. Further Combining Functions

Other combining functions have been proposed in the litera-
ture [13], [16], [21]. In this section, we discuss these different
proposals.

a) Raising to the power.: In [13], Joye et al. suggest to
improve the efficiency of the absolute difference combining by
raising it to a power α. They analyze the new combining functions
Cαdiff? in the idealized model (corresponding to our model with
σ = 0) for a single-bit 2O-DPA (i.e. with a binary combining
function f : z 7→ z[i]). Oswald et al. carry on with this approach
in [16] : for a prediction function equal to the Hamming weight
(i.e. f : z 7→ H(z)), they evaluate the correlation coefficients for
Cαdiff? and Cαprod? according to different α in the idealized model
without offset (corresponding to our model with δ1 = δ2 = 0).

For several values n and α, we have computed in the idealized
model the optimal correlations for both Cαprod? and Cαdiff?

4. Table

4When n equals 1 and α is even, the product of the leakages does not
depend on Z (and the expectation is constant with Z) which results in an
undefined correlation.

VII lists the obtained values.

TABLE VII
OPTIMAL CORRELATION FOR Cαprod? AND Cαdiff? .

α\n 1 2 3 4 5 6 7 8
Product

1 1.00 0.71 0.58 0.50 0.45 0.41 0.38 0.35
2 und. 0.58 0.37 0.27 0.21 0.17 0.15 0.13
3 1.00 0.71 0.50 0.39 0.33 0.29 0.26 0.24
4 und. 0.58 0.44 0.32 0.24 0.19 0.16 0.14
5 1.00 0.71 0.50 0.36 0.26 0.21 0.17 0.15
6 und. 0.58 0.45 0.33 0.24 0.18 0.14 0.11

Absolute difference
1 1.00 0.65 0.50 0.41 0.35 0.31 0.28 0.26
2 1.00 0.58 0.45 0.38 0.33 0.30 0.28 0.26
3 1.00 0.60 0.45 0.37 0.33 0.29 0.27 0.25
4 1.00 0.62 0.45 0.36 0.31 0.28 0.25 0.24
5 1.00 0.64 0.45 0.35 0.30 0.26 0.24 0.22
6 1.00 0.65 0.45 0.35 0.29 0.25 0.22 0.20

For both combining functions and for every n, the maximum of
the optimal correlations is reached for α = 1. Thus, our analysis
shows that raising the combined leakage to a power is not a
sound approach to increase the efficiency of a 2O-DPA when the
noise is null. This seems to contradict the analyses presented in
[13], [16], where the authors report that raising to some values α
improves the efficiency of the combining. The difference between
our conclusions and the ones in [13], [16] is a consequence
of the following fact: our study compares 2O-DPA that have
been optimized by involving the optimal prediction function
(introduced in Sect. III-C) and by normalizing the leakage signals
(as shown in Sect. IV-A). Besides, for every α we have tested, our
correlation values are greater than the ones reported by Oswald
et al. in [16].

In fact we observed that raising to the power also decreases
the efficiency of 2O-DPA in the noisy model. To summarize, our
analysis suggests that raising the combining function to a power
α decreases the efficiency of the second order DPA, the noise
being null or not.

b) Sine-based combining function.: In [21], Oswald and
Mangard propose a combining function based on the sine func-
tion. It takes as parameters the exact Hamming weights of the
mask and of the masked variable5:

Csin(H(Z ⊕M),H(M)) = sin
(

(H(Z ⊕M)−H(M))2
)
. (31)

They also suggest to use the above combining function together
with the following prediction function:

fsin(Z) = −89.95 sin(H(Z))3

− 7.82 sin(H(Z))2 + 67.66 sin(H(Z)) . (32)

In the idealized model and for n = 8, the use of the couple
(Csin, fsin) allows an attacker to reach a correlation of 0.83 which
is quite high. However, fsin is not optimal. Indeed, Corollary 8
states that the optimal prediction function for Csin is the function
fopt defined by:

fopt(Z) = EM [Csin(H(Z ⊕M),H(M))] . (33)

5The formulae given in [21] are erroneous and (31) and (32) are their
corrected versions.
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Actually, for such a function we have ρ(fsin, fopt) = 0, 97, which
implies that the use of fsin instead of fopt results in an efficiency
loss of 3%.

With our without the above improvement, it is difficult to
compare the efficiencies of Csin and Cprod∗ . Indeed, the attack
scenario presented in [21] does not correspond to the kind of
attacker we focus in this paper (see Section III-A). In [21] the au-
thors consider a very strong adversarial model where the attacker
is able to recover the exact Hamming weights of the mask and of
the masked variable based on pre-processed templates (see [2] for
further details on Template Attacks). However, in such a scenario,
combining the obtained Hamming weights is a suboptimal attack
strategy and, as explained in [21], a better strategy is to use a
Bayesian classification (or maximum likelihood test). Moreover
the recovering of the exact Hamming weight values is only
possible in an almost noise-free model.

As argued at the beginning of this section, in a classical HO-
DPA scenario, the evaluation process of a combining function
must include an analysis in a noisy environment. Therefore,
we analyzed the efficiency of the sine-based combining in the
presence of noise. Namely, we added Gaussian noises N1, N2 ∼
N (0, σ) to the Hamming weights in (31) and (33). We list in Table
VIII the values of the correlation according to an increasing noise
(with n equal to 8).

TABLE VIII
CORRELATIONS FOR Csin AND Cprod? ACCORDING TO σ.

(C, f) \ σ 0 0.1 0.3 0.4 0.5 0.7 1 5
(Csin, fopt) 0.87 0.74 0.38 0.21 0.11 0.05 0.037 0
(Csin, fsin) 0.83 0.70 0.35 0.19 0.08 0.01 0 0(
Cprod? ,H

)
0.36 0.36 0.34 0.33 0.32 0.29 0.24 0.03

It can be observed that the correlation for Csin quickly de-
creases as σ increases. For a noise deviation σ greater or equal to
0.4 (which is quite low) the product combining offers a greater
correlation. This suggests that in a HO-DPA scenario (where
the leakage is noisy), the sine-based combining function is not
suitable.

c) Final Comparison.: To conclude this section, Fig. 3
plots the correlations ρK with respect to the noise deviation
σ ∈ [0, 2] for the combining functions Csin, Cαprod? and Cαdiff? ,
α ∈ {1, 2, 3}. This plot underlines the previous conclusion: among
the known combining functions, the improved product combining
offers the best efficiency in a general leakage model.

V. CONCLUSION

In this paper, we have investigated higher order DPA at-
tacks that combine several leakage signals to defeat masking
countermeasures. We have first defined a theoretical framework
allowing us to evaluate the efficiency of such an HO-DPA and
we have shown how to optimize it according to the combining
technique and the leakage model. This enabled us to study
the existing combining techniques for second order DPA in the
Hamming weight model with noise, paying particular attention
to product combining and absolute difference combining. Our
analysis allowed us to exhibit a way of significantly improving
the product combining in this model and we showed that this
improved product combining is more efficient than all the other
techniques previously proposed in the literature.
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Fig. 3. Correlation ρK for different combining functions according to the
noise deviation σ.

Our work introduces the basis for a practically oriented analysis
of HO-DPA attacks that may be used for future research. In
particular, the framework proposed in this paper makes it possible
to analyze the efficiency of new combining techniques in a
general model. Moreover, our approach could be extended to the
investigation HO-DPA of orders greater than two.
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APPENDIX I
USEFUL LEMMAS

Lemma 20: Let n be a positive integer and let M be a random
variable uniformly distributed over Fn2 . Then, we have:

E
[
H(M)2

]
=
n2 + n

4
(34)

Proof: Since M is uniformly distributed over Fn2 , we have

E
[
H(M)2

]
= E

 n∑
i,j=1

M[i]M[j]

 ,

that is

E
[
H(M)2

]
=

n∑
i,j=1
i6=j

E [M[i]M[j]] +
n∑
i=1

E [M[i]] ,

For every i 6= j, we have E [M[i]M[j]] = 1
4 and E [M[i]] = 1

2 .
Hence we deduce E

[
H(M)2

]
= n(n− 1)× 1

4 + n× 1
2 = n2+n

4 .

Lemma 21: Let n be a positive integer and let M be a random
variable uniformly distributed over Fn2 . Then, for every z ∈ Fn2 ,
we have:

E [H(z ⊕M)H(M)] = −1

2
H(z) +

n2 + n

4
. (35)

Proof: From Property 2 we have

E [H(z ⊕M)H(M)] = H(z)E [H(M)] + E
[
H(M)2

]
− 2E [H(z ∧M)H(M)] . (36)

Since M is uniformly distributed, we have E [H(M)] = n
2 and

E
[
H(M)2

]
= n2+n

4 (from Lemma 20). On the other hand,
E [H(z ∧M)H(M)] satisfies

E [H(z ∧M)H(M)] =
n∑
i=0

z[i]E [M[i]H(M)] . (37)

Since M is uniformly distributed over Fn2 , E [M[i]H(M)] is equal
to 1

nE
[
H(M)2

]
i.e. to n+1

4 (from Lemma 20). Hence simplifying
(36) leads to (35).

Lemma 22: Let m and n be two integers and let r be a positive
integer: ∑

k

(
r

m+ k

)(
s

n+ k

)
=

(
r + s

r −m+ n

)
. (38)

Proof: Lemma 22 is a well-known result whose proof can
be found in [?].

APPENDIX II
PROOFS OF PROPOSITIONS 14 AND 16

A. Proof of Proposition 14

Proof: For every pair (z,m) ∈ Fn2 , Property 2 implies |H(z⊕
m)−H(m)| = |H(z)− 2H(z ∧m)| from which we deduce:

E [|H(z ⊕M)−H(M)|] =

H(z)∑
i=0

|H(z)− 2i| P [H(z ∧M) = i] . (39)

Since M is uniformly distributed P [H(z ∧M) = i] equals
2−H(z)(H(z)

i

)
. Hence we deduce

E [|H(z ⊕M)−H(M)|] =

2−H(z)
b H(z)

2 c∑
i=0

(
H(z)

i

)
(H(z)− 2i) . (40)

By symmetry, we have
∑b H(z)

2 c
i=0

(H(z)
i

)
equal to

1
2

(∑H(z)
i=0

(H(z)
i

)
+
(H(z)

H(z)
2

)
(H(z) mod 2)

)
. Then

∑
i

(H(z)
i

)
=

2H(z) implies

b H(z)
2 c∑
i=0

(
H(z)

i

)
=

2H(z)−1 +
1

2

(
H(z)
H(z)

2

)
(H(z) + 1 mod 2) . (41)
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On the other hand
(H(z)
i

)
i equals H(z)

(H(z)−1
i−1

)
which in a similar

way gives

b H(z)
2 c∑
i=0

(
H(z)

i

)
i =

H(z)

2
2H(z)−1

− H(z)

2

(
H(z)− 1

H(z)−1
2

)
× (H(z) mod 2) . (42)

Finally, (40), (41) and (42) lead to (25)

B. Proof of Proposition 16

Proof: Let φB and ΦB respectively denote the proba-
bility density function and the probability distribution function
of B (that is ΦB(y) = P [B ≤ y] =

∫ y
−∞ φB(x) dx). As

B has a gaussian distribution N (0, σ0), we have φB(x) =
1√

2πσ0
exp(−x2/2σ2

0). Then we have:

E [|s+B|] =

∫ +∞

−∞
|s+ x| φB(x) dx

= s

∫ s

−s
φB(x) dx +

∫ s

−s
xφB(x) dx

+2

∫ +∞

s
xφB(x) dx .

Since the function x 7→ xφB(x) is odd, the term
∫ s
−s xφB(x) dx

equals zero. Moreover, we have
∫ s
−s φB(x) dx = 2

(
ΦB(s)− 1

2

)
and

∫+∞
s xφB(x) dx = σ0√

2π
exp

(
−s2/2σ2

0

)
. Hence, we get

E [|s+B|] = 2s

(
ΦB(s)− 1

2

)
+

√
2σ0√
π

exp
(
−s2/2σ2

0

)
. (43)

Finally, since B has a gaussian distribution N (0, σ0), its
probability distribution function ΦB satisfies ΦB(y) =
1
2

(
1 + erf

(
y√
2σ0

))
for every y ∈ R hence (43) directly implies

(27).


